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Introduction : Additive ergodic optimization

Definition

• We consider a (discrete time) topological dynamical system

(X, f) compact, f : X → X continuous

• We consider also a continuous observable

φ : X → R, continuous

• The Birkhoff average along a finite orbit

An[φ](x) :=
1

n

n−1∑
i=0

φ ◦ f i(x)

• The ergodic minimizing value of φ

φ̄ := lim
n→+∞

inf
x∈X

1

n

n−1∑
i=0

φ ◦ f i(x)
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Introduction : Additive ergodic optimization

Questions

• How to compute the ergodic minimizing value ?

φ̄ := lim
n→+∞

inf
x∈X

1

n

n−1∑
i=0

φ ◦ f i(x)

Remark : minX(φ) ≤ φ̄ ≤ maxX(φ)

• Is there a notion of optimal trajectory ? A possible definition
(forward optimality) coul be

sup
n≥1

∣∣∣ n−1∑
i=0

(
φ− φ̄

)
◦ f i(x)

∣∣∣ = sup
n≥1

∣∣∣ n−1∑
i=0

φ ◦ f i(x)− nφ̄
∣∣∣ < +∞
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Introduction : Hyperbolic dynamical system and SFT

Example of an hyperbolic map : the Arnold map

0 1

1

x0x1

X = T = R2/Z2 the two torus

f

[
x
y

]
=

[
2 1
1 1

] [
x
y

]
mod Z2

λ+ :=
3 +
√

5

2
> 1 > λ− :=

3−
√

5

2

The translation by (α1, α2) is
not hyperbolic

f t
[
x
y

]
=

[
x+ tα1

y + tα2

]
mod Z2

Remark A C1 perturbation of the Arnold map is hyperbolic. The
class of hyperbolic maps is relatively large
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Introduction : Hyperbolic dynamical system and SFT

Another example of an hyperbolic map

1

3

2

Directed graph G = (V,E),

V = {1, 2, 3}
E = {1→ 1, 1→ 2, 2→ 2, . . .}

M =

1 1 1
0 0 1
1 0 1


The subshift of finite type SFT

X := {x = (xk)k∈Z : xk ∈ V, xk → xk+1}
Remark In fact the Arnold map and the SFT are very similar
dynamics : they are both hyperbolic
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Introduction : Minimizing and Gibbs measures

We consider a topological dynamical system (X, f) and and a
continuous observable φ : X → R.

Definition
• An invariant measure µ is a probability measure on X such that

∀B Borel, µ(f−1(B)) = µ(B)

∀h ∈ C0(X,R),

∫
h ◦ f dµ =

∫
h dµ

f
B f (B)

Remark An hyperbolic system has many invariant measures. For
instance the Arnold map preserves the normalized Lebesgue measure
on T2

A :=

[
2 1
1 1

]
det(A) = 1

∫
h ◦ fJac dLeb =

∫
h dLeb

(change of variable)
Ph. Thieullen Introduction to Ergodic Optimization 10/101
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Introduction : Minimizing and Gibbs measures

Recall The ergodic minimizing value

φ̄ := lim
n→+∞

inf
x∈X

1

n

n−1∑
i=0

φ ◦ f i(x)

Proposition We will see soon

φ̄ = min
{∫

φdµ : µ is an invariant mesure
}

Definition

• A minimizing measure is an invariant measure satisfying∫
φdµ = φ̄

• The Mather set is the compact invariant set

Mather(φ) :=
⋃{

supp(µ) : µ is a minimizing measure
}
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Introduction : Minimizing and Gibbs measures

Definition A Gibbs measure at temperature β−1 for the observable
φ : X → R is an invariant measure that gives a specific mass to
cylinders of size n.

• A cylinder of size n is

Bn(x, ε) :=
{
y ∈ X : d(fk(x), fk(y)) < ε, ∀ k ∈ J0, n− 1K

}
• the Gibbs measure at inverse temperature β

µβ [Bn(x, ε)] � 1

Z(n, β)
exp

(
− β

n−1∑
k=0

φ ◦ fk(x)
)

• Z(n, β) := exp(−nβφ̄β) is a normalizing factor

−βφ̄β := lim
n→+∞

inf
En: covering

1

n
log
( ∑
x∈En

exp
(
− β

n−1∑
k=0

φ ◦ fk(x)
))

Remark µβ gives a larger mass to configurations with low energy
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Introduction : Minimizing and Gibbs measures

Question What is the relationship between minimizing measures and
Gibbs measures ?

Theorem We will see that, by freezing an hyperbolic system,
β → +∞, the Gibbs measure µβ associated to a short range
observable tends to a “selected” minimizing measure with maximal
entropy among all minimizing measures.

Observation Some minimizing measures corresponds to “ground
states” (limits up to a subsequence of Gibbs measures), ; other
minimizing measures have no relationship with Gibbs measures. For
non short range observables, the phenomenon of “chaotic
convergence” described by van Enter takes place.
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Introduction : Mañé conjecture for SFT

Recall The Mather set

Mather :=
⋃{

supp(µ) : µ is a minimizing measure
}

Question What is the structure of the Mather set ? Is it small and
reduced to a periodic orbit ? Is it a set with large complexity (or
entropy) ? Could it be the whole set X ?

Mañé Conjecture For any hyperbolic dynamical system, the Mather
set is reduced to a periodic orbit for generic smooth observable.

Contreras Theorem For every subshift of finite type, for every
Hölder observable φ : X → R, for every perturbation ε > 0, there
exists a periodic orbit Oε such that

ψ := φ+ εd(·,Oε)

has a unique minimizing measure, which is the measure supported by
O

δO =
1

card(Oε)

∑
p∈Oε

δp
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Introduction : Mañé conjecture for SFT

Obvious example Every compact invariant set Λ ⊂ X can play the
role of a Mather set

φ(x) := d(x,Λ) φ̄ = 0, µ is minimizing ⇔ supp(µ) ⊂ Λ

Another example Assume the Mather set satisfies the
“subordination principle” and contains a periodic orbit O then

ψ := φ+ εd(x,O)

has a unique minimizing measure supported in O

Proof

1
∫
ψ dµ ≥

∫
φdµ ⇒ ψ̄ ≥ φ̄

2 The Mather set satisfies the subordination principle : every
measure supported in the Mather set is minimizing

3 δO is minimizing : ψ̄ ≤
∫
ψ dδO =

∫
φdµO = φ̄

4 if µ is ψ-minimizing
∫
ψ dµ = ψ̄ = φ̄ ≤

∫
φdµ

ε

∫
d(·,O) dµ =

∫
(ψ − φ) dµ ≤ 0 ⇒ supp(µ) ⊂ O
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Introduction : Frenkel-Kontorova model

Simplification The manifold is the d-torus M = Td, the tangent
space is TM = Td × Rd, ∀ (x, v) ∈ TM , x = position, v = velocity

Definition

(1) A Tonelli Lagrangian is a function L(x, v) : TM → R which is
C2, periodic in x, and uniformly strictly convex in v

∃α > 0, ∀x ∈M, Hess(L)(x, v) :=
∂2L

∂v2
(x, v) > α

(2) The action of a C1 path γ : [a, b]→M is the quantity

A(γ) :=

∫ b

a

L(γ(t), γ′(t)) dt

(3) The Lagrangian flow is the flow on the tangent space

ΦtL(x, v) : TM → TM, γx,v(t) = pr1 ◦ ΦtL(x, v),

d

dt
γx,v = pr2 ◦ ΦtL(x, v)

where γx,v is a a local minimizer of the action :

A(γx,v) ≤ A(γ), ∀ γ : [a, b]→M, C1 close

Ph. Thieullen Introduction to Ergodic Optimization 18/101
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Introduction : Frenkel-Kontorova model

Example M = Td, TM = Td × Rd, U : M → R a C2 periodic
function, λ ∈ Rd a constant representing a cohomological constraint

L(x, v) =
1

2
‖v‖2 − U(x)− λ · v

Recall The action of a C1 path γ : [a, b]→M is the quantity

A(γ) :=

∫ b

a

L(γ(t), γ′(t)) dt, γ(a) = x, γ(b) = y

Discrete Aubry-Mather A discretization in time of a Laganrgian
flow. Let τ > 0 be a small number

Aτ (x, y) := τL
(
x,
y − x
τ

)
− τU(x)− λ · (y − x)

Ph. Thieullen Introduction to Ergodic Optimization 19/101
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Introduction : Frenkel-Kontorova model

Frenkel-Kontorova model A discretization in time of the inverse
pendulum : d = 1, M = T, M̃ = R→M is the natural covering space

Eτ (x, y) :=
1

2τ
|y − x|2 +

τK

2π

(
1− cos(2πx)

)
− λ(y − x)

Eτ is called an interaction energy

Definition A minimizing configuration (xk)k∈Z, xk ∈ R, ∀m ∈ Z,
∀n ≥ 1

n+n−1∑
k=m

Eτ (xk, xk+1) ≤
m+n−1∑
k=m

E(yk, yk+1), ∀

{
ym = xm

ym+n = xm+n

x0 x1 x2 x3 x4 x5 x6 x7 x8

y0 y1 y2 y3 y4 y5 y6 y7 y8
R
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Introduction : Frenkel-Kontorova model

Dynamical system (Σ, σ) where Σ is the space of minimizing
configurations x = (xk)k∈Z, and σ : Σ→ Σ is the left shift

σ(x) = y = (yk)k∈Z ⇔ yk = xk+1, ∀ k ∈ Z

Definition The ergodic minimizing value of E, or the effective energy

Ēτ = lim
n→+∞

1

n
inf

x0,x1,...,xn

n−1∑
k=0

E(xk, xk+1)

Proposition We will see that one can define a discrete Lagrangian
dynamics ΦL,τ (x, v) : T× R→ T× R such that

Ēτ = inf
{∫

E(x, x+ τv) dµ(x, v) : µ is ΦL,τ minimizing
}

Remark Although ΦL,τ is not hyperbolic, a similar theory can be
applied. Numerically by discretizing the space, we get back to subshift
of finite type
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Introduction : Linear switched systems

Question We studied in different examples the notion of ergodic
minimizing value of a scalar function φ : X → R. If f is multivalued
what can be said ?

Definition A (discrete in time) linear switch system is a dynamical
system of the form

vk+1 = Akvk, ∀ k ≥ 0

where vk ∈ Rd represents the state of the system, Ak ∈ Mat(R, d) is a
square matrix, and vk+1 is the state at the next time. The action Ak
can be chosen either by an external observer or by an automatic
dynamical system (X, f)

Definition We consider a topological dynamical system (X, f), a
continuous matrix function A : X → Mat(R, d), and a matrix cocycle

A(x, n) := A ◦ fn−1(x) · · ·A ◦ f(x)A(x)
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Introduction : Linear switched systems

Question One of the main problem in control theory is to stabilize a
system, that is to find a trajectory x ∈ X such that

‖A(x, n)‖ = ‖A ◦ fn−1(x) · · ·A ◦ f(x)A(x)‖ ≤ 1

We are left to study the worst case, that is to compute the following
characteristic of the system

Definition The maximizing singular value of a cocycle

σ̄1(A) := lim
n→+∞

sup
x∈X
‖A(x, n)‖1/n

Actually we prefer to introduce the maximizing Lyapunov exponent

λ̄1 := log(σ̄1(A)) = lim
n→+∞

1

n
sup
x∈X

log(‖A(x, n)‖)
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Introduction : Linear switched systems

Definition A cocycle of order 1 over the full shift :

(1) a finite set of matrices A := {M1, · · · ,Mr}
(2) the full shift X := AN = {x = (Ak)k≥0 : Ak ∈ A, ∀ k ≥ 0}

f : X → X is the left shift

(3) the cocycle of order 1 : A(x) = A0 if x = (Ak)k≥0

A(x, n) = An−1 · · ·A1A0

Example A cocycle of order 1 over a set of two matrices

M1 :=

[
1 1
0 1

]
M2 :=

1√
2

[
1 −1
1 1

]
Although the spectral radius of each matrix is

ρ = lim
n→+∞

‖Mn
1 ‖1/n = lim

n→+∞
‖Mn

2 ‖1/n = 1

we will see that the “generalized spectral radius” of indifferent
products is

lim
n→+∞

sup
An−1,...,A1,A0

‖An−1 · · ·A1A0‖1/n > 1
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Additive cocycle : Basic definitions again

Definition We consider

(1) (X, f) a topological dynamical system, X compact, f : X → X
continuous

(2) φ : X → R a continuous observable

(3) the ergodic minimizing value of φ

φ̄ := lim
n→+∞

inf
x∈X

1

n

n−1∑
k=0

φ ◦ fk(x)

Question Can we say something for the lower bound of

inf
n≥1

inf
x∈X

{ n−1∑
k=0

φ ◦ fk(x)− nφ̄
}

Ph. Thieullen Introduction to Ergodic Optimization 28/101
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Additive cocycle : Basic definitions again

Definition A coboundary is a special observable of the form

φ = u ◦ f − u

for some continuous function u : X → R
An easy example Assume φ is a coboundary φ = u ◦ f − u then

φ̄ = 0 and sup
n≥1

sup
x∈X

∣∣∣ n−1∑
k=0

φ ◦ fk(x)− nφ̄
∣∣∣ < +∞

Proof The Birkhoff sum can be evaluated easily

n−1∑
k=0

φ ◦ fk = u ◦ fn − u

sup
x∈X

∣∣∣ n−1∑
k=0

φ ◦ fk(x)
∣∣∣ ≤ 2‖u‖∞

φ̄ = lim
n→+∞

inf
x∈X

1

n

n−1∑
k=0

φ ◦ fk(x) = 0
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Additive cocycle : Gottschalk-Hedlund theorem

Definition A minimal system (X, f) is a topological dynamical
system so that every orbit is dense

∀x ∈ X, {fn(x) : n ≥ 0} = X

Example The hull of the Fibonacci sequence

1 the substitution : 0→ 1, 1→ 10

0→ 1→ 10→ 10.1→ 101.10→ 10110.101→ 10110101.10110

ω0 = 0, ω1 = 1, ωn+1 = ωnωn−1 → ω∞ ∈ {0, 1}N

2 the hull of the bi-infinite Fibonacci sequence ω∞∞

ω∞∞ := 0∞ | ω∞ ∈ Σ := {0, 1}Z

X :=
⋂
n≥1

{
σk(ω∞∞) : k ≥ n

}
⊆ Σ

3 (X,σ) is a subshift of (Σ, σ) semi-conjugated to the rotation on
the circle of rotation number

α =
1 +
√

5

2
largest eigenvalue of

[
0 1
1 1

]
Ph. Thieullen Introduction to Ergodic Optimization 31/101
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Additive cocycle : Gottschalk-Hedlund theorem

Theorem(Gottschalk-Hedlund) Let (X, f) be a minimal system and
φ : X → R be a continuous function. Assume there exists a point
x0 ∈ X such that

sup
n≥1

∣∣∣ n−1∑
k=0

φ ◦ fk(x0)
∣∣∣ < +∞

Then there exists u : X → R such that

φ = u ◦ f − u

(We say that φ is a coboundary)

Ph. Thieullen Introduction to Ergodic Optimization 32/101
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Additive cocycle : Gottschalk-Hedlund theorem

Definition A function v : X → R is said to be u.s.c, upper semi
continuous at x0 ∈ X if

lim
ε→0

sup
x∈B(x0,ε)

v(x) ≤ v(x0)

A function u is said to be l.s.c. lower semi continuous if

lim
ε→0

inf
x∈B(x0,ε)

u(x) ≥ u(x0)

Proposition

• the supremum of a sequence of continuous functions is l.s.c.

• The infimum of a sequence of continuous functions is u.s.c.

Proposition

• v is u.s.c. ⇔ {v ≥ λ} is closed for every λ

• u is l.s.c. ⇔ {u ≤ λ} is closed for every λ

Ph. Thieullen Introduction to Ergodic Optimization 33/101
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Additive cocycle : Gottschalk-Hedlund theorem

Proof of Gottschalk-Hedlund Recall we have assumed

R0 := sup
n≥1

∣∣∣ n−1∑
k=0

φ ◦ fk(x0)
∣∣∣ < +∞

1 We first observe that sup
x∈X

sup
n≥1

∣∣∣ n−1∑
k=0

φ ◦ fk(x)
∣∣∣ ≤ 2R0

x

f n−1(x)

x0

f k ( x0)

f (x0)

let x ∈ X, n ≥ 1, ε > 0 fixed. By minima-
lity there exists k ≥ 0

n−1∑
i=0

|φ ◦ f i(x)− φ ◦ f i+k(x0)| < ε

n−1∑
i=0

φ ◦ f i+k(x0) =

n+k−1∑
i=0

φ ◦ f i(x0)

−
k−1∑
i=0

φ ◦ f i(x0)
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Additive cocycle : Gottschalk-Hedlund theorem

Proof of Gottschalk-Hedlund

2 We define two functions

u := sup
n≥1

n−1∑
k=0

φ ◦ fk v := inf
n≥1

n−1∑
k=0

φ ◦ fk

3 u is l.s.c. v is u.s.c.

4 the computation of u ◦ f and v ◦ f introduces a shift in the
summation

u ◦ f = sup
n≥1

n∑
k=1

φ ◦ fk u ◦ f + φ = sup
n≥2

n−1∑
k=0

φ ◦ fk ≤ u

v ◦ f = inf
n≥1

n∑
k=1

φ ◦ fk v ◦ f + φ = inf
n≥2

n−1∑
k=0

φ ◦ fk ≥ v
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Additive cocycle : Gottschalk-Hedlund theorem

Proof of Gottschalk-Hedlund

5 we just have proved : u ◦ f + φ ≤ u v ◦ f + φ ≥ v
6 define w := v − u, then w ◦ f ≥ w
7 w is upper semi continuous → w attains its supremum

8 let x∗ be a point maximizing w

9 then X∗ := {x ∈ X : w(x) = w(x∗)} is invariant by f

10 X∗ is closed again by u.s.c. of w

11 X∗ = X by minimality w = w(x∗), ∀x ∈ X
12 v − u = const ⇒ v and u are continuous

u ◦ f + φ = u v ◦ f + φ = v
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Introduction : Gottschalk-Hedlund theorem

Remark The assumptions in Gottschal-Hedlund implies φ̄ = 0

sup
n≥1

∣∣∣ n−1∑
k=0

φ ◦ fk(x0)
∣∣∣ < +∞ ⇒ φ̄ = lim

n→+∞
inf
x∈X

1

n

n−1∑
k=0

φ ◦ fk(x) = 0

Question Is the converse true ?

Definition An additive cocyle is nondefective from below if there
exists a constant C such that

∀x ∈ X, ∀n ≥ 0,

n−1∑
k=0

φ ◦ f(x) ≥ nφ̄+ C

Proposition If (X, f) is minimal and φ is continuous nondefective
from below then

φ = u ◦ f − u+ φ̄

for some continuous u : X → R
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Additive cocycle : Minimizing measures and Mather set

Lemma If (an)n≥0 is a sub additive sequence

am+n ≤ am + an, ∀m,n ≥ 0

then
lim

n→+∞

an
n

= inf
n≥1

an
n

Remark The following sequence (an)n≥0 is supper additive

an := inf
x∈X

n−1∑
k=0

φ ◦ fk(x)

Corollary The limit in the definition of φ̄ exists

lim
n→+∞

1

n
inf
x∈X

n−1∑
k=0

φ ◦ fk(x) = sup
n≥1

inf
x∈X

1

n

n−1∑
k=0

φ ◦ fk(x)
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Additive cocycle : Minimizing measures and Mather set

Definition We recall that a probability measure is invariant if

∀h ∈ C0(X,R),

∫
h ◦ f dµ =

∫
h dµ

Observation Let M(X, f) be the set of invariant measures∫
φdµ =

∫ ( 1

n

n−1∑
k=0

φ ◦ fk
)
dµ ≥ inf

x∈X

1

n

n−1∑
k=0

φ ◦ fk

inf
µ∈M(X,f)

∫
φdµ ≥ sup

n≥1
inf
x∈X

1

n

n−1∑
k=0

φ ◦ fk

Proposition Actually

inf
µ∈M(X,f)

∫
φdµ = sup

n≥1
inf
x∈X

1

n

n−1∑
k=0

φ ◦ fk(x)

A measure realizing the infimum is called a minimizing measure
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Additive cocycle : Minimizing measures and Mather set

Proof

1 for every n ≥ 1, the infimum in inf
x∈X

1

n

n−1∑
k=0

φ ◦ fk(x) is realized by

a point xn
2 let µn be the empirical measure along the trajectory

µn :=
1

n

n−1∑
k=0

δfk(xn)

3 by definition

∫
φdµn = inf

x∈X

1

n

n−1∑
k=0

φ ◦ fk(x)

4 The space of probability measures is weak∗ compact, there exists
a subsequence of (µn)n≥1 converging to some probability measure
µ. We check that µ is invariant∫

φdµ = lim
n→+∞

inf
x∈X

1

n

n−1∑
k=0

φ ◦ fk(x)
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Additive cocycle : Minimizing measures and Mather set

Definition We recall

Mather :=
⋃{

supp(µ) : µ is minimizing
}

Proposition The Mather set is compact

Mather = supp(µ) for some minimizing measure µ

Question What is the structure of the Mather set ? Is it a big set, a
small set ? Can we find on the Mather set optimal trajectories x that
is

sup
n≥1

∣∣∣ n−1∑
k=0

φ ◦ fk(x)− nφ̄
∣∣∣ < +∞
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Additive cocycle : Subshift of finite type

Definition We consider here a one-sided subshift of finite type

• A := {1, 2, · · · , r} is a finite set of states

• M is a r × r square matrix describing the allowed transitions

M(i, j) ∈ {0, 1} M(i, j) = 1 ⇔ i→ j is an admissible transition

• X =
{

(xn)n≥0 : ∀n ≥ 0, xn ∈ A, M(xn, xn+1) = 1
}

X is called a subshift of finite type SFT. The left shift f : X → X

x = (x0, x1, x2, . . .) ⇒ y = f(x) = (x1, x2, x3, . . .)

• X equipped with the product topology is compact metrizable

d(x, y) = e−n ⇔ x0 = y0, · · · , xn−1 = yn−1 and xn 6= yn

• we assume M is semi irreducible

∀ i ∈ A, ∃j ∈ A, M(i, j) = 1

∀ j ∈ A, ∃i ∈ A, M(i, j) = 1
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Additive cocycle : Subshift of finite type

0 1

1

x0 1/2
a b

x

f (x )

a

b

The doubling period

f : x 7→ 2x mod 1

is semi conjugated (up to a
countable number of points) to
the full shift

X = {a, b}N

Here the hyperbolicity is related
to the fact that

|f ′(x)| > 1
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Additive cocycle : Subshift of finite type

0 1

1

a b c

a

b

c

A Markov map (could be disconti-
nuous). The states space

A = {a, b, c}

The transition matrix

M =

0 1 1
1 1 1
1 1 0


The Markov map is semi conjugated to
the SFT

X =
{
x ∈ AN : M(xk, xk+1) = 1, ∀ k

}
Again the hyperbolicity of the Markov map is obtained because of
|f ′(x)| > 1. Any C2 perturbation still remaining Markov is semi
conjugated to (X, f)
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Additive cocycle : Subshift of finite type

Remark A SFT is hyperbolic in the following sense

• if x0 = y0, · · · , xn−1 = yn−1 and xn 6= yn then

d(x, y) = e−n, d(f(x), f(y)) = e−(n−1) = e1d(x, y)

⇒ σ is expanding

• if x and y are two configurations such that x0 = y0 and

· · · x−3 → x−2 → x−1 → x0,

are preimages of x0 then the new configurations

x′ = (x−1, x0, x1, . . .) y′ = (x−1, y0, y1, . . .)

x′′ = (x−2, x−1, x0, x1, . . .) y′′ = (x−2, x−1, y0, y1, . . .)

are contracted

d(x′, y′) = e−1d(x, y) d(x′′, y′′) = e−2d(x, y)

Ph. Thieullen Introduction to Ergodic Optimization 47/101



Summary Introduction Additive cocycle Zero limit Discrete Aubry-Mather Bibliography

II. Additive ergodic optimization on
hyperbolic spaces

• Basic definitions again

• Minimal systems and Gottschalk-Hedlund

• Minimizing measures and Mather set

• An example of hyperbolic space : Subshift of finite type

• Lax-Oleinik operator and calibrated subactions

• Some extensions for Anosov systems

Ph. Thieullen Introduction to Ergodic Optimization 48/101



Summary Introduction Additive cocycle Zero limit Discrete Aubry-Mather Bibliography

Additive cocycle : Lax-Oleinik operator

Recall The ergodic minimizing value of φ can be computed using
measure

φ̄ = min
{∫

φdµ : µ is an invariant measure
}

Mather(φ) :=
⋃{

supp(µ) : µ is minimizing
}

Definition An observable is nondefective from below if

∀x ∈ X, ∀n ≥ 0,

n−1∑
k=0

φ ◦ fk(x) ≥ nφ̄+ C

Theorem(Gottschalk-Hedlund) If (X, f) is minimal and φ : X → R is

continuous then : sup
n≥1

∣∣∣ n−1∑
k=0

φ ◦ fk(x0)
∣∣∣ < +∞ ⇒ φ = u ◦ f − u

Extension If (X, f) is minimal and φ is nondefective from below then

φ = u ◦ f − u+ φ̄
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Additive cocycle : Lax-Oleinik operator

Main hypothesis The observable is Lipschitz (or Hölder)

∀x, y ∈ X, x0 = y0, |φ(x)− φ(y)| ≤ Lip(φ)d(x, y)

Main result If (X, f) is a SFT, if φ : X → R is Lipschitz then there
exists a Lipschitz function u : X → R such that

(1) ∀x ∈ X, φ(x) ≥ u ◦ f(x)− u(x) + φ̄
(2) ∀x ∈ Mather, φ(x) = u ◦ f(x)− u(x) + φ̄

Definition A subaction for φ is a continuous function u such that

∀x ∈ X, φ(x) ≥ u ◦ f(x)− u(x) + φ̄

Corollary Every Lipschitz φ is non defective from below

n−1∑
k=0

φ ◦ fk(x) ≥ u ◦ fn(x)− u(x) + nφ̄ ≥ nφ̄− 2‖u‖∞

Corollary Every trajectory of the Mather set is optimal

x ∈ Mather(φ) ⇒
∣∣∣ n−1∑
k=0

(
φ ◦ fk(x)− φ̄

)∣∣∣ ≤ 2‖u‖∞
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Additive cocycle : Lax-Oleinik operator

Main tool The Lax-Oleinik operator is a (nonlinear) operator acting
on Lipschitz function u : X → R defined by

T [u](y) := min{u(x) + φ(x) : f(x) = y}

1

4 3

2
ϕ1,2

ϕ1,1

ϕ2,3

ϕ3,3ϕ3,4

ϕ4,3

ϕ4,1

The transition matrix

M =


1 1 1 0
0 0 1 0
0 0 1 1
1 0 1 0


Assume φ is two-block : φ(x) = φ(x0, x1)

It is enough to consider one-block function u(x) = u(x0)

T [u](1) = min
{
u(1) + φ(1, 1), u(4) + φ(4, 1)

}
T [u](2) = u(1) + φ(1, 2)

T [u](3) = min
{
u(1) + φ(1, 3), u(2) + φ2,3, u(3) + φ(3, 3), u(4) + φ(4, 3)

}
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Additive cocycle : Lax-Oleinik operator

Definition The Lax-oleinik operator T : Lip(X,R)→ Lip(X,R)

T [u](y) := min{u(x) + φ(x) : f(x) = y}

Theorem

(1) There exists a unique “additive eigenvalue” a and an (a priori
non unique) “additive eigenfunction” u ∈ Lip(X,R) such that

T [u] = u+ a

(2) a = φ̄ is the unique eigenvalue

(3) Every eigenfunction u is a subaction

φ(x) ≥ u ◦ f(x)− u(x) + φ̄

Definition An additive eigenfunction of the Lax-Oleinik operator is
called a calibrated subaction
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Additive cocycle : Lax-Oleinik operator

The proof uses either the Schauder theorem or a more explicit
iterative scheme

Ishikawa’s Algorithm(Admitted) Let B be a Banach space, K ⊂ B
be a convex compact set, and T : K→ K be a nonexpansive map

‖T [u]− T [v]‖ ≤ ‖u− v‖

Then the sequence

u0 ∈ K, un+1 =
un + T [un]

2

converges to a fixed point.

Notation We will apply Ishikawa’s algorithm to

B := C0(X,R)/R with u ∼ v ⇔ u− v = const.

|||u||| := inf{‖u+ c‖∞ : c ∈ R}
KC :=

{
u ∈ B : Lip(u) ≤ C

}
for some constant C
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Additive cocycle : Lax-Oleinik operator

Recall The Lax-Oleinik operator : X ⊆ AN, A = {1, . . . , r}

T [u](x0, x1, x2, . . .) = min
x−1∈A

{
(u+ φ)(x−1, x0, x1, . . .)

}
Main observation Two points x, y ∈ X starting at the same symbol
i0 = x0 = y0 ∈ A have a common symbolic inverse branch which
contracts exponentially fast

x0 = y0 ⇒ ∃ i−3 → i−2 → i−1 → i0

x(−n) := (i−n, . . . , i−1, x0, x1, . . .), fn(x(−n)) = x

y(−n) := (i−n, . . . , i−1, y0, y1, . . .)

d(x(−n), y(−n)) ≤ λnd(x, y)

for some 0 < λ < 1 (λ = e−1)

Hyperbolicity The existence of such a contracting inverse dynamics
is the main observation for the existence of u
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Additive cocycle : Lax-Oleinik operator

Proof of the ergodic Lax-Oleinik’s theorem

1 we recall the definition

T [u](y) = min
f(x)=y

(
u(x) + φ(x)

)
2 T commutes with the constants : T [u+ c] = T [u] + c

3 T is nonexpansive :

‖T [u]− T [v]‖∞ ≤ ‖u− v‖∞

y fixed ⇒ ∃x optimal, T [v](y) = v(x) + φ(x)

T [u] is a min ⇒ T [u](y) ≤ u(x) + φ(x)

substracting ⇒ T [u](y)− T [v](y) ≤ u(x)− v(x) ≤ ‖u− v‖
permuting ⇒ |T [u](y)− T [v](y)| ≤ u(x)− v(x) ≤ ‖u− v‖
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Additive cocycle : Lax-Oleinik operator

Proof of the ergodic Lax-Oleinik’s theorem

4 T preserves the set :
{
u : Lip(u) ≤ C

}
C :=

λ

1− λ
Lip(φ)

choose y, y′ such that y0 = y′0
optimize T [u](y′) : ∃x′, f(x′) = y′ such that

T [u](y′) = u(x′) + φ(x′)

choose the same inverse branch : ∃x, f(x) = y such that

d(x, x′) ≤ λd(y, y′)

by minimizing T [u](y) and substracting

T [u](y) ≤ u(x) + φ(x)

T [u](y)− T [u](y′) ≤ (u+ φ)(x)− (u+ φ)(x′)

5 we use now that φ is Lipschitz

T [u](y)− T [u](y′) ≤ (Lip(u) + Lip(φ))λd(y, y′)

Lip(T [u]) ≤ λLip(φ) +
λ2

1− λ
Lip(φ) =

λ

1− λ
Lip(φ)

Lip(T [u]) ≤ C
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Additive cocycle : Lax-Oleinik operator

Proof of the ergodic Lax-Oleinik’s theorem

6 we introduce the quotient space B := C0(X,R)/R
T acts on B because T commutes with the constants
T preserves the set

K =
{
u ∈ B : Lip(u) ≤ λ

1− λ
Lip(φ)

}
K is convex

7 By Ascoli’s theorem K is compact

8 by Ishikawa’s theorem T admits a fixed point u in K :
there exists u : X → R Lipschitz and a ∈ R such that

T [u] = u+ a
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Additive cocycle : Lax-Oleinik operator

Proof of the ergodic Lax-Oleinik’s theorem

9 We show that a ≤ φ̄. For every x, y ∈ X

f(x) = y ⇒ u(y) + a = T [u](y) ≤ u(x) + φ(x)

u ◦ f(x) + a ≤ u(x) + φ(x)

we thus have proved that an additive eigenfunction is a subaction

u ◦ f − u+ a ≤ φ

∀x ∈ X, u ◦ fn(x)− u(x) + na ≤
n−1∑
k=0

φ ◦ fk(x)

a ≤ lim
n→+∞

inf
x∈X

1

n

n−1∑
k=0

φ ◦ fk(x) = φ̄
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Additive cocycle : Lax-Oleinik operator

Proof of the ergodic Lax-Oleinik’s theorem

10 We show that a ≥ φ̄. We choose arbitrarily a point x(0) ∈ X.
By optimality in the definition in Lax-Oleinik

u(y) + a = T [u](y) = min
f(x)=y

{u(x) + φ(x)}

∃x(−1) ∈ X, f(x(−1)) = x(0), u(x(0)) + a = u(x(−1)) + φ(x(−1))

∃x(−2) ∈ X, f(x(−2)) = x(−1), u(x(−1)) + a = u(x(−2)) + φ(x(−2))

∃x(−3) ∈ X, f(x(−3)) = x(−2), u(x(−2)) + a = u(x(−3)) + φ(x(−3))

. . . . . . . . . . . . . . .
n∑
k=1

φ(x(−k)) = u(x(0))− u(x(−n)) + na

φ̄ = lim
n→+∞

inf
x∈X

1

n

n−1∑
k=0

φ ◦ fk(x) ≤ lim
n→+∞

u(x(0))− u(x(−n)) + na

n
= a

Ph. Thieullen Introduction to Ergodic Optimization 59/101



Summary Introduction Additive cocycle Zero limit Discrete Aubry-Mather Bibliography

Additive cocycle : Lax-Oleinik operator

Corollary Let (X, f) be a SFT, let φ be a Lipschitz function

(1) there exits a Lipschitz subaction u : X → R

∀x ∈ X, φ(x) ≥ u ◦ f(x)− u(x) + φ̄

(2) up to a coboundary, the ergodic minimizing value is a true
minimum

ψ := φ− (u ◦ f − u) ⇒


ψ̄ = minX(ψ) = φ̄

∀x ∈ X, ψ(x) ≥ ψ̄

∀x ∈ Mather, ψ(x) = ψ̄

Proof

1 for every invariant measure

∫
ψ dµ =

∫
φdµ ⇒ ψ̄ = φ̄

2 as (ψ − φ̄) ≥ 0 and

∫
(ψ − φ̄) dµ = 0 for µ minimizing

∀x ∈ supp(µ), ψ = φ̄
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Additive cocycle : Lax-Oleinik operator

Corollary Every trajectory in the Mather set is optimal

∀x ∈ Mather, sup
n≥1

∣∣∣ n−1∑
k=0

φ ◦ fk(x)− nφ̄
∣∣∣ < +∞

Proof

1 for every minimizing measure µ

∫
(φ− φ̄) dµ = 0

2 there exists a subaction (φ− φ̄)− (u ◦ f − u) ≥ 0

3

∫
(φ− φ̄)− (u ◦ f − u) dµ = 0

4 φ− φ̄ = u ◦ f − u µ a.e.

5 φ− φ̄ = u ◦ f − u everywhere on supp(µ)

6

∣∣∣ n−1∑
k=0

(φ− φ̄) ◦ fk(x)
∣∣∣ = |u ◦ fn(x)− u(x)| ≤ 2‖u‖∞ on supp(µ)
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III. Zero temperature limit in
thermodynamic formalism

• Description of the BEG model

• Gibbs measures of a directed graph

• Ground states of a directed graph

• Zero temperature limit for a SFT

• Explicit computations for the BEG model

Ph. Thieullen Introduction to Ergodic Optimization 63/101



Summary Introduction Additive cocycle Zero limit Discrete Aubry-Mather Bibliography

Zero limit : Description of the BEG model

Description The Blume Emery Griffiths model (BEG model)

x i x i1 x i2x i−1

>

>

−1
0

1

>

>

−1
0

1

>

>

−1
0

1

>

>

−1
0

1

One considers a chain of atoms on a lattice at equilibrium at positive
temperature that interact with their first neighbours.

(1) Each site of the lattice hosts a unique atom

(2) there are 3 kinds of atoms ; either He4 with spin up or down, or
an isotope He3 with no spin. Let A = {−1, 0, 1} be the 3 kinds of
atoms.

(3) a chain of atoms is an infinite sequence x = (xk)k∈Z, xk ∈ A

(4) the interaction energy is short-range and is given by an
Hamiltonian : H : A×A→ R

(5) the energy of a finite block of atoms

H(xm, xm+1, . . . , xm+n) :=

m+n−1∑
k=m

H(xk, xk+1)

Ph. Thieullen Introduction to Ergodic Optimization 64/101



Summary Introduction Additive cocycle Zero limit Discrete Aubry-Mather Bibliography

Zero limit : Description of the BEG model

Hamiltonian in BGE H : A×A→ R has the form

H(x, y) := −Jxy −Kx2y2 +
∆

2
(x2 + y2)

-1

0

+1
J-K+D

Δ
2



2

0

-J-K+D -J-K+D

(1) x, y ∈ A = {−1, 0, 1}
(2) J > 0 ⇒ spins tend to be aligned

(3) K > 0 ⇒ spins tend to be neighbours

(4) ∆ > 0 ⇒ role of a chemical potential

(5) directed graph with transition matrix

M =

1 1 1
1 1 1
1 1 1


Example of a computation

H(0, 0) = 0, H(−1, 1) = J −K + ∆, · · ·
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III. Zero temperature limit in
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Zero limit : Gibbs measures of a directed graph

Formal notations

(1) A = {1, 2, . . . , r} : the possible state space of the atoms

(2) M : an r × r matrix with values in {0, 1} called transition matrix

M(i, j) = 1 ⇔ a transition i→ j is allowed

(3) (X, f) : the bi-infinite subshift of finite type, f : X → X

X =
{
x = (xk)k∈Z : ∀ k ∈ Z, xk ∈ A, M(xk, xk+1

}
⊆ AZ

f(x) = y = (yk)k∈Z, ∀ k ∈ Z, yk = xk+1

(4) H : A×A→ R ∪ {+∞} : the Hamiltonian of the system
describing the local energy between two successive atoms

H(i, j) = +∞ ⇔ M(i, j) = 0

(5) φ : X → R : the corresponding short rang interaction on the SFT

φ(x) = H(x0, x1)
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Zero limit : Gibbs measures of a directed graph

1

4

3

2

5
H (1,5

)

H
(4
,5
)

H
(2,3)

H (2,2)

NOT
IRREDUCIBLE

Assumption The transition matrix (or the
graph) is irreducible : for every state i, j ∈ A

∃ i = i0 → i1 → i2 → · · · → in = j

Definition We introduce a weight for each
transition

Mβ(i, j) := exp(−βH(i, j))

which should be proportional to the proba-
bility of the occurrence of the the transition

Remark

(1) β is supposed to be the inverse of the temperature T

(2) M0 is the initial transition matrix corresponding to T = +∞
(3) M∞ is the frozen state corresponding to T = 0

Physical Ansatz The configurations prefer transitions with low
energy (→ which explains the sign −βH)
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Zero limit : Gibbs measures of a directed graph

Definition A cylinder of size n is a set of configurations that have
prescribed states on n consecutive sites of Z. To simplify the
notations, the cylinder starts at 0. If i0, i1, . . . , in ∈ A then

[i0, i1, . . . , in] :=
{
x = (xk)k∈Z ∈ X : x0 = i0, x1 = i1, . . . , xn = in

}
Definition The total energy of a block is

H(i0, . . . , in) :=

n−1∑
k=0

H(ik, ik+1) =

n−1∑
k=0

φ ◦ fk(x), ∀x ∈ [i0, . . . , in]

Definition A Gibbs measure at temperature β−1 is an invariant
measure of the SFT (X, f) such that

µβ([i0, . . . , in]) � exp
(
− βH(i0, . . . , in) + nβH̄β

)
exp(−nβH̄β) �

∑
[i0,...,in]
admissible

exp
(
− βH(i0, . . . , in) + nβH̄β

)
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Zero limit : Gibbs measures of a directed graph

Theorem Let (X, f) be a SFT associated to an irreducible transition
matrix and H : A×A→ R ∪ {+∞} be a two-step Hamiltonian. Then
there exists a unique Gibbs measure at every temperature β−1

Recall Mβ(i, j) = exp(−βH(i, j)).

Definition A non negative matrix M ∈ Mat(R+, r) is said to be an
irreducible matrix, if ∀ i, j ∈ {1, . . . , r}, there exists i0, i1, . . . , in, with
i0 = i and j0 = j such that

M(i0, i1)Mβ(i1, i2) · · ·M(in−1, in) > 0

Remember Mβ(i, j) = 0 ⇔ H(i, j) = +∞ ⇔ i 6→ j

Perron Frobenius theorem If M is a non negative irreducible
matrix, then the spectral radius ρ of M is strictly positive and ρ is an
eigenvalue of multiplicity 1. Moreover the eigenvector associated to 1
can be chosen to have strictly positive entries
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Zero limit : Gibbs measures of a directed graph

Theorem Let (X, f) be a SFT associated to an irreducible transition
matrix and H : A×A→ R ∪ {+∞} be a two-step Hamiltonian. Then
there exists a unique Gibbs measure at every temperature β−1

Proof The Perron-Frobenius theorem tells us

1 let Mβ(i, j) = exp(−βH(i, j)) be an irreducible r × r matrix

2 let ρβ := exp(−βH̄β) be the largest eigenvalue

3 let Rβ(i) be the right eigenvector with strictly positive entries

4 let Lβ(i) be the left eigenvector with strictly positive entries

5 we normalize so that :
∑r
i=1 Lβ(i)Rβ(i) = 1

The Gibbs measure at temperature β−1 of a cylinder is

µβ([i0, . . . , in]) =
1

ρnβ
Lβ(i0) exp

(
− βH(i0, . . . , in)

)
Rβ(in)

We show that µβ is a well defined probability on X and is invariant
by the dynamics f
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Zero limit : Gibbs measures of a directed graph

Recall The Gibbs measure at temperature β−1 is defined by

µβ([i0, . . . , in]) =
1

ρnβ
Lβ(i0)

[ n−1∏
k=0

Mβ(ik, ik+1)
]
Rβ(in)

Step 1 The measure is consistent in the Kolmogorov sense

r∑
j=1

µβ([i0, . . . , in, j]) = µβ([i0, . . . , in])
[ 1

ρβ

r∑
j=1

Mβ(in, j)
Rβ(j)

Rβ(in)

]
= µβ([i0, . . . , in])

Step 2 The measure is invariant

r∑
i=1

µβ([i, i0, . . . , in]) =
[ 1

ρβ

r∑
i=1

Lβ(i)

Lβ(i0)
Mβ(i, i0)

]
µβ([i0, . . . , in])

= µβ([i0, . . . , in])
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III. Zero temperature limit in
thermodynamic formalism

• Description of the BEG model

• Gibbs measures of a directed graph

• Ground states of a directed graph

• Zero temperature limit for a SFT

• Explicit computations for the BEG model
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Zero limit : Ground states of a directed graph

Recall The Gibbs measure of a two steps cylinder is given by

µβ([i, j)] = Lβ(i)
Mβ(i, j)

ρβ
Rβ(j), Mβ(i, j) = exp(−βH(i, j))

where ρβ is the largest eigenvalue of Mβ

Definition Let H̄β be the free energy at temperature β−1 defined by

ρβ := exp(−βH̄β)

Question What is the behaviour of the free energy H̄β when the
system is frozen ?

Question What is the behaviour of the Gibbs measure µβ when the
system is frozen ?
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Zero limit : Ground states of a directed graph

Proposition The free energy converges to the ergodic minimizing
value φ̄

lim
β→+∞

H̄β = H̄ =: inf
µ

r∑
i=1

r∑
j=1

H(i, j)µ(i, j)

where the infimum is realized over the set of probability measures µ
on A×A satisfying the invariance property

∀ i ∈ A, µ(1)(i) :=

r∑
k=1

µ(i, k) =

r∑
k=1

µ(k, i) =: µ(2)(i)

Theorem The Gibbs measure µβ converges to a selected minimizing
measure µmin, that is a probability measure satisfying the previous
invariance and

r∑
i=1

r∑
j=1

H(i, j)µmin(i, j) = H̄
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Zero limit : Ground states of a directed graph

Proof of H̄β → H̄

1 we recall some notations A = {1, . . . , r}

Mβ(i, j) = exp(−βH(i, j)), ρβ = exp(−βH̄β)

2 we choose another left eigenvector

∀ j ∈ A,

r∑
i=1

Lβ(i)Mβ(i, j) = ρβLβ(j), max
i
Lβ(i) = 1

3 we change Lβ to an exponential form

Lβ(i) := exp(−βUβ(i)), min
i
Uβ(i) = 0

4 the eigenvalue problem becomes

∀ j ∈ A,
r∑
i=1

exp
(
− β

(
H(i, j)− H̄β − (Uβ(j)− Uβ(i)

))
= 1
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Zero limit : Ground states of a directed graph

Proof of H̄β → H̄

5 we recall the new eigenvalue problem

∀ j ∈ A,

r∑
i=1

exp
(
− β

(
H(i, j)− H̄β − (Uβ(j)− Uβ(i)

))
= 1

6 first consequence
∀ i→ j ∈ A, Uβ(j) + H̄β ≤ Uβ(i) +H(i, j)

∀ j ∈ A, ∃ i ∈ A,
log(r)

β
+ Uβ(j) + H̄β ≥ Uβ(i) +H(i, j)

7 second consequence, by irreducibility of the transition matrix,
and the fact that there exists i0 ∈ A such that Uβ(i0) = 0, one
can find N ≥ 1

0 ≤ max
j
Uβ(j) ≤ max

1≤n≤N
max

i=i0→···→in=j

(
H(i0, . . . , in)−nH̄β

)
< +∞

H̄β and Uβ(j) are uniformly bounded with respect to β
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Zero limit : Ground states of a directed graph

Proof of H̄β → H̄

8 H̄β and Uβ(j) are uniformly bounded with respect to β
by taking a subsequence β → +∞

lim
β→+∞

Uβ(i) = U(i), lim
βø+∞

H̄β = H̄

9 we recall
∀ i→ j ∈ A, Uβ(j) + H̄β ≤ Uβ(i) +H(i, j)

∀ j ∈ A, ∃ i ∈ A,
log(r)

β
+ Uβ(j) + H̄β ≥ Uβ(i) +H(i, j)

10 passing to the limit β → +∞{
∀ i→ j ∈ A, U(j) + H̄ ≤ U(i) +H(i, j)

∀ j ∈ A, ∃ i ∈ A, U(j) + H̄ ≥ U(i) +H(i, j)

∀ j ∈ A, U(j) = min{U(i) +H(i, j) : i ∈ A}
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Zero limit : Ground states of a directed graph

Conclusion We just have proved that H̄β → H̄ and Uβ → U

T [U ] = U + H̄

T [U ](j) := min
i∈A, i→j

(
U(i) +H(i, j)

)
We extend U as a function on the SFT X

u(x) = U(x0), x = (xk)k≥0

We extend H as a function on X

φ(x) = H(x0, x1), x = (xk)k≥0

Then

T [u] = u+ H̄

T [u](y) = min
x:f(x)=y

(
u(x) + φ(x)

)
By uniqueness of the additive eigenvalue

H̄ = φ̄

Ph. Thieullen Introduction to Ergodic Optimization 79/101



Summary Introduction Additive cocycle Zero limit Discrete Aubry-Mather Bibliography

Zero limit : Ground states of a directed graph

Question Can we compute explicitly H̄ ?

Proposition

(1) H̄ equals the minimum of the mean energy over all simple cycles

(2) the minimizing measures are supported on the SFT made of
minizing cycles

+1/2

−1/2
4 1

23
−1/2

1 1

00

−1/3
+5

/60
−1/3

+1

+1/2

−1/2
4 1

23

00

−1/3
+5

/6

The mean energy per cycle :

order 1 H̄ ∈ {0, 1}
order 2 H̄ ∈ {0, 1

4}
order 3 H̄ ∈ {0, 1

18 ,
1
9}

H̄ = 0
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Zero limit : Ground states of a directed graph

Proof

1 We have shown the existence of a calibrated subaction U{
∀ i→ j ∈ A, U(j) + H̄ ≤ U(i) +H(i, j)

∀ i0 ∈ A, ∃ i−1 ∈ A, U(i0) + H̄ = U(i−1) +H(i−1, i0)

2 we construct a backward orbit that calibrates H

∃ i−n → i−(n−1) → · · · i−1 → i0

U(i−k) + H̄ = U(i−k−1) +H(i−k−1i−k)

3 because the graph is finite the backward orbit closes up

∃ p ≥ 1, i−n−p = i−n

4 by telescoping sum U disappears

H(i−n−p, . . . , i−n−1, i−n) = pH̄
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III. Zero temperature limit in
thermodynamic formalism

• Description of the BEG model

• Gibbs measures of a directed graph

• Ground states of a directed graph

• Zero temperature limit for a SFT

• Explicit computations for the BEG model
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Zero limit : Explicit computation for BEG

The BEG model

-1

0

+1
J-K+D

Δ
2



2

0

-J-K+D -J-K+D

Mean of H along simple cycles :

cycles of order 1 0, (−J −K + ∆)
cycles of order 2 1

2∆, (J −K + ∆)
cycles of order 3 1

3 (J −K + 2∆)

The energy matrix is

Mβ=


exp

(
− β(−J −K + ∆)

)
exp

(
− β( 1

2∆)
)

exp
(
− β(J −K + ∆)

)
exp

(
− β( 1

2∆)
)

0 exp
(
− β( 1

2∆)
)

exp
(
− β(J −K + ∆)

)
exp

(
− β( 1

2∆)
)

exp
(
− β(−J −K + ∆)

)


We discuss the phase diagram according to the smallest term

min
(

0,
∆

2
,−J −K + ∆, J −K + ∆,

1

3
(J −K + 2∆)

)
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Zero limit : Explicit computation for BEG
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Summary

- I. Introduction

- II. Additive ergodic optimization on hyperbolic spaces

- III. Zero temperature limit in thermodynamic formalism

- IV. Discrete Aubry-Mather and Frenkel-Kontorova model

- V. Contreras genericity of periodic orbits

- VI. Towards multiplicative ergodic optimization
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IV. Discrete Aubry-Mather and the
Frenkel-Kontorova model

• The Frenkel-Kontorova model

• Calibrated configurations

• The algorithm
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Discrete Aubry-Mather : The Frenkel-Kontorova model

The physical model The model describes the set of configuration of
a chain of atoms at equilibrium in a periodic external environment

x i+1
x i−1 x i x i+2

Elastic interaction

Periodic potential

The original 1D-FK

1 Eλ,K(x, y) = Wλ(x, y) + VK(x), x, y ∈ R

2 Wλ(x, y) =
1

2τ
|y − x− λ|2 − λ2

2τ
, VK(x) =

Kτ

(2π)2

(
1− cos(2πx)

)
3 Eλ,K(x, y) = E0,K(x, y)− λ(y − x)
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Discrete Aubry-Mather : The Frenkel-Kontorova model

Question Is it possible to define a notion of configurations
x := (xk)k∈Z, xk ∈ R, with the smallest total energy

Etot(x) :=

+∞∑
k=−∞

E(xk, xk+1) ≤ Etot(y), ∀ y = (yk)y∈Z

Definition A configuration (xn)n∈Z is said to be minimizing if the
energy of a finite block of atoms with two fixed extremities cannot be
lowered by displacing atoms inside the block :

• define E(xm, xm+1, . . . , xn) :=

n−1∑
k=m

E(xk, xk+1)

• if (ym, ym+1, . . . , yn) is another configuration with the two
endpoints fixed, ym = xm and yn = xn then

E(xm, xm+1, . . . , xn) ≤ E(ym, ym+1, . . . , yn)

Ph. Thieullen Introduction to Ergodic Optimization 88/101



Summary Introduction Additive cocycle Zero limit Discrete Aubry-Mather Bibliography

Discrete Aubry-Mather : The Frenkel-Kontorova model

Remark The notion of minimizing configurations is NOT correct.
Consider

Eλ(x, y) := E(x, y)− λ · (y − x)

(λ is the distance between the atoms at rest). Then

(xk)k∈Z is minimizing for Eλ ⇔ (xk)k∈Z is minimizing for E0

Proof

n−1∑
k=m

(
E0(xk, xk+1)− λ(xk+1 − xk

)
=

n−1∑
k=m

E0(xk, xk+1)− λ(xn − xm)

Remarks

(1) minimal geodesics have a similar definition (λ is a cohomological
factor)

(2) minimizing configurations look like local minimizers of some
functional energy. We need a stronger notion of global minimizers
that will be called calibrated configurations
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IV. Discrete Aubry-Mather and the
Frenkel-Kontorova model

• The Frenkel-Kontorova model

• Calibrated configurations

• The algorithm
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Discrete Aubry-Mather : Calibrated configurations

Definition The effective energy of a configuration is

Ē := lim
n→+∞

inf
x0,...,xn∈Rd

1

n

n−1∑
k=0

E(xk, xk+1)

Remark
• The limit exists by super-additivity
• By coercitivity of E(x, y) : lim|y−x|→+∞E(x, y) = +∞

−∞ < inf
x,y∈R

E(x, y) ≤ Ē ≤ inf
x∈Rd

E(x, x) < +∞

Definition
• The Mañé potential between two positions x, y ∈ R is

S(x, y) := inf
n≥1

inf
x=x0,...,xn=y

n−1∑
k=0

(
E(xk, xk+1)− Ē

)
• x = (xk)k∈Z is said to be calibrated if

∀m < n,

n−1∑
k=m

(
E(xk, xk+1)− Ē

)
= S(xm, xn)
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Discrete Aubry-Mather : Calibrated configurations

Question How can we find calibrated configurations ?

The Lax-Oleinik operator For every periodic function u : R→ R

T [u](y) := inf
x∈R

(
u(x) + E(x, y)

)
Remark

• By coercivity of E, the infimum is attained

• We have chosen an interaction energy satisfying

E(x+ 1, y + 1) = E(x, y)

• In particular : u periodic ⇒ T [u] periodic

Theorem There exists a Lipschitz periodic function u : R→ R
solution

T [u] = u+ Ē

u is called effective potential. It is not unique. The additive eigenvalue
Ē is unique
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Discrete Aubry-Mather : Calibrated configurations

Construction of calibrated configurations

1 solve T [u](y) = u(y) + Ē = minx(u(x) + E(x, y))

2 choose x0 ∈ [0, 1] and construct a backward optimal configuration

u(x−k) + Ē = u(x−k−1) + E(x−k−1, x−k)

3 shift the finite configuration (xk + Ln)0
k=−2n by an integer Ln so

that x−n + Ln ∈ [0, 1]

4 extract a convergent subsequence (x∞k )k∈Z by a diagonal
argument

5 the limit (x∞k )k∈Z is calibrated
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Discrete Aubry-Mather : Calibrated configurations

Theorem Recall Eλ(x, y) = E0(x, y)− λ(y − x), x = (xk)k∈Z
(1) x is minimizing for Eλ ⇔ x is minimizing for E0

(2) A calibrated configuration for Eλ is minimizing

(3) A minimizing configuration is calibrated for some Eλ
(4) Recall

Ē(λ) := lim
n→+∞

inf
x0,...,xn∈Rd

1

n

n−1∑
k=0

Eλ(xk, xk+1)

(5) λ 7→ Ē(λ) is a C1 function

(6) A calibrated configuration for Eλ admits a rotation number

lim
n→±∞

xn − x0

n
= ω(λ) := −dĒ

dλ

(7) Emergence of the locking phenomena at rational rotation number

Leb
(
R \

⋃
p/q∈Q

interior
{
λ ∈ R : ω(λ) =

p

q

})
= 0
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IV. Discrete Aubry-Mather and the
Frenkel-Kontorova model

• The Frenkel-Kontorova model

• Calibrated configurations

• The algorithm
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Discrete Aubry-Mather : The algorithm

The 1D-FK model

Eλ,K(x, y) :=
1

2τ
|y − x|2 − λ(y − x) +

Kτ

(2π)2

(
1− cos(2πx)

)
Ishikawa’s algorithm

1 discretize the initial cell [0, 1], zi = i
N , i = 1, . . . , N

2 choose a number of cells around the initial cell R ≥ 1

3 start with the zero potential u0 = 0. Assume un is known

4 construct the optimal backward map

zj 7→ (zτ(j), pj) = arg min
zi, p∈J−R,RK

(
un(zi) + Eλ,K(zi + p, zj)

)
5 compute Lax-Oleinik

T [un](zj) = un(zτ(j)) + Eλ,K(zτ(j) + pτ(j), zj)

6 use Ishikawa’s algorithm

un+1 =
un + T [un]

2
−min

(un + T [un]

2

)
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Discrete Aubry-Mather : The algorithm

Ishikawa’s algorithm

7 stop the algorithm until maxi
∣∣un+1(zi)− un(zi)

∣∣ ≤ ε
8 compute the backward minimizing cycle

i0 → i1 = τ(i0), p1 → i2 = τ(i1), p2,→ · · ·

9 choose the smallest q ≥ 1 such that iq = i0,

10 define p = p1 + · · ·+ pq

11 the rotation number equals ω = p
q = − 1

τ
∂Ē
∂λ

12 the Mather set is the periodic orbit

zi0 , zi1 , . . . , ziq

Choice of the constants

• τ = 1, N = 1000, R = 2, ε = 10−9
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Discrete Aubry-Mather : The algorithm
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The Mather = one periodic orbit
(red dots) of period q = 7 and
rotation number ω = 3/7.
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Discrete weak KAM solution

u
(x

)

x

λ = 0.43394, K = 1
NIshi = 1181
Ē(λ,K) = −0.070614259
Mather set = two periodic orbits
of identical period q = 39 and ro-
tation number ω = 17/39
A grid of 2000 points shows a
unique period orbit with the same
period 17/39
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Graph of the rotation number ω = − 1
τ
∂Ē
∂λ (λ) (lefthand side), and

ω = p(λ)
τq(λ) (right hand side). The coupling is K = 1, the grid on λ is

0 : 0.0005 : 1. The maximum number of iteration is 198, the maximum
jump is 1.286, the maximum number of cycles is 2.
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Phase diagram of the Frenkel-Kontorova model : τ = 1, N = 400,
λ = 0 : 0.001 : 0.5, K = 0 : 0.01 : 4. Each domain is parametrized by a
rotation number ω = p

τq
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