A SKEW PRODUCT ENTROPY FOR NONSINGULAR
TRANSFORMATIONS
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ABSTRACT

We define a skew product entropy for conservative nonsingular transformations, show that it takes
values in {0, oo} and use it to distinguish two classes on nonsingular transformations. Binary and ternary
type 11I; odometers have zero skew product entropy, while nonsingular K-automorphisms have infinite
skew product entropy.

1. Introduction

We introduce a skew product entropy for nonsingular endomorphisms. We show
that the skew product entropy takes values in {0, co} and use it to classify nonsingular
transformations into two classes. For example, we show that type III, binary and
ternary odometers have zero skew product entropy, while nonsingular K-
automorphisms have infinite skew product entropy. We also obtain nonsingular
automorphisms with the same ratio set but different skew product entropy.

In Section 2 we recall some properties of Krengel’s entropy for infinite measure
preserving transformations. We compute the Krengel entropy of T x S, for T infinite
measure preserving, in the case when S is a compact group rotation and when S has
positive entropy. These questions are mentioned in [14, Section 5J, and the difficulty
lies in the fact that S is not a factor (in our and in Krengel’s sense) of T x S (the factor
algebra corresponding to S is not o-finite for product measure).

In Section 3 we define the skew product entropy; this is defined by computing the
Krengel entropy of the infinite measure preserving Maharam skew product of the
transformation. We also compute the skew product entropy for binary and ternary
odometers, and study basic properties of the skew product entropy.

In Section 4 we first show that the natural extension for nonsingular
endomorphisms is unique and has the same type, completing our study in [23, 24]. We
then define the notion of conservative nonsingular K-automorphisms. We show they
are ergodic, and that any such T satisfies the following multiplier property: if Sis a
conservative ergodic nonsingular automorphism such that 7'x S is conservative, then
T x S is ergodic; this property clearly implies weak mixing. This gives a partial answer
to a question in [3], where they ask for a property of T that is equivalent to this
ergodic multiplier property.

We assume all spaces X are standard Borel spaces; #(X) denotes the Borel
o-algebra of X, and all measures are o-finite Borel measures. A nonsingular
endomorphism (X,u,T) is a map T: X — X defined on a space X such that
TY(AB(X)) < B(X) and u(N) = 0if and only if u(T-(N)) = 0 for every Ne B(X)). A
nonsingular automorphism is a nonsingular endomorphism such that 7-}(#(X)) =
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A(X)(mod y), (it is known that this condition is equivalent to the existence of a
Borel set Y = X of full measure such that T: Y — X is one-to-one); we denote by
@ = duo T/du its Radon-Nikodym derivative. More generally (in the endomorphic
case), a positive finite function w satisfying

J foTwdyu = de,l

for all integrable functions f'is called a markovian function for (X, u, T); we also say
that (w, i) is a markovian pair for T and note that such @ may not be unique (this
together with existence was shown in [24]). A nonsingular endomorphism is said to be
conservative if, for every Borel set A of positive measure, there exists #n > 1 such that
u(ANT"A) > 0; amarkovian pair is said to be recurrent if, for all positive integrable
functions A, we have
i—-1

Y hoT'w,=+wa.e., wherew,=[[woT’

i>0 3=0
(the existence of a recurrent markovian pair implies conservativity). Two markovian
pairs (w, ) and (@', ') are said to be cohomologous if there is a transfer function h
such that 4 ' =hu and o =w(hoT/h). A conservative ergodic nonsingular
endomorphism (X, u, T) is said to be type III if there is no o-finite T-invariant
measure equivalent to u; it is type II if there exists o-finite T-invariant measure
equivalent to .

2. Krengel entropy

In this section we recall Krengel's definition of the entropy of a conservative
infinite measure preserving endomorphism, and compute the entropy of the product
of two such endomorphisms in two particular cases. The following definition is given
for general nonsingular endomorphisms (X, 4, T, @) and is used in Sections 3 and 4;
however in this section, the endomorphisms are measure preserving and we assume
that the corresponding w is always 1.

DerINITION 2.1, Let (X, 4, T}, 0,) and (X, iy, T, ,) be two nonsingular
endomorphisms. We say that T, is a factor of T, (respectively, T, is isomorphic to T,)
if there exists a map ¢: X, — X, called a factor map (respectively, isomorphism) which
satisfies:

(i) ¢ HB(X,)) < B(X,) (mod p) (respectively, ¢ is bijective and bimeasurable),

(i) mog™ =

(i) poT, = T,opa.e.

We say that T, is a markovian factor of T, (¢ a markovian factor map) if moreover:

(iv) w, = w,09.

The factor map (respectively, isomorphism) is said to be nonsingular if (ii) is
replaced by the requirement that u, 0 ¢™" is equivalent to u,.

For a nonsingular endomorphism (X, i, T, w) we extend these two definitions to
sub-g-algebras & such that u restricted to & is o-finite. Then & is called a factor
algebra if T'% < &# (mody) and a markovian factor algebra if in additon w is
measurable with respect to %. A factor algebra is called invertible if
T'% = % (mod p), noninvertible if T'F # F (mod p).
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We note that if ¢: 7, —» T, is a factor map and T, is an automorphism, then ¢ is
markovian if and only if @, is measurable with respect to the factor algebra ¢ #(X,).
We shall see later the need to consider markovian factors when studying noninvertible
transformations (for example, we obtain uniqueness of the natural extension only in
the class of markovian factors, cf. 4.2).

If T is a finite measure preserving endomorphism of (X, u) we let 4(T) denote the
Kolmogorov-Sinai entropy of T with respect to the normalized measure u/u(X).

We now recall the entropy defined by Krengel [14] for a conservative infinite
measure preserving endomorphism. For any set 4 let A°=J,,,77'4. By
conservativity, 4 €T7'4° and we can define the return time to 4 by 7,(x) =
inf{k > 1: T¥(x)e 4} for all x in T7'4° and 7, = 1 for all x in X/T*4°. Then put
T,(x) = T*4(x) for xe X. The restriction of T, to A is called the induced map on A. Let
1, be the restriction of u to #(A4) (notice that the measure is not normalized nor
necessarily finite), then (4, u,, T,) is a conservative measure preserving endomorphism
(see [24, 5.2(a) and 4.3]). We say that A4 is a sweep out set if A° = X (mod u). (We note
that if T is infinite measure preserving and admits a sweep out set of finite measure,
then it is conservative [16].) If 4 has finite measure, A(7,) will denote the
Kolmogorov-Sinai entropy of T, restricted to A with respect to the normalized
measure u, /u(A).

THEOREM 2.2 (Abramov’s formula). Let (X,u, T) be a finite measure preserving
endomorphism and B be a Borel set. Then

(@) u(X)h(T) 2 u(B)h(Ty),

(b) if B sweeps out, then y(X)h(T) = u(B) i(T).

DEerINITION 2.3 [14). Let T be a conservative finite or infinite measure preserving
endomorphism. The Krengel entropy of T is defined by:

kT) = sup{u(E) h(T): 0 < u(E) < + o0}.

We in fact have that k(T) = sup{(E)(T;): E< X, and 0 < u(E) < o0}. We
first notice that X can be decomposed into two disjoint invariant sets: X = X, U X,
where X, = {xe X: T"**(x) # T*(x)Vn = 1,k > 0}. By conservativity, X, is actually
equalto {xe X: T"(x) # xVn = 1}. Indeed, |f Y = {xeX: 3n > 1such that T"(x) = x},
then TY = Y, by conservativity y(T'Y\Y)=0 and Y =), 7 Y (modp). If
E=E,UE, is a Borel set of finite measure, then wu(E)h(T)=wE,)nT;)+
Mu(E,) h(T ) Since for almost all xe E, we have that x is a periodic point for T
it follows that h(T, ) =0. Also T'is called aperiodic if X, = X (mod u). We now recaﬁl
some results about Krengel’s entropy. We first prove the following technical lemma.

Lemma 2.4, Let (X, u, T) be a finite measure preserving endomorphism and (E.),,
be an increasing sequence of Borel sets such that |J,.,E, = X(mody). Then
U K(T) = lim, ., u(E)H(T,,).

Proof. We first construct by induction a sequence of sets (F,),,, such that
X =, F:, the {F3},,, are pairwise disjoint and {Jj. K € E, < Ur.o F;. We
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choose F, = E, and define: F, = E,\(|J;Zs F;) for alln > 1. We have only to check that
the sets {F},,, are pairwise disjoint (mod x): indeed, for m < n we have F, N F,, = &,
moreover F5, N FS = (F, N F:)° U(F.NF,) and by conservativity, F,, S [eso T *F5,
(mod y), in particular, implies that

F,NF:=F,() T F: nF < (F:,nE) (mod ).
k20
We now conclude the proof using Abramov’s formula. By disjointness of the
invariant sets {Fs},, we get u(XYA(T) = Y. ..o w(F3) h(T| F2) and since E, is a sweep
out set of 7 restricted to | J;_, Fi we obtain

w(U R)H(110) ) = 5 sROMTI R = W(EIKCT, ).

k=0

THEOREM 2.5 [14]. Let (X,u,T) be a conservative infinite measure preserving
endomorphism.

(@) If T is aperiodic, then there exists a sweep out set of finite measure.

(b) If E is a sweep out set of finite measure, then k (T) = u(E) h(Ty).

(©) If Fis a sweep out set of infinite measure, then k (T) = k”F(TF).

(d) If (Y,v,8) is a factor, then k(S) < k(T).

(e) If k(T) =0, then T is an automorphism.

(f) Foralln>0, the map T" is conservative and k (T") = nk (T). If, moreover, T
is an automorphism, then k (T™") = k (T).

Proof. Parts (a) and (b) are in [14, Theorems 2.1 and 3.1]. Parts (d), (e) and (f)
are in [14, Proposition 5.1, Theorem 7.1, and Proposition 5.2].

Part (c). Since (T;,) = T, for every set E < F, we get k, (T;) < k,(T). Conversely,
let E be a set of finite measure, (), , an increasing sequence of sets of finite measure
which exhaust F and E, = E'U F;. We notice that (E,),, is an increasing sequence,
Ueso Ex = E and that F, is a sweep out set for T, ,, restricted to E, U F,. We thus
obtain

HE)M(Ty) < p(E U B) Ty ) = HE) H(T) < K, (T,

and finally use Lemma 2.4 to get u(E) h(T) < k, (T;). Taking the supremum over E
we have k(T) <k, (Tp).

We note that in the following Proposition 2.6(a), S is not a factor (according to
Definition 2.1) of T x S. This formula appears in Parry’s book [19], but there he uses
a different definition for the entropy. The following question remains open: does there
exist a zero entropy finite measure preserving transformation S and a zero entropy
infinite measure preserving transformation 7 such that the Krengel entropy of T'x S
is infinite?

ProPOSITION 2.6. Let (X,u, T) be a conservative infinite measure preserving
endomorphism and (Y, v,S) be a finite measure preserving endomorphism. Then

(@) kulTx8) 2 p(X)k(S)+v(Y)k,(T) (with the convention -0 = 0),
(b) if K(S) >0, then k,, (TxS)=+00;
(c) if S is a rotation of a compact abelian group Y with respect to Haar measure v,
then k,, (T x S) = w(Y)k(T).

HXV
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Proof. Let E = X be of finite positive measure, R be the induced map of Tx S
on Ex Y and 7 the return time to E. Then R(x, y) =(T(x), ST (»)).

(a) We first prove the following formula (cf. [5, (**)]):

n-1
h(R) = h(Y;)+sup{ lim j %H [\/ S;‘Q] dug(x): 2 is a finite partition of Y },
n—+0 JE i=0
where S;' = (597, SX(y) = S“®(p) and 1,(x) = )23 To TH(x).
Let 2,2 be finite partitions of E, Y, and J(Y) denote the trivial algebra of Y.
Then

H[\/l RYP® 9)]

[\/ T“Q’] + H[ \/ RYE® 2)

i=0

VR2?® Y)]

[\/ T".@]+H[v R (E® ,@)‘.@(E) ®.7(Y)].
i=0

The conditional measure of a Borel set Be #(E) ® %(Y) with respect to Z(E) ® 7 (Y)
is given by the formula: u, x v(B|%(E)® 7 (Y))(x,y) = v(B,), where B, denotes
the vertical slice of B. Since (\/7} RYE® 2),=\/i% S;'2 and the sequence
(HIV 5 S;°2)),. 5, is subadditive, by taking the limit on n and all partitions 2 we
obtain:

h(R) > h(T,)+ lim J%H[\—/l s;f,@] du(x).

n—o i=0

Conversely, if # is a finite partition of Ex Y we have

H["\'/‘ Rgz]
[\/ RY(P® .@)] +H[\/ R 'RHP® ,@)]
[\/ T—w]+11["\7R P ® Y)]+nH[92|f?®.@]

Since the sequence (H[\/}% RY(E® Q)I\/Z'_‘Ol RY(P® Y)]),s, is subadditive, by
taking the limit on n, we obtain

KR, R) < h(P, T,)+ HIR| P ® 2]+ (1/n) H["\_/l RYE® 9)

i=0

Vrw@en)

=0

for all n > 1. We now choose an increasing sequence of partitions (%), which
generate #(E) and obtain:

h(R,R) < W(Tp)+ H[R|B(E)® .@]+J(l/n) H[T/l S;i,@] dpg(x).
i=0

We first take the infimum over n then the supremum over 2 and over £ and obtain
the other inequality.
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We next show that

n-1
sup{ lim (l/n)H[\/ S;’.@] duE(x)} > j Tdu(x) h(S)
2 n—+ow JE i=0 E
and we conclude the proof of assertion (a) by applying Kac’s Lemma [24]:
fErdy = u(E®) and by choosing an increasing sequence of finite sets (E,),., which
exhaust X.

Let 2 be a finite partition of Y and 4, = \/¥%} S7'2. Then

H|Vs:a|-Fala

i=0

n—i—1
V ik .zc]

n—1 B
= Z H ‘Qk/\roT}f(x)

i=0

n—i-1
=]
\/ Sﬂ'g(z) 'Qk:|
=1

\%

V s-a@]

jzkAtoTE(2)

v s—f,@]

21

n-1 [
Z H "2: ATo T}.;(x)
i=0 L

n-1
=Y kAto Té(x)H[,@

i=0

n-1
=Y kAtoTix)h(2,S).
i=0
We conclude by integrating over E and by taking the supremum over 2 and then
over k.
(b) It is an immediate corollary of 2.6(a).
(c) It is enough to show that lim, . (1/n) H[\/73' S;'2+ = 0 for every finite
partition 2. We first assume that Y =T, (here T is the one-dimensional torus), S is
the rotation defined by S(y) = y+a and 2, is the partition

([k)27, (k+1)/27): 0 < k < 27},

(The proof of this case appears in [14].) We denote by increasing order k, =
0<k, <...<k,=1, where g = g(x, p), the points of

{k/2? —t(x)(mod 1): 0 <k < 27,0 < i < n}.

The partition & = {[k, k,,,): 0 <i < g} is finer than the partition \/77 S;*2, and
therefore H[\/1 S;'2,) < H[#] < In(n2?). In particular

n-1
lim (l/n)H[\/ S;i_@p] =0.
n—+w i=0

If Y is a general compact abelian group, S the rotation S(y) = y+a and Y the dual
group of characters of Y, then Y is countable, ¥ = {y,,7,,...} and generates B(Y).
Let 27 = {y;'((k/2%,(k+1)/27)): 0 < k < 2P}and 4, = 2, v ...V 2, then (2),,, isan
increasing sequence of partitionsand \/,,, 4, = %(Y). Each y,: Y — T defines a factor
of Y:9,08 = Rjoy, with R(y) = y+y,a) and H[\/73' S;*2,) < Y 2, H[\/ % S;'21).
Using the beginning of this part we obtain lim,_,(1/n) H[\/3 S;'2]=0. If
2 is another finite partition then H[\/73'S;'21 < H[\/1Y' S;'9,)1+nH[2|2,).
Since lim, H[2|2,] = 0 we finally obtain lim,_,(1/n) H[\/7:)' S;'2] = 0.

P+
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Hajian, Ito and Kakutani in [8] introduced and showed the importance of ergodic
infinite measure preserving transformations which commute with a totally dissipative
one. The following will be needed in Section 3.

LEMMA 2.7. Let (X,u,T) be a conservative infinite measure preserving endo-
morphism and Q: X — X a nonsingular automorphism such that Qo T = To Q.

(a) If T is ergodic, then uo Q7' = au for some o > 0.

(b) If po Q7' = au for o # 1, then k (T)€e{0, + o0}.

Proof. (a) Since v = (duo Q7' /du)u is T-invariant conservative ergodic, by the
Hopf ergodic theorem, for any sets 4 and B of finite measure for u and v, we have
that Y 7ty 0T/ Y. xzo T converges a.e. to u(A)/u(B) and to v(A)/v(B).

(b) Since Q: (X, u, T) - (X,au, T) is a (measure preserving) isomorphism, and
kT) = k,(T) = ak,(T) the result follows.

3. Skew product entropy

We now investigate a number that we call the skew product entropy of a
nonsingular endomorphism. We are mainly interested in distinguishing between zero
and positive entropy for nonsingular automorphisms. We note that while skew
product entropy takes only two values, Krengel’s entropy for an infinite measure
transformation takes essentially three values since there is no canonical choice of the
measure up to scalar multiple.

If (X,u, T,w) is a nonsingular endomorphism we denote by (X*,u* T) the
infinite measure preserving Maharam skew product. X* = X x R*, u* = ux Leb and
T.(x, 1) = (T(x), t/w(x)). We notice that T is not a factor of T, and recall that T is
conservative if and only if (w, &) is recurrent [23, Theorem 2].

DerFINITION 3.1. Let (X,u,T) be the nonsingular endomorphism and (w,u) a
recurrent pair for T. The skew product entropy of T with respect to (w, u) is defined
by

s(w.;l)(T) = k,;*(]:u)-

Here also, to compute the skew product entropy, we may assume that 7T is
aperiodic. Indeed X} =X, xR*; since X! =], T xeX: T"(x)=x} is T-
invariant (T7'X} = X7) and by conservativity X, = {xe X: T"(x) = x} (mod u) we
obtain for all positive integrable functions 4 that

f hwnd,u=j hoT"a)ndy=J hdu
x5 T "Xy xh

“<p »

and therefore w,(x) = 1 for all x satisfying T"(x) = x.

In the case when, for a given y, there exists a unique recurrent (w, ) (for example,
when T is an automorphism, or when T is measure preserving [24, Theorem 5.6]), we
shall write 5,(7) instead of s, , (7). In the following proposition we collect some
properties of the skew product entropy; the natural extension is defined in Section 4.
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PROPOSITION 3.2.  Let T be a nonsingular endomorphism recurrent with respect to
(@, p).

(a) The skew product entropy s, ,(T)€{0, + c0}.

(b) If (o', 1) is cohomologous to (w, u), then s, ,(T) = .y (T).

(c) If T is measure preserving, then s,(T) = 0 if and only if k (T) = 0.

(d) Let (Y,v,S) be a finite measure preserving endomorphism. Then Tx S is
recurrent with respect to (w x 1, uxv). If h(S) > 0, then s,z; ,uy(TX S) = +00. If Sis
a rotation of a compact abelian group, then s, ,x,(Tx S) = s, ,(T).

(e) If (X, 15, T, ®) is a markovian factor of (X, u, T, @), then s 5(T) < s, ,(T).

(f) If E is a sweep out set, then the induced map T, on E is recurrent with respect
to (wg, ug) (Where wg(x) = @, (%)) and s, , (Tg) = S y(T).

(8) If 5,,,(T) =0, then T is an automorphism.

(h) For all n> 0, the pair (w,, u) is recurrent for T* and s, ,(T") = nsy, ,(T). If
T is invertible, then T™" is conservative and s(T™) = s(T).

() If (X, 4, T) is a natural extension of (X, p, T, w), then s,(T) = s, ,(T).

Proof. (a) The automorphism Q(x, ) = (x,2¢) commutes with 7, and satisfies
du*o Q7'/du* = . Lemma 2.7 implies that k,.(T,)€{0, + c0}.

(b) Let h be the transfer function between the cohomologous pairs, that is,
4 =hu and o = w(hoT/h). It follows that the map w(x,?) = (x,t/h(x)) is an
isomorphism of (X*, ux Leb, T ) and (X*, ' x Leb, T,), and therefore their Krengel
entropies agree.

(c) We may assume that T'is aperiodic; by [14, Theorem 2.1] for each n > 1 there
exists a sweep out set A, such that wu(4,) <2™. Let B,=A,x(n—1,n] and
B=J,>,B, Then B is a sweep out set of finite measure for (X*,u*, T;), where
T,(x, 1) = (T(x),t). Let S denote the induced map on B: S(x, ) = (T, (x),t) on each
(x,)eB,. Since B, is invariant for S, we have "

sdT) = w*BYR(S) = L w*(B,) h(S|B,) = ) w(A,) (T, ) = . kT).

nx1 nx=1 nxl

(d) The transformation (7 x S),,, is isomorphic to T, x S and it suffices to apply
Proposition 2.6(b).

(¢) Let ¢: X > X be a markovian factor map. Then ¢*: X* - X* defined
by ¢*(x,t) = (¢(x), ) induces a factor between (X*,u* T) and (X* ig*,T,). By
Theorem 2.5(d), k,.(T,) = k.(T,).

(f) Since the Maharam skew product of (E,u., T;,w,) is isomorphic to
(X*,u*, T) induced on F = Ex R* and since F sweeps out,

smE,ys)(E:) = kﬂ;((rg)i‘) = k;l’(];)) = S(m,m(T)'

(g) If k,.(T,) = 0 then, by Theorem 2.5(¢), T, is injective on a set Y* = X™* of full
measure. By Fubini’'s Theorem, we choose Y < X of full measure such that
Y* = {teR*: (x,t)e Y*} has full Lebesgue measure for all xe Y. For every (x,y)e Y
with x # y, we can find seY} and teY; such that s/w(x) = t/w(y). Since
T.(x,s) # T.(y,t), we obtain T(x) # T(y). We have proven that T is injective on Y.

(h) If fis a positive integrable function, then by recurrence of (w, u) for T we have
YisofoT'w, = +o0a.e. In particular )., ,(Y.74' fo T'w) o T*"w,, = + 0 a.e. and
shows that (w,, u) is recurrent for 7. Furthermore (T*),, = (T,)"; if T is invertible,
@=du*oT'/du* = 1/woT " and (T))™" = (T,
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(i) We may assume that 7 is aperiodic. Let ¢: X — X be a markovian factor and
% =¢'B(X) the associated factor algebra. Then ¢*: X* - X* defined by
¢*(x,t) = ((x),t) induces a factor map between Z* = (X* i* T,) and
X* = (X*u*T). Since F*=F @ B(R*) = ¢*'B(X*) is an exhaustive factor
algebra (see part 2 of the proof of Lemma 4.3), £* is a natural extension of Z*. Let
E < X* be a sweep out set of finite measure; £ = ¢*"(E) is also a sweep out set of
finite measure. We denote by v the restriction of u to E and by S the induced map
on E (idem for # and §). Then ¢* induces a factor map between & = (£, 7, S) and
% = (E,v,S). For the same reasons (see part 2 of the proof of Lemma 4.3), & is a
natural extension of %4 and so

k,(T) = p*(E)h(S) = p*(E) h(S) = k().

CoROLLARY 3.3.  Let (X, u, T) be a nonsingular automorphism. If s (T) = 0, then
T has no noninvertible markovian factors.

We now study the skew product entropy for type III,, with 0 < 2 < 1, conservative
ergodic nonsingular automorphisms. We know that we can always take a
cohomologous pair (@', #'), which will be referred to as a special pair for T, such that
u is a probability measure and the values of w” are powers of 4 (cf. [13, Proposition
2.2)). Thus from now on we assume that (w, u) is a special pair and set A = {A*: ie Z}.
We give the name special Maharam skew product to the measure preserving
automorphism (X, 4, T,) defined by X =XxA, fi= Y, uxtd, and T(x,1) =
(T(x), t/ o(x)).

In [8], Hajian, Ito and Kakutani constructed what we call the special Maharam
skew product in the case of the type III, binary odometers. They also constructed the
map T° of Lemma 3.9(b) and showed it to be ergodic. (The map T is also studied
in [2].)

THEOREM 3.4. The special Maharam skew product (X,4,T)) is a conservative
ergodic infinite measure preserving automorphism.

Proof. Let f: X—> R and g: A— R be bounded Borel functions. Using the
change of variable ¢ tw(x), we obtain:

ff@ golodi= Y [ATx)g(t/w(x)) 1 du(x)

teA

- [Ar9 0t ) % 150 = [r@ 2
teA
To prove ergodicity of T;,, we first define nonsingular endomorphisms S,: X - X
with fe A, in the following way: S,(x) = T%*(x), where

7,(x)=min{n 2 1: 0,(x) = 1.

Since ¢ belongs to the ratio set of T, we have that 7, is finite a.e. and for any Borel set
A of positive measure, there exists n > 1 such that u(4 n ;" 0 5;"(4)) > 0. It follows
that 4 < | J,505;"0S5;%(4) (mod p), for any Ae B(X). If A* e B(X*) is f;,—invariant,
we denote by A, the horizontal slice 4, = {xeX: (x,t)e A*}. Since T:¥(x,s) =
(S,(x), /1) for almost all xe X and all s,te A, we obtain 4, = S;(4,),4, = S;7*(4,)
and therefore 4, S |J,,,S'0S7"(4,) = 4,(mod x). Conversely, A, =Si(4,),
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A,=87'(4,) and A4, S U,»0S7:087*(4,) = A4, We just have proved that
A, = A,(mod y) for all te A, A* = A, x A, and therefore 4, is T-invariant. Since T is
ergodic, A* belongs to the trivial o-algebra.

Conservativity follows from ergodicity since the measure u is non atomic.
Ergodicity can also be obtained from the more general [22, Corollary 5.4] since the
essential range of the cocycle w, is all of A.

ProposiTION 3.5. Let T be a conservative ergodic nonsingular type III,
atftomorphism. If (o, p) is a special pair, then (X*,u*,T)) is isomorphic to
(X x(4,1], i x Leb, T, x Id). Furthermore 5,(T) = (1 —=A)k,(T.).

Proof. Let ¢: Xx(A,1]1- X* be defined by ¢(x,1,s) = (x,5). Since for any
yeR* there is a unique »n such that A1"*' < y < 1%, it follows that ¢ is invertible.
Also ¢ commutes with the actions and is measure preserving, so s(7) = k,.(T) =
(1= k(T,).

COROLLARY 3.6. Let T be a conservative ergodic nonsingular type 111, auto-
morphism. Let T be defined a.e. on X by t(x) = min{n = 1: w,(x) = 1}. Then (X, u, T")
is a finite measure preserving ergodic automorphism, and s,(T) = (1—A) K(T").

Proof. The map (x,1)—(T7(x),1) is the induced map of f; on X x{l}, and
X x {1} is a sweep out set for 7, by definition of the ratio set.

We now compute the skew product entropy for some examples.

DeriNiTION 3.7. Let 0 <A< 1. We give the name binary odometer to
(X,u,T), the nonsingular automorphism defined by X =[];*{0,1}, u=

yof1/(14+2),4/(1+2)} and T the addition by 100... with carry. We denote a
point of X by x = x,x, ....

It is well known (cf. [10, 13]) that the binary odometers are conservative ergodic
type III, nonsingular automorphisms. (We should note that here we are considering
only a special class of binary odometers; for the general class see [10, 13].) Let w be
the Radon-Nikodym derivative of T with respect to z and @ = duo T/du. Let 1.7.1
and 0.”.0 denote strings of n consecutive numbers 1 and of n consecutive numbers
0, respectively.

Lemma 38. Let #={F,P,...} be the partition into cylinder sets P, =
[1.7.10) = {x: x,...x, = 1.".1,x, = 0}. Then on P,, it follows that w equals 2~"*'.

Proof. 1f A=[1..10i,...i,] then T4 =[0.7.01j,...i,] and u(TA) = A" pu(A).

LEmMMAa 3.9. Let t be as in Corollary 3.6 and define a partition
2={0,,:r20,g200of X, by Q0,, =0 £.01.9.110]. Then

(@) for all xeQ,,, we have 7(x) = 27 +27—1,

(b) T7(02.01.9.,110...)=(1.9.10 2.001 ...).

Proof. We first introduce some notation. For p > 0 define cylinder sets A? by
A?=[0F.0] and AP = T*4? for 0 <k <2”. For each integer k=Y 2 k,2' let
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a(k)y =card{i = 0: k, = 1}. Then wu(A4%) = (1/142)P**®(1/1+1)*®  Since w is
constant on each set A% for 0 < k < 27, for any Borel set B < A? we have

HTB) _ p(TAD _ HALY _ paenar
MB) A7) uA4p)
We notice that @, = T™A5***? with m = 2°(2¢*'—1). For all 1 <k < 27, we have

a(m+k) = o(m)+ (k) and u(T*Q,,)/(Q,,) = AX™+H=2m = je < 1 Since T"Q
is a subset of A¥***!, for all 0 < r < 27 we have

HTQ) _ WAZ™) BT 00) _ ruia
WO  HATT) Q) ‘

We conclude the proof by noting that for all 0 < r < 2%, we have a(r) < gand a(r) = ¢
if and only if r =29—1.

pe

THEOREM 3.10. Let T be the type 111, binary odometer. Then s,(T) = 0.

Proof. The idea of the proof is to induce the measure preserving S = T* on the
sets 4, = [1] and 4, = [0]. If xe 4,, then x can be written x = (10 2.01.9.110...);

then
ny(x) =min{k = 1: S¥(x)e 4,} = p(x)+1,

S,(x) = S§"9(x)=(11.9.10 £.001...).

This implies that S, on A, is isomorphic to S; in particular A(S,) = A(S) (where A(S,)
is computed with respect to the normalized measure on 4,). On the other hand,
Abramov’s formula tells us that
A
h(S) = u(4,) h(S,) = mh(S ).

To conclude, it is enough to show that the entropy of S is finite. To do this we show
that (4,,4,} is a generating partition for S. We note that, if 2 is a generating
partition, by the Kolmogorov-Sinai theorem: A(S) = h(S,#) < log2. We write
x ~ y when x and y are in the same element of the partition Z = {4,, 4,}. In order
to prove that 2 is a (two-sided) generating partition, we have to prove that for all
x,ye X, if $¥(x) ~ S*(y) for all k, then x = y. We notice that the induced map S, on
A, is also isomorphic to S: for x = (00 £.01.9.110) we have:

ny(x) = min{k = 1: S*(x)e 4,} = g(x)+1,

Sy(x) = S™(x) = (01.9.10 £.001...).

As usual we denote by ¢ the shift on X and notice that oS, = Soo on 4, for
i=0,1. Assume that x,y satisfy S*(x) ~ S*(y) for all k. We first prove that
S*oa(x) ~ S*oa(y) for all k. Suppose that x,yeA,, since they have the same
return times 7,(Sf(x)) = n,(Sf(»)). In particular p(Sf(x)) = p(S¥(y)) and there-
fore S*oa(x) =00Sk(x) ~0c0SK(y) = S*o0a(y). Suppose that x,y,ed, then
ny(SE(x)) = ny(S5(y)) for all k. In particular g(S¥(x)) = g(S§(»)) and therefore

S**1oa(x) = 00 SE(x) ~ 00 SE*Y(y) = S**oa(y) for all k.

By induction we obtain S*oa*(x) ~ S¥*oa'(y) for all k and all / > 0. In particular
cg'(x) ~ a'(y) for all = 0; thus x = y.
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COROLLARY 3.11. Let T be the type 111, binary odometer, 0 < A < 1.
(a) If Risarotation on a compact abelian group, thens,, (T x R) = 0. Furthermore,
if R is an irrational rotation on the circle, then T x R is ergodic.

(b) If S is a finite measure preserving endomorphism with positive entropy, then
5, (T x 8) = + 0. Furthermore, if S is a lightly mixing automorphism, then T x S is

ergodic and has the same ratio set as T.

Proof. The skew product entropy equalities follow from Proposition 2.6 and
Theorem 3.10. For part (a) let R be rotation by an irrational «. By a theorem of
Furstenberg and Weiss, cf. [1, Section 2], if S is ergodic invertible finite measure
preserving, and T is ergodic invertible nonsingular, then T x S is ergodic if and only
if o4(E(T)) =0, where o is the maximal spectral type of S, and E(T) is the L*®
eigenvalue group of T. It is well known that the maximal spectral type of R is
supported on {¢'"*: n an integer}. It is also known that if T is the type III, binary
odometer, then E(T) consists of the dyadic rationals. Thus T'x R is ergodic.

For part (b) we recall that a transformation S is lightly mixing if for all sets of
positive measure 4 and B we have liminf, #(T"4 n B) > 0, and .S mildly mixing is
equivalent to liminf, , u#(T"A4 n A°) > 0 for all sets A with u(A4) u(A°) # 0. Therefore
S must be mildly mixing and so T x S is ergodic [3]. Finally, the equality of the ratio
sets of T'x S and T follows from [6, Lemma 2; 7, Lemma 2.2] since 1 # 0 and S is
lightly mixing.

We next consider another example of a nonsingular odometer with three symbols
whose Radon-Nikodym derivative takes values in {4,1/4}. This will allow us to
compute the skew product entropy for the type III; Chacon nonsingular
automorphisms.

DEFINITION 3.12. Let X =[[;*{0,1,2},T: X > X the addition by 100... with
carry, u = [[§°{1/(1 +22),1/(1+24),4/(14+22)}. We denote by w = (duo T/du) the
Radon-Nikodym derivative and by z(x) the smallest integer n>1 such that
w,(x) = 1. The transformation T is a type III, for 0 < A < 1, conservative ergodic
nonsingular automorphism, that we call the ternary type 111, odometer.

THEOREM 3.13.  Let (X,u, T) be the ternary type 111, odometer. For all n > 0 we
set w(x) = 1/4 on [2.1.20] and w(x) = A on [2..21]. Then t is defined by:

7(x) =394+ 1 and T(x) =0.9.02... forallx=29.20...,
w(x) =237 and T(x) = 1 21091 01... forallx=1PFT1129.20...,
w(x) = 2.3 and T(x) = 171 1109.02... forall x=1P.1291121....
Furthermore, s,(T) = 0.
Proof. The proof is similar to that given in Lemma 3.9. For concreteness we let
A=} We define 42 = [0.£.0] and for all k = } ;% k,3' with k,€{0, 1,2}, we define
a(k) = card{i > 0: k, = 1}. We notice that a(k +3?/) = a(k)+a(/) for all 0 < k < 37

and /> 0; we notice also that a(k) < p for all k < 37 and a(k) = p if and only if
k=Y prt3t
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Case (i): B=[2.9.20). Then TB = [0.9.01] < 4¢. Forall xe Band 0 < k < 37, we
have
WT*'B) _ (A45) i(TB)
® x) = - = Dalk)+1 >2
e =TuE) T WA wd

and wye,,(x) = 1. We thus obtain 7(x) = 3?+1 and T"(x) = 0.9.02x,,, X .5 . .-

Case (ii): B = [1P1.112.9.20). Then B = T™A47*%*2, where
m =313 —1)+ Y 2, 3"
For all xeB, for all m < k < 37"**1, we have

T 47+

w,(x) = = Qat—atm)

where a(k)—a(m) = a(k — 37" (37— 1)) — (Y2, 3") < 0. Also
79 grrave = P+ Loy gzvent, 0P 9+ Vo)) = 277p P 1 12.9.20)).
For all 0 </ < 3? and xe B we have

WTHAR ) W 450

= 2a(l)—p < 1
wATTY) (T A

Wyprary (X) =
and wyp+eni,,(x) = 1 if and only if / = ) P;'3". We thus obtain

-1
w(x) =3 —m+ ¥ 3 =31_3v=23 and T(x)=12.109 10lx,, ,,....

1=0
Case (iii): B =[12.1291121). Then B = T™A47*e** with
m =3Pl L3P(3e 1) 4 Y P13
For all xe Band 0 < k < 37—} 2 '3' we have

ﬂ( Tk+mA(1)J+q+2)
#( TmA(x)H-q-O-Z)

a)k(X) = — 21(k+m)—a(m),

where a(k +m)—oa(m) = ak+ Y. 23 3 —a(}. 25! 39) < 0. Also

7237 = (0P 1911 02) c A4P+*1 and  W(T*¥""B) = 277\ u(B).
For all 0 < k < 37*! and xe B we have

/I(TkAg+Q+l)

— Nak)-p-1 _
gy S

w2'3p+a+1+k(x) =

if and only if k = Y 2,3". We thus obtain t(x) = 2.37**'+ %" ? 3*—m = 2.37 and
Tx) = 17+.110.9.02x

pHa+2 e
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Let 7" = Sand Y = {xe X: S¥(x)¢[1] for all ke Z}. By ergodicity of T, we have
wY)=0and Y = {xeX: d*(x)¢[l] for all £ > 0}. We next show that {[0],[1],[2]} is a
generating partition for S restricted to the invariant set Z = X\Y.

Let n,;: Z — N be the first return time to [{Jn Z and S, the first return map. The
computations show that S, is conjugate to S: 60 S, = Soo on [i{]n Z and that:

n(x)=214+1 for xe[12.9.20],
n(x) =1 for xe[11P+ 112 9. 20011 2. 1291 21)

and for i = 0, 2 we have:

n(x) =2 for xe[i2.9.20],
n(x)=2p+3 for xe[il? T 129,200y i1 . 1291121,

In order to prove that 4(S;) = 0, it is enough to show that $*(x) ~ S*(y) for all
k implies that S*oo(x) ~ S¥oa(y) for all k. Following the method in Theorem 3.10,
it is enough to show that x, ye[i] and n,0 SF(x) = n,0 Sf(p) for all k implies that

a(x) ~ a(y).

Case 1:i=0, (x,y)e[0}n Z and nyo S¥(x) = n,0 SE(y) for all k (the case i =2 is
similar). Suppose that ny(x) = ny(y) = 2p+3; if p = | then a(x),a(y)e[l]; if p=10
then the case x =012.9.20... and y = 02"+.121... cannot happen since n,o .Sy(x)
is even and n,o0S,(y) is odd: in both cases o(x)~ o(y). Suppose that
ny(x) = ny(y) = = 2, since (x,y)e Z there exist @ = 1 and b > 1 such that

x=0xy...x,,1..., y=0y,...9,,1...,

where x,,y,€{0,2}, x4...x,_, #2.9.2 and y,...y,_, # 2.8.2. We claim that a =5
and x, = y, for 0 < i < a. We first notice that n(0x,...x,_,1...)=2if x,...x,_, #
292 and ny(02.2.21..)=3. Let k=Y?2lix,;2' and [=)'J4y,2" then
x = Sk00.9.01..) and y= S}00 b.01..)" Since S¥*x)=024.21... and
Sgb“(y) =02.0.21... then 2°—k =2~/ and the claim is proven. In both cases
a(x) ~ a(y).

Case 2: i=1, (x,y)e[l]NZ and n,o0Sk(x) = n,0SE(y) for all k. Suppose that
n,(x) = n,(y) > 1, then

207 = 2004, g(x) = g(y) and  o(x) ~ o(y).

Suppose that n,(x) =n,(y) = 1; we claim that the case x = 1171112920, .
and y=12"1121... cannot happen. Either p =0, S,(x)=1109+ 101... and
S,(»)=11.7.02..., and since n,0S,(x)=3 and n,0S,(y)=1, we obtain a
contradiction; or p>1, S;'(x)=11... and S;(y)=10..., and we obtain a
contradiction since n,0S7'(x) = 1 and n,0S}(y) = 3.
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We now consider a family of maps that we call nonsingular type III, Chacon
automorphisms for 0 < A < 1. This family was first suggested in [21], where it was
claimed that they have rational (nonsingular) minimal self-joinings, and hence have
no nontrivial proper invertible factors. However, they were not defined and were
replaced by a more general family of maps (that includes type III, for 0 < 1 < | and
type I1 ). Recently, A. del Junco and the first named author have used this family (in
a slightly more general form than in Definition 3.15) to construct various examples.
However, the methods used are those of joinings, and while they serve well to control
invertible factors (see e.g. [21]), as far as we know, they cannot be used to control
noninvertible factors (see Example 3.14).

EXAMPLE 3.14. Let (X, u, T) be the two-sided finite measure preserving Bernoulli
shift with two symbols and measure (3,3). Then & =\/% T7[0], [1]} is a noninvertible

factor algebra. The relatively independent joining v over the factor algebra & is
defined by

WA X B) = fE(l,.sf)E(lamdu

for any Borel sets 4 and B. Then we have that v([0], x [1],) = 0 but w(T[0], x T[1],) = 1,
so that the joining is not nonsingular for T'x T.

DEFINITION 3.15.  Let (X, u, T) be the ternary type 111, odometer. We define T’
to be the exduced transformation (cf. [12]) of T on the symbols 2*1. That is, let
X’ = X U[2*1'], where [2*1] is a disjoint copy of the sequences starting with 2¥1 for
k = 0. Extend the measure and the Borel sets in a natural way to X’. For xe X' if
xeX\[2*1] let T'(x) = T(x), if x = (2*1x,x,...) let T'(x) = (2*1'x, x,...), and if
x=(2I'x; x,...) let T'(x) = T(2*1x,x,...). We call (X’,/,T’) the nonsingular
type 111, Chacon automorphism.

It follows that T” is a type III, for 0 < 4 < 1, conservative ergodic nonsingular

automorphism. We would like to thank Andrés del Junco for observing the following
consequence of Theorem 3.13.

CoOROLLARY 3.16.  Let T” be the type 111, Chacon automorphism. Then s,(T") = 0.

Proof. 1t follows from Definition 3.15 that the transformation 7" induced on X
is the transformation of Theorem 3.13, which has zero skew product entropy.
Proposition 3.2(f) completes the proof.

4. Nonsingular K-automorphisms

We develop in this section the notions of natural extension and K-automorphism
for nonsingular maps. We first recall two definitions. A factor algebra & is called
exact if

N T7F ={, X} (mod p)
k=0

and exhaustive (when T is an automorphism) if

\/ T"%F = B(X) (mod ).

0
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DeFiNITION 4.1 Let (X, u, T, w) be a nonsingular endomorphism. A nonsingular
automorphism (X, /i, T) is_called a natural extension of (X,u,T,w) if there is a
markovian factor map ¢: X — X such that $7(%(X)) is an exhaustive factor algebra
of #(X).

Since in the measure preserving case all factor maps are markovian, Definition 4.1
coincides with Rohklin’s definition of the natural extension [20]. In the nonsingular
case, it is necessary to require the factor map to be markovian; at the end of this
section we mention an example of a type III automorphism (Hamachi’s example, cf.
4.9) that has an exhaustive factor that is finite measure preserving — this factor is not
markovian, and in general, as we shall see below, it could never be markovian.
Further, it is necessary to consider the natural extension of 7 with (or with respect to)
. The natural extensions of T with respect to different markovian functions may
have different properties cf. [24, Example 5.4]. However, if (w’, &) is cohomologous
to (w, ), then the natural extensions of (X, 4, T, w) and (X, i, T, @) are in a canonical
way nonsingular isomorphic but not necessarily (measure preserving) isomorphic. We
refer to Maharam [17] for another construction of an invertible extension.

THEOREM 4.2. Let (X,u, T, w) be a nonsingular endomorphism. Then there exists
a unique natural extension up to isomorphism.

Proof. Existence was proved in [23, 24). Let (X,u,T,®) be the invertible
extension of (X, u, T, ) defined in [24, Theorem 5.9] using inverse limits and let
(X, i, T, @) be any natural extension. Let ¢: X —» X and ¢ X — X be the factor maps.
We define y: X —» X by y(%) = (do T~ "(®))nso- It is clear that oy = é. If £ is
a positive #(X)-measurable function, then

ffo«ﬁof-"owda - ffoy?owof-"dﬂ = jfoq?oww,,dﬂ = jfosﬁcb,.dﬁ

- chondu = ffoacandﬁ= J’foqgo 7" dp.

Since |J,50 7" 0 ¢7(%B(X)) generates B(X), the above calculations show that y is a
measure preserving map. Since J,50 T"o¢"(£(X )) generates ZB(X), we have that
y': B(X) - B(X) defines a one-to-one and onto map between the Borel measure
algebras of standard spaces and therefore shows that y is invertible.

The following lemma is the main lemma which transposes the properties of a
nonsingular endomorphism to its natural extension.

LEMMA 4.3.  Let (X, u, T) be a conservative nonsingular automorphism, & < B(X)
be an exhaustive Markovian factor algebra and h: X — R* a positive B(X)-measurable
Sunction. If (h/ho T) is & -measurable, then h is & -measurable also.

Proof. The proof is divided into three parts.
Part 1. We assume that u is finite 7-invariant (w = 1) and that h is T-

invariant (h=hoT). Since |J,,,T"# generates B(X), then for every a <§p,
B={x:a <h< f}and e > 0, there exist n > | and F, where F is #-measurable, such
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that u(BAT"F) < ¢. By invariance of x4 and B, we have u(BAF) < ¢. In particular B
and therefore 4 is % -measurable (mod p).

Part2. We assume that y is g-finite T-invariant and that 4 is T-invariant. Since
Z is o-finite, we can find a partition of X, say {X,},,, of #-measurable sets which
have finite measure. We call 7;: X,, —» X, the induced map, 7,: X,, = N the return time
and #, u,, h, the restriction of &, u, h to X,. By conservativity of T, we know that u,
is T-invariant. Since A, is T,-invariant, it is enough to show that & is an exhaustive
factor algebra for T,. If F < X, is & -measurable, then

T;'(F)= Y t,=mNT"Fe&F.
nx1

If Bc X, is #(X)-measurable, for every ¢ > 0, there exists F, where F is &-
measurable, such that u(BAT"F) < e. Since X, N T"F = |J,¢,.0<, T¥ G, ,» Where

» @

=(XN\F)N--nN\T ' FINTW¥Fn(r, =2 q+1)n (’grkoT}C = n+q),

i=0

is #-measurable, u(BAG) < ¢ for some Ge\/, ., Tr %,

Part 3 (general case). We define the following extension (X, T) where
X=XxR*xR*, i=hu®Leb® Leb and T(x,s,t) =(T(x), s/w(x), th(x)/h o T(x))
and also #F = F Q@ B R B, h(x,s,t) =th(x). We notice that ji,h are T-invariant
and show that & is a o-finite exhaustive factor for T. Let a: X - R, b: R* - R and
¢: R* - R be integrable functions, then, for every ¢ > 0, there exist a,: X — R, where
a, is ¥ -measurable, and »n > 1 such that

fla—aloT‘”ldu <e.

Define b,(x, s, t) = b(s/w,(x)), ¢,(x,s,t) = c(th(x)/ho T"(x)), then

flabc—(al bye)oT"da<e J |b(s) c(2)| ds dt

and a,b,c, is F -measurable. By Part 2, it is enough to show that T is conservative:
indeed we notice that T is the Maharam skew product of (X*, hu*, T, ho T/h), where
(X*, ', T) is the Maharam skew product of (X, u, T).

Parts (a) and (b) of the following theorem were proved in [23]; we outline a proof
here for completeness.

THEOREM 4.4.  Let (X, u, T, ) be a nonsingular endomorphism and (X, u, T) be its
natural extension. Then

(@) w is recurrent if and only if T is conservative;

(b) if w is recurrent, then T is ergodic if and only if T is ergodic

(¢) if w is recurrent and T is ergodic, then T is type 111 if and only if T is type II1.

Proof. Let ¢: X » X be a markovian factor map such that # = ¢ '8(X) is an
exhaustive factor algebra, and & = wo ¢ = djio T/dji.

(a) We have that w is recurrent if and only if & is recurrent if and only if T is
conservative (cf. [24, Corollary 5.4)).

(b) If w is recurrent, as T is conservative, by Lemma 4.3, Be #(X) is T-invariant
if and only if there exists Be B(X), where B is T-invariant, such that B = ¢™'(B). It
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follows that # = ¢~'(#) (mod jz) where .# (respectively, .#) denotes the o-algebra of
T-invariant (respectively T-invariant) sets.

(c) Suppose that T is ergodic and w recurrent. By [24, Theorem 5.6, if T is type
I1, then  is a coboundary w = h/ho T, & = h/ho T with h = ho ¢, and T preserves
the measure Aji: hence T is type II. Conversely, if T is type II, then & is an
F -measurable coboundary @ = h/hoT; by conservativity and Lemma 4.3, A is
Z -measurable, h = hog, w = h/hoT, T preserves the measure hu: therefore T is

type II.

DeriniTiON 4.5. Let (X,u,T) be a nonsingular automorphism such that
B(X) #{F,X}. Then T is said to be a K-automorphism if T is conservative and
admits a factor algebra & that is exhaustive and exact and such that duo T/du is
& -measurable.

REMARK 4.6. (a) The definition of a K-automorphism is with respect to a fixed
measure u. For a given factor &, the chosen measure u is the only measure in its class
for which duo T/du is & measurable This follows from Lemma 4.3.

(b) We could have defined K-automorphisms without requiring them to be
conservative, and then a K-automorphism would have been either conservative or
totally dissipative: the dissipative part {x: ) ,.,ho T*w, < + oo} (for some positive
integrable & -measurable function #4) is indeed & -measurable and invariant. Parry
studied in [18] K-automorphisms in the context of infinite invariant measure, and
allowed them to be dissipative. He also proved in his context (infinite measure
preserving K-automorphisms) a statement analogous to Lemma 4.3.

(c) Proposition 4.8(a) for the case of infinite measure preserving K-auto-
morphisms was proved in [18], and for a special case of nonsingular K-automorphisms
in {15].

(d) It follows from the definitions and Theorem 4.4, that if (X, u, T, w) is an exact
nonsingular endomorphism and @ is recurrent then its natural extension is a
nonsingular K-automorphism. If T is a nonsingular K-automorphism then it is the
natural extension of an exact nonsingular endomorphism with respect to a recurrent
markovian pair.

The notion of weakly mixing was extended to nonsingular automorphisms in [3],
where the authors also give other characterizations equivalent to the definition
below. They also asked for a property that is equivalent to the ergodic multiplier
property mentioned in Proposition 4.8(b), a question we thank Aaronson for pointing
out to us.

DEerFINITION 4.7, Let (X, i, T) be a nonsingular automorphism. Then T is said to
be weakly mixing if for every finite measure preserving ergodic automorphism
(Y,v,S), we have (X x Y, uxv, Tx §S) is ergodic.

PROPOSITION 4.8. Let (X,u, T) be a nonsingular K-automorphism. Then

(a) T is ergodic,

(b) for every ergodic nonsingular automorphism (Y,v,S), if Tx S is conservative
then T x S is ergodic,

(c) T is weakly mixing,

(d) 5,(T) =
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Proof. (a) If A is an invariant set, by Lemma 4.3, 4 belongs # and so has to
be trivial.

(b) Let #F* = F ® #B(Y), then F* is exhaustive markovian for T x S and its tail
o-algebra is {F, X} ® B(Y)(mod u x v). Suppose that F is T x S-invariant; since
T x S is conservative, then by Lemma 4.3, Fe #* and therefore Ee{, X} ® A(Y).
By ergodicity of S, it follows that E has to be trivial.

(c) This follows from (b).

(d) The mapping T is the natural extension of a nonsingular endomorphism S
that corresponds to the exhaustive factor &#. Since S is not invertible a.e., the result
follows from Proposition 3.2 Parts (g) and (i).

We consider now Hamachi’s example [9] of constructing an exact nonsingular
type III endomorphism whose natural extension (with respect to a recurrent
markovian function) is the original Hamachi example.

ExamMPLE4.9. Let (X, u, T) be Hamachi’s example [9] defined by X = [[r2{0, 1},
T is the left shift, and x4 = [[*2 u, is a product, where u, = {3,3} for all k > 0, and g,
for k < 0 1s chosen carefully so that the shift is nonsingular conservative ergodic type
I1I for the resulting measure. Hamachi shows that

w(x) = duo T/du = Uuk_l(x,c)/,_u,c(xk).

In particular w is #~ = \/°, T '#-measurable, where 2 is the time zero partition
2 = {[0],[1]}. Define B* = \/;=T~*P?. Let (Y,v,S,®) be the nonsingular endo-
morphism defined by: ¥ =[], {0, 1}, S is the right shift, ¢: X — Y is the factor map
d(x) = (..., x_1,Xp), v=po¢p™*, and &(y) = 1/wo T }(x) for any x€ $~*(). (A similar
construction can be done from Krengel’s example [15].)

ProrosiTION 4.10.  With the above notation (Y, v, S, @) is a recurrent exact type 111
endomorphism whose natural extension is (X,u, T™").

Proof. We note that (X,u,T') is a nonsingular K-automorphism with
exhaustive and exact factor #~ = ¢ (#(Y)). Moreover, w is # -measurable and ¢ is
a markovian factor; @ is recurrent and type III by Theorem 4.4. By Kolmogorov’s
0-1 law, S is exact.

The need to consider markovian extensions is illustrated by the following
example. The automorphism (X, , T) has an exhaustive and exact factor algebra #*
which is the {3,3} one-sided Bernoulli shift, but it is not a markovian factor.
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