Zero temperature convergence of Gibbs measures for a locally finite potential in a 2-dimensional lattice

Philippe Thieullen University of Bordeaux

Joint work with S. Barbieri, R. Bissacot, and Gregorio Dalle Vedove

The 4th Korea-France Conference on Mathematics KIAS (Korea Institute for Advanced Study)

21–25 August 2023

Ph. Thieullen Zero temperature 1/33

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- I. Position of the problem
- II. Some old results in dimension 1
- III. A new result in dimension 2

I.1. Zero-temperature chaotic convergence

We want to understand whether some spin systems exhibit a phenomenon called *zero-temperature chaotic convergence* introduced by van Enter and Ruszel (2007).

Definition

Let $\Sigma^d(\mathscr{A}) = \mathscr{A}^{\mathbb{Z}^d}$ be a spin system over a finite alphabet \mathscr{A} and $\varphi : \Sigma^d(\mathscr{A}) \to \mathbb{R}$ be a continuous function (potential). Let $\mu_{\beta\varphi}$ be any invariant Gibbs measure for the potential $\beta\varphi$.

The zero-temperature chaotic convergence is a phenomenon where there exists a sequence $(\beta_k)_{k\geq 0}$, $\beta_k \to +\infty$, and two disjoint invariant compact sets $K_0, K_1 \subseteq \Sigma^d(\mathscr{A})$ such that if $\mu_{\beta_k\varphi}$ is any invariant Gibbs measure,

- any weak* limit of $(\mu_{\beta_{2k}\varphi})_{k\geq 0}$ is supported in K_0
- any weak* limit of $(\mu_{\beta_{2k+1}\varphi})_{k\geq 0}$ is supported in K_1

I.2. Zero-temperature chaotic convergence

Remark

- By compactness argument, some subsequences $(\mu_{\beta_k})_{k\geq 0}$ are converging and are not chaotic. So the chaotic convergence cannot be expected for all subsequences.
- Coronel, Rivera-Letelier (2015) introduced a stronger notion of sensitive dependence of the chaotic convergence: for every sequence $\beta_k \to +\infty$, for every $\epsilon > 0$, there exists $\|\psi \phi\|_{\infty} < \epsilon$ and a subsequence $(\beta_{\sigma(k)})_{k \ge 0}$ such that $(\mu_{\beta_{\sigma(k)}\psi})_{k \ge 0}$ has a chaotic convergence at zero temperature.
- We will not discuss that notion, but van Enter's method is robust and it is likely that our results are also true in that case.

ション (日本) (日本) (日本) (日本) (日本)

I.3. General setting

Notation

- A spin system: \mathscr{A} a finite alphabet, $\Sigma^{d}(\mathscr{A}) = \mathscr{A}^{\mathbb{Z}^{d}}$, the full shift
- The group of space translations $\sigma^k: \Sigma^d(\mathscr{A}) \to \Sigma^d(\mathscr{A}), \, k \in \mathbb{Z}^d$
- The Hamiltonian is given by a Lipschitz function $\varphi:\Sigma^d(\mathscr{A})\to\mathbb{R}$

$$H_{\Lambda}(x) = \sum_{k \in \Lambda} \varphi \circ \sigma^{k}(x), \quad \Lambda \Subset \mathbb{Z}^{d}$$
(1)

Remark

We will be interested in studying short range interactions $\Phi = (\Phi_X)_X$ where $X = k + [\![1, D]\!]^d$ is any square of fixed size D. Our Hamiltonian is equivalent to the one defined by summing over all interactions

$$H_{\Lambda}^{\varnothing}(x) = \sum_{X \subseteq \Lambda} \Phi_X(x), \quad \varphi(x) = \frac{1}{D^2} \sum_{0 \in X} \Phi_X(x) \tag{2}$$

Ph. Thieullen

Zero temperature 5/33

I.4. Equilibrium measures/Gibbs measures

Definition

An equilibrium measure is a shift invariant probability measure $\mu_{\beta\varphi}$ solution of the variational principle: $\mu_{\beta\varphi}$ minimizes the free energy

$$F_{\beta}(\varphi) := \inf \left\{ \int \varphi \, d\mu - \beta^{-1} \operatorname{Ent}(\mu) : \mu \text{ shift invariant probability } \right\}$$

- shift invariance: $\sigma^k_{\sharp}(\mu) = \mu, \quad \forall k \in \mathbb{Z}^d,$
- Kolmogorov-Sinai entropy: ${\mathscr P}$ the canonical generating partition

$$\operatorname{Ent}(\mu) = \lim_{n \to +\infty} \frac{1}{n^d} \operatorname{Ent}\left(\mu, \bigvee_{k \in \ [\![1,n]\!]^d} \sigma^{-k} \mathscr{P}\right)$$

Remark

If $\varphi : \Sigma^d(\mathscr{A}) \to \mathbb{R}$ is Lipschitz, *shift invariant Gibbs measures* defined by the DLR procedure and equilibrium measures are the same notions

I.5. Main question

Let $\mathcal{G}_{\beta}(\varphi)$ be the set of equilibrium measures or Gibbs measures. Remark

- Thanks to Dobrushin's argument, $\mathscr{G}_{\beta}(\varphi)$ is a single element at large temperaure
- For simple systems (at least for short range φ), 𝒢_β(φ) may have several pure states at small temperature. For the Ising model in ℤ²

$$\forall \beta < \beta_c, \ \operatorname{card}(\mathscr{G}_{\beta}(\varphi)) = 1, \quad \forall \beta > \beta_c, \ \mathscr{G}_{\beta}(\varphi) = [\mu_{\beta}^+, \mu_{\beta}^-] \quad (1)$$

Question

What are the limits of Gibbs measures as the temperature goes to zero? More precisely what are the limits of the whole set $\mathscr{G}_{\beta}(\varphi)$ as $\beta \to +\infty$? For the Ising model

Ph. Thieullen

$$[\mu_{\beta}^{+}, \mu_{\beta}^{-}] \to [\mu^{+}, \mu^{-}], \quad \text{there is no chaotic convergence} \tag{2}$$

Zero temperature 7/33

I.6. Minimizing measures

What are the possible weak limits of $(\mu_{\beta})_{\beta \to +\infty}$?

$$\int \varphi \, d\mu_{\beta} - \beta^{-1} \operatorname{Ent}(\mu_{\beta}) = F_{\beta}(\varphi) \tag{3}$$

Definition

• The ground energy level (by freezing the system $\beta \to +\infty$)

$$F_{\infty}(\varphi) := \inf \left\{ \int \varphi \, d\mu : \mu \text{ shift invariant probability } \right\}$$

• A minimizing measure μ_{min} is a shift invariant probability measure satisfying

$$\int \varphi \, d\mu_{min} = F_{\infty}(\varphi) \tag{4}$$

Theorem (Obvious)

- $F_{\beta}(\varphi) \to F_{\infty}(\varphi)$
- Any accumulation point of $(\mu_{\beta})_{\beta \ge 0}$ is a minimizing measure that maximizes the entropy of all minimizing measures.

I.7. The set K of ground configurations

Observation

- Assume $X := \{\varphi = \min \varphi\}$ is shift invariant, then
 - ★ any weak limit of $\mu_{\beta} \rightarrow \mu_{min}$ satisfies $\operatorname{supp}(\mu_{min}) \subseteq X$
 - \star but is it is *not true in general* that any invariant measure supported on X is a candidate to be a limit of a Gibbs measure.
- If in addition X has a unique invariant measure μ_{min} , then $\mathscr{G}_{\beta}(\varphi) \rightarrow \{\mu_{min}\}$ (no chaotic convergence)
- In general $\varphi^{-1}(\min \varphi)$ is not invariant. The existence or not of a chaotic convergence will depend strongly on the complexity of

$$K = \bigcup \left\{ \operatorname{supp}(\mu) : \ \mu \text{ is minimizing: } \int \varphi \, d\mu = F_{\infty}(\varphi) \right\}$$

Hypothesis (minimal requirements)

- $\varphi: \Sigma^d(\mathscr{A}) \to \{0, 1\}$ has finite range and depends on a finite number of coordinates: we say φ is locally finite
- *K* is a *computable subshift* (or effectively closed subshift)

I.8. Subshift of finite type

Definition

• A function $\varphi : \Sigma^d(\mathscr{A}) \to \{0,1\}$ is said to be *locally finite* if there exists $D \ge 1$ such that, for every $x, y \in \Sigma^d(\mathscr{A})$

$$x_{[\![1,D]\!]^d} = y_{[\![1,D]\!]^d} \quad \Rightarrow \varphi(x) = \varphi(y).$$

• A subshift X is a closed shift invariant subspace of $\Sigma^d(\mathscr{A})$ that is defined by a countable set \mathscr{F} of forbidden patterns (words)

$$\star \mathscr{F} \subseteq \bigsqcup_{n \ge 1} \mathscr{A}^{\llbracket 1,n \rrbracket^d}$$

$$\star X = \Sigma^d (\mathscr{A}, \mathscr{F}) := \{ x \in \Sigma^d (\mathscr{A}) : \forall w \in \mathscr{F}, w \notin x \}$$

- A subshift X is computable if \mathscr{F} is enumerated by a Turing machine \mathbb{M} by increasing size
- X is of finite type if there exists $D \ge 1$ such that $\mathscr{F} \subseteq \mathscr{A}^{\llbracket 1,D \rrbracket^d}$

I.9. Turing machine

Definition

A Turing machine is given by $(\mathscr{A}, \{\sharp\}, \mathscr{Q}, \delta)$ where

- \mathscr{A} is a finite alphabet
- $\{\sharp\}$ is an extra symbol
- $\mathscr{Q} = \{q_1, \dots, q_n\} \sqcup \{q_{\texttt{ini}}, q_{\texttt{fin}}\}$
- δ : $(\mathscr{A} \sqcup \{\sharp\}) \times \mathscr{Q} \to (\mathscr{A} \sqcup \{\sharp\}) \times \mathscr{Q} \times \{+, -\}$ (a transition function)
- an infinite ribbon where finite words of the form

$$(\cdots, \sharp, \sharp, \psi, w_1, \ldots, w_n, \sharp, \sharp, \cdots)$$

In a schematic way:

I.10. Turing machine

 \Longrightarrow A Turing machine is equivalent to a tiling defined by a finite number of local constraints

#	0	0	1	#	•
#	0	0	#	#	
#	0	1	#	#	
#	1	1	#	#	
#	1	1	#	#	
#	1	1	#	#	
#	1	1	#	#	
#	0	1	#	#	
#	0	1	#	#	
#	0	1	#	#	
#	0	1	#	#	
#	0	1	#	#	
#	0	#	#	#	
#	1	#	#	#	
#	1	#	#	#	
#	1	#	#	#	
#	1	#	#	#	
#	0	#	#	#	

Ph. Thieullen Z

I.11. Conclusion

- We want to understand whether a system is chaotic at zero temperature: do there exists a subsequence $\beta_k \to +\infty$ and $K_0, K_1 \subseteq \Sigma^d(\mathscr{A})$, compact and disjoint, such that
 - ★ $\mathscr{G}_{\beta_{2k}}(\varphi)$ → measures supported on K_0
 - ★ $\mathscr{G}_{\beta_{2k+1}}(\varphi)$ → measures supported on K_1
- we want an example of potential φ as simple as possible:

$$\varphi = \mathbb{1}_{[\mathscr{F}]}, \quad \mathscr{F} \subseteq \mathscr{A}^{[\![1,D]\!]^d}, \quad [\mathscr{F}] \text{ denotes a cylinder}$$

 \star we verify that ground configurations do exist

$$X = \Sigma^d(\mathscr{A}, \mathscr{F}) = \{ x \in \Sigma^d(\mathscr{A} : \varphi \circ \sigma^k(x) = 0, \ \forall \, k \in \mathbb{Z}^d \} \neq \emptyset$$

obviously the ground energy and ground measures satisfy

$$F_{\infty}(\varphi) = 0$$
 and $\operatorname{supp}(\mu_{min}) \subseteq X$

 \star we construct two disjoint compact invariant sets

$$K_0 \bigsqcup K_1 \subseteq X$$

★ we want to work in dimension d = 2: our main result is an extension of Chazottes-Hochman (2010) in $d \ge 3$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- I. Position of the problem
- II. Some old results in dimension 1
- III. A new result in dimension 2

II.1. Transfer matrix method

Assume
$$d = 1, \mathscr{A} = \{1, 2, \cdots, n\}, \varphi : \mathscr{A}^{\mathbb{Z}} \to \mathbb{R}$$
 is locally finite
 $\varphi(x) = \varphi(i_0, i_1), \quad \forall x = (\dots, i_{-1} \mid i_0, i_1, \dots) \in \mathscr{A}^{\mathbb{Z}}$ (1)

Lemma (Transfer method)

Gibbs measures are built using the following procedure

•
$$M_{\beta}(i,j) = e^{-\beta \varphi(i,j)}$$

- $\lambda_{\beta} = \text{the largest eigenvalue of } M_{\beta} = (M_{\beta}(i,j))_{1 \leq i,j \leq n}$
- L_{β}, R_{β} are the left and right eigenvectors
- normalization: $\sum_{i=1}^{n} L_{\beta}(i) R_{\beta}(i) = 1$
- the unique Gibbs measure at temperature β^{-1} is

$$\mu_{\beta}([i_0,\ldots,i_n]) = \frac{L_{\beta}(i_0)R_{\beta}(i_n)}{\lambda_{\beta}^n} \exp\left(-\beta \sum_{k=1}^n \varphi(i_{k-1},i_k)\right) \quad (2)$$

Ph. Thieullen Zero t

Zero temperature 15/33

ション (日本) (日本) (日本) (日本) (日本)

II.2. Minimizing cycles

Assume
$$\varphi : \mathscr{A}^{\mathbb{Z}} \to \mathbb{R}$$
 has the form: $\varphi(x) = \varphi(i_0, i_1)$. Recall

$$F_{\infty}(\varphi) = \inf\left\{\int \varphi \, d\mu : \mu \text{ shift invariant probability}\right\}$$
(1)

•
$$F_{\infty}(\varphi) = \lim_{n \to +\infty} \inf_{x \in \mathscr{A}^{\mathbb{Z}}} \frac{1}{n} \sum_{k=0}^{n-1} \varphi \circ \sigma^{k}(x)$$

• A minimizing cycle is a τ -periodic path $(i_0, i_1, \ldots, i_{\tau-1})$ such that

$$\frac{1}{\tau} \sum_{k=0}^{\tau-1} \varphi(i_k, i_{k+1}) = F_{\infty}(\varphi) \tag{2}$$

- A transition is forbidden if it belongs to no minimizing cycle
- If $\mathscr{F} = \{ \text{ forbidden transitions } \}$ then

$$K = \bigcup \left\{ \operatorname{supp}(\mu) : \ \mu \text{ is minimizing} \right\} = \Sigma^1(\mathscr{A}, \mathscr{F}) \qquad (3)$$

Ph. Thieullen Zero temperature 16/33

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

II.3. Example of convergence

Example 1: $\mathscr{A} = \{1, 2, 3, 4\}, \ \varphi(1, 2) = -1, \ \varphi(2, 2) = 0$

 $\mu_{\beta} \rightarrow \mu_{min}$ (1 measure of maximal entropy)

Example 2:

 $\mu_{\beta} \rightarrow \frac{1}{2} \left(\mu_{min}^{+} + \mu_{min}^{-} \right) \quad (2 \text{ measures of maximal entropy})$ $0 \leftarrow 1 \leftarrow 1 \quad 2 \quad 0 \leftarrow 1 \leftarrow 1 \quad 2 \quad \mu_{min}^{+}$ $0 \leftarrow 1 \leftarrow 1 \quad 2 \quad \mu_{min}^{+}$ $4 \leftarrow 1 \quad 3 \quad 0 \quad 4 \leftarrow 1 \quad 3 \quad 0 \quad \mu_{min}^{-}$

Ph. Thieullen

Zero temperature 17/33

II.4. A exact result of convergence

Theorem (Brémont (2003))

Let d = 1, $\varphi : \Sigma^1(\mathscr{A}) \to \mathbb{R}$ be a locally finite potential. Then (1) $\lim_{\beta \to +\infty} \mu_{\beta} = \mu_{min}^*$ (without taking a subsequence)

 $\hat{U}(2) \ \mu_{min}^*$ is a minimizing measure (possibly non ergodic)

- (3) $\operatorname{Ent}(\mu_{\min}^*) = \sup\{\operatorname{Ent}(\mu) : \mu \text{ is minimizing }\}$
- (4) μ_{\min}^* is a barycenter of minimizing measures of maximal entropy supported on disjoint SFTs. (The coefficients of the barycenter are algebraic numbers).

Remark

- (1) The proof uses tools in semi-algebraic theory.
- (2) The set K := ∪{supp(µ) : µ is minimizing } that supports all minimizing measures has a simple description: a subshift of finite type.

II.5. Examples of chaotic convergence

If the set $K := \bigcup \{ \operatorname{supp}(\mu) : \mu \text{ is minimizing } \}$ has a large complexity, one may expect a chaotic convergence at zero temperature.

Theorem (Chazottes-Hochman (2010))

There exists an invariant compact set $K \subset \Sigma^1(\mathscr{A})$ such that the potential $\varphi(x) = d(x, K)$ is chaotic at zero temperature.

But the set of minimizing measures can be as simple as possible.

Theorem (Garibaldi, Bissacot, Th. (2018))

There exists a Lipschitz potential $\varphi: \{0,1\}^{\mathbb{Z}} \to [0,+\infty)$ such that

- $\delta_{0^{\infty}}$ and $\delta_{1^{\infty}}$ are the only two ergodic minimizing measures
- φ is chaotic at zero temperature
- one defines an energy barrier $h: \Sigma^1 \times \Sigma^1 \rightarrow [0, +\infty)$ and in order to have chaotic convergence, we must have

$$h(0^\infty,1^\infty)=h(1^\infty,0^\infty)=0$$

Ph. Thieullen Zero temperature 19/33

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- I. Position of the problem
- II. Some old results in dimension 1
- III. A new result in dimension 2

III.1. Main result

Theorem (Barbieri, Bissacot, Dalle Vedove, Th. (2022)) There exists a locally finite potential $\varphi : \Sigma^2(\mathscr{A}) \to \mathbb{R}$ that is chaotic at zero temperature.

Remark

- Chazottes, Hochman (2010) proved the previous result for $d \ge 3$
- Simultaneously to us, Chazottes, Shinoda (2021), extended their previous result to d = 2. Their proof is different: Kleene fixed-point theorem.

Theorem (Gayral, Sablik, Taati (2023))

If \mathscr{K} is a finite simplex of periodic measures (or Π_2 -computable simplex), there exists $\varphi : \Sigma^2(\mathscr{A}) \to \mathbb{R}$ locally finite such that

- $\operatorname{diam}(\mathscr{G}_{\beta}(\varphi)) \to 0$
- any $\mu \in \mathscr{K}$ is an accumulation point of a choice of $(\mu_{\beta\varphi})_{\beta \to +\infty}$

III.2. General strategy

- Find a set of forbidden patterns $\mathscr{F} \subset \mathscr{A}^{\llbracket 1,D \rrbracket^2}$ of size $D \ge 1$,
- Define the potential $\varphi = \mathbb{1}_{[\mathscr{F}]}$
- Make sure that

$$X = \Sigma^{2}(\mathscr{A}, \mathscr{F}) = \{ x \in \Sigma^{2}(\mathscr{A}) : \varphi \circ \sigma^{k}(x) = 0, \ \forall \, k \in \mathbb{Z}^{2} \} \neq \emptyset$$

- Find a special cooling sequence $\beta_k \to +\infty$
- Take any Gibbs measure

$$\int \beta_k \varphi \, d\mu_{\beta_k} - \operatorname{Ent}(\mu_{\beta_k}) = \inf \left\{ \int \beta_k \varphi \, d\mu - \operatorname{Ent}(\mu) : \ \mu \text{ is invariant } \right\}$$

• Show that

$$\mu_{\beta_{2k+1}} \rightarrow \mu_{min}^1, \quad \mu_{\beta_{2k}} \rightarrow \mu_{min}^2, \quad \mu_{min}^1 \neq \mu_{min}^2$$

• Notice that

$$\operatorname{supp}(\mu_{\min}^1), \ \operatorname{supp}(\mu_{\min}^2) \subset X$$

Ph. Thieullen Zero temperature 22/33

II.3. Step 1/6

ション (日本) (日本) (日本) (日本) (日本)

We construct a 1d set of forbidden words with alternating complexity

- $\tilde{\mathscr{A}} = \{0, 1, 2\}, 0$ is a marker,
- $\mathscr{A}^{(1)} = \{0, 1\}, \quad \mathscr{A}^{(2)} = \{0, 2\}$
- construct inductively two languages of words of length ℓ_k

$$\mathscr{A}_{k}^{(1)} = \{1^{\ell_{k}}, a_{k}^{(1)}\}, \quad \mathscr{A}_{k}^{(2)} = \{2^{\ell_{k}}, a_{k}^{(2)}\}$$

• choose a finite set \mathscr{F}_k such that

$$\tilde{X}_k := \Sigma(\mathscr{A}, \mathscr{F}_k) = \begin{cases} \text{bi-infinite configurations obtained as} \\ \text{concatenation of words in } \mathscr{A}_k^{(1)} \text{ and } \mathscr{A}_k^{(2)} \end{cases}$$

• construct similarly

$$\tilde{X}_k^{(1)} := \Sigma^1(\mathscr{A}, \mathscr{F}_k^{(1)}) \ \text{ and } \ \tilde{X}_k^{(2)} := \Sigma^1(\mathscr{A}, \mathscr{F}_k^{(2)})$$

• $\tilde{\mathscr{F}} = \bigsqcup \mathscr{F}_k$, the first subshift we construct

$$\tilde{X} = \Sigma^1(\tilde{\mathscr{A}}, \tilde{\mathscr{F}}) = \bigcap_{k \ge 0} \tilde{X}_k$$

Ph. Thieullen

Zero temperature 23/33

II.4. Step 2/6

4 日 > 4 日 > 4 日 > 4 日 > 4 日 > 9 4 0

• we summarize
$$\tilde{X} = \bigcap_{k \ge 0} \downarrow \tilde{X}_k$$

$$\tilde{X}_k \supset \tilde{X}_k^{(1)} \sqcup \tilde{X}_k^{(2)}, \quad \tilde{X}_k^{(1)} \subset \{0,1\}^{\mathbb{Z}}, \ \tilde{X}_k^{(2)} \subset \{0,2\}^{\mathbb{Z}}$$

• impose an alternating complexity

$$\begin{cases} \text{for } k \text{ even,} & \operatorname{Freq}(\tilde{X}_k^{(1)}) \ll \operatorname{Freq}(\tilde{X}_k^{(2)}) \\ \text{for } k \text{ odd,} & \operatorname{Freq}(\tilde{X}_k^{(2)}) \ll \operatorname{Freq}(\tilde{X}_k^{(1)}) \end{cases} \end{cases}$$

• start with
$$a_0^{(1)} = 01, a_0^{(2)} = 02$$
, build

$$\mathscr{A}_{0}^{(1)} = \{11, a_{0}^{(1)}\}, \quad \mathscr{A}_{0}^{(2)} = \{22, a_{0}^{(2)}\},$$

• build by induction $\mathscr{A}_{k+1}^{(1)} = \{1^{\ell_k}, a_{k+1}^{(1)}\}$, assume k even

$$a_{k+1}^{(1)} = a_k^{(1)} a_k^{(1)} \cdots a_k^{(1)}, \qquad a_{k+1}^{(2)} = a_k^{(2)} \underbrace{2^{\ell_k} \cdots 2^{\ell_k}}_{(N_{k+1}-2)\ell_k \text{ times}} a_k^{(2)}$$

• assume k is odd, permute (1) and (2)

Ph. Thieullen Ze

Zero temperature 24/33

II.5. Step 3/6

• assume k even

$$a_{k+1}^{(1)} = a_k^{(1)} a_k^{(1)} \cdots a_k^{(1)}, \qquad a_{k+1}^{(2)} = a_k^{(2)} \frac{2^{\ell_k} \cdots 2^{\ell_k}}{(N_{k+1}-2)\ell_k \text{ times}} a_k^{(2)}$$

- define $f_k^{(i)}$ to be the frequency of 0 in the word $a_k^{(i)}$
- because each a_k contains at least one 0

$$\begin{cases} \text{for } k \text{ even,} \quad f_k^{(1)} \ll f_k^{(2)} \\ \text{for } k \text{ odd,} \quad f_k^{(2)} \ll f_k^{(1)} \end{cases}$$

• the complexity could have been measured by the entropy (but as we will see, entropy is not the right notion)

Observation

 \mathscr{F} can be constructed *recursively* (provided $(N_k)_{k\geq 0}$ is also recursive). That is, there exists a Turing machine \mathbb{M} that enumerates the words of \mathscr{F} by increasing size and polynomial time enumeration $T_{\mathbb{M}}$ function;

II.6. Step 4/6

$$\tilde{\tilde{X}} = \Sigma^2(\tilde{\mathscr{A}}, \tilde{\tilde{\mathscr{F}}})$$

• notice

 $\operatorname{Ent}(\tilde{\tilde{X}}) = 0$

• Extend the 2d subshift by adding additional colors

 $\Pi \, \cdot \, \hat{X} \to \tilde{\tilde{X}}$

• Find a finite set of local constraints between the colors and the digits so that the vertically aligned subshift X is revealed by erasing the colors

・ロト ・四ト ・ヨト ・ヨト ・ヨー

II.7. Step 5/6

Theorem (Aubrun, Sablik (2013))

Let $\tilde{\mathscr{F}}$ be a 1d computable set of forbidden words on the alphabet $\tilde{\mathscr{A}}$. Let \tilde{X} the corresponding subshift and $\tilde{\tilde{X}}$ the vertically aligned extended subshift. Then $\tilde{\tilde{X}}$ is sofic.

- One can decorate the original symbols: $\hat{\mathscr{A}} = \tilde{\mathscr{A}} \times \mathscr{B}$
- There exists $D \ge 1$ and $\hat{\mathscr{F}} \subset \hat{\mathscr{A}}^{[\![1,D]\!]^2}$ such that $\hat{X} := \Sigma^2(\hat{\mathscr{A}}, \hat{\mathscr{F}})$ is a shift equivariant extension of $\tilde{\tilde{X}}$:

★ There exists a commuting diagram

* Π is surjective and is defined by erasing the decorations, by using a one-bloc factor map $\pi : \hat{\mathscr{A}} \to \tilde{\mathscr{A}}$, (the first projection)

II.8. Step 6/6

The entropy of Aubrun-Sablik has also zero entropy. For the purpose of the rest of the proof we need alternating subshifts of large and small entropies.

• Duplicate the symbol 0

$$\hat{\mathscr{A}} = \{0, 1, 2\} \times \mathscr{B} \to \mathscr{A} = \{0', 0'', 1, 2\} \times \mathscr{B}$$

• Duplicate the forbidden words

$$\hat{\mathscr{F}} \to \mathscr{F} \subset \mathscr{A}^{[\![1,D]\!]^2}$$

• We constructed successively

$$\tilde{X} \leftarrow \tilde{\tilde{X}} \leftarrow \hat{X} \leftarrow X$$
$$\tilde{X} = \bigcap_{k \ge 0} \tilde{X}_k, \ \tilde{X}_k \supset \tilde{X}_k^{(1)} \bigsqcup \tilde{X}_k^{(2)}$$

Entropy estimate: $\operatorname{Ent}(X_{h}^{(1)}) = \log(2) f_{h}^{(1)}$

Ph. Thieullen

Zero temperature 28/33

II.9. Our contribution

Our contribution in that problem is to recognize two estimates in Chazottes-Hochman that were not explicitly written in their proof.

Definition (Shift reconstruction function)

Let \mathscr{F} be a set of forbidden patterns and $X = \Sigma^2(\mathscr{A}, \mathscr{F})$ be the corresponding subshift.

- A finite pattern $p \in \mathscr{A}^{[\![1,n]\!]^2}$ is *locally admissible* if no forbidden pattern appears in p.
- A finite pattern is globally admissible if it is a sub-pattern of an (infinite) configuration $x \in X$

• The reconstruction function is the function that associates for every $n \ge 1$, the smallest size $R \ge n$ such that if $p_{[\![-R(n),R(n)]\!]^2}$ is any locally admissible pattern, then $p_{[\![-n,n]\!]^2}$ is globally admissible.

II.10. Reconstruction function

Lemma

Let \mathscr{F} be a 1d computable set of forbidden patterns. Assume

- The time enumeration function $T_{\tilde{\mathscr{F}}} = \mathscr{O}(P(n)|\mathscr{A}|^n)$
- The reconstruction function $R_{\tilde{\mathscr{F}}}(n) = \mathscr{O}(n)$

Then the Aubrun-Sablik extension $\hat{X} = \Sigma^2(\hat{\mathscr{A}}, \hat{\mathscr{F}})$ satisfies

$$\limsup_{n \to +\infty} \frac{1}{n} \log R_{\hat{\mathscr{F}}}(n) < +\infty$$

Notice that we don't say that the growth of the reconstruction function is computable

Remark

The set $\tilde{\mathscr{F}}$ constructed before satisfies the hypothesis of the lemma

II.11. Relative complexity function

Definition Let $\Pi : \hat{X} = \Sigma^2(\hat{\mathscr{A}}, \hat{\mathscr{F}}) \to X = \Sigma^2(\mathscr{A}, \mathscr{F})$ be an extension with a one-bloc factor map $\pi : \hat{\mathscr{A}} \to \mathscr{A}$. For every $n \ge 1$, for every globally admissible pattern $p \in \mathscr{A}^{\llbracket 1,n \rrbracket^2}$, let $\mathscr{L}(n,p)$ be the set of globally admissible patterns $\hat{p} \in \hat{\mathscr{A}}^{\llbracket 1,n \rrbracket^2}$ that project onto p.

The relative complexity function is

$$C_{\hat{\mathscr{F}}}(n) := \sup_{p} \operatorname{card}(\mathscr{L}(n,p))$$

The Aubrun-Sablik extension is more than a zero-entropy extension.

Lemma

The Aubrun-Sablik extension satisfies

$$\lim_{n \to +\infty} \frac{1}{n} \log C_{\hat{\mathscr{F}}} = 0.$$

Ph. Thieullen Zero temperature 31/33

II.12. Final remarks

- We use Aubrun-Sablik as a black box: we don't really understand the reason in general why some tiling exhibits a chaotic convergence. How to recognize that a 2d tiling with a finite set of rules contains a hidden 1d subsystem that is chaotic?
- All the quantities we use are computable (obtained by an explicit algorithm). But there is a countable number of such objects. For instance the sequence of temperature $(\beta_k)_{k \ge 0}$ is also computable.
- What can we say for general sequence of temperatures? These sequences form an uncountable set of sequences and are not therefore computable.
- The alphabet of the Aubrun-Sablik extension is too large and there is no possible experiment to be done.
- What can we say for non-invariant Gibbs measures?
- What can we say for positive temperature?

Bibliographie I

- S. Barbieri, R. Bissacot, G. Dalle Vedove, Ph. Thieullen. Chaos in bidimensional models with short-range. Preprint (2022).
- J.-R. Chazottes, M. Hochman On the Zero-Temperature Limit of Gibbs States, *Commun. Math. Phys.*, Vol. 297, No. 1 (2010), 265–281.
- J.-R. Chazottes, and M. Shinoda. On the absence of zero-temperature limit of equilibrium states for finite-range interactions on the lattice \mathbb{Z}^2 . Preprint (2020).
- L. Gayral, M. Sablik, S. Taati. Characterisation of the Set of Ground States of Uniformly Chaotic Finite-Range Lattice Models. Preprint (2023).