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On calibrated and separating sub-actions

E. Garibaldi, A.O. Lopes∗ and Ph. Thieullen†

Abstract. We consider a one-sided transitive subshift of finite type σ : 6 → 6

and a Hölder observable A. In the ergodic optimization model, one is interested in
properties of A-minimizing probability measures. If Ā denotes the minimizing er-
godic value of A, a sub-action u for A is by definition a continuous function such that
A ≥ u ◦ σ − u + Ā. We call contact locus of u with respect to A the subset of 6 where
A = u ◦ σ − u + Ā. A calibrated sub-action u gives the possibility to construct, for
any point x ∈ 6, backward orbits in the contact locus of u. In the opposite direction,
a separating sub-action gives the smallest contact locus of A, that we call �(A), the
set of non-wandering points with respect to A.
We prove that separating sub-actions are generic among Hölder sub-actions. We also
prove that, under certain conditions on �(A), any calibrated sub-action is of the
form u(x) = u(xi ) + h A(xi , x) for some xi ∈ �(A), where h A(x, y) denotes the
Peierls barrier of A. We present the proofs in the holonomic optimization model, a
formalism which allows to take into account a two-sided transitive subshift of finite
type (6̂, σ̂ ).

Keywords: ergodic optimization, minimizing measures, sub-actions, separating sub-
actions, Peierls barrier.
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1 Introduction

In the ergodic optimization model (see, for instance, [2, 3, 5, 9, 15, 16, 18]),
given a continuous observable A : X → R, one is interested in understanding
which T -invariant Borel probability measure μ of a compact metric space X
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minimizes the average
∫

X A dμ. Such measures are called minimizing probabil-
ity measures1.

Minimizing probability measures admit dual objects: the sub-actions. A sub-
action u : X → R associated to an observable A enables to replace A by a
cohomologous observable whose ergodic minimizing value is actually the ab-
solute minimum. To each sub-action u one associates a compact subset of X
called contact locus which contains the support of any minimizing probabil-
ity measure. A sub-action gives therefore important information on T -invari-
ant Borel probability measures that minimize the average of A. It is a rele-
vant problem to investigate the existence of a particular sub-action having the
smallest contact locus, that is, the smallest “trapping region” of all minimiz-
ing probability measures.

In section 2, we give a simplified version for the ergodic optimization model
of the main results, namely, of the theorems 10, 11 and 12. In section 3, we
recall the definition of the holonomic optimization model and state the main
results. We give in section 4 the proof of theorem 10 and in section 5 the
proof of theorem 12. We address the reader to [13] for a proof of theorem 11.
We will adopt throughout the text the point of view which consists in interpret-
ing ergodic optimization problems as questions of variational dynamics (see,
for instance, [9, 13, 18]), similar to Aubry-Mather technics for Lagrangian sys-
tems. For an expository introduction to the general theory of ergodic optimiza-
tion, we refer the reader to the article of O. Jenkinson (see [16]).

We still would like to point out that one of the main conjectures in the theory
of ergodic optimization on compact spaces can be roughly formulated in the fol-
lowing way: in any hyperbolic dynamics, a generic Hölder (or Lipshitz) observ-
able possesses an unique minimizing probability measure, which is supported
by a periodic orbit. Concerning this problem, partial answers were already ob-
tained, among them [3, 9, 15, 18, 20, 21]. Working with a transitive expanding
dynamical system, J. Brémont (see [5]) has recently shown how such conjec-
ture might follow from a careful study of the contact loci of typical sub-actions
with finitely many connected components. Of course, such result reaffirms the
importance of the study of sub-actions as well as of their respective contact loci.

In the same dynamical context, we are in particular interested in finding sep-
arating sub-actions, that is sub-actions whose contact locus is the smallest one.
As mentioned above, these sub-actions give more information on the minimiz-

1Maximizing probabilities also appear in the literature. Obviously, replacing the observable A by
−A, both vocabularies can be interchanged and the rephrased statements will be immediately
verified. The maximizing terminology seems more convenient to study the connections with the
thermodynamic formalism (see, for example, [9, 17]).
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ing measure(s) than does a general sub-action. Our main theorem (namely,
theorem 10) states that such sub-actions are actually generic among the set of
Hölder sub-actions. An interesting result we also present here and which is
independent of the previous considerations is an analysis related to the follow-
ing situation: it is known that, for each irreducible component of the A-non-
wandering set, one can associate via the Peierls barrier a calibrated sub-action.
We present in theorem 12 sufficient conditions (by no means necessary) that
assure that there exists a dominant one among such calibrated sub-actions.

2 A simplified version of theorems 10, 11 and 12

Let (X, T ) be a transitive expanding dynamical system, that is, a continuous
covering several-to-one map T : X → X on a compact metric space X whose
inverse branches are uniformly contracting by a factor 0 < λ < 1. We denote
by MT the set of T -invariant Borel probability measures. Our objective in this
section is to summarize the conclusions of theorems 10, 11 and 12 in ergodic
optimization theory. We first recall basic definitions from [9] (see also [16]).

Given a continuous observable A : X → R, we call ergodic minimizing
value the quantity

Ā := min
μ∈MT

∫
A dμ.

We call A-minimizing probability a measure μ ∈ MT which realizes the above
minimum.

We say that a continuous function u : X → R is a sub-action with respect to
the observable A if the following inequality holds everywhere on X

A ≥ u ◦ T − u + Ā.

We would like to emphasize that, although the definition of a sub-action can be
extended to other regularities (for instance, to the class of bounded measurable
functions), we will only consider continuous sub-actions in this paper.

Definition 1. A sub-action u : X → R is said calibrated if

u(x) = min
T (y)=x

[
u(y) + A(y) − Ā

]
for all x ∈ X.

Definition 2. We call contact locus of a sub-action u the set

MA(u) := (A − u ◦ T + u)−1( Ā).
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It is just the subset of X where A = u ◦ T − u + Ā.

A point x ∈ X is said to be non-wandering with respect to A if, for every
ε > 0, there exists an integer k ≥ 1 and a point y ∈ X such that

d(x, y) < ε, d(x, T k(y)) < ε and
∣
∣
∣

k−1∑

j=0

(A − Ā) ◦ T j (y)

∣
∣
∣ < ε.

We denote by �(A) the set of non-wandering points with respect to the observ-
able A ∈ C0(X). When the observable is Hölder, �(A) is a non-empty compact
T -invariant set containing the support of all minimizing probability measures.
Moreover,

�(A) ⊂
⋂ {

MA(u)
∣
∣ u is a continuous sub-action

}
.

We are interested in finding u so that �(A) = MA(u).

Definition 3. A sub-action u ∈ C0(X) is said to be separating (with respect to
A) if it satisfies MA(u) = �(A).

The main conclusion of theorem 10 can be stated in the following way. The
proof of this particular case will not be given and can be adapted from the one
of the general situation (see section 4).

Theorem 4. Let (X, T ) be a transitive expanding dynamical system on a com-
pact metric space and A : X → R be a θ -Hölder observable. Then there exist a
θ -Hölder separating sub-action for A. Furthermore, in the θ -Hölder topology,
the subset of θ -Hölder separating sub-actions is generic among all θ -Hölder
sub-actions.

We will present in theorem 6 a result of different nature and independent
interest. The item which is totally new on this claim will be item 2.

Contrary to a separating sub-action, a calibrated sub-action u possesses a large
contact locus in the sense T (MA(u)) = X . Calibrated sub-actions are built using
a particular sub-action called the Peierls barrier. For Hölder observable A, the
Peierls barrier of A, h A : �(A) × X → R, is a Hölder calibrated sub-action in
the second variable defined by

h A(x, y) := lim
ε→0

lim inf
k→+∞

inf
{ k−1∑

j=0

(A − Ā) ◦ T j (z)
∣
∣

z ∈ X, d(z, x) < ε and d(T k(z), y) < ε
}
.

The equivalent theorem to 11 may be stated in the following form.
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Theorem 5. Let (X, T ) be a transitive expanding dynamical system on a com-
pact metric space and A : X → R be a Hölder observable. Then the set of
continuous calibrated sub-actions coincides with the set of functions of the form

u(y) = min
x∈�(A)

[
φ(x) + h A(x, y)

]
, ∀ y ∈ X,

where φ : �(A) → R is any continuous function satisfying

φ(y) − φ(x) ≤ h A(x, y), ∀ x, y ∈ �(A).

Moreover, u extends φ and is thus uniquely characterized by φ.

The condition x ∼ y ⇔ h A(x, y) + h A(y, x) = 0 defines an equivalent
relation on �(A). An equivalence class is called an irreducible component.
It is a closed T -invariant set2.

In the case �(A) is reduced to a finite number of disjoint irreducible com-
ponents, the set of calibrated sub-actions is parametrized by a finite number of
conditions. More precisely, if �(A) = tr

i=1Ci is equal to a disjoint union of
irreducible components and xi ∈ Ci are chosen, the sub-action constraint set is
by definition

CA(x1, . . . , xr ) :=
{
(u1, . . . , ur ) ∈ Rr | u j − ui ≤ h A(xi , x j ), ∀ i, j

}
.

Therefore, the analogous result to theorem 12 can be stated as follows.

Theorem 6. Let (X, T ) be a transitive expanding dynamical system on a com-
pact metric space and A : X → R be a Hölder observable. Assume that
�(A) = tr

i=1Ci is equal to a disjoint union of irreducible components.

1. There is a one-to-one correspondence between the sub-action constraint
set and the set of calibrated sub-actions,
{

(u1, . . . , ur ) ∈ CA(x1, . . . , xr )

u(x) = min
1≤i≤r

[
ui + h A(xi , x)

] ⇐⇒

{
u is a calibrated sub-action

ui = u(xi )
.

2. Let i0 ∈ {1, . . . , r} and ui0 ∈ R fixed. Define ui = ui0 + h A(xi0, xi )

for all i , then (u1, . . . , ur ) ∈ CA(x1, . . . , xr ) and the unique calibrated
sub-action u satisfying u(xi ) = ui , for all i , is of the form

u(x) := min
1≤i≤r

[
ui + h A(xi , x)

]
= ui0 + h A(xi0, x).

2We prove these statements in the general setting (see definition-proposition 18 and proposition 19).

Bull Braz Math Soc, Vol. 40, N. 4, 2009



“main” — 2009/10/23 — 12:14 — page 582 — #6

582 E. GARIBALDI, A.O. LOPES and Ph. THIEULLEN

When the optimizing probability is unique, the calibrated sub-action is unique
(up to additive constants) and generally the proofs of important results are easiest
to discuss.

One of the main issues of the thermodynamic formalism at temperature zero
is the analysis, in the case there are several ergodic maximizing probabilities
for A, which of these probabilities the Gibbs states μβ A accumulates, when the
inverse temperature parameter β goes to infinite. It is not clear when there is a
unique one in the general Hölder case3. In the case of a potential A that depends
on finitely many coordinates, this question is addressed in [4, 17].

Let us denote, in our notation, by C1, C2, . . . , Cr the different supports of the
ergodic components of the set of maximizing probabilities for A. Then, one can
ask: is there a unique one, let us say, with support in Ci0 that will be attained as
the only limit of Gibbs states μβ A when β → ∞?

This question is in some way related to the result of item 2 of theorem 6.
Indeed, the dual question can be made for the limits 1

β
log φβ when β → ∞,

where φβ is the normalized eigenfunction for the Ruelle operator associated
to the potential β A. It is well-known that any convergent subsequence will
determine a calibrated sub-action, but is it not clear if there is only one possi-
ble limit.

Hence, which one among the various calibrated sub-actions would be chosen?
This is an important question. All functions of the form h A(xi , ∙), with xi ∈ Ci ,
are calibrated sub-actions, for any i = 1, 2, . . . , r . Item 2 of theorem 6 gives
sufficient conditions to say that a certain h A(xi0, ∙) is preferred in some sense.
We believe this fact is related to the important issues described above.

3 Basic concepts and main results

For simplicity, we will restrict the exposition of the holonomic optimization
model to the symbolic dynamics case. Let (6, σ ) be a one-sided transitive
subshift of finite type given by a s × s irreducible transition matrix M. More
precisely

6 :=
{

x ∈ {1, . . . , s}N
∣
∣ M(x j , x j+1) = 1 for all j ≥ 0

}

and σ is the left shift acting on 6 by σ(x0, x1, . . .) = (x1, x2, . . .). Fix λ ∈ (0, 1).
We choose a particular metric on 6 defined by d(x, x̄) = λk , for any x, x̄ ∈ 6,
x = (x0, x1, . . .), x̄ = (x̄0, x̄1, . . .) and k = min{ j : x j 6= x̄ j }.

3Examples of Lipschitz observables on the full shift {0, 1}N for which the zero temperature limit
of the associated Gibbs measures does not exist have been recently announced (see [6]).
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The holonomic model is a generalization of the ergodic optimization frame-
work. The holonomic model has been introduced first by R. Mañé in an attempt
to clarify Aubry-Mather theory for continuous time Lagrangian dynamics (see
[8, 19]). In this model, the set of invariant minimizing probability measures is
replaced by a broader class of measures called holonomic measures. In Aubry-
Mather theory for discrete time Lagrangian dynamics on the n dimensional
torus Tn (see [14]), an holonomic probability measure μ(dx, dv) is a proba-
bility measure on Tn × Rn satisfying

∫

Tn×Rn
f (x + v) dμ(x, v) =

∫

Tn×Rn
f (x) dμ(x, v), ∀ f ∈ C0(Tn),

where the sum x + v is obviously taken modulo Zn .
One may exploit an interesting analogy with Aubry-Mather theory in sym-

bolic dynamics. Similarly to the previous example of discrete dynamics, 6

will play the role of the “space of positions” (analogous to Tn in the holo-
nomic model) and the set of inverse branches or possible pasts 6∗ will play
the role of the “space of immediately anterior velocities” (analogous to Rn).
For a complete exposition and motivation of the holonomic optimization model,
see [12, 13].

We call dual subshift of finite type the space

6∗ :=
{

y ∈ {1, . . . , s}N∗
∣
∣ M(y j+1, y j ) = 1 for all j ≥ 1

}
.

We denote by y = (. . . , y3, y2, y1) a point of 6∗. We call dual shift the map
σ ∗(. . . , y3, y2, y1) := (. . . , y3, y2). The natural extension of (6, σ ) will play
the role of the “phase space” (analogous to Tn × Rn) and will be identified
with a subset of 6∗ × 6

6̂ :=
{
(y, x) = (. . . , y2, y1|x0, x1, . . .) ∈ 6∗ × 6

∣
∣

x = (x0, x1, . . .), y = (. . . , y2, y1) and M(y1, x0) = 1
}
.

Equivalently, one may write 6̂ =
⋃

x∈6 6∗
x × {x}, where

6∗
x :=

{
y = (. . . , y2, y1) ∈ 6∗

∣
∣ M(y1, x0) = 1

}
∀ x = (x0, x1, . . .) ∈ 6.

The analogue of the “discrete Euler-Lagrange map” is obtained by the usual
left shift σ̂ on the natural extension,

σ̂ (. . . , y2, y1|x0, x1, . . .) = (. . . , y1, x0|x1, x2, . . .).

Bull Braz Math Soc, Vol. 40, N. 4, 2009
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Consider then τ ∗ : 6̂ → 6∗ given by

τ ∗(y, x) := τ ∗
x (y) := (. . . , y2, y1, x0).

Notice that τ ∗
x (y) ∈ (σ ∗)−1(y). Similarly, inverse branches of x ∈ 6 with

respect to σ are constructed using the map τ : 6̂ → 6,

τ(y, x) := τy(x) = (y1, x0, x2, . . .).

Clearly we have σ̂ (y, x) := (τ ∗
x (y), σ (x)) and σ̂−1(y, x) = (σ ∗(y), τy(x)).

Note that τ = π ◦ σ̂−1, where π : 6̂ → 6 is the canonical projection onto
the x-variable.

Let M̂ be the set of probability measures over the Borel sigma-algebra of 6̂.
Instead of considering the set of σ̂ -invariant probability measures4, we intro-
duce the set of holonomic probability measures,

M̂hol :=
{
μ̂ ∈ M̂

∣
∣
∫

6̂

f (τy(x))dμ̂(y, x) =
∫

6̂

f (x) dμ̂(y, x), ∀ f ∈ C0(6)

}
.

It seems important to insist that the holonomic condition demands only the con-
tinuous function f to be defined on the one-sided shift of finite type 6 and
not on the natural extension 6̂ as would be the case for the characterization of
σ̂ -invariance. Observe that μ̂ ∈ M̂hol if, and only if, π∗(μ̂) = π∗(σ̂

−1
∗ (μ̂))

if, and only if, σ−1
∗ (μ̂) projects onto a σ -invariant Borel probability measure.

As in section 2, we denote by Mσ the set of σ -invariant Borel probability mea-
sures. The triple (6̂, σ̂ , M̂hol) is called the holonomic model. Such a formalism
includes the ergodic optimization model discussed in section 2 as we will see.

Let A ∈ Cθ (6̂) be a Hölder observable. We would like to emphasize that
A is continuous on the natural extension 6̂. This is one of the crucial points
in the holonomic setting: the possibility of formulating a relevant minimization
question for functions defined on the two-sided shift. Then, we call holonomic
minimizing value of A

Ā := min
{ ∫

6̂

A(y, x) dμ̂(y, x)
∣
∣ μ̂ ∈ M̂hol

}

= min
{ ∫

6̂

A ◦ σ̂ (y, x) dμ̂(y, x) | π∗(μ̂) ∈ Mσ

}
.

If A ◦ σ̂ = B ◦ π depends only on the x-variable, Ā = B̄ as in the section 2.

4It is well-known that a Hölder observable defined on the two-sided shift is cohomologous to an ob-
servable that depends just on future coordinates. So a minimization over σ̂ -invariant probabilities
may be reduced to a minimization over σ -invariant probabilities.
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The set of minimizing (holonomic) probability measures is denoted

M̂hol(A) :=
{
μ̂ ∈ M̂hol

∣
∣
∫

6̂

A(y, x) dμ̂(y, x) = Ā
}

.

A continuous function u : 6 → R is called sub-action with respect to A if

u(x) − u(τy(x)) ≤ A(y, x) − Ā, ∀ (y, x) ∈ 6̂,

or equivalently A − Ā ≥ u ◦ π − u ◦ π ◦ σ̂−1. We call contact locus of a
sub-action u the set

M̂A(u) :=
(

A − u ◦ π + u ◦ π ◦ σ̂−1
)−1

( Ā)

where the above inequality becomes an equality, that is, a point (y, x) ∈ 6̂

belongs to M̂A(u) if, and only if, u(x) − u(τy(x)) = A(y, x) − Ā. If A ◦ σ̂ =
B ◦ π for some B : 6 → R, notice that π ◦ σ̂−1(M̂A(u)) = MB(u).

A calibrated sub-action is a particular sub-action which possesses a large con-
tact locus in the sense that π(M̂A(u)) = 6.

Definition 7. A sub-action u : 6 → R is said to be calibrated for A if

u(x) = min
y∈6∗

x

[
u(τy(x)) + A(y, x) − Ā

]
, ∀ x ∈ 6,

where recall that 6∗
x := {y ∈ 6∗ | (y, x) ∈ 6̂}.

If B̂ := A ◦ σ̂ and B(x) := min{B̂(y, x) | y ∈ 6∗
x }, then u is a calibrated

sub-action for A if, and only if, u is a calibrated sub-action for B. Indeed,

u(x) = min
σ(x̄)=x

min
y∈6∗

x , τy(x)=x̄

[
u(x̄) + B̂(σ ∗(y), x̄) − Ā

]

= min
σ(x̄)=x

[
u(x̄) + B(x̄) − Ā

]
= min

σ(x̄)=x

[
u(x̄) + B(x̄) − B̄

]
.

(The definition of B gives B̄ ≤ Ā and the calibration gives B̄ ≥ Ā.)

A classification theorem for calibrated sub-actions is presented in [13]. A
central concept is the set of non-wandering points with respect to A (previously
defined in [9, 18] in the ergodic optimization model). We call path of length k
a sequence (z0, . . . , zk) of points of 6̂ such that

zi = (yi , xi ) with xi = τyi+1(xi+1), ∀ i = 0, 1, . . . , k − 1,

Bull Braz Math Soc, Vol. 40, N. 4, 2009
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that is, a sequence (z0, . . . , zk) where xi = σ i (x0) for all i = 0, 1, . . . , k,
x0 = (x0, x1, . . . , xk−1, xk) and

z0 =
(
y0|x0, . . . , xk−1, xk

)
, z1 =

(
σ ∗(y1), x0|x1, . . . , xk−1, xk

)
, . . . ,

zk−1 =
(
σ ∗(yk−1), xk−2|xk−1, xk

)
, zk =

(
σ ∗(yk), xk−1|x

k
)
.

Note that the point y0 is free of any restriction except that M(y0
1 , x0) = 1, more

precisely, one just asks that y0 ∈ 6∗
x0 while y j ∈ 6∗

x j ∩ (σ ∗)−1(6∗
x j−1) for

j = 1, . . . , k. Equivalently, one could present a path in the following way

z0 =
(
y0, τy1 ◦ τy2 ◦ ∙ ∙ ∙ ◦ τyk (xk)

)
, z1 =

(
y1, τy2 ◦ ∙ ∙ ∙ ◦ τyk (xk)

)
, . . . ,

zk−1 =
(
yk−1, τyk (xk)

)
, zk =

(
yk, xk

)
.

Given ε > 0 and x, x̄ ∈ 6, we say that a path of length k, (z0, . . . , zk),
begins within ε of x and ends within ε of x̄ if d(x0, x) < ε and d(xk, x̄) < ε.
Denote by Pk(x, x̄, ε) the set of such paths. Denote by Pk(x) the set of paths
of length k beginning exactly at x. Notice that a path (z0, . . . , zk) belongs to
Pk(x) if, and only if, π(zi ) = σ i (x) for all i = 0, 1, . . . , k.

A point x ∈ 6 will be called non-wandering with respect to A if, for every
ε > 0, one can find a path (z0, . . . , zk) in Pk(x, x, ε), with k ≥ 1, such that

∣
∣
∣

k∑

i=1

(A − Ā)(zi )

∣
∣
∣ < ε.

We will denote by �(A) the set of non-wandering points with respect to A. If
A ◦ σ̂ = B ◦ π , notice that �(A) = �(B) as in section 2.

The first two authors have proved in [13] that �(A) is a non-empty compact
σ -invariant set and satisfies

�(A) ⊂
⋂ {

π(M̂A(u))
∣
∣ u is a continuous sub-action

}
.

Remark 8. The set �(A) is analogous to the projected Aubry set in the
continuous time Lagrangian dynamics. One could have introduced the cor-
responding Aubry set �̂(A) ⊂ 6̂ and proved π(�̂(A)) = �(A). Unfortu-
nately, even for Hölder observable A, the graph property is not any more true:
π : �̂(A) → �(A) is no more bijective. A counter-example can be found
in [13]. It would be interesting to find the right assumptions on A ∈ Cθ (6̂)

in order to get this property.

Contrary to a calibrated sub-action, a separating sub-action is a sub-action
with the smallest contact locus. More precisely,

Bull Braz Math Soc, Vol. 40, N. 4, 2009
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Definition 9. A sub-action u ∈ C0(6) is said to be separating (with respect to
A) if it verifies π(M̂A(u)) = �(A).

Our first result is the following one.

Theorem 10. If A : 6̂ → R is a θ -Hölder observable, then there exists a θ -
Hölder separating sub-action. Moreover, in the θ -Hölder topology, the subset
of θ -Hölder separating sub-actions is generic among all θ -Hölder sub-actions.

According to the analogy with continuous time Lagrangian dynamics, sub-
actions correspond to viscosity sub-solutions of the stationary Hamilton-Jacobi
equation, calibrated sub-actions correspond to the weak KAM solutions intro-
duced by A. Fathi (see [10]) and separating sub-actions correspond to special
sub-solutions as described in [11].

By adapting the proof of theorem 10 in [13] and by using definition 14 of the
the Peierls barrier h A, we obtain a structure theorem for calibrated sub-actions.
Such characterization corresponds to the one obtained for weak KAM solu-
tions in Lagrangian dynamics (see [7]). The proof of the following theorem will
be omitted.

Theorem 11. Let A be a θ -Hölder observable.

1. If u is a continuous calibrated sub-action for A, then

u(x) = min
x̄∈�(A)

[
u(x̄) + h A(x̄, x)

]
.

2. Conversely, for every continuous application φ : �(A) → R satisfying

φ(x) − φ(x̄) ≤ h A(x̄, x), ∀ x, x̄ ∈ �(A),

the function u(x) := minx̄∈�(A)[φ(x̄) + h A(x̄, x)] is a continuous cali-
brated sub-action extending φ on �(A).

In particular, this representation formula for calibrated sub-actions implies
immediately that, in order to compare two such functions, we just need to com-
pare their restrictions to �(A). For instance, if two calibrated sub-actions coin-
cide for every non-wandering point with respect to A, then they are the same.

In the case the set of non-wandering points for A is reduced to a finite union
of irreducible components �(A) = C1 ∪ . . . ∪ Cr , the set of calibrated sub-
actions admits a simpler characterization. We first show that the condition x ∼
x̄ ⇔ h A(x, x̄) + h A(x̄, x) = 0 defines an equivalent relation. Each one of its
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equivalent classes is called an irreducible component. Let x̄1 ∈ C1, . . . , x̄r ∈ Cr

fixed. We call sub-action constraint set the set

CA(x̄1, . . . , x̄r ) =
{
(u1, . . . , ur ) ∈ Rr | u j − ui ≤ h A(x̄i , x̄ j ), ∀ i, j

}
.

Our second result is the following one.

Theorem 12. Let A be a Hölder observable. Assume �(A) is a finite union
of disjoint irreducible components, namely, �(A) = tr

i=1Ci . Let x̄1 ∈ C1, . . . ,

x̄r ∈ Cr fixed.

1. If u is a continuous calibrated sub-action and ui := u(x̄i ) for every
i = 1, . . . , r , then

(u1, . . . , ur ) ∈ C(x̄1, . . . , x̄r ) and u(x) = min
1≤i≤r

[
u(x̄i ) + h A(x̄i , x)

]
.

2. If (u1, . . . , ur ) ∈ C(x̄1, . . . , x̄r ) and u(x) := min1≤i≤r
[
ui + h A(x̄i , x)

]
,

then u is a continuous calibrated sub-action satisfying u(x̄i ) = ui for all
i = 1, . . . , r .

3. Take i0 ∈ {1, . . . , r} and (u1, . . . , ur ) such that ui := ui0 + h A(x̄i0, x̄i )

for all i = 1, . . . , r . Then i0 is unique, (u1, . . . , ur ) ∈ C(x̄1, . . . , x̄r )

and the unique calibrated sub-action u satisfying u(x̄i ) = ui , for all
i = 1, . . . , r , is of the form u(x) = ui0 + h A(x̄i0, x).

The application we present here has a certain similarity to lemma 6 in [1].
We point out that the local character of viscosity solutions (as in definition 1 of
[1]) is not present in our setting.

Application 13. Let A be a Hölder observable. Consider any continuous sub-
action v and a continuous calibrated sub-action u.

1. Then u − v is constant on every irreducible component and

min
6

(u − v) = min
�(A)

(u − v).

2. Assume �(A) = tr
i=1Ci is a finite union of disjoint irreducible compo-

nents. If min6(u − v) is realized on an unique component Ci1 and the
other components Ci , i 6= i1, are not local minimum for u − v, then

u(x) = u(x̄i1) + h A(x̄i1, x), ∀ x ∈ 6,

where x̄i1 is any point in Ci1 .
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4 Proof of theorem 10.

We first recall two notions of action potential between two points: the Mañé
potential and the Peierls barrier. Given ε > 0, x, x̄ ∈ 6 and k ≥ 1, we denote

Sε
A(x, x̄, k) = inf

{
k∑

i=1

(A − Ā)(zi )
∣
∣ (z0, . . . , zk) ∈ Pk(x, x̄, ε)

}

.

If B̂ := A ◦ σ̂ and B := min{B̂(y, x) | y ∈ 6∗
x}, notice that

Sε
A(x, x̄, k) = inf

{
k−1∑

i=0

(B − B̄) ◦ σ i (x0)
∣
∣ d(x0, x) < ε, d(σ k(x0), x̄) < ε

}

.

Definition 14. We call Mañé potential the function φA : 6 × 6 → R∪ {+∞}
defined by

φA(x, x̄) = lim
ε→0

inf
k≥1

Sε
A(x, x̄, k).

We call Peierls barrier the function h A : 6 × 6 → R ∪ {+∞} defined by

h A(x, x̄) = lim
ε→0

lim inf
k→+∞

Sε
A(x, x̄, k).

Clearly, φA ≤ h A and both functions are lower semi-continuous. We summa-
rize the main properties of these action potentials.

Proposition 15. Let A be a Hölder observable.

1. If u is a continuous sub-action, then u(x̄) − u(x) ≤ φA(x, x̄).

2. For any points x, x̄, ˉ̄x ∈ 6, φA(x, ˉ̄x) ≤ φA(x, x̄) + φA(x̄, ˉ̄x).

3. Given a point x ∈ 6, if there exists a positive integer L such that
0 < L < min

{
j > 0 : σ j (x) = x

}
≤ +∞, then

φA(x, x) = φA(x, σ L(x)) + φA(σ L(x), x).

Moreover, if φA(x, x) < +∞, then there exists a path of length L,
(z̄0 = (ȳ0, x̄0), . . . , z̄L = (ȳL , x̄L)), beginning at x (x̄ j = σ j (x) for all
j = 0, . . . , L), such that

φA(x, σ L(x)) =
L∑

j=1

(A − Ā)(z̄ j ).
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4. For any points x, x̄, ˉ̄x ∈ 6 and any sequence {x̄l} converging to x̄,

h A(x, ˉ̄x) ≤ lim inf
l→+∞

φA(x, x̄l) + h A(x̄, ˉ̄x).

5. If x ∈ 6, then x ∈ �(A) ⇔ φA(x, x) = 0 ⇔ h A(x, x) = 0.

6. If x ∈ �(A), then φA(x, ∙) = h A(x, ∙) and h A(x, ∙) is a Hölder cali-
brated sub-action with respect to the second variable.

This proposition shows how to construct Hölder calibrated sub-actions with-
out the use of the Lax-Oleinik fixed point method.

Remark 16. In Lagrangian Aubry-Mather theory on a compact manifold M ,
it is well known that, for any point x ∈ M , the map y ∈ M 7→ h(x, y) ∈ R
defines a weak KAM solution, where h : M × M → R denotes the corre-
sponding Peierls barrier. The analogous result for h A(x, ∙) is however false in
the holonomic optimization model. Using item 3, it is not difficulty to built
examples where

lim
L→+∞

φA(x, σ L(x)) = lim
L→+∞

h A(x, σ L(x)) = +∞,

which shows that h A(x, ∙) is not always a continuous function.

Proof of proposition 15. Items 1, 2, 5 and 6 are well known and a demonstra-
tion can be found, for instance, in [9, 13]. So let us prove items 3 and 4.

Item 3. We already know from item 2, that

φA(x, x) ≤ φA(x, σ L(x)) + φA(σ L(x), x).

Define η = min{d(σ i (x), σ j (x)) : 0 ≤ i < j ≤ L}. Fix γ > 0 and take
ε ∈ (0, min{λ, η/2}) such that Höld(A)Lεθ < γ . Consider also ρ ∈ (0, ε)

such that d(x, x̄) < ρ implies d(σ j (x), σ j (x̄)) < ε for 1 ≤ j ≤ L . Take then
a path (z0, . . . , zl) ∈ Pl(x, x, ρ) satisfying

l∑

j=1

(A − Ā)(z j ) < inf
k≥1

Sρ

A(x, x, k) + γ ≤ φA(x, x) + γ.

Let z j = (y j , x j ) where x j = σ j (x0) for all j = 0, 1, . . . , l. We claim that
l > L . Indeed, ρ has been chosen so that, for each j ∈ {1, 2, . . . , L},

d(x j , x) = d(σ j (x0), x) ≥ d(σ j (x), x) − d(σ j (x), σ j (x0)) > η − ε > ρ.
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Introduce a new path (z̄0, . . . , z̄L) ∈ PL(x, x, ε) given by z̄ j = (y j , σ j (x)),
for all j = 0, . . . , L . The definition of ρ guarantees

L∑

j=1

(A − Ā)(z̄ j ) <

L∑

j=1

(A − Ā)(z j ) + Höldθ (A)Lεθ

≤
L∑

j=1

(A − Ā)(z j ) + γ.

Notice that (zL , . . . , zl) ∈ Pl−L(σ L(x), x, ε). We finally obtain

inf
k≥1

Sε
A(x, σ L(x), k) + inf

k≥1
Sε

A(σ L(x), x, k)

≤
L∑

j=1

(A − Ā)(z̄ j ) +
l∑

j=L+1

(A − Ā)(z j )

≤
L∑

j=1

(A − Ā)(z j ) +
l∑

j=L+1

(A − Ā)(z j ) + γ

≤ inf
k≥1

Sρ

A(x, x, k) + 2γ ≤ φA(x, x) + 2γ.

By letting ε goes to 0 and γ to 0, we get

φA(x, σ L(x)) + φA(σ L(x), x) ≤ φA(x, x).

The first part of item 3 is proved. To prove the second part, the previous
computation shows that, for any sufficiently small ε, there exists a path
(z̄0

ε , . . . , z̄L
ε ) ∈ PL(x) such that

L∑

j=1

(A − Ā)
(
z̄ j
ε

)
+ inf

k≥1
Sε

A(σ L(x), x, k) ≤ φA(x, x) + 2γ.

By taking accumulation points of z̄ j
ε when ε → 0, we obtain, for any γ ,

a path (z̄0, . . . , z̄L) such that

φA(x, σ L(x)) ≤
L∑

j=1

(A − Ā)(z̄ j ) ≤ φA(x, x) − φA(σ L(x), x) + 2γ

The result follows from item 2 and by taking once more accumulation points
of z̄ j when γ → 0.
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Item 4. Since φA is lower semi-continuous, the statement is equivalent to

h A(x, ˉ̄x) ≤ φA(x, x̄) + h A(x̄, ˉ̄x), ∀ x, x̄, ˉ̄x ∈ 6.

Fix γ > 0 and ε ∈ (0, λ/2) such that Höld(A)(2ε)θ/(1 − λθ) < γ . There
exists a path (z0, . . . , zk) ∈ Pk(x, x̄, ε) such that

k∑

j=1

(A − Ā)(z j ) < inf
n≥1

Sε
A(x, x̄, n) + γ.

For any N ≥ 1, there exists a path (z̄0, . . . , z̄l) ∈ Pl(x̄, ˉ̄x, ε) of length l ≥ N
such that

l∑

j=1

(A − Ā)(z̄ j ) < inf
n≥N

Sε
A(x̄, ˉ̄x, n) + γ.

We define a path
(
ˉ̄z0, . . . , ˉ̄zk+l

)
∈ Pk+l

(
x, ˉ̄x, 3ε

)
in the following way

ˉ̄z j = z̄ j−k, ∀ j = k + 1, . . . , k + l, ˉ̄z j = ( ˉ̄y j , ˉ̄x j ), ∀ j = 0, . . . , k,

ˉ̄y j = y j , ∀ j = 0, . . . , k, ˉ̄xk = x̄0, ˉ̄x j−1 = τy j ( ˉ̄x j ), ∀ j = 1, . . . , k.

We notice that d
(
ˉ̄x j , x j

)
≤ λk− j d

(
ˉ̄xk, xk

)
, for all j = 0, . . . , k. Since

d( ˉ̄xk, xk) = d(x̄0, xk) ≤ d(x̄0, x̄) + d(x̄, xk) < 2ε,

we obtain d( ˉ̄x0, x) ≤ λk2ε + ε < 3ε. Hence, it follows that

inf
n≥N

S3ε
A (x, ˉ̄x, n) ≤

k+l∑

j=1

(A − Ā)( ˉ̄z j )

≤
l∑

j=1

(A − Ā)(z̄ j ) +
k∑

j=1

(A − Ā)(z j ) +
(2ε)θ

1 − λθ
Höldθ (A)

≤ inf
n≥1

Sε
A(x, x̄, n) + inf

n≥N
Sε

A(x̄, ˉ̄x, n) + 3γ

≤ φA(x, x̄) + inf
n≥N

Sε
A(x̄, ˉ̄x, n) + 3γ.

By taking first N → +∞, then ε → 0 and γ → 0, we get

h A(x, ˉ̄x) ≤ φA(x, x̄) + h A(x̄, ˉ̄x).
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Other properties of the Mañé potential and the Peierls barrier can be derived
from the previous proposition. For instance, item 4 gives us the following in-
equality

h A(x, ˉ̄x) ≤ h A(x, x̄) + h A(x̄, ˉ̄x), ∀ x, x̄, ˉ̄x ∈ 6.

We now begin the proof of theorem 10. It follows immediately from the next
lemma.

Lemma 17. Let D ⊂ 6 be an open set containing �(A). Denote by DA the
subset of Hölder sub-actions u such that π(MA(u)) ⊂ D. Then, for the Hölder
topology, DA is an open dense subset of the Hölder sub-actions.

We only need a few lines to show that lemma 17 yields theorem 10. As a
matter of fact, if one considers, for each positive integer j , the open set D j =
{x ∈ 6 | d(x,�(A)) < 1/j} and the corresponding open dense subset of Hölder
sub-actions DA, j , then the set of Hölder separating sub-actions contains the
countable intersection ∩ j>0DA, j .

Proof of lemma 17. We only discuss the denseness of DA.

Part 1. Let v be any Hölder sub-action for A. We will show that, for every
x /∈ D, there exists a Hölder sub-action vx as close as we want to v in the Hölder
topology with a projected contact locus disjoint from x, that is, x /∈ π(MA(vx))

or
vx(x) − vx(τy(x)) < A(y, x) − Ā, ∀ y ∈ 6∗

x .

Let x /∈ D. We discuss two cases.

Case a. We assume there exists an integer k ≥ 0 such that, for every path of
length k beginning at

x, (z0 = (y0, x), . . . , zk = (yk, σ k(x))) ∈ Pk(x),

the terminal point zk 6∈ MA(v). If k = 0, we choose vx = v. Assume now
k ≥ 1. Let

B := A − Ā − v ◦ π + v ◦ π ◦ σ̂−1 ≥ 0

be the associated normalized observable (B ≥ 0 and B̄ = 0). We recall that
τy j (σ j (x)) = σ j−1(x), for all j = 1, . . . , k. So by hypothesis

B(zk) = B(yk, σ k(x)) > 0, ∀ yk ∈ 6∗
σ k (x)

s.t. σ k−1(x) = τyk (σ k(x)). (I)

Bull Braz Math Soc, Vol. 40, N. 4, 2009



“main” — 2009/10/23 — 12:14 — page 594 — #18

594 E. GARIBALDI, A.O. LOPES and Ph. THIEULLEN

Notice first that, if (z̄0, . . . , z̄k) is a path of length k and γ ∈ (0, 1) is any
constant, as B is non-negative, one has

B(z̄0) =
k−1∑

j=0

B(z̄ j ) −
k∑

j=1

B(z̄ j ) + B(z̄k)

≥ γ

k−1∑

j=0

B(z̄ j ) − γ

k∑

j=1

B(z̄ j ) + γ B(z̄k)

≥ γ

k−1∑

j=0

B(z̄ j ) − γ

k∑

j=1

B(z̄ j ).

(II)

Let wk : 6 → R be the function given by

wk(x̄) := inf






k∑

j=1

B(z̄ j )
∣
∣ (z̄0, . . . , z̄k) ∈ Pk(x̄)





, ∀ x̄ ∈ 6.

Because Pk(x̄) is a closed subspace of the compact space 6̂k+1, the above
infimum is effectively a minimum. Moreover, since the application C(x̄) :=
min{B ◦ σ̂ (ȳ, x̄) | ȳ ∈ 6∗

x̄} is Hölder, wk =
∑k−1

j=0 C ◦ σ j is also Hölder5.

We first prove that −γwk is a sub-action. Let x̄ ∈ 6 and ȳ ∈ 6∗
x̄ . There exists

a path of length k, (z̄0, . . . , z̄k), beginning at x̄ and realizing the minimum

wk(x̄) =
k∑

j=1

B(z̄ j ).

Notice the only constraint on ȳ0 is ȳ0 ∈ 6∗
x̄ , besides ȳ0 does not appear in

the previous sum. Choose ȳ0 = ȳ, ȳ−1 ∈ 6∗
x̄−1 and call x̄−1 = τȳ(x̄). Then

(z̄−1, z̄0, . . . , z̄k−1) is a path of length k beginning at τȳ(x̄). So denote z̄ :=
(x̄, ȳ). Thanks to inequality (II)

B(z̄) = B(z̄0) ≥ γ

k−1∑

j=0

B(z̄ j ) − γ

k∑

j=1

B(z̄ j ) ≥ γwk(τȳ(x̄)) − γwk(x̄),

which shows −γwk is a sub-action for B. Moreover, given any y ∈ 6∗
x , the

same computation for z := (x, y) instead of z̄ and (I) assure that

B(z) − γwk(τy(x)) + γwk(x) ≥ γ B(zk) > 0.

5We leave the details to the reader. In particular, one shall note that wk =
∑

j C ◦ σ j means
min(a + b) = min a + min b, which indicates the importance of what a path is.
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We have proved that x /∈ π(MB(−γwk)) = π(MA(v − γwk)).
Since γ can be taken as small as we want, we have shown the existence of a

Hölder sub-action vx = v − γwk close to v in the Hölder topology satisfying
x /∈ π(MA(vx)).

Case b. We suppose that, for every integer k ≥ 0, one can find a path of
length k, (z0, . . . , zk), beginning at x, such that zk ∈ MA(v), or equivalently
B(zk) = 0 with B as before. In other words, there exists y0 ∈ 6∗

x with
B(y0, x) = 0 and, for any k ≥ 1, there exists yk ∈ 6∗

xk ∩ (σ ∗)−1(6∗
xk−1) such

that B(yk, xk) = 0, where xk = σ k(x). Define z̄0 = (y0, x) and z̄k = (yk, xk)

for all k ≥ 1. Notice that (z̄0, . . . , z̄k) is now a path of arbitrary length k,
beginning at x, which satisfies B(z̄ j ) = 0 for j = 0, . . . , k.

Let x̄ ∈ �(A) = �(B) be any limit point of (xk)k chosen once for all. Let
w := hB(x̄, ∙) be the Hölder sub-action for B given by the corresponding Peierls
barrier. Notice that by the definition of the Peierls barrier (see definition 14)
we clearly get hB ≥ 0, since B ≥ 0 and B̄ = 0. Furthermore, we remark that
φB(x, σ k(x)) = 0 for all k ≥ 1 and that

w(x) = hB(x̄, x) = lim inf
k→+∞

φB(x, σ k(x)) + hB(x̄, x) ≥ hB(x, x) > 0.

Here we have used item 4 of proposition 15 to obtain the first inequality and
item 5 of the same proposition to assure the strict inequality since x /∈ D ⊃
�(A) = �(B).

Let γ ∈ (0, 1) be any real number as close to 0 as we want. We claim that x
satisfies again the first case, namely, there exists k ≥ 1 such that, for any path of
length k, (z0 = (y0, x0), . . . , zk = (yk, xk)), beginning at x, one has

B(zk) − γ hB(x̄, xk) + γ hB(x̄, xk−1) > 0.

(Notice that γw is again a sub-action for B since B is non-negative.) Indeed,
by contradiction, for any integer k ≥ 0, we would have a path of length k,
(z0 = (y0, x0), . . . , zk = (yk, xk)), beginning at x, such that zk ∈ MB(γw),
which would yield

0 ≤ B(zk) = γ hB(x̄, xk) − γ hB(x̄, xk−1), ∀ k ≥ 1.

On the one hand, from the inequality γ hB(x̄, xk−1) ≤ γ hB(x̄, xk), we would
obtain 0 < w(x) = hB(x̄, x) ≤ hB(x̄, xk) for all k ≥ 1. On the other hand, by
taking a subsequence of {xk} = {σ k(x)} converging to x̄, hB(x̄, xk) would con-
verge to hB(x̄, x̄) = 0, since x̄ ∈ �(B). We have thus obtained a contradiction.
Hence, case (a) implies that there exists a sub-action vx, close to v in the Hölder
topology, satisfying x /∈ π(MA(vx)).
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Part 2. We have just proved that, for any x /∈ D, there exists a sub-action vx

close to v and a ball B(x, εx) of radius εx > 0 centered at x such that

∀ x̄ ∈ B(x, εx), x̄ /∈ π(MA(vx)).

We can extract from the family of these balls {B(x, εx)}x a finite family indexed
by {x j }1≤ j≤K which is still a covering of the compact set 6 \ D. Let

u =
1

K

K∑

j=1

vx j .

Then it is easy to check that u is a Hölder sub-action for A satisfying
π(MA(u)) ⊂ D, namely, u ∈ DA. Since each sub-action vx can be taken
as close as we want to v in the Hölder topology, the same is true for u. �

5 Proof of theorem 12.

It was proved in [13] that the projection of the support of a minimizing prob-
ability measure μ̂ is included into the A-non-wandering set �(A) when such
projection is ergodic. If π∗μ̂ is ergodic, π(supp(μ̂)) may be seen as an irre-
ducible component in the sense that any two points can be joined by an ε-closed
trajectory. We introduce here a more general notion of irreducibility.

Definition-Proposition 18. Let A : 6̂ → R be a Hölder observable. We say
that two points x, x̄ of �(A) are equivalent and write x ∼ x̄ if

h A(x, x̄) + h A(x̄, x) = 0.

Then ∼ is an equivalent relation. Its equivalent classes are called irreducible
components.

Proof. It is obvious that ∼ is reflexive (h A(x, x) = 0 ⇔ x ∈ �(A)) and sym-
metric. Let u be a continuous sub-action and B := A − Ā − u ◦ π + u ◦ τ

be the associated normalized observable. Then the definition of the Peierls
barrier (see definition 14) implies

hB(x, x̄) = h A(x, x̄) − u(x̄) + u(x), ∀ x, x̄ ∈ 6.

Since hB(x, x̄) ≥ 0, we see that x ∼ x̄ ⇔ hB(x, x̄) = 0 and hB(x̄, x) = 0.
To show the transitivity property, it is enough to prove

x ∼ x̄ and x̄ ∼ ˉ̄x =⇒ hB(x, ˉ̄x) = 0.
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But proposition 15 guarantees

0 ≤ hB(x, ˉ̄x) ≤ hB(x, x̄) + hB(x̄, ˉ̄x) = 0.

The transitivity property is proved. �

Proposition 19. The irreducible components are closed and σ -invariant.

Proof. Part 1. Let x ∈ �(A). Consider {x̄ε}ε a sequence of points of �(A)

equivalent to x and within ε of x̄ ∈ �(A). Then on the one hand, h A(x, x̄) +
h A(x̄, x) ≥ h A(x, x) = 0, and on the other hand,

h A(x, x̄ε) + h A(x̄, x) ≤ h A(x, x̄ε) + h A(x̄, x̄ε) + h A(x̄ε, x) = h A(x̄, x̄ε).

By continuity of h A(x, ∙) and h A(x̄, ∙) with respect to the second variable, the
previous inequality gives h A(x, x̄) + h A(x̄, x) ≤ 0. Therefore x̄ ∼ x and the
class containing x is closed.

Part 2. Let x ∈ �(A). Either σ(x) = x and in an obvious way σ(x) ∼ x
or σ(x) 6= x and item 3 of proposition 15 shows φA(x, σ (x)) + φA(σ (x), x) =
φA(x, x) = 0. Remember that h A(y, ∙) = φA(y, ∙) whenever y ∈ �(A); note
that x and σ(x) belong to the σ -invariant set �(A). Then we get h A(x, σ (x)) +
h A(σ (x), x) = h A(x, x) = 0 and x and σ(x) belong to the same irreducible
class. �

We assume from now on that �(A) is equal to a disjoint union of irre-
ducible components, �(A) = C1 t . . . t Cr . The following proposition shows
that the Peierls barrier normalized by a separating sub-action could play the role
of a quantized set of levels of energy.

Proposition 20. Let A be a Hölder observable and assume that �(A) =
tr

i=1Ci is equal to a finite union of irreducible components.

1. If u is a continuous sub-action, then

(xi , x j ) 7→ h A(xi , x j ) − u(x j ) + u(xi ) is constant on Ci × C j .

2. If u is a continuous separating sub-action, then

h A(xi , x j ) > u(x j ) − u(xi ), ∀ (xi , x j ) ∈ Ci × C j , ∀ i 6= j.
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Proof. We first normalize A by taking B = A − Ā − u ◦ π + u ◦ τ so that
B ≥ 0 and B̄ = 0.

Part 1. Let (xi , x j ), (x̄i , x̄ j ) ∈ Ci × C j . Then hB(xi , x̄i ) = hB(x j , x̄ j ) = 0
and

hB(x̄i , x̄ j ) ≤ hB(x̄i , xi ) + hB(xi , x j ) + hB(x j , x̄ j ) ≤ hB(xi , x j ).

Conversely hB(xi , x j ) ≤ hB(x̄i , x̄ j ) and we have proved that hB(∙, ∙) is con-
stant on Ci × C j .

Part 2. Let {U η

i }η>0 be a basis of neighborhoods of Ci . Since σ(Ci ) ⊂ Ci

is disjoint from each C j , j 6= i , there exists η > 0 small enough such that
σ(U η

i ) is disjoint from ∪ j 6=iU
η

j . Let i 6= j and x ∈ Ci , x̄ ∈ C j . For ε > 0
sufficiently small, the ball of radius ε centered at x is included in U η

i . Let
(z0 = (y0, x0), . . . , zk = (yk, xk)) be a path of length k within ε of x and x̄,
more precisely, satisfying d(x0, x) < ε and d(xk, x̄) < ε. Let p ≥ 1 be the
first time σ p(x) 6∈ U η

i . Then σ p−1(x) ∈ U η

i and σ p(x) ∈ σ(U η

i ) \ U η

i . By the
choice of η, σ p(x) 6∈ ∪r

j=1U η

j =: U ⊃ �(A). Since �(A) = π(MA(u)), let

Û := π−1(U), then zp 6∈ Û and

k∑

l=1

B(zl) ≥ B(zp) ≥ min
6̂\Û

B =: m > 0.

We have proved that hB(x, x̄) ≥ m > 0. �

We are now in a position to prove our second result.

Proof of theorem 12. We fixed once for all x̄i ∈ Ci .

Part 1. We know from theorem 11 that a continuous calibrated sub-action
satisfies u(x) = minx̄∈�(A)[u(x̄) + h A(x̄, x)]. If x̄ ∈ Ci , then x̄ ∼ x̄i and
h A(x̄i , x̄) + h A(x̄, x̄i ) = 0. Then

u(x̄i ) + h A(x̄i , x) ≤ u(x̄i ) + h A(x̄i , x̄) + h A(x̄, x)

= u(x̄i ) − h A(x̄, x̄i ) + h A(x̄, x)

≤ u(x̄) + h A(x̄, x).

We have proved that u(x) = min1≤i≤r
[
u(x̄i ) + h A(x̄i , x)

]
. The fact that

(u(x̄1), . . . , u(x̄r )) ∈ CA(x̄1, . . . , x̄r ) comes from items 1 and 6 of proposi-
tion 15.
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Part 2. Let (u1, . . . , ur ) ∈ CA(x̄1, . . . , x̄r ) and define φ : �(A) → R by
φ(x) := ui + h A(x̄i , x) for all x ∈ Ci . We notice that φ is continuous and
we show that φ(x̄) − φ(x) ≤ h A(x, x̄) for all x, x̄ ∈ �(A). Indeed, if x ∈ Ci

and x̄ ∈ C j , then

φ(x̄) − φ(x) = (u j − ui ) + h A(x̄ j , x̄) − h A(x̄i , x)

≤ h A(x̄i , x̄ j ) + h A(x̄ j , x̄) − h A(x̄i , x)

= h A(x̄i , x̄ j ) − h A(x̄, x̄ j ) − h A(x̄i , x)

≤ h A(x̄i , x̄) − h A(x̄i , x) ≤ h A(x, x̄).

(The last but one inequality uses item 1 of proposition 15 and the fact that
h A(x̄i , ∙) is a sub-action.) By theorem 11, we know that the function u(x) :=
minx̄∈�(A)[φ(x̄)+ h A(x̄, x)] is a continuous calibrated sub-action which extends
φ on �(A). In particular, u(x̄i ) = φ(x̄i ) = ui and, thanks to part 1, u coincides
with min1≤i≤r [ui + h A(x̄i , ∙)].

Part 3. Let i0 ∈ {1, . . . , r}. If (u1, . . . , ur ) satisfies ui = ui0 + h A(x̄i0, x̄i ),
then i0 is unique. Otherwise there would exist i1 6= i0 such that ui = ui1 +
h A(x̄i1, x̄i ). Thus

ui1 = ui0 + h A(x̄i0, x̄i1) and ui0 = ui1 + h A(x̄i1, x̄i0).

We would obtain h A(x̄i0, x̄i1) + h A(x̄i1, x̄i0) = 0 contradicting x̄i0 6∼ x̄i1 . The
fact that (u1, . . . , ur ) ∈ CA(x̄1, . . . , x̄r ) comes from

u j − ui = h A(x̄i0, x̄ j ) − h A(x̄i0, x̄i ) ≤ h A(x̄i , x̄ j ).

The end of part 3 follows since u(x) := ui0 + h A(x̄i0, x) already defines a
calibrated sub-action satisfying u(x̄i ) = ui for all i . �

The proof of application 13 is elementary.

Proof of application 13. Define B := A − v ◦ π + v ◦ τ − Ā, then the
null function is a sub-action of B and v − u is a sub-action calibrated to B.
Moreover, hB(x, x̄) = h A(x, x̄) − v(x̄) + v(x) and �(A) = �(B). It is
therefore enough to assume A normalized (A ≥ 0 and Ā = 0) and v = 0.

Part 1. If x ∼ x̄ are two points of �(A), then h A(x, x̄) = 0 and
h A(x̄, x) = 0. Thanks to items 1 and 6 of proposition 15, we obtain
u(x) = u(x̄). If x is any point of 6, by the calibration of u, one can construct
an inverse path {z−i }i≥0 of 6̂, with π(z0) = x, such that u(x−i ) − u(x−i−1) =
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A(z−i ), x−i = π(z−i ), for all i . Let x̄ be an accumulation point of {x−i }i≥0.
Then x̄ ∈ �(A) and, since A ≥ 0, the sequence {u(x−i )}i≥0 is decreasing. In
particular, u(x) ≥ u(x̄) establishes min6 u = min�(A) u.

Part 2. Let ui be the value of u on Ci . Assume we have ordered these
values as ui1 ≤ ui2 ≤ . . . ≤ uir . Let x̄i ∈ Ci fixed. It suffices to prove
u(x̄ik ) = u(x̄i1) + h A(x̄i1, x̄ik ) for all k = 1, . . . , r . It is true for k = 1. Since
Cik+1 is not a minimum local of u, one can find a sequence of points {xε}ε>0

within ε of Cik+1 such that u(xε) < u(x̄ik+1). From part 1 of theorem 12, there
exists an index j such that u(xε) = u(x̄ j ) + h A(x̄ j , xε). Since h A ≥ 0, u j =
u(x̄ j ) ≤ u(xε) < uik+1 . So j has to be one of indexes i1, . . . , ik . By induction,
u(x̄ j ) = u(x̄i1) + h A(x̄i1, x̄ j ) and

u(xε) = u(x̄i1) + h A(x̄i1, x̄ j ) + h A(x̄ j , xε).

On the one hand, h A(x̄i1, x̄ j ) + h A(x̄ j , xε) ≥ h A(x̄i1, xε) implies

u(xε) ≥ u(x̄i1) + h A(x̄i1, xε).

On the other hand, as u is a sub-action, we obtain the reverse inequality and
finally

u(xε) = u(x̄i1) + h A(x̄i1, xε).

Letting ε go to 0, xε accumulates to Cik+1 and

u(x̄ik+1) = u(x̄i1) + h A(x̄i1, x̄ik+1).

�
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