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ABSTRACT

We define a skew product entropy for conservative nonsingular transformations, show that it takes
values in {0, 00} and use it to distinguish two classes on nonsingular transformations. Binary and ternary
type Ulx odometers have zero skew product entropy, while nonsingular K-automorphisms have infinite
skew product entropy.

1. Introduction

We introduce a skew product entropy for nonsingular endomorphisms. We show
that the skew product entropy takes values in {0, 00} and use it to classify nonsingular
transformations into two classes. For example, we show that type IIIA binary and
ternary odometers have zero skew product entropy, while nonsingular K-
automorphisms have infinite skew product entropy. We also obtain nonsingular
automorphisms with the same ratio set but different skew product entropy.

In Section 2 we recall some properties of Krengel's entropy for infinite measure
preserving transformations. We compute the Krengel entropy of Tx S, for T infinite
measure preserving, in the case when S is a compact group rotation and when S has
positive entropy. These questions are mentioned in [14, Section 5], and the difficulty
lies in the fact that 51 is not a factor (in our and in Krengel's sense) of T x S (the factor
algebra corresponding to S is not cr-finite for product measure).

In Section 3 we define the skew product entropy; this is defined by computing the
Krengel entropy of the infinite measure preserving Maharam skew product of the
transformation. We also compute the skew product entropy for binary and ternary
odometers, and study basic properties of the skew product entropy.

In Section 4 we first show that the natural extension for nonsingular
endomorphisms is unique and has the same type, completing our study in [23, 24]. We
then define the notion of conservative nonsingular K-automorphisms. We show they
are ergodic, and that any such T satisfies the following multiplier property: if S is a
conservative ergodic nonsingular automorphism such that Tx S is conservative, then
Tx S is ergodic; this property clearly implies weak mixing. This gives a partial answer
to a question in [3], where they ask for a property of T that is equivalent to this
ergodic multiplier property.

We assume all spaces X are standard Borel spaces; &(X) denotes the Borel
a-algebra of X, and all measures are cr-finite Borel measures. A nonsingular
endomorphism (X,n,T) is a map T.X^X defined on a space X such that
T-\&(X)) c &(X) and n(N) = 0 if and only if fi(T-\N)) = 0 for every Ne@(X)). A
nonsingular automorphism is a nonsingular endomorphism such that T~\l${X)) —
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0&(X) (mod /.i), (it is known that this condition is equivalent to the existence of a
Borel set Y £ X of full measure such that T: Y -> X is one-to-one); we denote by
co = dfi o T/dn its Radon-Nikodym derivative. More generally (in the endomorphic
case), a positive finite function co satisfying

ffoTcod/j. = \fdfi

for all integrable functions/is called a markovian function for (A',/*, 71); we also say
that (co, fi) is a markovian pair for T and note that such &> may not be unique (this
together with existence was shown in [24]). A nonsingular endomorphism is said to be
conservative if, for every Borel set A of positive measure, there exists n ^ 1 such that
n(A n T~nA) > 0; a markovian pair is said to be recurrent if, for all positive integrable
functions h, we have

t-i

YJ h o Ticoi = + oo a.e., where cot = Y\ co o T*

(the existence of a recurrent markovian pair implies conservativity). Two markovian
pairs (&),//) and ( G / , / 0 are said to be cohomologous if there is a transfer function h
such that \JL = hfj, and co' = co(hoT/h). A conservative ergodic nonsingular
endomorphism (X,/i,T) is said to be type III if there is no cr-finite T-invariant
measure equivalent to n\ it is type II if there exists a-finite T-invariant measure
equivalent to //.

2. Krengel entropy

In this section we recall Krengel's definition of the entropy of a conservative
infinite measure preserving endomorphism, and compute the entropy of the product
of two such endomorphisms in two particular cases. The following definition is given
for general nonsingular endomorphisms (X,fi, T,co) and is used in Sections 3 and 4;
however in this section, the endomorphisms are measure preserving and we assume
that the corresponding co is always 1.

DEFINITION 2.1. Let (X^fi^T^co^) and (X2,fi2,T2,co2) be two nonsingular
endomorphisms. We say that T2 is a factor of Tr (respectively, T2 is isomorphic to 7[)
if there exists a map <f>: Xx -> X2 called a. factor map (respectively, isomorphism) which
satisfies:

(i) (j)~l{^(X2)) c 0S(X^)(modin) (respectively, <f> is bijective and bimeasurable),
(ii) / / 1o0-1 = iw2,

(iii) (j)oTx = 72o0a.e.
We say that T2 is a markovian factor of Tx (<j) a markovian factor map) if moreover:
( i v ) CO] = co2 o (j>.

The factor map (respectively, isomorphism) is said to be nonsingular if (ii) is
replaced by the requirement that fixo<p~l is equivalent to //2.

For a nonsingular endomorphism (X, JU, T, co) we extend these two definitions to
sub-a-algebras 2F such that /* restricted to J27 is cr-finite. Then 3F is called a factor
algebra if T~x^ e #"(mod/z) and a markovian factor algebra if in additon co is
measurable with respect to J5". A factor algebra is called invertible if

noninvertible if T~1^ #
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We note that if 0: Tx -*• T2 is a factor map and T2 is an automorphism, then 0 is
markovian if and only if cox is measurable with respect to the factor algebra 0~1^(Ar

2).
We shall see later the need to consider markovian factors when studying noninvertible
transformations (for example, we obtain uniqueness of the natural extension only in
the class of markovian factors, cf. 4.2).

If T is a finite measure preserving endomorphism of (X,fi) we let h(T) denote the
Kolmogorov-Sinai entropy of T with respect to the normalized measure /u/ju(X).

We now recall the entropy defined by Krengel [14] for a conservative infinite
measure preserving endomorphism. For any set A let As = \Ji>0T~lA. By
conservativity, A £ T~lAs and we can define the return time to A by ^(x) =
inf{fc ^ 1: Tk(x)eA) for all x in T~XAS and tA = 1 for all x in X/T^A'. Then put
TA(x) = TTA(X) for xe X. The restriction of TA to A is called the induced map on A. Let
fj.A be the restriction of ^ to @(A) (notice that the measure is not normalized nor
necessarily finite), then (A,fiA, TA) is a conservative measure preserving endomorphism
(see [24, 5.2(a) and 4.3]). We say that A is a sweep out set if As = X(mod//). (We note
that if T is infinite measure preserving and admits a sweep out set of finite measure,
then it is conservative [16].) If A has finite measure, h{TA) will denote the
Kolmogorov-Sinai entropy of TA restricted to A with respect to the normalized
measure nJn{A).

THEOREM 2.2 (Abramov's formula). Let (X,/n, T) be a finite measure preserving
endomorphism and B be a Borel set. Then

(a) fi(X)h(T)>ti(B)h(TB),
(b) ifB sweeps out, then n{X)h{T) = ^(B)h(TB).

DEFINITION 2.3 [14]. Let T be a conservative finite or infinite measure preserving
endomorphism. The Krengel entropy of T is defined by:

kJJ) = sup {/u(E)h(TE): 0 < n(E) < + oo}.

We in fact have that kJiT) = sup{//(£)h(TE): E £ Xa and 0 < //(£) < oo}. We
first notice that X can be decomposed into two disjoint invariant sets: X = Xa U Xp,
where Xa = {xeX: Tn+Ic(x) # T\x)Vn > l,fc >0}. By conservativity, Xa is actually
equal to {XEX: Tn(x) # x V« ̂  1}. Indeed, if 7 = {XE^: 3« ^ 1 such that Tn(x) = x},
then TY^Y, by conservativity /u(T-1Y\Y) = 0 and 7 = fl^o r-fc7(mod/z). If
E = Ea\jEp is a Borel set of finite measure, then ju(E)h(TE) = n(Ea)h(TEa) +
fi(Ep)h(TE ). Since for almost all XGEV we have that x is a periodic point for TE ,
it follows that h(TE ) = 0. Also Tis called aperiodic if Xa = X(mod fj). We now recall
some results about Krengel's entropy. We first prove the following technical lemma.

LEMMA 2.4. Let (X, fi, T) be a finite measure preserving endomorphism and (En)n>0

be an increasing sequence of Borel sets such that \Jn>0En = X(mod[i). Then

Proof. We first construct by induction a sequence of sets (Fn)n^0 such that
l U o ^ the {Fs

n}n^0 are pairwise disjoint and [}UFk^En^\JUPk. We
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choose Fo = Eo and define: Fn = £B\flJ*Io FD f o r all n ^ 1. We have only to check that
the sets {Fs

n}n>0 are pairwise disjoint (mod//): indeed, for m < n we have Fnf]Fs
m = 0;

moreover Fs
m 0 Fs

n = (Fn n Fs
m)s U (Fs

n n Fm)s and by conservativity, Fm £ Hfĉ o ^~fc-̂ m
(mod//), in particular, implies that

F f]F2 = F Pi 7~fcFs (1 Fs <= (Fs n F Y (mod //)

We now conclude the proof using Abramov's formula. By disjointness of the
invariant sets {F*}n^0 we get fi(X)h(T) = Yjn>oM(Fs

n)h(T\ Fs
n) and since En is a sweep

out set of T restricted to U*=o^* w e obtain

THEOREM 2.5 [14]. Let (X,^i,T) be a conservative infinite measure preserving
endomorphism.

(a) If T is aperiodic, then there exists a sweep out set of finite measure.
(b) If E is a sweep out set of finite measure, then ku(T) = fi(E)h(TE).
(c) If F is a sweep out set of infinite measure, then kJ^T) = ku (TF).
(d) / / (Y, v, S) is a factor, then Ic£S) ^ k^T).
(e) If kfl(T) = 0, then T is an automorphism.
(f) For all n ^ 0, the map Tn is conservative andk^{Tn) = nkJ^T). If, moreover, T

is an automorphism, then k^{T~l) = kJ^T).

Proof Parts (a) and (b) are in [14, Theorems 2.1 and 3.1]. Parts (d), (e) and (f)
are in [14, Proposition 5.1, Theorem 7.1, and Proposition 5.2].

Part (c). Since (TF)E = TE for every set E £ F, we get k^J^Tp) ^ kJ^T). Conversely,
let E be a set of finite measure, (Flc)lc^0 an increasing sequence of sets of finite measure
which exhaust Fand Ek = £(J Fs

k. We notice that (Ek)k^0 is an increasing sequence,
L)jfc2=o£fc = E a n d t n a t Fk is a sweep out set for TEk{)F restricted to Ek U Fk. We thus
obtain

(E)h(T) {E U

and finally use Lemma 2.4 to get /j.{E)h{TE) ^ k^ (TF). Taking the supremum over E
we have kJJ) ^ k

We note that in the following Proposition 2.6(a), S is not a factor (according to
Definition 2.1) of Tx S. This formula appears in Parry's book [19], but there he uses
a different definition for the entropy. The following question remains open: does there
exist a zero entropy finite measure preserving transformation S and a zero entropy
infinite measure preserving transformation T such that the Krengel entropy of T x S
is infinite?

PROPOSITION 2.6. Let (X,/x,T) be a conservative infinite measure preserving
endomorphism and (Y, v, S) be a finite measure preserving endomorphism. Then

(a) k^XTx S) ^ ii(X)k£S) + v(Y)kM(T) (with the convention o o O = 0 ) ;
(b ) ifh(S) > 0, then k^txv(Tx S) = + oo ;
(c) ifS is a rotation of a compact abelian group Y with respect to Haar measure v,
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Proof. Let E £ X be of finite positive measure, R be the induced map of T x S
on Ex Y and x the return time to E. Then R{x,y) =(TE(x),St(x)(y)).

(a) We first prove the following formula (cf. [5, (**)]):

h(R) = h{TE) + supMim -H\\J S?2 dnE(x): 2 is a finite partition of Y \,
l«-»+oo JE n Li-0 J J

where
Let

Then

= (S£)-\ Sfty) = Sr<<*>(>0 and T,(X) = EJlJto r£(*).
.2 be finite partitions of E, Y, and .^(7) denote the trivial algebra of 7.

L<=o

[n-1

V
Tn-1

> * V

\\/+H\\/ R~\E® j) V "̂ Y)

The conditional measure of a Borel set B e ®{E) ® 8(Y) with respect to ̂ (£) ® ^"( 7)
is given by the formula: jiEx v{B\@l{E)® $~{Y)){x,y) = v(2?J, where ^ denotes
the vertical slice of B. Since {\J^ R~\E® 2))X = \J^ S^S. and the sequence
(H[\J^ S~i2])nS.o is subadditive, by taking the limit on n and all partitions & we
obtain:

h(R) > h(TE) + lim f - [

Conversely, if (ft is a finite partition of £ x 7 we have

V R-

// V "̂̂
rn-i

Li=O

H \\JTI V Rr\E®2)

<=0

n - l

\JR'\

Since the sequence {H\Sl^Rr\E% 2)\ \J^R~\P® Y)])n>0 is subadditive, by
taking the limit on n, we obtain

h(0>, \j R 7)1
J

for all n ^ 1. We now choose an increasing sequence of partitions
generate 0&{E) and obtain:

{\/n)H\\J S-

We first take the infimum over n then the supremum over 2, and over $ and obtain
the other inequality.
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We next show that

supilim f {\/n)H\n\J S-
3 ln-+ooj£ Li=0

xd^iE{x)h{S)

and we conclude the proof of assertion (a) by applying Kac's Lemma [24]:
J zdfi = n(Es) and by choosing an increasing sequence of finite sets (Ek)k>0 which
exhaust X.

Let 2 be a finite partition of Y and 2k = Vf-To S"'^- T h e n

rn- l "I

\\/s-x% =
Li=0 J

n - l

V

V

V

2

We conclude by integrating over E and by taking the supremum over 2 and then
over k.

(b) It is an immediate corollary of 2.6(a).
(c) It is enough to show that limn^+Jl/«)//[Vf:0

1S;'-2+ = ° f o r everY finite

partition 2. We first assume that Y = T, (here T is the one-dimensional torus), S is
the rotation defined by S(y) = y + a and 2p is the partition

(The proof of this case appears in [14].) We denote by increasing order k0 =
0 < kr < ... < kQ= \, where q = q(x,p), the points of

{^/2p-r<(x)a(mod 1): 0 ̂ k < 2p,0 ^ / < n}.

The partition 0t = {[fcj,fcJ+1): 0 ̂  / < q) is finer than the partition \f^o Sx% a n d

therefore H[\j£i S;%] ^ H\9L\ ^ ln(«2p). In particular

lim (\/n)H\\/S-x%] = 0.
n->+oo Li=0 J

If Y is a general compact abelian group, S the rotation S(y) = y + <x and Y the dual
group of characters of Y, then Y is countable, Y= {yx,y2,...} and generates @(Y).
Let 21 = {yj\[k/2p, (k+ 1)/2P)): 0 ̂  k < 2P} and 2V = 2\ V ... V 2p

p, then (2)p>1 is an
increasing sequence of partitions and \JP>12^ = &( Y). Each y}: Y -> T defines a factor
of Y: y,oS = ^ o y , with *,0>) = j;4-y}{a) and //[yf."1 S;^p] ^ ZUHWIU S~X%1
Using the beginning of this part we obtain limn^+00( 1 /n)H[\J^ S;%] = 0. If
2 is another finite partition then H[\J^:o

lS;l2]^ H[\Z^S;i2p] + nH[2\2p\.
Since limp^+flOff[J2| j y = 0 we finally obtain \imn^+J\/n)H[\/^ S^2] = 0.
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Hajian, Ito and Kakutani in [8] introduced and showed the importance of ergodic
infinite measure preserving transformations which commute with a totally dissipative
one. The following will be needed in Section 3.

LEMMA 2.7. Let (X,{i,T) be a conservative infinite measure preserving endo-
morphism and Q.X^Xa nonsingular automorphism such that Qo T = ToQ.

(a) If T is ergodic, then // o Q~l = (Xfi for some a > 0.
(b) If^ioQ-1 = a^/or a # 1, then k*(T)e{0, +oo}.

Proof, (a) Since v = (dfioQ'1 /dn)n is T-invariant conservative ergodic, by the
Hopf ergodic theorem, for any sets A and B of finite measure for [i and v, we have
that ZUXAO^/^OXBOT* converges a.e. to fi(A)/p(B) and to v(A)/v(B).

(b) Since Q: (X, fi, T) -> (X, a/z, T) is a (measure preserving) isomorphism, and
kfi{T) = kJJ) = akJiT) the result follows.

3. Skew product entropy

We now investigate a number that we call the skew product entropy of a
nonsingular endomorphism. We are mainly interested in distinguishing between zero
and positive entropy for nonsingular automorphisms. We note that while skew
product entropy takes only two values, Krengel's entropy for an infinite measure
transformation takes essentially three values since there is no canonical choice of the
measure up to scalar multiple.

If (X,/i,T,co) is a nonsingular endomorphism we denote by (X*,{i*,Tw) the
infinite measure preserving Maharam skew product: X* = XxU+, ji* = fix Leb and
Ta(x, t) = {T(x), t/co(x)). We notice that T is not a factor of Ta and recall that Ta is
conservative if and only if (CO,/J) is recurrent [23, Theorem 2].

DEFINITION 3.1. Let (X,/u,T) be the nonsingular endomorphism and (co,n) a
recurrent pair for T. The skew product entropy of T with respect to (co, fi) is defined
by

Here also, to compute the skew product entropy, we may assume that T is
aperiodic. Indeed X* = Xa x U+; since Xn

v = LUo T~k{xeX: Tn(x) = x} is T-
invariant (T^X; = X%) and by conservativity Xn

v = {xeX\ Tn(x) = x} (mod JLI) we
obtain for all positive integrable functions h that

hcondp = ho Tncond/i = hd/j,

and therefore con{x) = 1 for all x satisfying Tn(x) = x.
In the case when, for a given n, there exists a unique recurrent (cu, //) (for example,

when Tis an automorphism, or when Tis measure preserving [24, Theorem 5.6]), we
shall write s^T) instead of s{(0 M)(T). In the following proposition we collect some
properties of the skew product entropy; the natural extension is defined in Section 4.
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PROPOSITION 3.2. Let T be a nonsingular endomorphism recurrent with respect to
(C0.fi).

(a) The skew product entropy s(0) /t)(T)e{0, + oo}.
(b) If(co',fi') is cohomologous to (co,n), then s(w/J)(T) = s^^T).
(c) If T is measure preserving, then s^(T) = 0 if and only ifkJ^T) = 0.
(d) Let (Y, v,S) be a finite measure preserving endomorphism. Then TxS is

recurrent with respect to(cox\,/nxv). Ifh(S) > 0, then si(0Xl xv)(Tx S) = + oo. If S is
a rotation of a compact abelian group, then s(mxltltxv)(Tx S) = s((0<tl)(T).

(e) If(X,p, T,co) is a markovian factor of(X,fi, T,co), then s{(djr)(T) ^ s(tOtll)(T).
(f) If E is a sweep out set, then the induced map TE on E is recurrent with respect

to (coE,fiE) (where coE(x) = COXE{X)(X)) andS(0)EME)(TE) = s(0J^(T).
(g) If s{a} M)(T) = 0, then T is an automorphism.
(h) For all n > 0, the pair (con,fi) is recurrent for Tn and siw itl){Tn) = ns((0<lt)(T). If

T is invertible, then T~l is conservative and sJ^T'1) = sJ^T).
(i) If(X,fi, f) is a natural extension of(X,fi, T,OJ>), then sfi(f) = slWi/l)(T).

Proof, (a) The automorphism Q(x, t) = (x, 2t) commutes with Tm and satisfies
d^oQ^/dfi* = | . Lemma 2.7 implies that k^(TJe{0, +oo}.

(b) Let h be the transfer function between the cohomologous pairs, that is,
/i' = hfx and w! = co(hoT/h). It follows that the map y/(x,t) = (x,t/h(x)) is an
isomorphism of (X*,ji x Leb, 7̂ ) and (X*,n' x Leb, Tw), and therefore their Krengel
entropies agree.

(c) We may assume that Tis aperiodic; by [14, Theorem 2.1] for each n ^ 1 there
exists a sweep out set An such that n(An) ^ 2"n. Let Bn = Anx(n — \,n] and
B = (Jn5.! Bn. Then B is a sweep out set of finite measure for (X*,fi*, 7 )̂, where
T^x, t) = (T(x), t). Let S denote the induced map on B: S(x, t) = (TAJ(x), t) on each
(x,t)eBn. Since Bn is invariant for S, we have

(d) The transformation (Tx S)wxl is isomorphic to Tm x S and it suffices to apply
Proposition 2.6(b).

(e) Let (j)\X^X be a markovian factor map. Then 0*: X* -• X* defined
by </>*(x,t) = ((/)(x),t) induces a factor between (X*,n*,TJ and (^*,/7*,fJ. By
Theorem 2.5(d), k^TJ > kr,{Tm).

(f) Since the Maharam skew product of (E, //£, TE, OJE) is isomorphic to
(X*,/u*, TJ induced o n F = £ x l R + and since F sweeps out,

\coE,,E)(TE) = ^*((rjf.) = k^{Tm) = s{Wfl)(T).

(g) If ^ . ( 7 ^ = 0 then, by Theorem 2.5(e), Tm is injective on a set Y* c X* of full
measure. By Fubini's Theorem, we choose y c j of full measure such that
Y* = {te U+: (x, t)e Y*} has full Lebesgue measure for all xe Y. For every (x,y)e Y
with x ¥" y, we can find seY* and teY* such that s/co(x) = t/co(y). Since
Ta(x,s) ^ Tw{y, t), we obtain T(x) # T(^). We have proven that T is injective on Y.

(h) If/is a positive integrable function, then by recurrence of (co,fi) for Twe have
Zi<»o/° ^i(Ui — + °° a-e- I n particular Xl^oCE"-"^/0

 VCO^OT^OJ^ = + oo a.e. and
shows that (con,^i) is recurrent for T". Furthermore (!")„, = (7^)n; if T is invertible,
d5 = d^oT-'/dfi* = l/cooT'1 and
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(i) We may assume that T is aperiodic. Let (j>: X -*• X be a markovian factor and
# = <jrx8(X) the associated factor algebra. Then 0*: X* -* X* defined by
<j>*{x, t) = {(f>{x), t) induces a factor map between $* = (X*,fi*, fa) and
£* = (X*,n*,TJ. Since # * = # ® ^(R+) = <j>*jx&{X*) is an exhaustive factor
algebra (see part 2 of the proof of Lemma 4.3), $* is a natural extension of 2£*. Let
£ £ X* be a sweep out set of finite measure; E = <p*~\E) is also a sweep out set of
finite measure. We denote by v the restriction of n to E and by S the induced map
on E (idem for v and S). Then 0* induces a factor map between <§ = (E, v, S) and
"̂  = (is, v, S). For the same reasons (see part 2 of the proof of Lemma 4.3), <& is a
natural extension of ^ and so

COROLLARY 3.3. Let {X,[i, T) be a nonsingular automorphism. IfsJT) = 0, then
T has no noninvertible markovian factors.

We now study the skew product entropy for type III^, with 0 < X < 1, conservative
ergodic nonsingular automorphisms. We know that we can always take a
cohomologous pair (co',fi'), which will be referred to as a special pair for T, such that
H is a probability measure and the values of co' are powers of X (cf. [13, Proposition
2.2]). Thus from now on we assume that (co,ju) is a special pair and set A = {A*: isZ).
We give the name special Maharam skew product to the measure preserving
automorphism (X,fL,f^ defined by I = I x A , /!= ^]f6AyWX^, and f(0{x,t) =
(T(x),t/co(x)).

In [8], Hajian, Ito and Kakutani constructed what we call the special Maharam
skew product in the case of the type III^ binary odometers. They also constructed the
map Tx of Lemma 3.9(b) and showed it to be ergodic. (The map Tr is also studied
in [2].)

THEOREM 3.4. The special Maharam skew product (X,fi, 7̂ ) is a conservative
ergodic infinite measure preserving automorphism.

Proof. Letf.X^U and g:A->(R be bounded Borel functions. Using the
change of variable t\-^tco(x), we obtain:

j{Tx)g(t/co(x))tdKx)

= [j{Tx)co{x)dii{x)l,tg{i)= \f®gd{L.
J teA J

To prove ergodicity of f^, we first define nonsingular endomorphisms St: X -* X
with teA, in the following way: St(x) = TXt(x)(x), where

Tt(x) = min {« ̂  1: con(x) = t}.

Since t belongs to the ratio set of T, we have that xt is finite a.e. and for any Borel set
A of positive measure, there exists n ^ 1 such that n{A n S'1 o S^n{A)) > 0. It follows
that A c (J^S^oS^iA) (mod/4 for any Ae®{X). HA*e@(X*) is 7^-invariant,
we denote by At the horizontal slice At = {xeX: (x, t)eA*}. Since Txj{x)(x,s) =
(St(x),s/t) for almost all xeX and all s,teA, we obtain At = S;\A^),AX = Sl\A^
and therefore At ^ [Jn^oS^oS^iA^ = ^(mod/z). Conversely, A1 = S^t(At),
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At = Si\At) and Ax £ \Jn>0
siioSin(At) = Ar w e Just n a v e proved that

At = Ax(mod//) for all te A, A* = Ax x A, and therefore /^ is T-invariant. Since Tis
ergodic, A* belongs to the trivial cr-algebra.

Conservativity follows from ergodicity since the measure /i is non atomic.
Ergodicity can also be obtained from the more general [22, Corollary 5.4] since the
essential range of the cocycle con is all of A.

PROPOSITION 3.5. Let T be a conservative ergodic nonsingular type l\\x

automorphism. If (co,fi) is a special pair, then {X*,fi*,TJ is isomorphic to
(Xx{X, I], fix Leb, t x Id). Furthermore Sfl(T) = (\-X)k.(TJ.

Proof. Let (f>: Xx (A, 1] -> X* be defined by (j>(x, t,s) = (x, ts). Since for any
J;GIR+ there is a unique n such that An+1 < y ^ Xn, it follows that (f> is invertible.
Also 0 commutes with the actions and is measure preserving, so sJ^T) =

t
COROLLARY 3.6. Let T be a conservative ergodic nonsingular type IH^ auto-

morphism. Let x be defined a.e. on X by z(x) = min{« ^ 1: cojx) = 1}. Then (X,fi, Tr)
is a finite measure preserving ergodic automorphism, and sM(T) = (1 —X)h(Tx).

Proof. The map (x, l)i—>(T*(x), 1) is the induced map of fw on Xx{\), and
Xx {1} is a sweep out set for fw by definition of the ratio set.

We now compute the skew product entropy for some examples.

DEFINITION 3.7. Let 0 < A < l . We give the name binary odometer to
(X,/u,T), the nonsingular automorphism defined by X = Ylo^i®' U. M =
H$n{l/(\+X),A/(l+A)} and T the addition by 100... with carry. We denote a
point of X by x = x0 jq . . . .

It is well known (cf. [10,13]) that the binary odometers are conservative ergodic
type III; nonsingular automorphisms. (We should note that here we are considering
only a special class of binary odometers; for the general class see [10, 13].) Let co be
the Radon-Nikodym derivative of T with respect to n and co = dfio T/d/u. Let 1.". 1
and 0 !}. 0 denote strings of n consecutive numbers 1 and of n consecutive numbers
0, respectively.

LEMMA 3.8. Let & = {Po, Plt...} be the partition into cylinder sets Pn =
[1.". 10] = {x: x0... xn = \.nA,xn = 0}. Then on Pn, it follows that co equals X~n+l.

Proof. If A = [1 .n. \0i,... Q then TA = [0 .n. 0 1 ^ . . . ik] and n{TA) = X~n+1^{A).

LEMMA 3.9. Let z be as in Corollary 3.6 and define a partition
$ ={QVQ--P> 0,q> 0} ofX, by Qvq = [0.^.01.?. 110]. Then

(a) for all xeQ , we have T(X) = 2P + 2Q-\,
(b) r(0.P..01 / , 110 . . . ) = ( l .? .10.£001. . . ) .

Proof. We first introduce some notation. For p ^ 0 define cylinder sets Av
k by

Al = [0.£0] and Ap
k = TkA% for 0 ^ k < 2P. For each integer k = £ £ 0 V let
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= card{i>0:kt = 1}. Then ju(Ap
k) = (1/1 + Xy+l-*(k)(X/\ + Xf{k). Since co is

constant on each set Av
k for 0 ^ k < 2V, for any Borel set B £ Av

k we have

We notice that Qpg = TmA»+9+2 with m = 2P(2«+1-1). For all 1 ^ k < 2P, we have
a(m + k) = <x(m) + <x(k) and n(TkQpq)/n{Qpq) = A " ^ ^ ^ * ' = Aalk) < 1. Since rPQpq

is a subset of A%+9+1, for all 0 ^ r < 2" we have

PQJ = .«„_,

We conclude the proof by noting that for all 0 ^ r < 29, we have a(r) ^ q and cc(r) = q
if and only if r = 2q- 1.

THEOREM 3.10. Let T be the type IIIA binary odometer. Then su(T) - 0.

Proof. The idea of the proof is to induce the measure preserving S = Tx on the
sets Ax = [1] and Ao = [0]. If x e 4 then x can be written x = (10.^.01 H. 110...);
then

n^x) = min {k ^ 1: 5fc(x) e ^ J = p(x) + 1,

^(JC) = Sn*w(x) = (11.?. 10 .̂ . 001...).

This implies that 5X on A1 is isomorphic to 51; in particular hiS^ = /i(5) (where (̂iSj)
is computed with respect to the normalized measure on AJ. On the other hand,
Abramov's formula tells us that

To conclude, it is enough to show that the entropy of S is finite. To do this we show
that {A0,A^} is a generating partition for S. We note that, if & is a generating
partition, by the Kolmogorov-Sinai theorem: h(S) = h^S,£?) ^ log2. We write
x ~ y when x and ;> are in the same element of the partition & = {A^AJ. In order
to prove that 0> is a (two-sided) generating partition, we have to prove that for all
x,ye X, if S^ix) ~ Sfc(.y) for all k, then x = y. We notice that the induced map So on
Ao is also isomorphic to S: for x = (00P..01.?. 110) we have:

no(x) = min {A: ^ 1: 5fc

50(x) = 5n-(a:)(x) = (01.?. 10 P.. 001...).

As usual we denote by a the shift on X and notice that aoSt = So a on Ai for
i = 0,l. Assume that x,y satisfy Sk(x) ~ Sk(y) for all A:. We first prove that
Skoa(x) ~ Sko(?(y) for all k. Suppose that x,yeAv since they have the same
return times nx(S

k(x)) = nx(S
k(y)). In particular ^(Sf(x)) = p(Sk(y)) and there-

fore S^o^x) = (joSi(x) ~ aoSk(y) = ^ ^ o ^ j ) . Suppose that x,>-,e^0, then
n0(50*(x)) = «0(5f(j')) f o r a11 k- I n particular q(Sk(x)) = q(Sk(y)) and therefore

Sk+l o (j(x) = <ro S*+1(x) ~ ao Sk+1(y) = Sk+1 o o(^) for all k.

By induction we obtain S^oa^x) ~ Skoal(y) for all k and all / ^ 0. In particular
ol{x) ~ a'(^) for all / ^ 0; thus x = y.
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COROLLARY 3.11. Let T be the type IIIA binary odometer, 0 < X < 1.
(a) IfR is a rotation on a compact abelian group, then s^JjTx R) = 0. Furthermore,

if R is an irrational rotation on the circle, then Tx R is ergodic.
(b) If S is a finite measure preserving endomorphism with positive entropy, then

s^v{Tx S) = +oo. Furthermore, if S is a lightly mixing automorphism, then Tx S is
ergodic and has the same ratio set as T.

Proof The skew product entropy equalities follow from Proposition 2.6 and
Theorem 3.10. For part (a) let R be rotation by an irrational a. By a theorem of
Furstenberg and Weiss, cf. [1, Section 2], if S is ergodic invertible finite measure
preserving, and T is ergodic invertible nonsingular, then T x S is ergodic if and only
if as(E(T)) = 0, where crs is the maximal spectral type of S, and E{T) is the U°
eigenvalue group of T. It is well known that the maximal spectral type of R is
supported on {eina: n an integer}. It is also known that if T is the type IIIA binary
odometer, then E(T) consists of the dyadic rationals. Thus Tx R is ergodic.

For part (b) we recall that a transformation S is lightly mixing if for all sets of
positive measure A and B we have liminfn^00//(T'ny4 (] B) > 0, and S mildly mixing is
equivalent to l i m i n f ^ ^ C r M n Ac) > 0 for all sets A with n{A)n(Ac) # 0. Therefore
S must be mildly mixing and so Tx S is ergodic [3]. Finally, the equality of the ratio
sets of Tx S and T follows from [6, Lemma 2; 7, Lemma 2.2] since X ^ 0 and S is
lightly mixing.

We next consider another example of a nonsingular odometer with three symbols
whose Radon-Nikodym derivative takes values in {X, I/A}. This will allow us to
compute the skew product entropy for the type III^ Chacon nonsingular
automorphisms.

DEFINITION 3.12. Let X = f l o 0 0 ^ 1.2), T: X ^ X the addition by 100... with
carry, /z = f l ^ W O +2A), 1/(1 + 2X),X/(\ +2X)}. We denote by co = (dfio T/dju) the
Radon-Nikodym derivative and by r(x) the smallest integer n ^ 1 such that
con(x) = 1. The transformation T is a type III^ for 0 < X < 1, conservative ergodic
nonsingular automorphism, that we call the ternary type III^ odometer.

T H E O R E M 3.13. Let (X,fi, T) be the ternary type \\\x odometer. For all n^O we
set co(x) =\/Xon [2 .n. 20] and eo(x) = X on [2 .n. 21]. Then x is defined by:

(x) = 0.(!.02... for all x = 2 .?.20. . . ,

T(X) = 2.3P and Tr(x) = 1 P.. lO^.t.1 0 1 . . . for all x = l^.t.1 12.?.20... ,

x(x) = 2.V and T\x) = l^.t.1 10.102. . . for all x = 1 P.. 121+ 1 2 1 . . . .

Furthermore, s^{T) = 0.

Proof. The proof is similar to that given in Lemma 3.9. For concreteness we let
X = \. We define A* = [0.^.0] and for all k = £ ^ 3 * w i t h M{0,1 ,2}, we define
ct(k) = card{/ ^ 0 : ^ = 1 } . We notice that a(k + 3pl) = <x(k) + <x(l) for all 0 ^ k < 3P

and / ^ 0; we notice also that <x(k) ^p for all k < 3P and a(k) = p if and only if
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Case (i):B = [2 H. 20]. Then TB = [0H.01] £ A%. For all xeBand 0 ^ k < 3P, we
have

and aty+1(jc) = 1. We thus obtain T(JC) = 3Q + 1 and TT(x) = 0 .t 02*^x Q + 2 . . . .

(ii): B = [\P.tl 12 H.20]. Then 5 = TmAp+Q+2, where

For all xeB, for all m < k < 3P + 1 + 1, we have

•<k^p+q+2\

where a(A:)-a(m) = a(A:-3p + 1(39- l ))-a(£f=03() < 0. Also

= [0p.y l 01] c ^OP+«+1, / /([0^+.^.+ ! 01]) = 2"p//([l^.t.1 12.?. 20]).

For all 0 ^ / < 3 P and xeB we have

and co3p+g+i+l(x) = 1 if and only if / = ^f-o'^- We thus obtain

T(JC) = 3p+Q+l-m + ^ 3 * = 3 P + 1 - 3 P = 2.3P and Tz(x) = 1 P.. l O ^ O l x ,
1=0

Case (iii): B = [\ P.. \2a+.X 21]. Then B = TmAp+9+z with

For all xe B and 0 < k < 3 P - J ] ^ 1 3 ( we have

where a(k + m)-a(m) = <x(k + £& 3') - <*(£& 3') < 0. Also

T™P+9+1B = [OP +.?.+102] c ^ f + 1 and

For all 0 ^ k < 3P+1 and x e ^ w e have

P+<?+2

if and only if k = J ] ^ ^ . We thus obtain T(JC) = 2.3p+9+1 + ^ f - o 3 < - w = 2 3 P a n d

t1
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Let T = S and Y = {xeX: Sk(x)$[\] for all keZ}. By ergodicity of T\ we have
fi(Y) = 0 and Y = {xeX: ff*(x)£[l] for all k ^ 0}. We next show that {[0], [1],[2]} is a
generating partition for S restricted to the invariant set Z = X\ Y.

Let ni: Z -* N be the first return time to [i\ n Z and St the first return map. The
computations show that St is conjugate to S: (roSi = Sou on[i\[] Z and that:

n^x) = 2Q+1 + 1 for xe[12.?.20],

n1(x)= 1 for xet l l^ . t . 1 12.^.20] U [11.^. 12^f.t.121]

and for / = 0, 2 we have:

nix) = 2 forjce[/2.?.20],

«,(*) = 2/7 + 3 for xef/l^.t.1 12.?. 20] U [il / \ 12^.t.1 21].

In order to prove that h(Slz) = 0, it is enough to show that Sh(x) ~ 5lfc(>>) for all
k implies that Skoa{x) ~ Skoa{y) for all fc. Following the method in Theorem 3.10,
it is enough to show that x,ye[i\ and ntoSk(x) = «(o5f(y) for all k implies that
a(x) ~ (T(^).

Case 1: / = 0, (x, j;) E [0] n Z and n0 o SoW = n0 o ̂ ( j ; ) /or a// k (the case / = 2 is
similar). Suppose that no(x) = no(y) = 2p + 3; if p ^ 1 then ff(x),cr(3;)e[l]; if/? = 0
then the case * = 012 H. 20. . . and y = 02 r.1". 2 1 . . . cannot happen since n0o S0(x)
is even and WoOiS1^̂ ) is odd: in both cases a(x) ~ a(y). Suppose that
no(x) = no(y) = = 2, since (x,y)eZ there exist a ̂  1 and b ̂  1 such that

x = 0xo...xo_x 1 ..., j ; = 0^o...yb_, 1 . .,

where ^ ,^€{0 ,2} , xo.. .xa_1 ^ 2.^.2 and ^ • • • A - i ^ 2. . .2 . We claim that a = b
and xt = yt for 0 ̂  / < a. We first notice that no(0xo... xa_x 1...) = 2 if xo... xa_x ^
2.fl.2 and no(O2.a.2\...) = 3. Let k=Yl£i\xi2

i and / = L?:0
15^2i then

JC = 50
fc(00.?.01...) and y = Sl

0(00A01...). Since Sf-h(x) = 02.^.21... and
S * 6 - ' ^ ^ 02 A 2 1 . . . then 2a-k = 2b-l and the claim is proven. In both cases
a{x) ~ a(^).

2: / = 1, (ij)e[l]flZ and nloSk(x) = ^oSf^) /or all k. Suppose that
nx{x) = nx(y) > 1, then

2«<*>+i = 2«<̂ >+1, ^(x) = ^ ) and O(JC) ~ ^

Suppose that n^x) = w ^ ) = 1; we claim that the case x = 11 ^.T. 12.^.20...
and / = 1 2 r . t 1 2 1 . . . cannot happen. Either /? = 0, S^x) = llO^.i".101... and
Ŝ OO = 11.T.02..., and since «1o51(x) = 3 and n 1 oS 1 ( j ; )= l I we obtain a
contradiction; or p ^ 1, Sil(x) = 11 . . . and S^\y) = 10..., and we obtain a
contradiction since ^oS^ix) = 1 and /ijo5" (̂>>) = 3.



A SKEW PRODUCT ENTROPY FOR NONSINGULAR TRANSFORMATIONS 511

We now consider a family of maps that we call nonsingular type III, Chacon
automorphisms for 0 < X < 1. This family was first suggested in [21], where it was
claimed that they have rational (nonsingular) minimal self-joinings, and hence have
no nontrivial proper invertible factors. However, they were not defined and were
replaced by a more general family of maps (that includes type IIIA for 0 ^ X ^ 1 and
type 11^). Recently, A. del Junco and the first named author have used this family (in
a slightly more general form than in Definition 3.15) to construct various examples.
However, the methods used are those of joinings, and while they serve well to control
invertible factors (see e.g. [21]), as far as we know, they cannot be used to control
noninvertible factors (see Example 3.14).

EXAMPLE 3.14. Let (X, n, T) be the two-sided finite measure preserving Bernoulli
shift with two symbols and measure (|, |). Then !F = \/££ r~*{[0], [1]} is a noninvertible
factor algebra. The relatively independent joining v over the factor algebra #" is
defined by

v(A xB) =

for any Borel sets A and B. Then we have that v^O^ x [1LJ = 0 but v^O^ x T[\]J = \,
so that the joining is not nonsingular for TxT.

DEFINITION 3.15. Let (X,fi, T) be the ternary type IIIA odometer. We define 7"
to be the exduced transformation (cf. [12]) of T on the symbols 2*1. That is, let
X' = X\J [2*1'], where [2*1'] is a disjoint copy of the sequences starting with 2fcl for
k ^ 0. Extend the measure and the Borel sets in a natural way to X'. For XEX': if
xe*\[2*l] let T'(x) = T(x), if x = (2klXlx2...) let T\x) = {2kYxlx2...), and if
x = {2k\'xlx2...) let T'(x) = T(2k\x1x2...). We call {X',n',T) the nonsingular
type \\\k Chacon automorphism.

It follows that 7" is a type III,, for 0 < X < 1, conservative ergodic nonsingular
automorphism. We would like to thank Andres del Junco for observing the following
consequence of Theorem 3.13.

COROLLARY 3.16. Let 7" be the type \\\k Chacon automorphism. Then s^{T') = 0.

Proof. It follows from Definition 3.15 that the transformation 7" induced on X
is the transformation of Theorem 3.13, which has zero skew product entropy.
Proposition 3.2(f) completes the proof.

4. Nonsingular K-automorphisms

We develop in this section the notions of natural extension and K-automorphism
for nonsingular maps. We first recall two definitions. A factor algebra J5" is called
exact if

and exhaustive (when T is an automorphism) if

(mod n).
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DEFINITION 4.1. Let (X, pi, T, co) be a nonsingular endomorphism. A nonsingular
automorphism (X, pi, f) is called a natural extension of (X, pi, T, co) if there is a
markovian factor map 0: X^> Xsuch that <j)~\$}(X)) is an exhaustive factor algebra
of

Since in the measure preserving case all factor maps are markovian, Definition 4.1
coincides with Rohklin's definition of the natural extension [20]. In the nonsingular
case, it is necessary to require the factor map to be markovian; at the end of this
section we mention an example of a type III automorphism (Hamachi's example, cf.
4.9) that has an exhaustive factor that is finite measure preserving - this factor is not
markovian, and in general, as we shall see below, it could never be markovian.
Further, it is necessary to consider the natural extension of Twith (or with respect to)
co. The natural extensions of T with respect to different markovian functions may
have different properties cf. [24, Example 5.4]. However, if (co',//') is cohomologous
to (co, pi), then the natural extensions of (X, pi, T, co) and (X, pi', T, co') are in a canonical
way nonsingular isomorphic but not necessarily (measure preserving) isomorphic. We
refer to Maharam [17] for another construction of an invertible extension.

THEOREM 4.2. Let (X,pi, T,CO) be a nonsingular endomorphism. Then there exists
a unique natural extension up to isomorphism.

Proof. Existence was proved in [23, 24]. Let (X,pi,T,co) be the invertible
extension of (X,pi,T,co) defined in [24, Theorem 5.9] using inverse limits and let
(X,pi, f,co) be any natural extension. Let 0: X-> Xand 0: X-* Xbe the factor maps.
We define y/:X^X by y/(x) = (0o f~n(x))n^0. It is clear that 0 o ^ = 0. If / i s
a positive ^(Ar)-measurable function, then

fo<po T~noif/dfi = \fo^oy/of~ndfi= \fo^oy/cdndp, = \fo(j)cdndpi
J %/ J

= [fCDn dll = I/O $COn dfi = I/O 00 f - dfi.

Since \Jn>0 Tnof'\^(X)) generates @(X), the above calculations show that y/ is a
measure preserving map. Since [Jn>Qfno<j)~1(&(X)) generates $8(X), we have that
y~x: @(X) -> 3&(X) defines a one-to-one and onto map between the Borel measure
algebras of standard spaces and therefore shows that y/ is invertible.

The following lemma is the main lemma which transposes the properties of a
nonsingular endomorphism to its natural extension.

LEMMA 4.3. Let (X, fi, T) be a conservative nonsingular automorphism, SF £
be an exhaustive Markovian factor algebra and h: X-*M+ a positive 0$(X)-measurable
function. If (h/h o T) is 2P -measurable, then h is & -measurable also.

Proof. The proof is divided into three parts.

Part 1. We assume that pi is finite T-invariant (co = 1) and that h is T-
invariant (h = hoT). Since \Jn>1T

n^ generates &(X), then for every a < /?,
B ={x: a < h < /?} and e > 0, there exist n ^ 1 and F, where Fis immeasurable, such



A SKEW PRODUCT ENTROPY FOR NONSINGULAR TRANSFORMATIONS 513

that ^(BATnF) < e. By invariance of n and B, we have JJ,(BAF) < e. In particular B
and therefore h is ^"-measurable (mod//).

Part 2. We assume that p. is u-finite T-invariant and that h is T-invariant. Since
$F is (7-finite, we can find a partition of X, say {Xk}k>0, of .^"-measurable sets which
have finite measure. We call Tk: Xk-> Xk the induced map, xk: Xk->N the return time
and ^k,nk, hk the restriction of SF ,11, h to Xk. By conservativity of T, we know that nk

is 7^-invariant. Since hk is ^-invariant, it is enough to show that J^ is an exhaustive
factor algebra for Tk. If F ^ A^ is immeasurable, then

T~k\F)= )J(Tk = n)()T

If B ^ Xk is ^(A')-measurable, for every e > 0, there exists F, where F is SF-
measurable, such that fi(BATnF) < e. Since Xk n TnF= Ui$P.o«9

 TkG
P,g>

 w n e r e

n••• n(X\T-°+1F)n r-vn(T, >g+1)n ff; rfcort = « + A
\i-0 /

is ^-measurable, fi(BAG) < e for some Ge\Jn>0

Part 3 (general case). We define the following extension (X, ji, f) where
X = X x R+ x IR+, p = hfi® Leb ® Leb and T(x, s, t) = (T(x), s/co(x), th(x)/h o T(x))
and also # = J5" (g) ^ (g) ^ , h(x, s, t) = th(x). We notice that p, h are T-invariant
and show that # is a cr-finite exhaustive factor for T. Let a: X^> U, b: U+ -*• R and
c: U+ -+ U be integrable functions, then, for every e > 0, there exist a1: A" -• U, where
«! is ^"-measurable, and n ^ 1 such that

\a — axoT n\d/j. ^ e.

Define ^ (x , J, /) = b(s/con(x)), ct(x,5,0 = c(th(x)/hoTn(x)), then

C f
\abc - (a1 bx cx) o T~n\ dji < e \b(s) c(t)\ ds dt

and ax b1c1 is ^-measurable. By Part 2, it is enough to show that f is conservative:
indeed we notice that f is the Maharam skew product of (X*, hfi*, T^ho T/h), where
(X*,fi\ TJ is the Maharam skew product of {X,fi, T).

Parts (a) and (b) of the following theorem were proved in [23]; we outline a proof
here for completeness.

THEOREM 4.4. Let (X, fi, T, co) be a nonsingular endomorphism and (X, fi, f) be its
natural extension. Then

(a) co is recurrent if and only if f is conservative;
(b) if co is recurrent, then T is ergodic if and only if f is ergodic;
(c) if co is recurrent and T is ergodic, then T is type III if and only if t is type III.

Proof Let 0: X -> X be a markovian factor map such that #" = $~X@}{X) is an
exhaustive factor algebra, and co = coo(J> = dfiof/dfi.

(a) We have that co is recurrent if and only if co is recurrent if and only if f is
conservative (cf. [24, Corollary 5.4]).

(b) If co is recurrent, as f is conservative, by Lemma 4.3, Be$(X) is T-invariant
if and only if there exists Be&(X), where B is T-invariant, such that B = (p~\B). It
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follows that J = 0~l(c/)(mod/i) where J (respectively, J) denotes the a-algebra of
f-invariant (respectively 7-invariant) sets.

(c) Suppose that T is ergodic and co recurrent. By [24, Theorem 5.6], if Tis type
II, then co is a coboundary co = h/ho T, cb — h/ho t with h = ho0, and f preserves
the measure hfi: hence f is type II. Conversely, if f is type II, then co is an
.^"-measurable coboundary co = h/hof; by conservativity and Lemma 4.3, h is
immeasurable, h = ho<j>, co = h/hoT, T preserves the measure hji: therefore T is
type II.

DEFINITION 4.5. Let (X,fj.,T) be a nonsingular automorphism such that
38(X) # {0, X). Then T is said to be a K-automorphism if T is conservative and
admits a factor algebra OF that is exhaustive and exact and such that dfi o T/dfi is
.^"-measurable.

REMARK 4.6. (a) The definition of a K-automorphism is with respect to a fixed
measure n. For a given factor IF, the chosen measure /* is the only measure in its class
for which d/uo T/d[i is J^-measurable. This follows from Lemma 4.3.

(b) We could have defined K-automorphisms without requiring them to be
conservative, and then a K-automorphism would have been either conservative or
totally dissipative: the dissipative part {x: X ^ o ^ 0 Tkcok < + oo} (for some positive
integrable J^-measurable function h) is indeed .^"-measurable and invariant. Parry
studied in [18] K-automorphisms in the context of infinite invariant measure, and
allowed them to be dissipative. He also proved in his context (infinite measure
preserving K-automorphisms) a statement analogous to Lemma 4.3.

(c) Proposition 4.8(a) for the case of infinite measure preserving K-auto-
morphisms was proved in [18], and for a special case of nonsingular K-automorphisms
in [15].

(d) It follows from the definitions and Theorem 4.4, that if (X,/i, T,co) is an exact
nonsingular endomorphism and co is recurrent then its natural extension is a
nonsingular K-automorphism. If T is a nonsingular K-automorphism then it is the
natural extension of an exact nonsingular endomorphism with respect to a recurrent
markovian pair.

The notion of weakly mixing was extended to nonsingular automorphisms in [3],
where the authors also give other characterizations equivalent to the definition
below. They also asked for a property that is equivalent to the ergodic multiplier
property mentioned in Proposition 4.8(b), a question we thank Aaronson for pointing
out to us.

DEFINITION 4.7. Let (X,/J,, T) be a nonsingular automorphism. Then T'\s said to
be weakly mixing if for every finite measure preserving ergodic automorphism
(Y, v, S), we have (Xx Y,// x v, Tx S) is ergodic.

PROPOSITION 4.8. Let (X,fi, T) be a nonsingular K-automorphism. Then
(a) T is ergodic,
(b) for every ergodic nonsingular automorphism (Y, v, S), if Tx S is conservative

then Tx S is ergodic,
(c) T is weakly mixing,
(d) 5/7) = +00.
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Proof, (a) If A is an invariant set, by Lemma 4.3, A belongs i5" and so has to
be trivial.

(b) Let J5"* = 2F (g) @(Y), then J^* is exhaustive markovian for Tx S and its tail
cr-algebra is {0,X} ® &(Y)(modft x v). Suppose that E is 7" x ̂ -invariant; since
Tx S is conservative, then by Lemma 4.3, Ee^* and therefore Ee{0,X} ® 0S(Y).
By ergodicity of S, it follows that E has to be trivial.

(c) This follows from (b).
(d) The mapping T is the natural extension of a nonsingular endomorphism S

that corresponds to the exhaustive factor J5". Since S is not invertible a.e., the result
follows from Proposition 3.2 Parts (g) and (i).

We consider now Hamachi's example [9] of constructing an exact nonsingular
type III endomorphism whose natural extension (with respect to a recurrent
markovian function) is the original Hamachi example.

EXAMPLE 4.9. Let (X, //, T) be Hamachi's example [9] denned by X = ]"]-«{0,1},
T is the left shift, and fi = YI-& P* ls a product, where nk = {\, \) for all k ^ 0, and fik

for k < 0 is chosen carefully so that the shift is nonsingular conservative ergodic type
III for the resulting measure. Hamachi shows that

o
co(x) = dfio T/dn = n#t-i(**)Mt(**)-

- 0 0

In particular co is 88~ = XJ0-.^ /""^-measurable, where & is the time zero partition
^ = {[0].[l]}- Define @+= VJ00^"*^- Let (Y,v,S,co) be the nonsingular endo-
morphism defined by: Y = Y\-& (0,1}, 51 is the right shift, 0: X -*• Y is the factor map
0(x) = (...,x_t,x0), v = fxocjr1, and c5(y) = \/cooT~\x) for any xe<fr\y). (A similar
construction can be done from Krengel's example [15].)

PROPOSITION 4.10. With the above notation (Y, v, S, co) is a recurrent exact type III
endomorphism whose natural extension is (X,n, T~x).

Proof. We note that (X,n,T~x) is a nonsingular K-automorphism with
exhaustive and exact factor <$t = <fr\3&(Y)). Moreover, co is ^"-measurable and 0 is
a markovian factor; co is recurrent and type III by Theorem 4.4. By Kolmogorov's
0-1 law, S is exact.

The need to consider markovian extensions is illustrated by the following
example. The automorphism (X, JX, T) has an exhaustive and exact factor algebra ^ +

which is the {|,|} one-sided Bernoulli shift, but it is not a markovian factor.
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