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Abstract Consider the shift o acting on the Bernoulli space ¥ = {1,2,...,n}".
We denote & = {1,2,....,n}%2 = ¥ x X. We analyze several properties of the
maximizing probability oo of a Holder potential A : ¥ — R. Associated to
A(x), via the involution kernel, W(x,y), W : Y~ — R, one can get the dual potential
A*(y), where (x,y) € X. We denote oo+ the maximizing probability for A*. We
would like to consider the transport problem from fioo 4 tO [Loo 4. In this case, it is
natural to consider the cost function c(x,y) = I(x) — W(x,y) + y, where [ is the
deviation function for fteo 4, as the limit of Gibbs probabilities g4 for the potential
BA when f — oo. The value y is a constant which depends on A. We could also
take ¢ = —W above. We denote by %~ = # ([toon, Moo.a*) the set of probabilities
Ai(x,y) on X, such that i () = Hooa, and 77 (7)) = flooax . We describe the

minimal solution £t (which is invariant by the shift on x ) of the Transport Problem,
that is, the solution of

ﬁiegfg//c(x,y)dh —gg;//(w(x,y)—y)dﬁ-

The optimal pair of functions for the Kantorovich Transport dual Problem is
(—=V,—=V*), where we denote the two calibrated sub-actions by V and V*, respec-
tively, for A and A*. We show that the involution kernel W is cyclically monotone. In
other words, satisfies a twist condition in the support of ft. We analyze the question:
is the support of i a graph? We also investigate the question of finding an explicit
expression for the function f : ¥ — R whose c-subderivative determines the graph.
We also analyze the same kind of problem for expanding transformations on the
circle.
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358 A.O. Lopes et al.
1 Introduction

It seems natural to try to investigate the connections of Transport Theory with
Ergodic Theory. Some results on this direction appear in [18, 32-34, 51]. Here we
follow a different path.

Given a continuous function A : ¥ = {1,2,3, ..,d}N — R, we call toos a
maximizing probability for A, if [ Adv attains the maximal value in [t 4, When the
probabilities v range among the set of invariant for the shift acting on the Bernoulli
space X. We denote by m(A) this maximal value.

Such maximizing probabilities [t 4 can be seen as the equilibrium states at zero
temperature for a system on the one dimensional lattice N with d spins in each site
and under the influence of an interacting potential A (see [5, 8, 12, 14, 27, 35, 42,
46]).

A main conjecture on the area claims that for a generic Holder potential A the
maximizing probability has support in a unique periodic orbit for the shift (for a
partial result see [12]). This conjecture was recently proved by G. Contreras (see
[10D).

We address the question of finding the optimal transport plan from a certain
maximizing probability to another. More precisely, we would like to consider the
transport problem from floo s tO fhooa*, Where A 1 X = {1,2,3, ..,d}N — Risa
Holder potential and A* its dual (see [2]).

We consider here that A acts on the variable x and A* in the variable y. A function
W(x,y) called the involution kernel will play an important role in the theory. The
twist condition for W is a kind of convexity assumption. We will describe bellow
with all details the setting we are going to consider in the present paper. We will
also provide several examples to illustrate the theory.

We assume here in most (but not all) of the results that the maximizing
probability (oo 4 (on X) for A is unique.

We denote by [i the minimizing probability over > = {1,2,3,.., d}Z =Y xJX,
for the natural Kantorovich Transport Problem associated to the —W, where W (x, y),
for (x,y) € ¥ x X, is the involution kernel associated to A (see [2]).

We will denote by & the shift on X. The probability [, denotes the natural
extension of [t 4 as described in [2].

We point out that by its very nature the Classical Transport Theory is not a
Dynamical Theory (in the sense of considering invariant probabilities) [48, 53, 54].
One has to consider a cost which is obtained from dynamical properties in order to
get optimal plans which are invariant for .

Recent results in Ergodic Transport are [13, 22, 36, 37, 41, 44].

We will consider a cost which is the involution kernel W. First we show that:

Theorem 1 The minimizing Kantorovich probability i on X associated to —W,
where W is the involution kernel for A, is L. Same property is true for c instead

of W

One of our main results is Theorem 5 which claims that the support of [,y is
W-cyclically monotone. We do not assume the twist condition in the above result.
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The calibrated subactions V play an important role in Ergodic Optimization.
They can help to find the support of the maximizing probability (see [5, 27] or [12]
for instance). Moreover, if we denote R(x) = V(o (x)) — V(x) — A(x) + m(A), then
I(x) = >_,-0R(0"(x)) defines a nonnegative lower semicontinuous function (can
be infinite at several points) which is the deviation function for the family of Gibbs
states associated to A when the temperature converges to zero [2] (see [3, 36] for the
case of the XY model). For a class of explicit nontrivial examples of subactions V
see [4].

Theorem 2 If V is the calibrated subaction for A, and V* is the calibrated
subaction for A*, then, the pair (—V,—V*) is the dual (—W + I)-Kantorovich pair
of (Loo.n» Looa*), when I is the deviation function for A.

Finding the optimal transport measure between two probabilities is the solution
of the so called relaxed problem [53]. If we want to find a measurable transformation
(the Monge problem) which transfers one probability to another we need to show
that the graph property is true in the support of such probability (which does not
always happen if one considers a general cost function) [53].

Finally, we analyze later here the graph property for the support of the fi,,,; (over
3= {1,2,3,.., d}Z) which is the minimizing probability for the cost function —W.

One can consider in the Bernoulli space ¥ = {0, 1}" the lexicographic order. In
this way, x < z, if and only if, the first element 7 such that, x; = z; for all j < i, and
x; # z;, satisfies the property x; < z;. Moreover, (0, x1, x2,...) < (1,x1,x2,...).

One can also consider the more general case ¥ = {0,1,...,d — I}N, but in
order to simplify the notation and to avoid technicalities, we consider only the case
¥ ={0, 1}

Y x XY — R satisfies the twist

Definition 1 We say a continuous G : =
Y x X and (d/,b) € ¥ x X, with

condition on X, if for any (a,b) € x
a > a, b’ > b, we have

I~

G(a,b) + G(d., V) < G(a,b) + G(d, b). (1)

The twist condition is inspired in the Aubry-Mather Theory [1, 11, 23-25]. It is
a quite natural concept in Classical Optimization and Transport Theory [6, 13, 15,
40, 45, 48, 53, 54] (see [37] for dynamical examples).

The twist condition is also described by the concept of global cyclically
monotonicity (see [53])

We point out that in Mather Theory in order to have the graph property (see
[11, 43]) for the minimal action measure it is necessary to assume that Lagrangian
is convex in the velocity. We need in our setting some technical assumptions to
replace this important property. We believe that the twist condition is the natural
one.

Definition 2 We say a continuous A : ¥ — R satisfies the twist condition, if its
involution kernel W satisfies the twist condition.
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The involution kernel of A is not unique (see [2]), but if the above property is true
for some W, then it will also be true for any other one.
Our final result is:

Theorem 3 Suppose the involution kernel W satisfies the twist condition on z,
then, the support of [lmax = [L on Yisa graph. Moreover, if d = 2, then there exists
at most one point in the support of I which has two points in the support of [L in its
vertical fiber. The o orbit of this point is a zero measure set.

There are examples where the existence of this exceptional point occurs and this
is associated to the concept of turning point (see [13, 37, 40]).

Similar results occur for the case of a general d. A similar definition can be
considered for an expanding transformation on [0, 1], and we are also able to get the
analogous graph property result. This also includes the case of T(x) = — 2x (mod
1).

We present in the Appendix at the end of the paper several examples (and
computations) where one can write the involution kernel W explicitly and the twist
condition is satisfied. First we will explain all the preliminaries we will need later.

Consider X a compact metric space. Given a continuous transformation f : X —
X, we denote by .#; the convex set of f-invariant Borel probability measures. As
usual, we consider in .#; the weak* topology. The standard model used in ergodic
optimization is the triple (X, f, .#;). Given a potential A € C%(X), we denote

m(A) = 323/){( /XA(x) dv(x). 2)

!

We are interested here in the characterization and main properties of A-
maximizing probabilities, that is, the probabilities belonging to the set

(et [ A6 due =m) ) 3

We will assume here that A is Holder.

In the following we will also assume that the maximizing probability ftecsa =
Moo 1S Unique.

Under reasonable hypothesis (expanding, hyperbolic, etc.) several results were
obtained related to this maximizing question, among them [2, 5, 7-9, 12, 14, 23,
24, 26-28, 35, 38, 46, 50, 52]. For maximization with constraints see [20, 39].
Questions related to the dynamics on the boundary of the fat attractor appear in
[37]. Naturally, if we change the maximizing notion for the minimizing one, the
analogous properties will also be true.

Our focus here will be mainly on symbolic dynamics and on expanding
transformations on S' or the interval [0, 1]. We recall some basic definitions (see
[5] or [12] for example).

Let o : ¥ — X be a subshift of finite type defined by a matrix C of 0 and 1,
where o (xg, X1, x2,..) = (x1,X2,X3,..). In this case we are considering X = ¥ =
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{1,2,3,.., d}lg and f = o. Remind that, for a fixed A € (0, 1), we consider for ¥
the metric d(x,X) = A, where x = (xo,X1,...),X = (X0, X1,...) € Y and k =
min{j : x; # X;}. In this situation, given a Holder potential A : {1,2,3, .., N - R,
one should be interested in A-maximizing probabilities for the triple (X, o, #;),
where the probabilities are consider over %, the o-algebra of Borel of X'. In order
to simplify the notation here we will consider the full Bernoulli space (all entries of
C are equal to 1).

Given an C'*® expanding transformation 7 of fixed degree on S' and A : S! —
R we will be interested in A- maximizing probabilities on (S VT, ), where the
probabilities are consider over 4, the o-algebra of Borel of S'.

One can consider the analogous setting for C'™* expanding transformations of
fixed degree over [0, 1].

Convex potentials A : [0, 1] — R and the transformation 7 : [0,1] — [0, 1],
given by T'(x) = 2x (mod 1), were considered in [29] where it was shown that the
maximizing probabilities in this case are Sturmian measures. For 7'(x) equal to — 2 x
(mod 1) however, the situation is completely different (see [31]).

Definition 3 A function u € C°(X) is a sub-action for the potential A if, for any
xe X =1{1,2,3,...,d}}, we have

u(x) < u(o(x)) —A(X) + Ba. 4)

Let (X'*, 0*) be the dual subshift.
In the case of the full Bernoulli space (all entries of C equal 1) then ¥* =

{1,2, 3, ..,d}N and a*(yo,yl,yz, .. ) = (yl,yg, .. )

We consider the space of the dynamics (X', &), the natural extension of (X, o),
as subset of X* x X, In fact, ify = (...,y1,y) € X* and x = (x¢,x1,...) € X,
then X will be the set of points

<y, x>=(...,y1.Yo0l%0,X1,...) € ¥* x X,

such that (yg,xo) is an allowed word (no restrictions when we consider the full
Bernoulli space). In this case

6(...,y1,y0|xo,x1,...) = (...,yl,yo,xo|x1,x2,...).

We point out that we use here the notation < y,x >= (x,y). For functions b :
¥ — R, we denote its value on < y,x > by b(x,y). We define the map 7 : > X
by t(x,y) = ty(X) = (0. X0, X1,...). Note that, if m, : Y > X isthe projection
in the x coordinate, then, 7,(x) = 7, 0 67! (x,y). We denote by m,(x,y) = y the
projection on the second coordinate. Note that 6! (x,y) = (z,(x), 0*(y)).

Definition 4 A continuous function V : ¥ — R is called calibrated subaction for
A, if

V(x) = max (V(2) + A(z) — m(A)).
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In other terms, V is a calibrated subaction if for any x € X, there exists z € X, such
that, 0(z) = x, and V(2) + A(z) —m(A) = V(x).

Note that for all z we have V(0 (z)) — V(z) — A(z) + m(A) > 0. We show bellow
some explicit expressions for calibrated subactions for a class of potentials A.

We point out that we will also consider here analogous results for an expanding
transformation 7 : ' — S! (or, T : [0,1] — [0, 1]) of class C'**, and a Holder
potential A : S' — R (or, A : [0, 1] — R) as in [12]. The case T(x) = — 2x (mod 1)
is one of the examples we have on mind.

In this case one could consider analogous problems in St x St or, St x ¥, if
one consider the symbols i which index the inverse branches t; of T [37, 40]. The
existence of involution kernel, L.D.P. properties, etc., are also true.

The calibrated sub-action is unique (up to an additive constant) if the maximizing
probability is unique (see [2, 12, 21]). We point out that we called strict in [2] what
we denote here by calibrated. We will use from now on the notation of [2].

Definition 5 Given A : ¥ — R Lipchitz potential, consider A*(y) (the dual
potential), where A : X* — R, and W(x,y) = Wa(x,y) its involution kernel.
This means, by definition that for all < y,x >= (x,y) € ¥

A*(y) = A(ty(0) + W(ry(x), 0" () — W(x, ). )
This expression can be also written in the form
AT (y) =AGET (0 y) + WET () = Wxy).

If A depends on just two coordinates we can take A* as the transpose of A.
Therefore, the above definition extends this concept in the case A depends on infinite
coordinates on the Bernoulli space. We say A is involutive if A = A*.

We address the question of regularity of the involution kernel W (is bi-Holder) in
the item (d) in the Appendix.

We denote by M the Bernoulli space or the unitary circle. Suppose 7T is an
expanding transformation on M (T can be the shift o or the transformation 7" defined
above).

For a Lipchitz potential A : M — R the pressure of A is the value

P(A) = sup  {h(p) + /Adu I8

4 invariant for T

where A(u) is the Kolmogorov entropy of the invariant probability .
The equilibrium state for A is the probability p which realizes the above
supremum.
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Given a Holder function A : M — R, by definition the Ruelle operator
%y C(M) — C(M) acts on continuous functions ¢ : M — R, in such way
that, Z4(¢) = ¢, where

p) = L@ ) = Y V).

T()=x

This operator (sometimes called transfer operator) helps to understand equilib-
rium states in Thermodynamic Formalism. This corresponds to the analysis of the
Statistical Mechanics of the one-dimensional lattice at positive temperature (see
[47]). Maximizing probabilities correspond to the limit of equilibrium states when
temperature goes to zero (ground states) as one can see for instance in [5].

When A is such that £, (1) = 1 we say that A is normalized.

The dual operator %, acts on the space of probabilities measures on M. Given a
probability u, then, ;" (u) = v where the probability measure v is the unique one
satisfying

[eaziw=[oa= [ z@an

for any continuous function ¢.

An important result claims that there exists a positive value A which is simulta-
neous an eigenvalue for £ and ;" (see [47]). This A is the spectral radius of .Z.
This defines a main eigenfunction for %, and a main eigenprobability for .Z;".

In [33] it is shown that the dual of the Ruelle operator .} is a contraction for
the 1-Wasserstein distance when A is normalized. The fixed point probability is the
main eigenprobability for £

We suppose that c is a normalization constant for W in the sense that

/ / NN s () dva(x) = 1, ©

where v4 and vq+ are respectively the eigen-probability for the dual Ruelle
operator of A and A* [12]. We also denote by ¢4 and = the corresponding eigen-
functions for .Z. Finally, uys = va¢a = and pax = vg= Pax are the invariant
probabilities which are the solutions of the respective pressure problems for A and
A*. For a fixed A we consider a real parameter 8, and the corresponding potentials
BA, and the eigenfunctions ¢g 4, and so on.

In Statistical Mechanics g is the inverse of temperature. In this way asymptotic
results when f — oo can be consider as the ones which describes the system in
equilibrium at temperature zero. Note that W is an involution kernel for SA, and
its dual is BA*.
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It is known (see for instance [12]) that a sub-action V can obtained as the limit
o1
V(x) = lim — log ¢ga(x). 7)
B—o00 ,3

This V is a calibrated sub-action for A (see [2, 12, 20]). We can also get a
calibrated sub-action V* for A* using the limit

1
Vi(y) = ﬁlirgo 3 log gpax (v) - ®)
From [2] (see also [42]) we have

bar(y) = / e "AD =y, (x),

Finally, we define for each x € X,

o0

Ix) =) [Voo—V—(A-mA)]o" (.

n=0

where V is a (any) calibrated sub-action.
The function 7, where I : ¥ — R U {oo}, can have infinite values, but it is lower
semi-continuous. In [2] it is shown that for any cylinder set C C X,

1
Jim 5108 p50(C) =~ inf 1)

In this way we get a Large Deviation principle for pga — phoo.

Remember that we denote by u%, the unique maximizing probability for A* (it
is upique because [t is unique for A, and, moreover, A and A* are cohomologous
in X).

All the results described above are true for expanding transformations 7 of class
C'"t* on the circle S'. In this case we have to consider the natural extension T of T.
This also includes the case of T'(x) = — 2x (mod 1).

In the case T : S! — S', given by T(x) = 2x (mod 1), we define T in the
following way: the Baker transformation associated to 7', denoted by f"(xl,xz),
where 7 : [0,1]> — [0,1]?, is such that satisfies for all (x;,x2) € [0, 1]%
T(x1, T*(x2)) = (T(x1).x2) (see picture bellow) . In this case 7* : S' — §!, with
T*(y) = 2y (mod 1), T plays the role of &, and T* plays the role of o*, on the
definitions and results above.

All the above apply for an expanding transformation T : ' — S', or T : [0, 1] —
[0, 1].

The transformation 7 on S! x S!. contract vertical fibers by forward iteration and
expand (and cut) vertical fibers by backward iteration.
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Characterization of S /_T*\
1 ~

RAemember that we saidAthat W: 3% =X x ¥ — R satisfies the twist condition
on X, if for any (a,b) € ¥ = ¥ x ¥ and (d/,b') € ¥ x ¥, withd' > a, b’ > b,
we have

W(a,b) +W(d',b') < W(a,b') + W(d,b). )

We have the analogous definition for expanding transformations on the interval:

Definition 6 We say W : [0, 1]> — R continuous satisfies the twist condition on
[0, 1]%, if for any (a, b) € [0, 1]> and (a’,b’) € [0, 1]?, with @’ > a, b’ > b, we have

W(a,b) + W(d',b') < W(a,b') + W(d', b). (10)

Same definition for W on S! x S!.

When x,y € [0, 1] (or, on S'), the condition
P’ wW
dx dy

<0,

implies the twist condition for W. The twist condition can be seen as a kind of
transversality condition (see [37])

Example 1 Consider the transformation 7' : S! — S!, given by T(x) = —2x (mod
1) and A(x) = a + bx + cx?, where a, b, c are constants and ¢ > 0. In item (b) in
the Appendix we show an explicit expression for the W-kernel and we prove that
W satisfies the twist condition. From this, we can get an explicit expression for the
calibrated subaction for a certain potential (see Remark 6 in the Appendix).

We point out that for considering the system above in S' we have to assume above
that A(0) = A(1). If we are interested in the case of [0, 1] the same result can be
obtained but we do not have to assume A(0) = A(1).

Moreover, we also show in item (c) in the Appendix that a certain class of analytic
perturbations of A(x) = a + bx + cx? produces W-kernels which are twist.

Example 2 In item (b) in the Appendix we show an example of a W-kernel for
a continuous potential A, and for the action of the shift o on the Bernoulli space
{0, 1}, which is twist.
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Example 3 Consider the Gauss map 7'(x) = % - [)—1(] on [0, 1].
We can define the Baker transformation associated to 7, denoted by f‘(xl,xz),

where 7 : [0,1]> — [0, 1]%. The involution kernel W for A(x;) = —log T’ (x;) is
W(x1,x2) = —2 log(1 + x;1x2) (see [2]).

It is known that the dual of A = —log T’ is A* = —log T’ (see Proposition 4 in
(2D.

The maximizing probability for such potential —log 7"(x) = 2log(x) is the §-
Dirac in the fixed point b, where b is the golden mean b = @ (see for instance
[14]). In this case m(A) = 21og(b).

Note that W is differentiable on any point (x1,x,) € [0, 1].

One can easily see that an explicit calibrated sub-action # (unique up to an
additive constant because the maximizing probability is unique [20]) satisfying

u(x) < u(T(x)) —A(x) + m(A), (11
is u(x) = W(x,b) = -2 log(1 + xb).
Note that
3w
dx dy <0,

and, therefore, W is twist.

Example 4 Suppose T(x) = —2x(mod 1),7 : [0,1] — [0,1] and A : [0,1] - R
is Holder and monotonous. Under some assumptions on A one can get cases where
the maximizing probability is unique and with support on the right fixed point p (see
[31]). In the same way as in last example one can show that V(x) = W(x,p) is a
calibrated subaction.

If one considers on the interval [0, 1] the potential A(x) = x? is under such
assumptions. One can show that A*(y) = )%, and W(x,y) = (1/3)(x* + y?) —

(4/3)xy (see Remark 6 in item (b) in the Appendix). In the same way PWey) .

dx dy
Example 5 Consider the transformation 7 : S! — S!, given by T(x) = —2x (mod
1)and A(x) = —(x — %)2 (a continuous potential on S') for which all results in

[2] apply (see also [37] where it is shown in this case the graph property). The
maximizing probability has support in the periodic orbit of period 2 (see [29, 30]).
One can define the continuous Baker transformation associated to 7', denoted by
f(xl,xz), where 7 : [0, 11> — [0, 1]? is such that satisfies for all (x1,x,) € [0, 1]?,
T(x1,T(x2)) = (T(x1),x2).
In this case, we show in Remark 6 in the Appendix that a smooth W-kernel is:

Wx,y) = —(1/3)2 = (1/3)y* + (4/3)xy — (2/3)x — (1/3)y.

The dual potential A* is equal to A.
This W-kernel is not twist because 32%%” > 0.
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It follows from a general result presented in [31] that any maximizing measure
for this potential is ftoo = (1 —#)81/3 + 18573, where ¢ € [0, 1], so the critical value
ism=A(1/3) =A(2/3).

It is easy to verify that,

V(x) = W(x. 1/3) = W(1/3.1/3) x10.1/2)) + W(x.2/3) = W(2/3.2/3) xpi /2.1 (%)

= max{W(x, 1/3) — W(1/3,1/3), W(x,2/3) — W(2/3,2/3)}

is a calibrated subaction for A.

W(x, 1/3)—=W(1/3,1/3)=red,
W(x,2/3) — W(2/3,2/3) =
blue and ¢p=black—The cali-
brated subaction is the supre- ]
mum of the two functions -0,05-
described in the picture 1

-0,10-

-0,151

-0,204

[ Curve 1 Curve 2 Curve 3|

This calibrated subaction is not analytic but piecewise analytic (see [40] for more
general results).

Example 6 Consider the transformation 7' : S' — S', given by T(x) = —2x (mod
1) and A(x) = (x — 1) (a continuous potential on S") for which all results in [2]

apply.
In this case we show in item (b) in the Appendix that a smooth W-kernel is:

W(x,y) = (1/3)x + (1/3)y* — (4/3)xy + (2/3)x + (1/3)y,

the dual potential A* is equal to A and this involution kernel W is twist.

Similar results can be obtained for 7 : S' — S!, given by T(x) = 2x (mod 1)
and A(x) = —(x — %)2 (a continuous potential on S')
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Definition7 Given G : ¥ — R upper semi-continuous, and f(x) continuous,
where f : ¥ — R, we define the G-transform of f, denoted by f*(y), where
f*: X* - R, the function such that

F10) = max {~/(x) + Glx. )} (12)

We can use also the notation fg, instead of f*, if we want to stress the dependence
on G.

In this case we say that f* is the G-conjugate of f [53, 54]. We use the notation
of [49, p. 268]. Note that, if we add a constant to f, then new f* will be obtained
from the old one by subtracting the same constant. Therefore, in this case the sum
f(x) + f*(y) will be the same. We are interested, for example, when G = —W or
G = —W 4 I. A similar definition and properties can be consider for expanding
transformations on [0, 1].

Proposition 1 IfV is a subaction for A, then V¥ = Vé{, is a subaction for A*.

Proof Given y there exist z° such that

Vi o™ (y) — V¥(y) = max {(=V(x) + Wx,o"(y)}—
rzrgg{—‘/(Z) + W(z,y)} =
I;lefgi{—V(X) + W, 0" ()} — (=V(z0) + W(z0.y)) >
—V(ty(20)) + W(ty(20),0*(») + V(z0) — W(z0,y) >
A(1y(20)) — m(A) + W(ty(20). 0% () — W(z0,y) =
A*(y) —m(A) = A*(y) —m(A¥).

The subaction you get by —W-transform is not necessarily calibrated.

Note that if we add a constant to W (the new W will be also a W-Kernel), then
all of the above will be also true.

In a similar way like in the reasoning of last proposition one can get:

Proposition 2 If V* is a sub-action for A*, then
(VY () = max {=V*(2) + W(x.2)}
Z€EX*
is a subaction for A.

Analogous definitions can be consider for an expanding transformation 7' : §' —
S'. This also includes the case of T'(x) = — 2x (mod 1).
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2 The Transport Problem

We assume that the maximizing probability (e, for A is unique. We denote by
W15, a fixed maximizing probability for A*. We denote by % (ftoo. i15,) the set of
probabilities 7(x, y) on X, such that

(7)) = Moo and ) (7) = p, .

We are going to consider bellow the cost function c(x,y) = I(x) — W(x,y) + ¥,
which is defined for x such that 7(x) # oco.

The Kantorovich Transport Problem Given A (and all the probabilities
described above) we are interested in the minimization problem

Clpomriz) = int [ [0~ wen) + vy di =
NE€A (loo-Ioo)
inf //c(x,y)dﬁz
NEA (Hoot0)
_omax //(W(x,y)—y—l(x))dﬁ (13)
NEA (Hoosltoo)

where, I is the deviation function for oo = limg 00 ftga (see [2]),

cp = / / PO quga(x) dvgax (), (14)
and
. 1
y = ,31520 ElogCﬂ , (15)

as in proposition 5 in [2]. We call ¢(x,y) = —W(x,y) + y + I(x) the cost function.
Therefore, ¢ is lower semi-continuous. A probability 7 on Y which attains such
minimum is called an optimal transport probability. We denote it by . We will
show later that {i,,,, the natural extension of pteo, Will be the optimal transport
probability .

One of our main results is Theorem 5 which claims that: The support of i,y is ¢-
cyclically monotone. In other words, the twist condition for c¢ is true when restricted
to the support of the maximizing probability ax.

Remark 1 Note that if we subtract the deviation function /(x) of the cost function,
that is, if we consider a new cost c(x,y) = —W(x,y) + y, the problem above will
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not change, because [ is constant zero in the support of (L. In other words

Cluoo p%) = inf / / (—W(xy) + ) d.

HE€H (Joo:130)

and, the optimal transport probability will be the same. In some sense this setting is
nicer because the cost c is a continuous function on X'

Definition 8 A pair of functions f(x) and f*(y) will be called c-admissible (or, just
admissible for short) if

F1O) = min {=f(x) + ()} (16)

In other words —f* is the —c-conjugate of —f. Note that in this case, Vx € X, y €
X*, we have that f(x) + f*(y) < c(x,y). We denote by .% the set of all admissible

pairs (f(x). /*(7)).

The Kantorovich Dual Problem Given A and the corresponding ¢ (W and all
the probabilities described above) we are interested in the maximization problem

Dljtoor %) = max ([ fiioa + [ i) a7
(fHesF

A pair of admissible (f,f*) € .# which attains the maximum value will be called
an optimal pair.

The Kantorovich duality theorem (see [53]) claims that under general conditions
D(fhoo, %) = C(foo, 15,). The main tool to prove this result is the Fenchel-
Rockafellar duality Theorem.

Theorem 4 (Fenchel-Rockafellar Duality) Suppose E is a normed vector space,
® and E two convex functions defined on E taking values in RU {+00}. Denote ©*
and E*, respectively, the Legendre-Fenchel transform of ® and E. Suppose there
exists vy € E, such that ©(vy) < 400, E(vg) < +00 and that © is continuous on
Vo.

Then,

inf[@(v) + £(v)] = max[-O* (—f) — E*(f)] (18)
VEE fEE*

We will not present the proof of this general theorem but we will present a nice
geometric proof in a simple case (one-dimensional) in item (e) in the Appendix. We
suppose, from now on, that the maximizing probability for A, denoted by p is
unique. We denote, as in [12] the calibrated sub-actions V and V* by

1 . 1
V09 = Jim 2 loggps() and V() = lim 5 log () (19)
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The above convergence is uniform and V is (up to constant) the unique calibrated
sub-action for A (see [2, 12, 20]). We will show later that (f,f*) such that f(x) =
—V(x) and f#(y) = —V*(y) is the optimal pair.

Important Property If /i is an optimal transport probability and if (f,f*) is an
optimal pair in .%, then the support of [ is contained in the set

{<y,x> € X |suchthat (f(x) + f*(y)) = c(x,y)}. (20)

It follows from the prime and dual linear programming problem formulation. The
condition above is the complementary slackness condition (see [17, 19, 48]).

The reciprocal of this result is also true (see [54, Remark 5.13, p. 59]).

If x and y are such that (f(x) +f%(y)) = c(x,y) we say that they are realizers for
the cost c¢. In [13] it is shown that the set of realizers for / — W is an invariant set
for the dynamics of 6. In this section we are mainly concerned with the support and
not with all realizers.

If one finds i an admissible pair (f,f*) satisfying the above claim (for the
support), then, one solves the Kantorovich problem, that is, one finds the optimal
transport probability /i .

No we will prove Theorem 1.

Proposition 3 The minimizing Kantorovich probability i on X associated to —W
is ,amax-

Proof Proposition 10 (1) in [2] claims that if fi,,., is the natural extension of the
maximizing probability [teo, then for all < p*|p > in the support of [, We have

V) = Ve = -Wp.p") + 7.

This is the same as saying that in the support of [Lqy

V) = VP = -Wp.p") + v + 1(p) = cp.p").

because [ is zero in the support of fteo. Then if —V(x) and —V*(y) is an admissible
pair, then fi,,4; is the optimal transport probability for such c(x,y). This will be
shown in the next proposition. We will show bellow that the —c-transform of V
is V*.

Note that if W is a W-Kernel for A, for all 8, we have that BW is a W-Kernel for
BA. We denote by cg the normalizing constant for SW, as in [2]. It is known that

%log cg =Y.
Now we will show Theorem 2.

Proposition 4 The pair (—V, —V*) is admissible.

Proof For a fixed y we have to show that

—V*0) = (V) = inf {=(=V(9) + c(x.))}.
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This is the same as

Vi) = sup{ (=V(x)) —c(x,y) } = Sélzp{—V(X) —(r =Wexy) +1(x))} .

xex
or, for all x
—V*y) < VE) +clx,y). (1)

From Proposition 3 in [2] (we just write here W(x,y), instead of W(y, x) there)
we have

bpas O) = /eﬁ Wa (x.y)—cp duﬁA(x) — /eﬁ Wa (x.y)—cp—log ¢pa (x) dﬂﬁA(x)-

$pa(x)

Consider now the limit
* . 1
V() = lim — log(dpa=(y)) =
B—o00 ,3

1 :
lim E log/eﬁWA(m)—Cﬁ—logtﬁ/sA(X) dHﬁA(X)-

B—o00

From [12] the function % log(¢pa(x)) converges uniformly with 8 to V(x).
Therefore, one can write

1 N
,3151010 E 10g/ P Walxy)—cp—log ¢pa(x) d,uﬂA(x) —

1
lim 2 log / o WD)V g ()

B—o00

Now, by Varadhan’s Integral Lemma [16] we obtain
VEY) =sup{Wa(x.y) —y = V(x) = I(0)} = sup{=V(x) + W(x.y) —y —1(x)},

where [ is the deviation function.

Finally, we get that [i,,,, is the optimal transport probability for such c(x, y).
From now on we will use either the notation i or fi,;,; for the optimal transport
probability. In [40] Transport Theory is used as a tool to show that in some cases
the calibrated subaction is piecewise analytic. In [13] some generic properties of
the potential A is considered and special results about the realizers of the W — I are
obtained.

The last theorem says: for any y € X* we have

Vi) = SUIE){—V(X) —c(x. )} (22)
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Note that when y = p*, for p* in the support of p%,, the supremum
VE(p*) =sup{—V(x) + W(x.p*) —y —I(x)} = sup{—V(x) — c(x,p")}.

is realized at x = p, for p in the support of jto (With < p*, p > in the support of ).

Remark 2 Remember that, if the maximizing probability for A* is unique, then
there is a unique calibrated sub-action for A* (up to additive constant) [2, 20].

Analogous definitions and properties can be obtained for 7 : §' — S'. This also
includes the case of T(x) = — 2x (mod 1). We could likewise consider the analogous
problem for A*: given A* (obtained from A) fixed, denote I* : ¥* — R, the non-
negative deviation function for g4+ — uz . Denote c*(x,y) = (I*(y) — W(x,y) +

).
Then, consider the problem

Clioo p%) = inf //(1*@>—W<x,y)+y>dﬁ=

NEA (too o)

inf  c*(ry)di) = inf //(—W(x,y)+y)dﬁ,

NEA (Joo o) NEA (too-HEs)

which have the same minimizing measures, as for the minimization for c(x,y) =
(I(x) — W(x,y) + y) among probabilities on % (Uoo, Uis)-
Note also that from Proposition 3 in [2] we have

¢,3A(X) — /eﬂWA(x,y)—cﬁ e () =

dpar(y)

/ o WA —es—logdpas ) g (y).
In the same way as before one can show that for any x € X', we have

Vix) = (-V4 = sup {(=V*(y) — c*(x.)}. (23)
yex*

Note that ¢(x,y) = ¢*(x,y) in the support of the minimizing ., for ¢ (or for
).

Remark 3 Tt is not necessarily true that ((—V*)*,)*, = —V*. However, the
expression is true when restricted to the support of the optimal transport probability
fimax- In the same way ((—=V)*)# = —V in the support of gy
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3 Graph Properties and the Twist Condition

Consider a lower semi-continuous cost function c(x, y) on x (or, a continuous cost
function —W(x,y) on X'). We refer the reader to [48, 53, 54] and [19] for general
references on optimal mass transportation problems.

Definition 9 A set S C ¥ is called c-cyclically monotone, if for any finite number

of points (x;,y;) in S, j € {1,2,...,n}, and any permutation o of the n letters, we
have
Zc(xj,yj) < Zc(xa(j),yj). (24)
j=1 j=1

Proposition 5 (See Theorem 2.3 [19]) For a continuous function c(x,y) = 0,
where X, if p € K (oo, L5, is optimal for ¢, then, p has a c-cyclically monotone
SUpport.

Corollary 1 The support of [una, the natural extension of [ieo is c-cyclically
monotone.

We will present bellow in the next theorem a direct proof of this fact.

Definition 10 A function f : ¥ — R U {oo} is c-concave, if there exist a set
A C ¥ x R such that

JO) = sup {c(x.y) + 1}

(x,A)EA

Definition 11 A function f : X — R U {00} is c-convex, if (—f) is c-concave.

Definition 12 Given x € X, the set éc f(x) is the set of y € ¥ such that, for all
z € X we have

f@) —f(x) <c(zy) —clx,y)

In this case we say y is a c-sub-derivative for f in x.

An important problem is to know, for a certain given x, if the éc f(x) has
cardinality 1.

Proposition 6 (Sge Theorem 2.7 in [19], Lemma 2.1 in [49] and Section 4 in
[48]) For S C X 1o be c-cyclically monotone, it is necessary and sufficient that

S Co:(f)x) = {(x,y) |f(2) —f(x) < c(z,y)—c(x,y), Yz € X}, for some c concave
f, where f : ¥ — R U {oo}.
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Moreover: f is defined in the following way: choose (xo, yo) € S, then

= inf »¥Yn) — ns Vn
f(x) vert o e [(cCx,yn) — c(xn, yn) )+

(c(xns yn—1) — c(n—1,yn—1) ) + ...
+(clx2,y1) = c(x1,y1)) + (e(x1,y0) — c(x0,0)) |-
Note that if S C X is a graph, then for each x € X' in the x-projection of S, we

have that éc(f) (x) has cardinality 1. Consider fixed (xo, yo), (x1,y1) in the support of
max and (xg, y1), (x1,¥0) € X. Given a function f(x, y) we denote

Ar ((x0,y1), (x1,50)) = (f (0. y0) +f(x1.y1)) — (f (x0. y1) +f(x1.30)),  (25)

and
b(x,y) = I(x) +y — W(x,y) + V(x) + V*(y). (26)

The c-cyclically monotone condition for the support of fi,,4, Will follow from the
claim

Ac ((x0,y1)5 (x1,50)) = (cx0,y0) + c(x1,y1)) — (c(x0,y1) + c(x1,y0) ) < 0.
(27)

This is so because any permutation of letters can be obtained by a series of
composition of transformations that exchange just two letters. It will follow from
the proof bellow that A, o0 = A,.

The next result does not assume a global assumption on twist condition for c.

Theorem 5 Given A : X — R Holder, then ¢(x,y) = I(x) — W(x,y) +y >0,
for all (x,y) € X. Moreover, for (xo,Yo), (x1,y1) in the support of Lyax, we have
A, < 0. Therefore, the support of [l is c-cyclically monotone. In other words,
the twist condition for c (or, for W) is true when restricted to the support of the
maximizing probability [lnax.

Proof First we point out that A, = A;,. We will show that under our hypothesis is
true that A, < 0. First note that

[V¥o6 ' —V*—A*]6(x,y) =[V*—V*06—A—W+ Woéb](x,y) =
[y + V(@) + V) =W y)] + [Vob —V — Al(x,y) —
[y+Vod+V 0od—Wod](x,y).

Remember (see [2]) that

I(x) =Y [V oo—V-A5"(x.y)

n=0
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We denote
n—1
I(x.y) = Y[V oo =V =A] o 8 (x.y) = ().
k=0
and

R, (x,y) = Li(x,y) + [y + V() + V() = W(x.y) |-
[y +V+V*—W]6" (x,y).

We claim that if (x,y) is in the support of ., then b(x,y) = 0. Moreover,
for all (x,y) € X, we have b(x,y) > 0. One can prove this result by means of
Varadhan’s Integral Lemma [16] with the same reasoning as in the last proposition
of the previous section. We will give bellow a direct proof of the claim.

Either /(x) = oo, and the claim is trivially true or /(x) is finite. In this case, any
accumulation point of 6" (x, y) will be in the support of [y

Moreover, b(x,y) = R(x,y) = lim,— 00 R,(x,y) > 0. As in the support of fLu.y,
we have that R(x, y) = 0, then, b(x,y) = 0. In any case R(x,y) > 0. This shows the
claim. We point out that A, = A, = Ay in the case I(x) is finite.

We also remark that if (xo, yo) is in support of fiax, then as R(xo, yo) is zero, it
follows that R(xo, y) is finite. This is so because (xg, y) is in the stable manifold of

(X() s y()) and

R, (x0,y) — Ru(x0,y0) =
D AV o6 = VF = A%16  (xo.y) — [VF 0 67" = V* — A%]6* (x0.y0) }-
k=1

Finally, if (xo, yo) and (x, y;) are both in the support of fiqy, then R(xg, y1) <
00, R(x1,y0) < oo and I(xg) = 0 = I(x;). In this case, for any (x,y) of the form

(x0, y0), (x1,y1). (x1, y0), or (X0, ¥1)
R(x.y) =1(x.y) + [y + V + V" = W](x.y) = b(x.y).
As we know that R is non-negative, then
[b(x0,y0) + b(x1,y1)] = [b(x1,y0) + b(x0,y1)] = 0 — [b(x1,y0) + b(x0,y1)] < 0.

This shows that A, < 0.
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We did not use the twist condition above. Note that we could alternatively
consider the function g : ¥ — R defined in the following way: choose (xo, yo) € S,
then

g = inf [(WCx,yn) = W, ya) )+

ne€N, (x;,y;) €S, 1<j<n
(W(Xn, yn—l) - W(xn—layn—l)) + ...
+(W(x2,y1) = W(xr,y1)) + (W(x1, y0) — W(xo, ¥0) ) ],

which has the advantage of just taking into account a continuous function W. The
graph property for S = support of [, and all kinds of different considerations can be
obtained from such g. We want to show now that if W satisfies the twist condition
and the maximizing probability for A is unique, then the support of i on Yisa
graph. Our proof works for the Venously space {0, 1,2, .., d}" as well for the interval
[0, 1] [considering T either conjugated to 2x (mod 1) or to —2x (mod 1)].

Consider the cost c(x,y) = I(x)—W(x,y)—y, and asubset S C X xY c-cyclically
monotone.

Lemma 1 Suppose the c satisfies the twist condition and let S be a c-cyclically
monotone subset, if (a,b),(d',b') € Sanda # da and b # V', then a < d' and
b>b,ora>d andb < b'.

Proof Indeed, suppose a < @’ then, if b < b/, the twist condition on W implies that
c(a,b) +c(d,b) > c(a,b) + c(d,b).

On the other hand, S is c-cyclically monotone subset, so
c(a,b) + c(d,b) <cla,b) +cd,b),

that is an absurd.

A similar property is true for W. This Lemma means that the correct figure
associated to a pair of points in § is given by:

We point out that, in principle, could exist points z of S in the vertical fiber
passing by a or in the horizontal fiber passing by b.

Now we will show Theorem 3.

Theorem 6 (Graph Theorem) Suppose the involution kernel W satisfies the twist
condition and let [i be the c-minimizing measure of probability to the transport
problem, then S = supp [i is a graph in x (up to an orbit of measure zero), moreover
this graph is monotone not increasing.

Proof In fact we will just use the twist condition for W on the support of the optimal
transport probability. In order to get advantage of the geometrical and combinatorial
arguments we will present pictures for the case of a transformation 7' : [0,1] —
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Forbidden zone
associated to (a,b)

. Forbidden zone
:associated to (a,b) '

Characterization of §
Characterization of S

[0, 1], given by T'(x) = 2 x (mod 1). Define v (x) = max{y|(x,y) € S}and v~ (x) =
min{y|(x,y) € S}. In order to prove that supp [ is a graph we need to prove that
v~ (x) = vT(x) for any x in the support of . We say that a point (x,y) in the
support of ji is non-graph, if there exist another point of the form (x,z), in the
support of i, and such that z # y. Note that the image of two points in the support
of i on the fiber over x will go on two different points in the support of i on the
fiber over o (x). That is, the forward image by 6" of non-graph points will go on
non-graph points. This maybe can not be true for backward images by 6”.

Suppose the support of the maximizing probability (o, (unique) is a periodic
orbit. If S is not a graph, then v~ (x) < vt (x) for some x. As the transformation
G contracts each fiber by forward iteration, we have that, the image of the interval
fiber from (x,v™(x)) to (x,vT(x)), by a finite iterate of &, goes inside the fiber
(x,v7(x)) to (x,vT (x)). Therefore, 0* has a periodic point in the support of u%..
If the maximizing probability jio is unique for A, then p%, is unique for the
maximization problem for A*. In this case the support of p is this periodic orbit.
Therefore, there is a minimal distance (in vertical fiber) between non-graph points
and this is in contradiction with the contraction on vertical fibers. The conclusion is
that S is a graph if the support of the maximizing probability [t is a periodic orbit.

alopes@mat.ufrgs.br



The Dual Potential, the Involution Kernel and Transport in Ergodic Optimization 379

Remark 4 In the case of the shift, if suppjteo is a periodic orbit, one can easily show
that if suppitec = the orbitby o of (ag, ai, ..., au—1.ao,...) then suppu’, =
orbit by o* of (Cl(n_l), ..., an, a1, a0, A(n—1), - - )

Support of /i in the periodic Y

case A /

a O

a a(a) ;(

Support of f1 in the periodic case.

We suppose from now on that the support of the maximizing probability pteo is
not a periodic orbit.

Characterization of S Y A

Forbidden Zone

Characterization of §

Suppose, that v~ (x) < v (x) for some x, then we claim that there is no other
point in support of /i in the fiber by x between p; = v~ (x) and p» = v (x). Indeed,
from the above picture we see that if there exists a point (x, p) in the support of
such that v~ (x) = p; < p < p» = v (x), then, as {1 is ergodic, should exist a point
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(g1, g2) in a small neighborhood V of (x, p) such that returns by a forward n-iterate
by o to V.

This iterate has to return to the fiber, and this contradicts the fact that the support
of the maximizing probability [« iS not a periodic orbit.

If the support of it is not a periodic orbit, then we claim that does not exist two
pairs (x1,y1), (x1,z1) and (x2,y2), (x2, 22), in the support of {, such that, the orbits
by o of x; and x;, are different.

In order to simplify the argument and the notation we consider bellow 7*(x) =
2x (mod 1), but we point out the reasoning apply to any expanding transformation of
degree d. Given y, and z,, n = 1, 2, there exists a rational point of the form s,, = %,
with 0 < g < 2k, g,k € N, such that y, < s, < z,, n = 1,2. Consider the s,
determined by the smallest possible value k.

The pair of points f‘_’(xn, yn) and T (X2, zn), ¥ = 0, determine non-graph points
in the same fiber, for any r > 0, until time » = k. In time r = k—1, it happens for the
first time that the horizontal fiber through 1/2 cuts the vertical segment connecting
f”_(k_l)(xn, yn) and f‘_(k_l)(xn, Zn).

In this way, for each n, we get a horizontal forbidden region A, (a horizontal strip
from one vertical side to the other vertical side of [0, 1] x [0, 1]) determined by such
pair Tk_l(xn, y,) and f‘_(k_l)(xn, zn), n = 1,2, which contains the horizontal fiber
through 1/2.

If we apply the argument for n = 1, then the next forbidden region A, for n = 2
will contain the previous one A;. Moreover, considering the full forbidden region
determined by these two pair of points we reach a contradiction.

In the picture bellow we show the final pair of points ¢; and ¢, in a 6-orbit (in
the same vertical fiber) which has the property that its images p; and p, are on
different sides of the upper and down rectangles. The images of p; and p, by &
are not anymore in the same vertical fiber (neither their future iterates). There is
no room for getting a different pair of p; and p, like this (because of the forbidden
region).

In this way, from above, we get that could exist just one orbit of x by o such
that over the fiber over x there is two points in the support. That is, the projection
K C X on the x-axis of the non-graph points have to be the orbit of a single point x.
Therefore, /1o (K) = > foo ({05 (x)}).

We assume first that the set of non-graph points have probability 1 and we will
reach a contradiction. Indeed, ftoo ({0%(x)}) > oo ({07 (x)}), for k > j, and the ftoo
probability of the set {x} is zero or is positive.

Remember that the support of /i is invariant by 6. Now we will show that, indeed,
if there exists non-graph points, this set has probability 1.

Note that if the vertical fiber by x € X is such that v™(x) < vT(x), then o'(x) also
has this property. If the transformation & we consider preserves orientation in the
vertical fiber then the iterates are in the same order. Otherwise they exchange order.
That is, the set of points (x,y) which are not graph point are invariant by forward
iteration by 6. Moreover, ¢ is a forward contraction in vertical fibers. Denote by
B = {(x,v"(x))} in the support of i such that {v™(x) < vT(x)}. The set B is the
upper part of the non-graph part of the set S.
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The dynamics on the support

The dynamics on the support

We will show that L(B) = 0 or 1(B) = 1. We suppose first that 6 preserves
order in the fiber by forward iteration. Consider B the set { (x, y)} in the support of
[t such that for some n > 0 we have {6" (x,y) € B}. Note that as B is forward
invariant, once 6" (x, y) € B, for some fixed n, then 6™ (x,y) € B, for any m > n.

We will show that 67'B = B. The fact that 6~'B C B follows easily from
the definition of B. Given x € B, there exists n > 0 such that 5" (x,y) € B. If
n > 1, then 6" ' (6(x,y)) € B and, therefore, (x,y) € 6~'B. In the other case
(x,y) € B, but then (6(x,y)) € B, because ¢ preserves order in the fiber, and
does not exist more than two points in the vertical fiber over o(x) which are in
S. Therefore, (x,y) € 6~'B.

As /1 is ergodic, then f1(B) = 0 or /i(B) = 1.

If (B) = 1, then take a Birkhoff point z € B for the ergodic probability /.
Therefore, we get that the asymptotic frequency of visit to the set C = { (x, v~ (x))}
in the support of /i such that {v™(x) < v*(x)} (the bellow part of the non-graph
part of set S) is zero. Finally, we get that f1(C) = 0. In the same way 1(B) = 1.

If 1(B) = 0, we get that t(B) = 0. Now, using a similar argument for the lower
part of the non-graph part we get that i(C) = 1.

This shows that the 7| projection of the non-graph points has probability one and
this proves the theorem.

The above reasoning also applies to T'(x) = —2x (mod 1) and to the shift in the
Bernoulli space.

alopes@mat.ufrgs.br



382 A.O. Lopes et al.
4 Selection of Minimizing Sequences

In this section we want to exhibit a nice expression for the function f (defined before)
such that, the set {(x, éc f (X)) |x € } support {{too} = support of [l in the case
the support of fi,qy is a periodic orbit. In the end of the section we address briefly
the general case.

Definition 13 We say that ¢ : Y=YxXY¥ >R, upper semicontinuous, satisfies
the twist conditiqn on ¥, if (bellow we just consider values of ¢ which are finite)
forany (a,b) € ¥ = ¥ x ¥ and (d/, V') € ¥ x X, withd' > a, b’ > b, we have

c(a,b) +c(d,b) > cla,b) + c(d,b). (28)

If W is twist and c(x,y) = I(x) — W(x,y) + y, then c is twist. We assume from
now on this property.

Theorem 7 Suppose the support of [y is a periodic orbit. Choose (xy, yo) in such
way that xo € X' is the smaller point in the projection and y, € 3 the smaller on the
fiber over xo. From the above, in this case for any given z € X, the f defined before
is such that

J@) = [(c@ yn) = c(xn, yn) )+
(@ yn—1) — c(Xn—1,Yn—1)) + ...
+.oo (e, y2) —clxa,y2) ) } +
(c(x2,y1) = c(x1,y1)) + (e(x1,y0) — ¢(x0,y0) ) 1.

where we use all the possible x; which are in the support of the maximizing
probability for A on the left of z, and for each x; we choose the corresponding
vi. In the notation of f above, the last one (x,,y,) = (x,(2),yu(2)) is such that
(%:(2), v (2)) = (=1, Yk—1). Which means n = k — 1.

Moreover, xg < x1 < X3 < ... < Xy.

If z = xy for some element x; in the support of Wa, then, in the notation of f
above, if x—1 < z < Xi, then (xy, yn) = (Xu(2), yu(2)) is such that (x,(xc), yu(xx)) =
(xk—1, Yk—1). The case z = x, is include in the expression above for f. In this case
Xr = Xu41 following the above notation. The index of the x; has no dynamical
meaning.

Proof Consider the cost ¢(x,y) = I(x) — W(x,y) —y, and a subset S C X X Y c-
cyclically monotone. Also, assume that ¢ verifies the twist condition: If @ < &’ and
b < b then c(a,b) + c(d’,b’) > c(a,b’) + c(d, b).

In this way, the definition of ¢ implies that: W(a, b) + W(d',b') < W(a,b') +
W(d,b).

Define A(x,x',y) = W(x,y) — W(x',y), so the twist condition can be restated as:
ifa<d,andb < b/, then, A(a,d’,b) < A(a,d’,b").
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Therefore, if we define the map y — A(a,d’,y) we get a increasing map.
Observe that:

(1) A(-xvx/sy) = _A(x/sxsy)
() A(x,x,y) =0
(i) A(x,x',y) + AW, X", y) = Ax,x",y)

In particular the map, y — A(d’, a, y) is decreasing if a’ > a.
Using the fact that c(x,y) = I(x) — W(x,y) — y we get,

Aef(x) ={y € Y|[f(2) —f(x) = I(z) —I(x) = [W(z.y) — W(x.y)]. Vz € X].

We know that S is c-cyclically monotone, if and only if, S C écf (x0) where f is a
c-convex function given by:

n

f@) = L, ; c(Xit1,yi) — c(xi, yi),
where (xo, o) € Sis as fixed point and x,4+; = z. Using c(x,y) = I(x) —W(x,y)—y
we get,

f@) = minyycsimtn Y 1(xir1) = 106) = [Wxig1,y0) — Wxi, )] =
i=0

= MiN(x; y)CS.i=1.n ZI(XiH) —1(x) + [A(xi, X1, ¥)] =
i=0

= ming, yycs.i=1..1(2) —1(xo) + Z A(xi, Xig1, Vi)
i=0

Lemma 2 If, (x;,y;)) CS,i =0,1,2issuchthatxy < x; <x; < zandy; < y; < yo
then, A(xg, x1,Y0)+A(x1,2,y1) > A(xo, X1, Y0) +A(x1, %2, ¥1) + A(x2, 2, ¥2) (Figs. 1
and 2).

Proof Observe that, A(x1,z,y1) = A(x1,x2,y1) + A(x2,z,y1) > A(xg, x2,y1) +
A(x2,z,y2), because A(xz, z, -) is increasing and y; > y,.

Lemma 3 If, (x;,y;)) C S,i =0,1,2issuchthatxy < x; <z <xpandy; < y; < yo
then, A(xo, x1,y0) + A(x1,2,y1) < A(x0,x1,Y0) + A(x1,X2,y1) + A(x2,2,¥2).

In particular, A(xo, x1,y0) + A(x1,2,y1) < A(xo,x2,¥0) + Alx2,2,¥2) (Figs. 3
and 4).

Proof Observe that, A(x1,z,y1) = A(x1,x2,y1) + A(x2,z,y1) < A(x1,x2,y1) +
A(xz,7,y2), because A(xy, z, -) is decreasing and y; > y;.
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Fig. 1 Bad Y
A
YO (o ]
Y1 o
X0 X1 z X
Fig. 2 Good
A Y
YO (o ]
Y1 o
Y2
X0 X1 z X
Fig. 3 Bad ? Y
YO (o]
Y1 | o
Y2 .
X0 X1 X2 > x
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Fig. 4 Good Y
A

YO o

Y1 | o

\ 4

X0 X1 7 X

Now observe that,
A(xo, X2, ¥0) + A(x2,2,¥2) = A(xo,x1,Y0) + A(x1,x2,¥0) + A(x2,2,¥2) >
A(xo, x1,¥0) + Alx1, x2,y1) + A(x2,2,¥2) > A(xo, X1, ¥0) + A(x1, 2, 1).

Now one can generalize the idea above: Suppose that, (x;,y;)) C S,i =
0,1,2,...,nissuch that xp < x;] < ... < X% < Z < X41 < ... < X, and
Yo < ... <y <y <Y, then, A(xg,x1,¥0) + A(x1,x2,y1) + ... + Ak, 2, 1) <
A(xo, x1,y0) + Alx1,x2,¥1) + ... + A(Xn, 2, Yn).

In order to see this, we proceed by induction in the right side of the inequality
above:

AQn—1,Xn, Yn—1) + A, 2,90) > AQa—1, X0, Yu—1) + AQGn, 2,y0-1) =
A(Xp—1,2, Yn—1)-

In this step we discard the pair (x,,y,). We must to repeat this process while
n —j > k, discarding all points in the right side of z. So the conclusion is, that we
can discard all points in the right side of z decreasing the sum, and we can introduce
a point between the last point in the left size of z, and z, decreasing the sum.

We discard (x2,2), (x3,¥3), (x4, y4), from right size and insert (A, B) between
(x1,y1) and z (Figs. 5 and 6).

The case in which z < xo must be analyzed now:

Observe that:

A(xo, x1,y0) + A(x1,x2,y1) + A(x2,x3,y2) + A(x3,x4,y3) + A(xs4,x5,y4) +
A(xs, z,y5) >

A(xo, x1,¥0) + Ax1,x2,y1) + A(x2,x3,y2) + A(x3, x4,y3) + [A(xg, x5,4) +
A(xs,z,y4)] =

A(xo, x1,¥0) + A(x1,x2,y1) + A(x2,x3,y2) + A(x3,X4,y3) + A(x4,2,¥4),

and successively to eliminate 4 and 3.

Now we check what happen with permutations of the order in the projected
points.

Note that the sum Y i ¢(xi41,y:) — c(x;, y;) can change by sorting the sequence
of points (x;,y;) C S,i = 1..n. So we need to consider the natural question about
the better way to rename this points.
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Fig. 5 Bad Y4
Yo -]

Y1 (]

\¢ O

Y3 o
Y4

v

0 X0 X1 z X2 X3 x4
The bad case

Fig. 6 Good Ya
YO { = ]

Y1 o

Y

0) X0 X1 A z
The good one

Please, check the below figure (Figs. 7 and 8):

We claim that it is possible discard all the points at the right side of z and also all
the points between xo and z that are no ordered in order to minimize the sum above.

In fact:

A(xo, x1,y0) + A(x1, x2, y1)+
A(x2,x3,y2) + Alxz, x4, y3) + [A(xs, x5, y4) + Axs, 2, y5)] >
A(xo, x1,¥0) + Alxr, X2, 1) + A(xa, x3,y2) + [A(x3, X4, y3) + A(x4,2,y4)] >
A(xo, x1,y0) + [A(x1, x2, y1) + Alxz, x3,y2)] + [A(x3, 2, y3)] >
A(xo, x1,0) + [A(x1,x3,y1) + Ax3, 2,¥3)] >
A(xo, x1,¥0) + Ax1, 2, y1).
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Y a
Y5 Q

Y4 -]

Y3 T °

Y2 | I o
Y1 [« ]

Y0

vy

Fig. 7 Bad

Y.Il

Y2 ! I o
Y1 | | | | o
Yo | ©

Better X

Fig. 8 Good

So the sequence (xo, o), (x1,y1) in this order minimize this sum. We know that
the graph property is true. But suppose we have a more general case where A(x, z, y)
can be consider and we do not have the graph property.

Consider the sequence (xo, yo), (x1,y1) and suppose z > x; > xo. Additionally
suppose that (x;,.) NS # {yi}, so we can compares the sum A(xo,x1,y0) +
A(x1,z,y1) with A(xo, x1,¥0) + A(x1,z,y) forany y € (x1,.) NS # {y1}.

We claim that this function is monotone increasing in y.

In fact suppose that y < y; < y’ < yp, as in Figs. 9 and 10. Observe
that, A(x,z,y1) < A(x1,z,Y”) and A(xy,z,y1) > A(xy,z,)) because x; < z.
The conclusion is that if the support of fi,,. is a periodic orbit, then, we choose
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Fig. 9 Too bad Ya
Y0 o
\C. o
Y1 o
Y3 o
Y2 o
Y5 o
0 z s
X0 X4 X1 X3 x2 X5 X
Fig. 10 Going down is better AY
YO0 o
v ®
Y1 (o)
Y!
0 X0 X1 7 T X

(0, yo) in the support of fi,,,.. From the above, in this case given z € X, then

f(Z) = [ (c(z, yn) - C(xm V) )]+
(@ yn—1) = (X1, Yn-1)) + ...
+.oo (e, y2) —c(xa,¥2) ) } +
(c(x2, y1) — c(xr,y1) ) + [(e(xr, y0) — c(x0,¥0)) |,
where we use all the possible x;, i = 1,2, .., n, on the left of z, and for each x; we
choose the corresponding y; such that (x;, y;) is in the support of fi,,4,. Moreover,
Xo <X <X <...<UXp,. .
Finally, we can say that d.f(xx) = y, for any k.

One can get similar results for the function g (obtained just from the kernel W)
defined before.
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From the reasoning above (for the case of W satisfying the twist condition), in the
case [Loo 1S not a periodic orbit, then in definition of f, the infimum is not attained
in a finite sequence of x,, in the support of L.

Acknowledgements The first author is partially supported by CNPq, CAPES and FAPERGS.

Appendix

Here we consider first the shift X = {0, I}N, and ¥ as a metric space with the usual
distance:

0, if x=y

d(x,y) = /2", if n=min{i | x; # y}.

Additionally, we suppose that X is ordered by x < y, if x; = y; fori = 1..n—1, and
x, =0andy, = 1.

As the usual, we consider the dynamical system (¥,0) where o : ¥ — X is
given by o (x) = o (x,x2,x3,...) = (X2, X3, X4,...).

(a) Potentials and the Involution Kernel
As usual we denote

7 (y) = (x1,¥1, 2,3, ...) and 1,(x) = (y1, %1, %2, X3, . . .),

and
6(x.y) = (o). 7} (y) and 6" (x.y) = (rx. 0™ ().

the skew product map, where 6*(y = (y1,y2,¥3,--.)) = (¥2,¥3, V4, .. .).

We also define 7i,x = (Y&, Yk—1,...Y2,Y1,X0,X1,X2,...), Where x =
(x0,x1,%2,...), y= (1,2, Y3, . ..). In a similar way we define tk"fyx.

Given a continuous function A : ¥ — R, remember that a continuous function
W : ¥ x ¥ — Ris an involution kernel for A if (Wo6~! =W +A 067 1)(x,y) does
not depends on x; In this case the continuous function A*(y) = (Wo6 ' =W +Ao
671)(x,y) is called the W-dual potential of A.

As in [2] we define the cocycle Ax(x, X', y), where

As(xx.y) =Y A05T"(x.y) —A0sT"(X.y) = Y Ao T,,(x) —AoT,,(x).

n>1 n>1

and its dual version Ay« (x,y, "), where

Ape(yy) = 3 AT 06"(xy) —A" 06" (x.y) = Y AT 011, () — A" 0 (V).

n>1 n>1
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Note that:

(1) Aalx,x',y) = —Aa(x, x,y), in particular A (x,x,y) = 0,
(i) ApQe,x,y) + Ap(, X7, y) = Ap(x, X", ),
(iii) Aa(x,x',y) = Aa(ryx, 1x', 0% () + [A o yx —A o 7 X],

and the same relations are true for Ay« (x, y,y).

Using this properties one can prove that, for any involution kernel we have
W(X, y) - W(-x/v y) = AA(-xv -x/s y) and W(X, y) - W(-xv y/) = Ay+ ()C, Y, y/)

From this fact, we get that the difference between two involution kernels for
A is a continuous function of y: {Involution kernels forA}/C%(X) = W, where
WO(x,y) = Aa(x,x',y) forafix ¥’ € ¥ is called a fundamental involution kernel of
A. Indeed, the property (iii) shows that W° is an involution kernel for A.

On the other hand, given another involution kernel, W we have W(x,y) —
W', y) = Ax(x, X', y), thus

W(xy) = W, y) + Aa(x.x',y) = W, y) + Woxy) = g0) + WO(x.y),
where g(y) = W(¥,y) € C°(X).

As an example we compute the general dual potential. First for W(x,y) =
Ax(x, X', y) we get:

(Wo(tyx, 0* () = WO(x,y) + A(yx)
= As(tyx, X', 0% (y)) — Aa(x, X', y) + A(tyx)
= A(tyxX) + Aa(ryx X' o* ().

AZ )

Given another involution kernel, W we have W(x,y) = W(x',y) + W°(x, y) thus
A*() = (Wob™ ' =W+A06 )(xy) = WK, 0" (1) — W, y) + A ().

(b) The Twist Property of an Involution Kernel
If A: ¥ — Ris apotential and W an arbitrary involution kernel for A, as we
said before, W has the twist property, if for any, a,b,a’,b’ € X
W(a,b) +W(d',b') < W(a,b') + W(d,b),

provided thata < @’ and b < b'.
If we rewrite this inequality as,

W(a,b) + W(d',b') < W(a,b') + W(d,b)
W(a,b) —W(d',b) < W(a,b')—W(d,b)
Asa,d',b) < Apa.d,b),

we get an alternative criteria for the twist property, that is, W has the twist property,

if for any, a,a’ € X the function y — Ax(a,d’,y), is strictly increasing, provided
thata < a'.
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Remark 5 This characterization shows a very important fact. The twist property is
a property of A, so we can said that A is a twist potential or equivalently A has a
twist involution kernel (as, obviously other involution kernel is also twist).

Remark 6 As an initial approximation we can consider a different setting of
dynamics. Let T(x) = —2x(mod 1), and

1 1 1
ToX = —Ex + 5 and Tjx = —Ex—i— 1,
the inverse branches that defines the skew maps (that are not the actual natural
extension of T):

T(x,y) = (T(x), 7} () and 7' (x,y) = (5,x, T* ().

So, one can compute an involutive (that is, A*(y) = A(y)) smooth kernel for
Aj(x) = x and A, (x) = x* given by

1 1 4
Wix,y) = —g(x + ) and Wy (x,y) = g(xz +y%) — 39

As a corollary we get that any potential A(x) = a + bx + cx* has a smooth
involution kernel given by W(x,y) = a + bWi(x,y) + cWa(x, y).
Here and in the next paragraphs, we will denote

WA(xs y) =a+ le (-xv y) + CWz(X, y)v

where A(x) = a + bx + cx? is a polynomial of degree 2.
We observe that the twist property can be derived from the positivity of the
second mix derivative of the involution kernel when it is smooth. Note that,
*W, *W, 4

rervss Os d rervar
dxady an dxady 3

thus W is not twist and W, is. Actually any potential A(x) = a + bx + cx> where
¢ > 0 is twist.

Remark 7 In this remark we are going to consider the case of A(x) = a + bx + cx?
where ¢ < 0 (not twist). In this case we will be able to compute the calibrated
subaction explicitly, which, we believe, it is interesting in itself.

As a first example consider A(x) = —(x — 1)? which is a convex potential.

From [30, 31] we get that the unique maximizing measure for this potential is
Moo = 823, so the critical value is m = A(2/3). Using the fact that m = A(2/3)
one can show that there is a unique (up to constants) calibrated subaction ¢ given
by:

$(x) = W(x,2/3) — W(2/3,2/3) = _éxz n %x
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where the kernel is given by

W(xy) = —(1/3)x> — (1/3)y” + (4/3)xy — (2/3)x — (2/3)y.

As a second example consider A(x) = —(x — %)2 which it is also a concave
potential.

The general arguments in [31] shown that any maximizing measure for this
potential is (o = (1 — £)81/3 + 182/3, where t € [0, 1], so the critical value is
m = A(1/3) = A(2/3). In this case the involutive smooth involution kernel is:

W(x,y) = =(1/3)2% = (1/3)y* + (4/3)xy — (2/3)x = (1/3)y.

It is easy to verify that,

¢(X) = Vl (-x)X[((“/z)] (-x) + VZ(-X)X[l/z,l](-x) = max{Vl ()C), VZ(X)}v

is indeed a calibrated subaction for A, where

Vi(x) = W(x,1/3) = W(1/3,1/3) = A(x, 1/3,1/3) = —=(1/3)x> + (1/9)x,

Va(x) = W(x,2/3) —W(2/3,2/3) = A(x,2/3,2/3) = —(1/3)x* + (5/9)x—2/9,
Note that,

#(t0x) = Vi(T0X) X012 (T0%) + Va(T0%) Xy /5.1y (T0)
Vi(tox) = A(tox, 1/3,1/3)
A(tyy3x, ‘C1/31/3, T*1/3)
A(x,1/3,1/3) = [A(T1/3x) — A(71/31/3)]

= Vi(x) — [A(zox) — m].

Thus ¢ (tox) + A(tox) —m = Vi (x). Analogously, ¢ (71x) + A(71x) —m = V,(x) so

¢(x) = max{V;(x), V2(x)}
= max{¢(tox) + A(t0x) — m, p(t1x) + A(T1x) —m}
= maxye s {9 (tyx) + A(Tyx) — mj.
(¢) Twist Criteria

Is natural to consider a criteria for the twist property for a class of functions that
has a small dependence on the cubic (or higher order) terms. Let P; = {p(x) =
a+bx+cx? | ¢ > 0} be the set of strictly convex polynomial. Consider p € P, and
define

Elp) = {4 € CO0. TDIAC) = pl) + R0, where T~ < (0, 1))}

Theorem 8 For any p € P, there exists ¢ > 0 such that all A € €,(p) is twist.
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Proof Consider p € P;’ fixed. So, p has a smooth and involutive involution kernel
given by

Wy (x.y) = (a+ bWi + cWa)(x.y).

that is, p*(y) = p(y), where Wi (x,y) = —%(x + y) and W, (x,y) = %()c2 +y?) —
%xy, are the involution kernel associated to x and x> respectively. Let, A = p +
eR € %.(p), and Wg be the involution kernel for R. Since R is C? we get that,
its corresponding involution kernel Wy is C? in the variable x. Using the linearity
of the cohomological equation, we get Wy (x,y) = p(W)(x,y) + eWg(x,y), and
differentiating with respect to x, we have

LWa(x,y) = GZW) + c2Wo)(x.y) + e 2 Wr(x,y) =
—%b + %cx — %Cy + E%WR(X, y)

Since —3c < 0,and L Wg(x,y) € C°([0, 1]?) the compactness of [0, 1]? implies
that -2 7 Wa (x )is a strlctly decreasing function for any & small enough, which is
sufﬁ01ent to ensure the twist property.

Remark 8 1f, A € C*°([0, 1]) is strongly convex, we can consider a perturbation of
A of order 2 given by

B.(x) = A(0) — A'(O)x + ”2(0) 2+82A (O)f’ € C.(pa).

n>3

where py = A(0) — A’(0)x + 2 (0) x* € P+ Thus, we can find gy > 0 such that B,
is twist for any 0 < ¢ < &o.

(d) The Involution Kernel is Bi-Holder

We consider now T'(x) = 2x (mod 1) on the interval [0, 1] and the shift o on £2 =
{0, 1}". A natural question is the regularity of the involution kernel W. We denote 7;,
j =0, 1 the two inverse branches of T. Given w = (w1, w», ...) € {0, 1} we denote
by i, the transformation in [0, 1] given by 7, (X) = (T, © Ty, © ... 0 Ty,) (X).
We have that, for a fixed x,

A x0.w) = Y AT (X)) — AT (X0))

k=1

and, the involution kernel W can be described as: for any (x, w) we have W(x, w) =
A(x, xo,w). It is easy to see that W is Holder on the variable x. Consider a, b € £2
and suppose that d(a, b) = 27". Inthisway a; = b;,j = 1,2...,n—1,n. We denote
a = 0"(a) and b = o"(b).
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Proposition 7 Suppose A is a—Holder. Consider a, b € $2 such that d(a,b) = 27".
For a fixed x € [0, 1] we have | W(x,a) — W(x,b) | < C(27")%.

Proof Note that for z = 1, 4(x) = T,5(x) and zo = T.4(x0) = Tup(x0) We have

W(x,a) = W(x,b) = D Atia(®) — A(tka(x0)) — A(tip(x)) + A(Tin(x0)) =
k=1

Y [A@Ta) = A(p() ] = [A(tka(x0) — AlTip(x0) ] =

k=1

D TA(ma(2) — A(r3(2) ] = [A(ma(z0) — AT 5(20) ]

k=1
Note also that |z — z9| < d(a,b) = 27". Consider z = z9 + h, then
A(tea(zo + 1) — A(tka(z0)) < Cad(tralzo + h), tralz0))® <
Ca(278h)* = Cu(27%)* ne.
Then,

> [A(Ta(2) — A(ra(20) ] — [A(5 () — At 5(z0)) ]

k=1
o0 o0
SCaY 2275 <Y 2207 h* < Cd(a.b)™.
k=1 k=1
From the above we get:
Theorem 9 IfA : S' — R is Holder then W : S' x {0, 1} — R is bi-Holder:

(e) The Fenchel-Rockafellar Theorem Given f : R — R defined on the variable
x, the Legendre transform of f, denoted by ™, is the function on the variable p
defined by

) = Sgﬂg{px— S}

Theorem 10 (Fenchel-Rockafellar) Suppose f(x) is smooth strictly convex, [ :
R — R, and, g(x) is smooth strictly concave, g : R — R. Denote by f* and g*
the corresponding Legendre transforms on the variable p. Then,

inf {f(x) — g(0)} = sup{g*(p) — " (p)}
X€ PER
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Fig. 11 The infimum Y&

Fig. 12 The supremum Vi

-

inf, i {/(x): glx)

)

Proof By convexity and concavity properties we have that there exists xo such that
inf {£(x) — g0} =(x0) — gx0).

It is also true that f'(xo) — g’(xo) = 0. Denote by p that value p = f’(x0). We
illustrate the proof via two pictures in a certain particular case. Figure 11 shows a
geometric picture of the position and values of f(xo) — g(x0), g*(p) and f*(p). Note
that in this picture we have that f(xo) — g(xo) > 0. This picture also shows the graph
of p x as a function of x. We observe that the Legendre transform is not linear on the
function. Let’s consider different values of p and estimate f*(p) and g*(p). Suppose
first p > p. In Fig. 12 we show the graph of p x, and the values of f*(p) and g*(p).
We denote by x; the value such that

fH(p) = suplpx — f(0)} = pxr—f(x2).

x€ER
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Note that x, > xp. We denote by x| the value such that

0 < g"(p) = sup{px— g} = px1 —g(x).

x€R

Note that x; < xp.

Note also that f*(p) and g*(p) have different signs. From this picture one can see
that g*(p) — f*(p) < f(xo0) — g(xo). In the case p < p a similar reasoning can be
done.
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