
Nonlinearity
            

PAPER

Convergence of discrete Aubry–Mather model in
the continuous limit
To cite this article: Xifeng Su and Philippe Thieullen 2018 Nonlinearity 31 2126

 

View the article online for updates and enhancements.

Related content
Minimizing orbits in the discrete
Aubry–Mather model
Eduardo Garibaldi and Philippe Thieullen

-

Weak KAM for commuting Hamiltonians
M Zavidovique

-

Homoclinic orbits and critical points of
barrier functions
Piermarco Cannarsa and Wei Cheng

-

This content was downloaded from IP address 147.210.215.16 on 09/04/2018 at 16:16

https://doi.org/10.1088/1361-6544/aaacbb
http://iopscience.iop.org/article/10.1088/0951-7715/24/2/008
http://iopscience.iop.org/article/10.1088/0951-7715/24/2/008
http://iopscience.iop.org/article/10.1088/0951-7715/23/4/002
http://iopscience.iop.org/article/10.1088/0951-7715/28/6/1823
http://iopscience.iop.org/article/10.1088/0951-7715/28/6/1823


2126

Nonlinearity

Convergence of discrete Aubry–Mather 
model in the continuous limit

Xifeng Su1 and Philippe Thieullen2

1  School of Mathematical Sciences, Beijing Normal University, No. 19,  
XinJieKouWai St., HaiDian District, Beijing 100875, People’s Republic of China
2  Institut de Mathématiques de Bordeaux, Université de Bordeaux, 351, cours de la 
Libération—F 33405 Talence, France

E-mail: xfsu@bnu.edu.cn and philippe.thieullen@u-bordeaux.fr

Received 18 July 2017, revised 8 January 2018
Accepted for publication 2 February 2018
Published 6 April 2018

Recommended by Professor Dmitry V Treschev

Abstract
We develop two approximation schemes for solving the cell equation and the 
discounted cell equation using Aubry–Mather–Fathi theory. The Hamiltonian 
is supposed to be Tonelli, time-independent and periodic in space. By 
Legendre transform it is equivalent to find a fixed point of some nonlinear 
operator, called Lax-Oleinik operator, which may be discounted or not. By 
discretizing in time, we are led to solve an additive eigenvalue problem 
involving a discrete Lax–Oleinik operator. We show how to approximate the 
effective Hamiltonian and some weak KAM solutions by letting the time 
step in the discrete model tend to zero. We also obtain a selected discrete 
weak KAM solution as in Davini et al (2016 Invent. Math. 206 29–55), and 
show that it converges to a particular solution of the cell equation. In order 
to unify the two settings, continuous and discrete, we develop a more general 
formalism of the short-range interactions.

Keywords: discrete weak KAM theory, Frenkel–Kontorova models,  
Aubry–Mather theory, discounted Lax–Oleinik operator, ergodic cell 
equation, short-range interactions, additive eigenvalue problem 

Mathematics Subject Classification numbers: 37J, 49L, 52C

1.  Introduction

In this article, we consider a Hamiltonian H(x, p) : Td × Rd → R which is C2, periodic in x, 
time-independent and satisfies the following assumptions:
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		 (L1)	 Positive definiteness: H(x, p) is strictly convex with respect to p, i.e. the second 

partial derivative ∂
2H

∂p2 (x, p) is positive definite as a quadratic form uniformly in x ∈ Td and 

‖ p‖ � R, for every R > 0; 
		 (L2)	 Superlinear growth: H(x, p) is superlinear with respect to p, uniformly in x, that 

is,

lim
‖ p‖→+∞

inf
x∈Td

H(x, p)
‖ p‖

= +∞.

We will say that H(x, p) is a Tonelli Hamiltonian. We denote by L(x, v) the Legendre–Fenchel 
transform of H(x, p). We call L(x, v) the Lagrangian of the system; L(x, v) is again C2, strictly 
convex with respect to v, and superlinear. A more general framework could be chosen where 
Td × Rd is replaced by the cotangent space T∗M  of some compact manifold M, but this 
approach would increase the complexity of the notations. To illustrate the two approximation 
schemes we are going to present, we choose the following basic Hamiltonian:

H(x, p) =
1
2
‖ p + P‖2 − K(1 − cos(2π N · x)),

where P ∈ Rd, N ∈ Zd and K ∈ R are three parameters. The Lagrangian becomes

L(x, v) =
1
2
‖v‖2 − P · v + K(1 − cos(2π N · x)).

We consider the following two equations: the PDE cell equation and the discounted PDE 
cell equation,

H(x, du(x)) = H̄,� (1)

δuδ(x) + H(x, dxuδ(x)) = 0,� (2)

where u(x) and uδ(x) solve (1) and (2) in the viscosity sense. Our main objective is to describe 
an ergodic approximation scheme for each equation.

Equation (1) is a degenerate PDE equation of first order with two unknowns (H̄, u). The 
constant H̄  is unique and is called the effective Hamiltonian. The function u(x) is C0 periodic 
but may not be unique. Equation (2) is more regular and admits a unique C0 periodic solution 
uδ(x). Equation (1) was first studied by Lions, Papanicolaou and Varadhan [LPV87]. A com-
prehensive treatment may be found in Crandall et al [CIL92], Bardi et al [BCD97] or Barles 
[Bar94]. Some recent overviews may be found in the articles [Ish13, Bar13].

A new approach has been initiated by Mather and Fathi [Mat91, Mat93, Fat97a, Fat97b, 
Fat08] to solve equation  (1). Fathi showed that (1) is equivalent to an additive eigenvalue 
problem for a semi-group of nonlinear operators,

u(x)− tH̄ = Tt[u](x), ∀t > 0, ∀x ∈ Rd,� (3)

Tt|u](x) := inf
γ∈Cac([−t,0],Rd)

γ(0)=x

[
u(γ(−t)) +

∫ 0

−t
L(γ, γ̇) ds

]
,� (4)

(where the infimum is taken over absolutely continuous paths over [−t, 0] with the terminal 
point x ∈ Rd). For the Tonelli Hamiltonian, the infimum is actually attained by a C2 curve 
thanks to the Tonelli–Weierstrass theorem.

Equation (3) is called the ergodic cell equation, and Tt is called the (backward) Lax–
Oleinik semi-group. Fathi calls the unknown u(x) the weak KAM solution, and H̄  is as before 
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the effective Hamiltonian. Mañé [Mn96] first recognized the importance of this constant H̄ . 
After Contreras and Iturriaga [CI99], H̄  is called the Mañé critical value: H̄  has the explicit 
value

−H̄ := lim
t→+∞

inf
γ∈Cac([−t,0],Rd)

[1
t

∫ 0

−t
L(γ, γ̇) ds

]
.� (5)

Equation (2) has been studied by [LPV87, CIL92, Bar94, BCD97]. The solution is unique 
and given explicitly by the integral formula

uδ(x) = inf
γ∈C2((−∞,0],Rd)

γ(0)=x

∫ 0

−∞
esδL(γ(s), γ̇(s)) ds,� (6)

where the infimum is taken over C2 paths ending at x with a uniformly bounded first and 
second derivative. The two equations (1) and (2) are related; but very recently, the authors of 
[DFIZ16b] showed that uδ(x), correctly normalized, converges to a selected solution u∗(x)  
of (3),

lim
δ→0

(
uδ(x) +

H̄
δ

)
= u∗(x) (exists in the C0 topology).� (7)

We will call this selected solution u∗, the balanced weak KAM solution.
Our main objective is to develop approximation schemes that solve (1) and (2). In the first 

scheme, we compute an approximated effective Hamiltonian of (5) and an approximated weak 
KAM solution of (3). In the second scheme, we compute an approximated discounted weak 
KAM solution of (6) and show a similar selection principle. In both cases we discretize in 
time—either the semi-group (4) or the integral formula (6)—and rewrite the two problems in 
the framework of the Frenkel–Kontorova model.

The Frenkel–Kontorova model has been studied in solid state physics in 1D by [FK38] and 
then more rigorously by Aubry and Le Daeron [ALD83], Chou and Griffiths [CG86], and in 
a higher dimension by Gomes [Gom05], Garibaldi and Thieullen [GT11]. Similar problems 
under the name of Aubry–Mather theory have been studied using transport theory by Bernard 
and Buffoni [BB07] and Zavidovique [Zav12]. The Frenkel–Kontorova model describes the 
space of the configurations of an infinite chain of atoms (xn)n∈Z at the ground-level energy. In 
this model xn denotes the position of the nth atom of the chain in Rd, and E(xn, xn+1) denotes 
a short-range interaction between two successive atoms. The interaction E(x, y) models both 
the internal interaction between the nearest atoms and the external interaction with the sub-
strate. The original Frenkel–Kontorova model [FK38] is given by

E(x, y) =
1
2
‖y − x‖2 − P · (y − x) + K(1 − cos(2π N · x)).

In solid state physics, it is more appropriate to write the elastic interaction as 1
2‖y − x − P‖2 

instead of 1
2‖y − x‖2 − P · (y − x), where P  denotes the mean distance at rest between two 

successive atoms of the chain. In Mather theory, P  represents a cohomological term.
The main problem in the Frenkel–Kontorova model is to understand the set of configu-

rations that minimizes the total interaction 
∑

n∈Z E(xn, xn+1) in a precise sense. Chou and 
Griffiths [CG86] were the first to highlight the importance of the following two quantities: Ē , 
the effective interaction of the system (or the ground-state energy in Gibbs theory), and u(x), 
the effective potential, which is a continuous periodic function that calibrates the interaction 
energy. They showed that (Ē, u) can be seen as two unknowns of a discrete additive eigenvalue 
equation, now called the discrete (backward) Lax–Oleinik equation,
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u(y) + Ē = inf
x∈Rd

{
u(x) + E(x, y)

}
, ∀y ∈ Rd.� (8)

The goal of the first scheme is to show that one can solve (3) by solving (8) with the follow-
ing interaction E(x, y) = Lτ (x, y) and by letting τ → 0. We call it discrete action,

Lτ (x, y) := τL
(

x,
y − x
τ

)
, ∀τ > 0.� (9)

If (L̄τ , uτ ) is a solution of (8), one obtains in particular

lim
τ→0

L̄τ

τ
= −H̄, lim

τi→0
uτi = u (for some subsequence τi ↘ 0).

The discrete action associated with the basic example is given, for instance, by

Eτ (x, y) =
1

2τ
‖y − x‖2 − P · (y − x) + τK(1 − cos(2π · x)).

We recognize the original Frenkel–Kontorova model by taking τ = 1. Notice that (3) can trivi-
ally be written as a discrete Lax–Oleinik equation with the following short-range interaction 
E(x, y) = Eτ (x, y). We call it minimal action

Eτ (x, y) := inf
γ∈Cac([0,τ],Rd)
γ(0)=x, γ(τ)=y

∫ τ

0
L(γ(t), γ̇(t)) dt, ∀τ > 0, ∀x, y ∈ Rd.� (10)

The infimun can be realized by some C2 curve thanks to the Tonelli–Weierstrass theorem. 
We will use Lτ (x, y) as a numerical tool to solve (3). Several algorithms can be used to solve 
(8), like Ishikawa’s iterative method. We will use Eτ (x, y) as a theoretical tool to prove the 
convergence of the scheme.

The goal of the second scheme is to extend, in the discrete case, the main result of Davini 
et al in their first paper [DFIZ16b]. We became aware of a second paper [DFIZ16a] related 
to ours after this paper had been completed. However, in the latter paper, the authors do not 
consider the convergence issues of the approximation scheme. We will show in particular that 
the solution uτ ,δ of the discounted discrete Lax–Oleinik equation

uτ ,δ(y) = inf
x∈Rd

{
(1 − τδ)uτ ,δ(x) + Lτ (x, y

}
, ∀τ > 0, ∀y ∈ Rd

� (11)

satisfies for every τ > 0, limδ→0

(
uτ ,δ − L̄τ

τδ

)
= u∗τ and lim τ ,δ→0

τ/δ→0

(
uτ ,δ − L̄τ

τδ

)
= u∗.

We would like to thank the referees for their careful reading and for the two references 
[Mat88, Mos86] they suggested to include.

2.  Main results

The two previous short-range interactions Lτ (x, y) and Eτ (x, y) belong to a class of param-
etrized interactions that we are going to discuss. In the following definition we focus on the 
fact that ‖y − x‖, (the sup norm) and τ should have the same order of magnitude as τ → 0: we 
call this property short-range.

Definition 1.  We call a one-parameter family of functions Eτ (x, y) : Rd × Rd → R in-
dexed by τ > 0 a short-range interaction satisfying:

		 (H1)	 Eτ (x, y) is continuous in (x, y) for every τ > 0; 
		 (H2)	 Eτ (x, y) is translational periodic for every τ > 0:
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Eτ (x + k, y + k) = Eτ (x, y), ∀k ∈ Zd and ∀x, y ∈ Rd;

	 (H3)	 Eτ (x, y) is coercive for every τ > 0:

lim
R→+∞

inf
‖x−y‖�R

Eτ (x, y) = +∞;

	 (H4)	 Eτ (x, y) is uniformly bounded: for every R > 0

inf
τ∈(0,1]

inf
x,y∈Rd

1
τ Eτ (x, y) > −∞, sup

τ∈(0,1]
sup

‖y−x‖�τR

1
τ Eτ (x, y) < +∞;

	 (H5)	 Eτ (x, y) is uniformly superlinear:

lim
R→+∞

inf
τ∈(0,1]

inf
‖x−y‖�τR

Eτ (x, y)
‖x − y‖

= +∞;

	 (H6)	 Eτ (x, y) is uniformly Lipschitz: for every R > 0, there exists a constant C(R) > 0 
such that for every τ ∈ (0, 1] and for every x, y, z ∈ Rd ,

	 –	if ‖y − x‖ � τR and ‖z − x‖ � τR then

|Eτ (x, z)− Eτ (x, y)| � C(R)‖z − y‖,

	 –	if ‖z − x‖ � τR and ‖z − y‖ � τR then

|Eτ (x, z)− Eτ (y, z)| � C(R)‖y − x‖.

We call the periodic interaction associated with Eτ (x, y), the doubly periodic function

E∗
τ (x, y) := inf

k∈Zd
Eτ (x, y + k).

The following proposition says that the two short-range interactions Lτ (x, y) and Eτ (x, y) 
are comparable in the sense that |Lτ (x, y)− Eτ (x, y)| = O(τ 2) uniformly on ‖y − x‖ = O(τ). 
In dimension d = 1, Moser [Mos86] proved that every monotone smooth twist mapping can 
be obtained as the time-one map of a periodic Hamiltonian.

Proposition 2 (Comparison estimate).  Let H : Td × Rd → R be a Tonelli Hamilto-
nian and L be the associated Lagrangian.

	 i.	The two short-range interactions (Lτ (x, y))τ>0 and (Eτ (x, y))τ>0, defined in (9) and 
(10), respectively, satisfy the hypotheses (H1)–(H6).

	 ii.	For every R > 0, there exists a constant C(R) > 0 such that if τ ∈ (0, 1], x, y ∈ Rd  satisfy 
‖y − x‖ � τR, then

|Eτ (x, y)− Lτ (x, y)| � τ 2C(R).

We recall two important definitions associated with an interaction: the discrete Lax–Oleinik 
operator, and the discrete weak KAM solution. The vocabulary is chosen so that it coincides 
with the new terminology used by Fathi in the case of a continuous time Lax–Oleinik operator.

Definition 3.  Let (Eτ (x, y))τ>0 be a short-range interaction satisfying (H1)–(H3).

	 •	We call the discrete (backward) Lax–Oleinik operator,

Tτ [u](y) := min
x∈Rd

{
u(x) + Eτ (x, y)

}
, ∀y ∈ Rd,
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		 acting on continuous periodic functions u ∈ C0(Rd).
	 •	We call any periodic continuous function uτ  solution of the additive eigenvalue problem 

the discrete (backward) weak KAM solution for Eτ (x, y),

Tτ [uτ ] = uτ + Ēτ ,� (12)

		 for some Ēτ ∈ R.

Note that Tτ  has the same definition if Eτ (x, y) is replaced by E∗
τ (x, y).

We have defined two Lax–Oleinik operators: the first one in the continuous case Tt in (4), 
using a superscript t; the second one in the discrete case Tτ  in (3) using a subscript τ. For the 
minimal action Eτ (x, y) we obviously have Tτ = Tτ .

We recall a classical result on the existence of discrete weak KAM solutions for the  
Lax–Oleinik operator. Different proofs may be found, for instance in [Nus91, Gom05] or 
[GT11].

Proposition 4 (Lax–Oleinik equation for short-range interactions).  We consider a 
short-range interaction (Eτ (x, y))τ>0 satisfying the hypotheses (H1)–(H3).

	 i.	For every τ > 0, there exists a unique scalar Ēτ  such that equation Tτ [uτ ] = uτ + Ēτ  
admits a continuous periodic solution uτ .

	 ii.	 Ēτ  is called effective interaction and can be computed in many ways

Ēτ = sup
u∈C0(Td)

inf
x,y ∈Rd

{
Eτ (x, y)− [u(y)− u(x)]

}
,

= sup
v∈B(Rd)

inf
x,y ∈Rd

{
Eτ (x, y)− [v(y)− v(x)]

}
,

= limk→+∞ infz0,...,zk ∈Rd
1
k

k−1∑
i=0

Eτ (zi, zi+1).

�

(13)

B(Rd) denotes the space of bounded functions that are not necessarily periodic. Note that 
we could have used E∗

τ (x, y) instead of Eτ (x, y) in one of these formulas.

The first two formulas are called the sup-inf formula, and are analogue to the sup-inf form
ula introduced by [CIPP98] for continuous-time Tonelli Hamiltonian systems. The third form
ula is called the mean interaction per site formula. Another characterization will be given in 
the lemma 14.

The conclusions of proposition 4 hold for both the discrete and the minimal action. There 
is no reason a priori for the two effective interactions L̄τ and Ēτ  to be comparable. The mean 
interaction per site formula suggests the consideration of minimizing paths (z0, · · · , zk). The 
following proposition shows that the jumps ‖zk − zk−1‖ of such minimizing paths are uniformly 
comparable to τ. We will be able to apply the proposition 2 and obtain |L̄τ − Ēτ | = O(τ 2).

Proposition 5 (A priori compactness for short-range interactions).  We consider 
a short-range interaction (Eτ (x, y))τ>0 satisfying the hypotheses (H1)–(H6).

	 i.	There exist constants C, R > 0 such that if τ ∈ (0, 1] and uτ  is a discrete weak KAM solu-
tion of Eτ (x, y), then

	(a)	 uτ  is Lipschitz and Lip(uτ ) � C,
	(b)	 ∀y ∈ Rd , x ∈ arg minx∈Rd

{
uτ (x) + Eτ (x, y)

}
⇒ ‖y − x‖ � τR.
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		 ii.	� For every Lipschitz periodic function u, limτ→0 Tτ [u] = u uniformly. More precisely, 
for  every constant κ > 0, there exist constants Rκ, Cκ > 0, such that if u is any Lip-
schitz function satisfying Lip(u) � κ, and τ ∈ (0, 1], then

			  (a)	 ∀y ∈ Rd , x ∈ arg minx∈Rd

{
u(x) + Eτ (x, y)

}
⇒ ‖y − x‖ � τRκ,

			  (b)	 ‖ Tτ [u]− u ‖∞ � τCκ.

Notice that the effective Hamiltonian (5) can be written in the terminology of short-range 
interactions using the minimal action,

−H̄ = lim
τ→+∞

1
τ

min
x,y∈Rd

Eτ (x, y).

We show more generally how to solve equation (3) and how to obtain formula (5) for any 
short-range interaction which is a min-plus convolution semi-group.

Definition 6. 

	 •	We call the min-plus convolution of two interactions E1 and E2, the interaction

E1 ⊗ E2(x, y) := inf
z∈Rd

[E1(x, z) + E2(z, y)], ∀x, y ∈ Rd.

	 •	A short-range interaction (Eτ (x, y))τ>0 is said to be a min-plus convolution semi-group if

Eτ+σ = Eτ ⊗ Eσ , ∀τ ,σ > 0.

Mather, [Mat88] p 206, calls a conjunction what we call a min-plus convolution. The fol-
lowing observation is trivial and will not be proved.

Lemma 7.  Let H  be a Tonelli Hamiltonian. Then the minimal action (Eτ (x, y))τ>0 is a min-
plus convolution semi-group.

The following proposition extends (3) and (5) for any short-range interaction which is a 
min-plus convolution semi-group. The proposition states that there exists a common additive 
eigenfunction associated with a unique linear eigenvalue.

Proposition 8.  Let (Eτ (x, y))τ>0 be a short-range interaction satisfying (H1)–(H6). As-
sume the interaction is a min-plus convolution semi-group. Consider the equation

Tτ [u] = u + τ Ē1, ∀τ > 0,� (14)

where u is a C0 periodic function (independent of τ) and Ē1 ∈ R.

	 i.	There exists a Lipschitz periodic function u solution of (14). Moreover

Ēτ = τ Ē1, ∀τ > 0.

	 ii.	Let uτ  be any discrete weak KAM solution of Eτ (x, y). Assume uτi → u uniformly along 
a subsequence τi → 0. Then u is a Lipschitz solution of (14).

	 iii.	limτ→+∞
1
τ min

x,y∈Rd
Eτ (x, y) = Ē1.

We summarize in the following theorem the previous results we have obtained for any 
short-range interactions to the particular case of discrete and minimal actions. We show 
how the solutions of the PDE cell equation (1) can be approximated by discrete weak KAM  
solutions uτ  of (14). The speed of convergence to the effective Hamiltonian H̄  is of the order 
O(τ). The convergence to the viscosity solution u is obtained by taking a subsequence as 
τ → 0.
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Theorem 9 (First approximation scheme).  Let H(x, p) : Td × Rd → R be a Tonelli 
Hamiltonian and L(x, v) be the associated Lagrangian. We consider the two equations

uτ (y) + L̄τ = min
x∈Rd

{
uτ (x) + Lτ (x, y)

}
, ∀y ∈ Rd, ∀τ > 0, (E1)

u(y)− τ H̄ = min
x∈Rd

{
u(x) + Eτ (x, y)

}
, ∀y ∈ Rd, ∀τ > 0, (E2)

where uτ , u are C0 periodic functions.

	 i.	There is a unique L̄τ, such that (E1) admits a solution uτ . Moreover

L̄τ = lim
k→+∞

inf
z0,...,zk ∈Rd

1
k

k−1∑
i=0

Lτ (zi, zi+1).

	 ii.	There is a unique H̄  such that (E2) admits a solution u. Moreover

−H̄ = lim
τ→+∞

1
τ

min
x,y∈Rd

Eτ (x, y).

	 iii.	There exists a constant C > 0 such that

∣∣∣ L̄τ

τ
+ H̄

∣∣∣ � Cτ , ∀τ ∈ (0, 1].

	 iv.	There exist constants C, R > 0, such that for every τ ∈ (0, 1] and for every solution 
v = uτ of (E1), or v = u of (E2),

	(a)	 Lip(v) � C , in particular ‖v‖∞ � C if min(v) = 0,
	(b)	 ∀y ∈ Rd , if x ∈ arg minx∈Rd

{
v(x) + Eτ (x, y)

}
 then ‖y − x‖ � τR.

	 v.	There exists a subsequence τi → 0 and a subsequence uτi solution of (E1), such that 
uτi → u uniformly. Moreover every such u is a solution of (E2).

Theorem 9 is proved in section 3. The convergence of the discrete solution to the solu-
tion of the ergodic cell equation has been addressed by Gomes [Gom05] and Camilli et al 
[CCDG08], but their proofs require a particular form of the Lagrangian that we do not assume. 
Several other numerical schemes have been studied for computing the effective Hamiltonian, 
see [GO04, Ror06, FR10], but the properties (i)–(v) are not stated explicitly, see also [BFZ16] 
for a mechanical Lagrangian of the form L(t, x, v) = W(v) + V(t, x).

Note that the discrete (backward) Lax–Oleinik equation (12) possesses a second form: the 
discrete forward Lax–Oleinik equation,

uτ (x)− Ēτ = max
y∈Rd

{
uτ (y)− Eτ (x, y)

}
, ∀x ∈ Rd.

Theorem 9 is also valid for the forward Lax–Oleinik equation with the same effective inter-
action Ēτ  and possibly a different solution uτ  that is called the discrete forward weak KAM. 
From now on we only study the backward problem.

Our second objective is to show, by introducing a discounted factor δ in the discrete Lax–
Oleinik equation (12), that we do not need to take a subsequence in time to obtain a solution 
of the PDE cell equation. A discrete version of [DFIZ16b] is also proved in [DFIZ16a], but 
they do not study the convergence issues as τ → 0. Some related results can be found in 
[AAOIM14, MT14] with a different setting.
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Our approach is actually more general and applies to any short-range interaction. We first 
extend the definition of the Lax–Oleinik operator.

Definition 10.  Let (Eτ (x, y))τ>0 be a short-range interaction satisfying (H1)–(H3). We call 
the discounted discrete Lax–Oleinik operator, the nonlinear operator

Tτ ,δ[u](y) := inf
x∈Rd

{
(1 − τδ)u(x) + Eτ (x, y)

}
, ∀y ∈ Rd,

defined for every C0 periodic function u, for every τ > 0 and δ ∈ (0, 1]. By coerciveness the 
infimum is actually attained. As before, we do not change Tτ ,δ by using the periodic interac-
tion E∗

τ (x, y) instead of Eτ (x, y).

It is easy to show that Tτ ,δ admits a unique fixed point uτ ,δ that we call the discounted dis-
crete weak KAM solution. On the other hand, it is not so easy to show that it possesses uniform 
estimates, as in proposition 5,

Proposition 11 (A priori  compactness in the discounted case).  Let (Eτ (x, y))τ>0 
be a short-range interaction satisfying (H1)–(H6). Then there exist constants R > 1 and 
C > 0 such that for every τ , δ ∈ (0, 1],

	 i.	Tτ ,δ admits a unique fixed point uτ ,δ which is C0 periodic,

uτ ,δ(x) := inf
(x−k)

+∞
k=0 ∈(Rd)N, x0=x

∞∑
k=0

(1 − τδ)kEτ (x−(k+1), x−k), ∀x ∈ Rd.

	 ii.	infx,y∈Rd
Eτ (x,y)

τδ � uτ ,δ � supx∈Rd
Eτ (x,x)

τδ ,
	 iii.	uτ ,δ is uniformly Lipschitz with Lip(uτ ,δ) � C ,
	 iv.	∀y ∈ Rd ,   x ∈ arg minx∈Rd

{
(1 − τδ)uτ ,δ(x) + Eτ (x, y)

}
⇒ ‖y − x‖ � τR.

A configuration (x−k)
∞
k=0 realizing the infimum in (i) is called the discounted backward cal-

ibrated configuration. Such a configuration is also calibrated for the periodic interaction 
E∗
τ (x, y) instead of Eτ (x, y).

As in [DFIZ16b], we characterize the limit of the unique fixed point of Tτ ,δ in terms of the 
minimizing plan, the Mañé potential. We recall these two definitions, see [GT11] for more 
details. We usually introduce the notions of minimizing measures, the Mather set or the Aubry 
set, in the space Td × Rd. This space is the correct space if want to understand the cohomol-
ogy of these notions. We instead consider here the projection on Td × Td  of these objects that 
we recall.

Definition 12.  A probability measure π defined on Td × Td  is said to be a stationary plan 
if pr1

∗(π) = pr2
∗(π). (We denote by pr1, pr2 : Td × Td → Td , the two canonical projections.)

Definition 13.  We call the periodic Mañé potential, a doubly periodic function

Φ∗
τ (x, y) := inf

n�1
inf

(x0,...,xn)∈(Rd)n+1
x0=x, xn=y

n−1∑
k=0

[
E∗
τ (xk, xk+1)− Ēτ

]
, ∀ x, y ∈ Rd.

We recall how the effective Hamiltonian can be computed using the stationary plan. See 
[BB07, GT11] for a proof.
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Lemma 14.  Let (Eτ (x, y))τ>0 be a short-range interaction satisfying (H1)–(H3). Let 
E∗
τ (x, y) be the associated periodic interaction. Then

Ēτ = inf
{∫ ∫

Td×Td
E∗
τ (x, y)π(dx, dy) : π is a stationary plan

}
.

Note that the infimum in lemma 14 can be realized by compactness. We recall several clas-
sical notions. See [BB07, GT11] for two distinct approaches.

Definition 15.  Let π be a stationary plan on Td × Td .

	 •	π is said to be minimizing if it realizes the infimum in lemma 14. Define

M∗(Eτ ) := {π : π is a minimizing plan}.

	 •	π is said to be extremal if it is minimizing and cannot be written as the strict barycentre 
π = απ1 + (1 − α)π2 of a minimizing plan, π1 and π2 , with α ∈ (0, 1), π1 �= π2.

	 •	We call the Mather set, the compact set in Td × Td

Mather∗(Eτ ) := ∪{supp(π) : π ∈ M∗(Eτ )}.

		 We call the projected Mather set, the set pr1(Mather∗(Eτ )).
	 •	We call the Aubry set, the compact set in Td × Td

Aubry∗(Eτ ) :=
{
(x, y) ∈ Td × Td : E∗

τ (x, y)− Ēτ +Φ∗
τ (y, x) = 0

}
.

		 We call the projected Aubry set, the set pr1(Aubry∗(Eτ )).
	 •	We call the Aubry class, the class of an equivalence relation on pr1(Aubry∗(Eτ )),

x ∼ y ⇐⇒ Φ∗
τ (x, y) + Φ∗

τ (y, x) = 0.

We can show (see [GT11] in the discrete setting).

Lemma 16.  Let (Eτ (x, y))τ>0 be a short-range interaction satisfying (H1)–(H3). Then

	 i.	Φ∗
τ (x, y) is continuous with respect to (x, y),

	 ii.	 pr1(Aubry∗(Eτ )) =
{

x ∈ Td : Φ∗
τ (x, x) = 0

}
,

	 iii.	For any Aubry class A, ∀x, y, z ∈ A, Φ∗
τ (x, y) + Φ∗

τ (y, z) = Φ∗
τ (x, z),

	 iv.	Mather∗(Eτ ) ⊂ Aubry∗(Eτ ),
	 v.	∀x ∈ pr1(Aubry∗(Eτ )), y �→ Φ∗

τ (x, y) is a discrete weak KAM solution,
	 vi.	(representation formula) if uτ  is any discrete weak KAM solution, then

uτ (y) = min
x∈Rd

{
u(x) + Φ∗

τ (x, y)
}

,

= min
x∈pr1(Mather∗(Eτ ))

{
u(x) + Φ∗

τ (x, y)
}

, ∀y ∈ Rd.

The following lemma gives a new type of discrete weak KAM solution. Though it is simple 
to prove, the lemma is new and justifies a priori the notion of a balanced weak KAM solution.

Lemma 17.  Let (Eτ (x, y))τ>0 be a short-range interaction satisfying (H1)–(H3). Let π be 
an extremal plan. Let µ = pr1

∗(π).

	 i.	supp(µ) belongs to an Aubry class.
	 ii.	 y �→

∫
Φ∗

τ (z, y)µ(dz) is a discrete weak KAM solution.
	 iii.	

∫∫
Φ∗

τ (x, y)µ(dx)µ(dy) = 0.
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By taking the supremum or infimum of discrete weak KAM solutions, we again obtain a 
discrete weak KAM solution. The balanced weak KAM solution (7) is of this type.

Proposition 18.  Define u∗
τ (x) := inf

{∫

Td
Φ∗

τ (z, x) pr1
∗(π)(dz) : π ∈ M∗(Eτ )

}
. Then

	 i.	u∗
τ  is a discrete weak KAM solution,

	 ii.	u∗
τ (y) = sup

{
w(y) : w + Ēτ = Tτ [w],

∫
Td w(x) pr1

∗(π)(dx) � 0, ∀π ∈ M∗(Eτ )
}

,

	 iii.	sup{
∫

u∗τ (y) pr1
∗(π)(dy) : πis an extremal plan} = 0.

u∗
τ  is called a balanced discrete weak KAM solution.

The following proposition extends to short-range interactions, with the main result obtained 
by [DFIZ16b] in the continuous case and by [DFIZ16a] in the discrete case.

Proposition 19.  Let (Eτ (x, y))τ>0 be a short-range interaction satisfying (H1)–(H3). Let 
u∗
τ  be the balanced discrete weak KAM solution defined in proposition 18. Then,

∀τ ∈ (0, 1], lim
δ→0

(
uτ ,δ −

Ēτ

τδ

)
= u∗τ , in the C0 topology.

In the following theorem, we summarize the approximation scheme we have obtained in 
the case of the discrete action Lτ (x, y).

Theorem 20 (Second approximation scheme).  Let H(x, p) be a Tonelli Hamiltonian, 
and L(x, v) be the associated Lagrangian. Let uτ ,δ and uδ be the unique C0 periodic solutions 
of

uτ ,δ(y) = min
x∈Rd

{
(1 − τδ)uτ ,δ(x) + Lτ (x, y)

}
, ∀y ∈ Rd, ∀τ , δ ∈ (0, 1], (E1)

uδ(y) = inf
γ∈C2((−t,0],Rd)

γ(0)=y

{
e−tδuδ(γ(t)) +

∫ 0

−t
esδL(γ(s), γ̇(s)) ds

}
, ∀y ∈ Rd, t > 0. (E2)

Consider the equations with the C0 periodic unknowns uτ  and u,

uτ (y) + L̄τ = min
x∈Rd

{
uτ (x) + Lτ (x, y)

}
, ∀y ∈ Rd, ∀τ ∈ (0, 1], (E3)

u(y)− tH̄ = min
x∈Rd

{
u(x) + Et(x, y)

}
, ∀y ∈ Rd, ∀t > 0. (E4)

	 i.	Let δ ∈ (0, 1], x ∈ Rd. Let (xτ ,δ
−n)n�0 be a backward calibrated configuration for the equa-

tion (E3) starting at xτ ,δ
0 = x. Let γτ ,δ(t) be the piecewise linear approximation satisfying 

γτ ,δ(−nτ) = xτ ,δ
−n . Then there exists a sequence τi → 0 such that

	(a)	γτi,δ(t) → γδ(t) uniformly on every compact subset of (−∞, 0],
	(b)	γδ ∈ C2((−∞, 0],Rd), ‖γ̇δ‖∞ � C , ‖γ̈δ‖∞ � C
	(c)	 uδ(x) = e−tδuδ(γδ(−t)) +

∫ 0
−t esδL(γδ(s), γ̇δ(s)) ds, ∀t � 0.

	 ii.	There exist constants C > 0, R > 1 such that for every τ , δ ∈ (0, 1],
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	(a)	 uτ ,δ is uniformly Lipschitz with Lip(uτ ,δ) � C ,
	(b)	 ∀y ∈ Rd ,   x ∈ arg minx∈Rd

{
(1 − τδ)uτ ,δ(x) + Lτ (x, y)

}
⇒ ‖y − x‖ � τR,

	(c)	 ‖uτ ,δ − uδ‖∞ � C τ
δ and

∥∥∥
(

uτ ,δ − L̄τ

τδ

)
−
(

uδ + H̄
δ

) ∥∥∥
∞

� C τ
δ .

	(iii)	Let τ ∈ (0, 1] and u∗
τ  be defined in proposition 18. Then

lim
δ→0

(
uτ ,δ −

L̄τ

τδ

)
= u∗τ , in the C0 topology.

	(iv)	Let u∗ be the solution of (E4) defined by (7). Then

lim
τ→0, δ→0
τ/δ→0

(
uτ ,δ −

L̄τ

τδ

)
= u∗, in the C0 topology.

Theorem 20 is proved in section 4. Item (i) shows how to obtain a C2 minimizer in the 
continuous discounted case from a discrete calibrated configuration, item (ii) improves similar 
estimates in [Ror06, FR10, BFZ16]. Item (iii) generalizes [DFIZ16a] and is a particular case 
of proposition 19, item (iv) is a corollary of (iic) and [DFIZ16b].

3.  First approximation scheme

This section is devoted to the proof of theorem 9 and the necessary tools presented before. The 
a priori estimates in proposition 2 are easy to prove for the Tonelli Hamiltonian. We recall the 
following result; see [Fat08, Mat91] in the autonomous case and [BFZ16] in the nonautono-
mous case for more details.

Lemma 21 (A priori compactness for minimizers).  Let H(x, p) : Td × Rd → R be 
a Tonelli Hamiltonian. For every R > 0, there exists a constant C(R) > 0 such that for every 
τ > 0, x, y ∈ Rd  satisfying ‖y − x‖ � τR, and for every minimizer γ : [0, τ ] → Rd satisfying

γ(0) = x, γ(τ) = y,
∫ τ

0
L(γ(s), γ̇(s)) ds = Eτ (x, y),

we have ‖γ̇‖ � C(R) and ‖γ̈‖ � C(R).

Proof of proposition 2.  Properties (H1)–(H6) are trivially satisfied for the discrete action 
Lτ (x, y). Properties (H1)–(H3) and (H5) are also easy to prove for the minimal action Eτ (x, y) 
using the superlinearity of L(x, v).

		 Part 1: proof of property (H4).	 Let τ > 0, x, y ∈ Rd , ‖y − x‖ � τR. Since 
γ(s) := x + s y−x

τ  is a particular path joining x to y, we obtain

sup
τ>0, ‖y−x‖�τR

1
τ Eτ (x, y) � sup

x∈Rd , ‖v‖�R
L(x, v).

		 Let τ > 0 and x, y ∈ Rd . By superlinearity, L(x, v) � ‖v‖ − C  for some constant 
C > 0. Then 

∫ τ

0 L(γ(s), γ̇(s)) ds � ‖y − x‖ − τC for every absolutely continuous path 
γ : [0, τ ] → Rd satisfying γ(0) = x  and γ(τ) = y. One obtains
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inf
τ>0, x,y∈Rd

1
τ
Eτ (x, y) � −C.

		 Part 2: proof of property (H6).	 Let τ ∈ (0, 1], x, y, z ∈ Rd  such that ‖y − x‖ � τR and 
‖z − x‖ � τR. By Tonelli–Weierstrass, there exists a C2 minimizer γ : [0, τ ] → Rd 
starting at x, ending at y, and satisfying 

∫ τ

0 L(γ(s), γ̇(s)) ds = Eτ (x, y). Define the path 
ξ : [0, τ ] → Rd by ξ(s) = γ(s) + s z−y

τ . By lemma 21, there exists a constant C(R) > 0 
such that ‖γ̇‖ � C(R). Then

Eτ (x, z)− Eτ (x, y) �
∫ τ

0

[
L(ξ(s), ξ̇(s))− L(γ(s), γ̇(s))

]
ds � C̃(R)‖z − y‖,

		 where C̃(R) = supx∈Rd , ‖v‖�C(R)+R ‖DL(x, v)‖.
		 Part 3: proof of item (ii).	 Let R > 0 and C(R) be the constants given by lemma 

21. Let τ ∈ (0, 1] and ‖y − x‖ � τR. We know that Eτ (x, y) admits a C2 minimizer 
γ : [0, τ ] → Rd satisfying γ(0) = x , γ(τ) = y, Eτ (x, y) =

∫ τ

0 L(γ, γ̇) ds, ‖γ̇‖ � C(R) and 
‖γ̈‖ � C(R). Let V0 = γ̇(0). Then

‖γ(s)− x‖ = ‖γ(s)− γ(0)‖ � sC(R) � τC(R),

‖γ̇(s)− V0‖ � sC(R),
∥∥∥y − x

τ
− V0

∥∥∥ � τC(R) and
∥∥∥γ̇(s)− y − x

τ

∥∥∥ � 2τC(R).

		 We are now in a position to compare the two actions

|Eτ (x, y)− Lτ (x, y)| �
∫ τ

0

∣∣∣L(γ(s), γ̇(s))− L
(

x,
y − x
τ

)∣∣∣ ds � τ 2C̃(R),

		 with C̃(R) := 2 supx∈Rd , ‖v‖�R+C(R) ‖DL‖ C(R).

The a priori estimates of proposition 5 are the main technical results.

Proof of proposition 5.  We begin by fixing the constants C and R: let

C1 := 2 sup
τ∈(0,1], ‖y−x‖�τ

Eτ (x, y)− Ēτ

τ
,

R := inf
{

R > 1 : inf
τ∈(0,1], ‖y−x‖>τR

Eτ (x, y)− Ēτ

‖y − x‖
> C1

}
,

C := max
(

C1, sup
‖y−x‖, ‖z−x‖�τ(R+1)

Eτ (x, y)− Eτ (x, z)
‖z − y‖

)
.

�

(15)

Notice that C1 is finite thanks to (H4), R is finite thanks to (H5) and C is finite thanks to (H6).

		 Part 1. We show a partial proof of item (ia), namely

‖y − x‖ > τ ⇒ uτ (y)− uτ (x) � C1‖y − x‖.

		 Indeed, by choosing n � 2 such that (n − 1)τ < ‖y − x‖ � nτ  and by choosing 
xi = x + i

n (y − x), we obtain nτ � 2‖y − x‖,

uτ (xi+1)− uτ (xi) � Eτ (xi, xi+1)− Ēτ , and

uτ (y)− uτ (x) � nτ sup
‖y−x‖�τ

Eτ (x, y)− Ēτ

τ
� C1‖y − x‖.
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		 Part 2. We prove item (ib). Let y ∈ Rd. Let x be a calibrated point for uτ (y), that is, x 
satisfies

uτ (y)− uτ (x) = Eτ (x, y)− Ēτ .

		 Choose some R > 1 as in (15) and assume by contradiction that ‖y − x‖ > τR. Then the 
first part of the proof may be used and we obtain the absurd inequality

C1‖y − x‖ � uτ (y)− uτ (x) > C1‖y − x‖.

		 Part 3. We end the proof of item (ia). Let y, z ∈ Rd; either ‖z − y‖ > τ  and we are done 
by step 1, or ‖z − y‖ � τ . Let x be a calibrated point for uτ (y). Then ‖y − x‖ � τR, 
‖z − x‖ � τ(R + 1),

uτ (y)− uτ (x) = Eτ (x, y)− Ēτ , uτ (z)− uτ (x) � Eτ (x, z)− Ēτ ,
uτ (z)− uτ (y) � Eτ (x, z)− Eτ (x, y) � C‖z − y‖.

		 By permuting z and y, we just have proved that Lip(uτ ) � C.
		 Part 4. We prove item (ic). Let κ > 0. We define Rκ > 0 as before

Rκ := inf
{

R′ > 1 : inf
τ∈(0,1], ‖y−x‖>τR′

Eτ (x, y)− Eτ (y, y)
‖y − x‖

> κ
}

.

Let u be a periodic function satisfying Lip(u) � κ and y be any point in Rd. Let x be a 
point realizing the minimum of minx

{
u(x) + Eτ (x, y)

}
. Assume by contradiction that 

‖y − x‖ > τRκ, then on the one hand

Eτ (x, y)− Eτ (y, y) > κ‖y − x‖,

and on the other hand u(x) + Eτ (x, y) � u(y) + Eτ (y, y) and

κ‖y − x‖ � u(y)− u(x) � Eτ (x, y)− Eτ (y, y),

which is impossible. We then estimate ‖ Tτ [u]− u ‖∞. On the one hand

Tτ [u](y)− u(y) � Eτ (y, y).

On the other hand, if x realizes the minimum of minx∈Rd [u(x) + Eτ (x, y)]

Tτ [u](y)− u(y) = u(x)− u(y) + Eτ (x, y)

� −κ‖y − x‖+ inf
x,y∈Rd

Eτ (x, y),

1
τ

[
Tτ [u](y)− u(y)

]
� −κRκ + inf

τ∈(0,1]
inf

x,y∈Rd

1
τ

Eτ (x, y).

We conclude by taking

�
Cκ := κRκ + sup

τ∈(0,1]
sup
y∈Rd

1
τ Eτ (y, y)− inf

τ∈(0,1]
inf

x,y∈Rd

1
τ Eτ (x, y).

□ 

Proposition 8 is new for short-range interactions. The proof we present gives another 
proof of the existence of Fathi’s weak KAM solutions in the particular case of the minimal 
action.
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Proof of proposition 8. 

		 Part 1. We prove property (i) for τ ∈ Q. Let

Ēτ (M) := min
{ M∑

j=1

Eτ (xj−1, xj) : xj ∈ Rd
}

∀ M ∈ Z+.

		 It is enough to prove ĒNτ = NĒτ for every positive integer N  and τ > 0 that is not 
necessarily rational. We choose an integer M > 0

(z0, . . . , zM) ∈ arg min
{ M∑

i=1

ENτ (zi−1, zi) : zi ∈ Rd
}

,

		 and by the min-plus convolution of ENτ , we choose (xi,0, . . . , xi,N) so that

ENτ (zi−1, zi) =

N∑
j=1

Eτ (xi,j−1, xi,j), xi,0 = zi−1 and xi,N = zi.

		 Then ĒNτ (M) =
∑M

i=1
∑N

j=1 Eτ (xi,j−1, xi,j) � Ēτ (MN). By dividing by MN  and by 
taking M → +∞, one obtains ĒNτ � NĒτ. Conversely, we choose

(x0, . . . , xM−1) ∈ arg min
{M−1∑

i=1

Eτ (xi−1, xi) : xi ∈ Rd
}

,

		 and the N  integer translates kj ∈ Zd , j = 1 . . .N , such that k0 = 0 and

‖(x0 + kj)− (xM−1 + kj−1)‖ � 1.

		 We define a new chain (z0, . . . , zMN) by concatenating the previous translations

zi−1+( j−1)M := xi−1 + kj−1M, i = 1, . . . , M, j = 1, . . . , N.

		 Then, using the fact ‖zjM − zM−1+( j−1)M‖ � 1

NĒτ (M − 1) =
N∑

j=1

M−1∑
i=1

Eτ (zi−1+( j−1)M , zi+( j−1)M)

�
N∑

j=1

M∑
i=1

Eτ (zi−1+( j−1)M , zi+( j−1)M)− N sup
‖y−x‖�1

|Eτ (x, y)|,

		

N∑
j=1

M∑
i=1

Eτ (zi−1+( j−1)M , zi+( j−1)M) =

M∑
i=1

N∑
j=1

Eτ (zj−1+(i−1)N , zj+(i−1)N)

�
M∑

i=1

ENτ (zi−1, zi) � ĒNτ (M).

		 By dividing by M and by taking M → +∞, one obtains NĒτ � ĒNτ.
		 Part 2. We prove an intermediate estimate, namely
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sup
τ>0

‖Tτ [0]− Ēτ‖ � C,

		 where C is the constant given by the item (ia) of proposition 5. Let τ > 0 and N  be a 
positive integer such that τ/N � 1. Let uτ/N  be a weak KAM solution of Tτ/N  that we 
normalize by min uτ/N = 0. Then

Tτ/N [uτ/N ] = uτ/N + Ēτ/N ,

Tτ [uτ/N ] = (Tτ/N)
N [uτ/N ] = uτ/N + NĒτ/N = uτ/N + Ēτ .

		 Since ‖uτ/N‖ � C , we obtain

Tτ [0] � Tτ [uτ/N ] � C + Ēτ ,
Tτ [0] � Tτ [uτ/N − C] = uτ/N − C + Ēτ � −C + Ēτ ,

		 and finally ‖Tτ [0]− Ēτ‖∞ � C, for every τ > 0.
		 Part 3. We resume the proof of property (i) for τ �∈ Q. We choose pi, qi ∈ N, qi → +∞, 

such that pi < qiτ < pi + 1. Denote by σi = pi + 1 − qiτ . Then Tpi+1 = Tσi ◦ Tqiτ . Since 
‖Tqiτ [0]− qiĒτ‖∞ � C, by applying Tσi, one obtains on the one hand

‖Tpi+1[0]− qiĒτ‖∞ � C + ‖ Tσi [0] ‖∞.

		 On the other hand ‖Tpi+1[0]− ( pi + 1)Ē1‖∞ � C , which implies

‖( pi + 1)Ē1 − qiĒτ‖∞ � 2C + sup
σ∈(0,1]

‖Tσ[0] ‖∞.

		 Notice that item (ic) of proposition 5 implies that ‖ Tσ[0] ‖∞ is uniformly bounded for 
σ ∈ (0, 1]. We conclude by dividing by qi and letting qi go to infinity.

		 Part 4. We prove item (ii). From the a priori compactness property of proposition 5, 
one can find a constant C > 0 such that every discrete weak KAM solution uτ  satisfies 
Lip(uτ ) � C. Since uτ  is defined up to a constant, we may assume that min(uτ ) = 0. By 
choosing a subsequence τi → 0, we may assume that uτi → u uniformly. Moreover, the 
second part of proposition 5 implies that ‖ Tσ[v]− v ‖∞ � σC , for every σ ∈ (0, 1] and 
every Lipshitz function v satisfying Lip(v) � C . Let t > 0. There exist integers Ni such 
that Niτi � t < (Ni + 1)τi. Let σi = t − Niτi. Then

Tτi [uτi ] = uτi + τiĒ1, TNiτi [uτi ] = uτi + NiτiĒ1,
Tt[uτi ] = Tt−Niτi [uτi ] + NiτiĒ1,

‖Tt[uτi ]− uτi − tĒ1 ‖∞ � ‖Tσi [uτi ]− uτi ‖∞ + σi|Ē1|.

		 As σi → 0, uτi → u, Tσi [u] → u, and ‖Tσi [uτi ]− Tσi [u]‖∞ � ‖uτi − u‖∞, we obtain 
Tt[u] = u + tĒ1.

		 Part 5. We prove item (iii). We first notice

min
x,y∈Rd

Et(x, y) = min
y∈Rd

Tt[0](y).

		 On the one hand,

Tt[0] � Tt[u −min(u)] = u + tĒ1 −min(u) � max(u)−min(u) + tĒ1.

		 On the other hand,
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Tt[0] � Tt[u −max(u)] = u + tĒ1 −max(u) � min(u)−max(u) + tĒ1.

		 In particular, ‖Tt[0]− tĒ1‖∞ � osc(u) and limt→+∞ minx,y∈Rd
1
t Et(x, y) = Ē1.

We conclude this section with the proof of theorem 9.

Proof of theorem 9. 

		 Part 1: proof of items (i) and (ii). The discrete action Lτ (x, y) and the minimal action 
Eτ (x, y) are particular cases of short-range interactions. Item (i) is proved in proposition 
4. Item (ii) is proved in proposition 8.

		 Part 2: proof of item (iii). Let us show that there exists a constant C > 0 such that

|Ēτ − L̄τ | � τ 2C, ∀τ ∈ (0, 1].

		 Let uτ  be a discrete weak KAM solution of Eτ (x, y) and (x−k)
+∞
k=0  be a calibrated con-

figuration for uτ . Thanks to propositions 5 and 2, there exist constants R > 0 and C > 0 
independent of τ such that,

‖x−k − x−k−1‖ � τR, ∀k � 0,

|Eτ (x, y)− Lτ (x, y)| � τ 2C, ∀x, y satisfying ‖y − x‖ � τR,
Eτ (x−k−1, x−k) = uτ (x−k)− uτ (x−k−1) + Ēτ ,

Lτ (x−k−1, x−k) � Eτ (x−k−1, x−k) + τ 2C,

1
n

n−1∑
k=0

Lτ (x−k−1, x−k) � Ēτ + τ 2C(R) +
2
n
‖uτ‖∞.

		 By taking the limit n → +∞, and by using the mean action per site formula, we obtain 
L̄τ � Ēτ + τ 2C. By permuting the roles of Eτ  and Lτ we conclude the proof of item (iii).

		 Part 3: Proof of item (iv). This follows directly from the a priori compactness property of 
proposition 5.

		 Part 4: Proof of item (v). We will use two Lax–Oleinik operators: Tτ , the discrete Lax–
Oleinik operator associated with Lτ, and Tτ , the Lax–Oleinik semi-group associated with 
Eτ . We claim there exists a constant C > 0 such that for every small τ > 0, for every 
discrete weak KAM solution u for Lτ,

‖Tτ [u]− Tτ [u] ‖∞ � τ 2C.

Indeed, we know from propositions 5 and 2, that there exist positive constants R and C such 
that for every τ ∈ (0, 1] and for every discrete weak KAM solution u for Lτ,

	 –	Lip(u) � C, ‖u‖∞ � C,
	 –	∀y ∈ Rd ,   x ∈ arg minx∈Rd

{
u(x) + Lτ (x, y)

}
⇒ ‖y − x‖ � τR,

	 –	∀y ∈ Rd ,   x ∈ arg minx∈Rd

{
u(x) + Eτ (x, y)

}
⇒ ‖y − x‖ � τR,

	 –	‖ Tτ [u]− u ‖∞ � τC ,
	 –	for every x, y,   ‖y − x‖ � τR ⇒ ‖Eτ (x, y)− Lτ (x, y)| � τ 2C.

On the one hand, for every y and x ∈ arg minx∈Rd

{
u(x) + Lτ (x, y)

}
,

Tτ [u](y) � u(x) + Eτ (x, y) � u(x) + Lτ (x, y) + τ 2C,

Tτ [u](y) � Tτ [u](y) + τ 2C.
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On the other hand, if x ∈ arg minx∈Rd

[
u(x) + Eτ (x, y)

]
,

Tτ [u](y) = u(x) + Eτ (x, y) � u(x) + Lτ (x, y)− τ 2C,

Tτ [u](y) � Tτ [u](y)− τ 2C.

The claim is proved. Since Lip(u) is uniformly bounded independently of τ for any discrete 
weak KAM solution u for Lτ, we may choose a sequence of times τi → 0 and discrete weak 
KAM solutions ui for Lτi, such that ui → u uniformly for some periodic Lipschitz function u. 
Let t > 0 be fixed, and Ni be integers such that Niτi � t < (Ni + 1)τ . The non-expansiveness 
property of the Lax–Oleinik operator implies

‖ Tt[u]− TNiτi [ui] ‖∞ � ‖ Tt−Niτi [u]− u ‖∞ + ‖u − ui‖∞ → 0.

The previous claim ‖ Tτi [ui]− Tτi [ui] ‖∞ � τ 2
i C  and the estimate |Ēτi − L̄τi | � τ 2

i C, proved 
in item (iii) of theorem 9, imply

‖ Tτi [ui]− ui − τiĒ1 ‖∞ � τ 2
i 2C.

By iterating this inequality, one obtains

‖ TNiτi [ui]− ui − NiτiĒ1 ‖∞ � Niτ
2
i 2C � tτi2C.

Since ui + NiτiĒ1 → u + tĒ1, one gets

Tt[u] = u + tĒ1, ∀t > 0.

4.  Second approximation scheme

This section is devoted to the proof of theorem 20. Our approach follows article [DFIZ16b] to 
identify the selected discrete weak KAM solution, but with a slightly more precise description 
using Aubry classes and extremal plans.

We first improve the a priori estimates of proposition 5 to the discounted case.

Proof of proposition 11. 

		 Part 1. The operator Tτ ,δ is contracting in the C0 norm, i.e.

‖ Tτ ,δ[u]− Tτ ,δ[v] ‖∞ � (1 − τδ)‖ u − v ‖∞, ∀ u, v ∈ C0(Td).

		 Moreover, Tτ ,δ preserves the ball ‖u‖∞ � C0
δ  where

C0 := sup
τ∈(0,1]

(
sup
x∈Rd

Eτ (x, x)
τ

,− inf
x,y∈Rd

Eτ (x, y)
τ

)
.

		 Indeed, we have

Tτ ,δ[u](y) � (1 − τδ)max(u) + max
x∈Rd

Eτ (x, x),

Tτ ,δ[u](y) � (1 − τδ)min(u) + min
x,y∈Rd

Eτ (x, y),

‖u‖∞ �
C0

δ
⇒ ‖ Tτ ,δ[u] ‖∞ � (1 − τδ)‖u‖∞ + τC0 �

C0

δ
.
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		 In particular, Tτ ,δ admits a unique fixed point uτ ,δ which is inside B(0, C0
δ ). We have 

proved item (i). The fixed point satisfies

uτ ,δ(y) = min
x∈Rd

{
(1 − τδ)uτ ,δ(x) + Eτ (x, y)

}
, ∀y ∈ Rd.

		 By iterating backward, one obtains the explicit formula for uτ ,δ.
		 Part 2. We prove item (iii). We use the same reasoning as in the proof of proposition 5. 

We claim that for every point x, y satisfying ‖y − x‖ � τ , we have

|uτ ,δ(y)− uτ ,δ(x)| � C1‖y − x‖, with C1 := sup
τ∈(0,1]

sup
‖y−x‖�2τ

(Eτ (x, y)
τ

+ C0

)
.

		 Indeed, choose n � 1 so that nτ < ‖y − x‖ � (n + 1)τ  and define xi = x + i
n (y − x). By 

applying n times the inequality

uτ ,δ(xi+1)− uτ ,δ(xi) � Eτ (xi, xi+1) + τδ‖uτ ,δ‖∞ � τC1

		 we obtain uτ ,δ(y)− uτ ,δ(x) � C1‖y − x‖.
		 Define R using the uniform superlinearity (H5) by

R := inf
{

R > 1 : inf
τ∈(0,1]

inf
‖y−x‖�τR

Eτ (x, y)− C0τ

‖y − x‖
> C1

}
.

		 We prove by contradiction that every x ∈ arg minx{(1 − τδ)uτ ,δ(x) + Eτ (x, y)
}

 satisfies 
‖y − x‖ � τR. If not ‖y − x‖ > τR > τ , uτ ,δ(y)− uτ ,δ(x) � C1‖y − x‖ and by definition 
of R, we have

uτ ,δ(y)− uτ ,δ(x) � Eτ (x, y)− τδ‖uτ ,δ‖∞ � Eτ (x, y)− τC0 > C1‖y − x‖.

		 We obtain a contradiction, therefore ‖y − x‖ � τR, and the proof of item (iii) is complete.
		 Part 3. We prove item (iv). If ‖z − y‖ � τ  and x is a point realizing the minimum in the 

definition of uτ ,δ(y),

uτ ,δ(z)− uτ ,δ(y) � Eτ (x, z)− Eτ (x, y) � C‖z − y‖,

		 where

�
C := max

(
C1, sup

τ∈(0,1]
sup

‖y−x‖,‖z−x‖�τ(R+1)

Eτ (x, z)− Eτ (x, y)
‖y − x‖

)
.

□

Proof of lemma 17.  Let π be an extremal plan, and µ = pr1
∗(π).

		 Part 1. Let Ω̂ := (Td)N, σ̂ : Ω̂ → Ω̂ be the left shift, and pr1,2 : Ω̂ → Td × Td be the 
projection onto the first two coordinates. We claim there exists an ergodic σ̂-invariant 
probability measure π̂ defined on Ω̂, which projects onto π by pr1,2 and minimizes 
Êτ (x) := E∗

τ (x0, x1), ∀x = (x0, x1, . . .) ∈ Ω̂.

		 Let π(dx, dy) = µ(dx)P(dy|x) be a regular family of disintegrated measures of π along 
the projection pr1. Define the Markov measure on Ω̂ by

P̂(dx) = µ(dx0)P(dx1|x0)P(dx2|x1) · · · .
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		 Then P̂ is a σ̂-invariant probability measure which projects onto π and minimizes Êτ . 

Let P̂(dx) =
∫
Ω̂
P̂ω(dx)P̂(dω) be an ergodic decomposition of P̂ (see [Mn87, theorem 

6.1]). We claim that ω �→ pr1,2
∗ (P̂ω) is a.e. constant. By contradiction there would exist 

ϕ ∈ C0(Td × Td) and a constant a ∈ R such that

B̂ :=
{
ω ∈ Ω̂ :

∫
ϕ(x, y) pr1,2

∗ (Pω)(dx, dy) < a
}

.

		 Both B̂ and B̂c  have a positive measure. Since P̂ω is σ̂-invariant and minimizing, pr1,2
∗ (P̂ω) 

is a minimizing plan. Define

π1(dx, dy) :=
1

P̂(B̂)

∫

B̂
pr1,2

∗ (P̂ω)(dx, dy) P̂(dω),

π2(dx, dy) :=
1

P̂(B̂c)

∫

B̂c

pr1,2
∗ (P̂ω)(dx, dy) P̂(dω).

		 Then π1 and π2  are distinct minimizing plans and

π = P̂(B̂)π1 + P̂(B̂c)π2, with P̂(B̂) ∈ (0, 1)nontrivial,

		 which contradicts the fact that π is extremal. For almost every ω we have obtained 
pr1,2(P̂ω) = π and P̂ω is ergodic.

		 Part 2: proof of item (i). We have shown from part 1 that there exists an ergodic σ̂-invariant 
measure π̂ on Ω̂ such that pr1

∗(π̂) = µ, where pr1 : Ω̂ → Td  is the first projection. Let 
ε > 0, x, y ∈ supp(µ). Define

B̂x = {(x0, x1, · · · ) : x0 ∈ B(x, ε)}, B̂y = {(x0, x1, · · · ) : x0 ∈ B(y, ε)}.

		 Then B̂x, B̂y are open sets and have positive measures for π̂. Choose a discrete weak KAM 
solution uτ  and define

ϕ̂(z) := E∗
τ (z0, z1)− [uτ (z1)− uτ (z0)]− Ēτ , ∀z = (z0, z1, . . .) ∈ Ω̂.

		 By Atkinson’s theorem [Atk76], since 
∫
ϕ̂ dπ̂ = 0, for a.e. z ∈ B̂x,

∃0 < m < n, s.t. σ̂m(z) ∈ B̂y, σ̂n(z) ∈ B̂x, and 0 �
n−1∑
k=0

ϕ̂ ◦ σ̂k(z) < ε.

		 We have obtained in particular, z0 ∈ B(x, ε), zm ∈ B(y, ε), zn ∈ B(x, ε), and

Φ∗
τ (z0, zm) + Φ∗

τ (zm, zn) �
n−1∑
k=0

ϕ̂ ◦ σ̂k(ω) + [uτ (zn)− uτ (z0)] = O(ε).

		 Letting ε → 0, we obtain Φ∗
τ (x, y) + Φ∗

τ (y, x) = 0 or x ∼ y .
		 Part 3: proof of item (ii). Let A be the Aubry class containing supp(µ) and z̄ ∈ A arbi-

trarily fixed. Then, as a function of y, using item (iii) of lemma 16,
∫

Φ∗
τ (z, y)µ(dz) =

∫
Φ∗

τ (z, z̄)µ(dz) + Φ∗
τ (z̄, y),∀y ∈ Rd

		 is equal to the sum of Φ∗
τ (z̄, y) and a constant, which is a discrete weak KAM solution 

thanks to item (v) of lemma 16.
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		 Part 4: proof of item (iii). For every x, y ∈ A, Φ∗
τ (x, y) + Φ∗

τ (y, x) = 0. We conclude by 
integrating with respect to µ(dx)µ(dy).� □

Proof of proposition 18. 

		 Part 1. We use the notations of part 1 in the proof of lemma 17. We claim that the infimum 
in the definition of u∗

τ  can be realized at an extremal plan. Let π be a minimizing plan 
realizing the infimum. Let P̂ be a σ̂-invariant measure on Ω̂ such that pr1,2

∗ (P̂) = π . Then 
P̂ is minimizing. Let P̂(dx) =

∫
P̂ω(dx) P̂(dω) be an ergodic decomposition. Define 

πω := pr1,2
∗ (P̂ω). Since P̂ω is ergodic, πω is an extremal plan. Moreover, for x fixed,

π(dx, dy) =
∫

Ω̂

πω(dx, dy) P̂(dω),

u∗
τ (x) =

∫

Ω̂

[ ∫

Td
Φ∗

τ (z, x) pr1
∗(πω)(dz)

]
P̂(dω),

u∗
τ (x) =

∫

Td
Φ∗

τ (z, x) pr1
∗(πω)(dz), P̂(dω) a.e.,

u∗
τ (x) = inf

{∫

Td
Φ∗

τ (z, x) pr1
∗(π)(dz) : π ∈ M∗(Eτ ) is extremal

}
.

		 Part 2: proof of item (i). This follows from the fact that u∗
τ  is obtained as an infimum of 

discrete weak KAM solutions thanks to part 1 and item (ii) of lemma 17.
		 Part 3: proof of item (ii). Let

w∗(x) := sup
{

w(y) : w + Ēτ = Tτ [w],
∫

Td
w(x) pr1

∗(π)(dx) � 0, ∀π ∈ M∗(Eτ )
}

.

		 We already know that u∗
τ  is a discrete weak KAM solution. Using item (iii) of lemma 17, 

we have for every extremal plan π ∈ M∗(Eτ )
∫

Td
u∗
τ (x) pr1

∗(π)(dx) �
∫ ∫

Φ∗
τ (z, x) pr1

∗(π)(dz) pr1
∗(π)(dx) = 0.

		 Thus by taking convex combinations of the extremal plans, we get
∫

Td
uτ (x) pr1

∗(π)(dx) � 0, ∀π ∈ M∗(Eτ ).

		 We have proved that u∗
τ � w∗. Conversely, if w is a discrete weak KAM solution satis-

fying 
∫

w(x) pr1
∗(π)(dx) � 0, ∀π ∈ M∗(Eτ ), then,

w(x) � w(z) + Φ∗
τ (z, x), ∀x, z ∈ Rd,

w(x) �
∫

Td
Φ∗

τ (z, x) pr1(π)(dz), ∀π extremal plan.

		 By taking the supremum over such w and the infimum over all extremal plans π, one 
obtains w∗ � u∗τ  and therefore w∗ = u∗τ .

		 Part 4: poof of item (iii). Assume by contradiction that for some ε > 0, ∫
u∗
τ (x) pr1

∗(π)(dx) � −ε for every extremal plan π. Then
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u∗τ (x) � u∗τ (z) + Φ∗
τ (z, x), ∀x, z ∈ Rd,

u∗τ (x) � −ε+

∫

Td
Φ∗

τ (z, x) pr1(π)(dz), ∀π extremal plan.

		 We thus obtain a contradiction by taking the infimum over all extremal plans.� □

Proof of proposition 19. 

		 Part 1. Let C be the constant given by proposition 5. We claim that for every τ , δ ∈ (0, 1],
∥∥∥uτ ,δ −

Ēτ

τδ

∥∥∥
∞

� C.

		 Let uτ  be some discrete weak KAM solution. Let

y ∈ arg max
y∈Rd

{
uτ ,δ(y)−

Ēτ

τδ
− uτ (y)

}
.

		 As a fixed point of Tτ ,δ, the discounted discrete solution satisfies for every x,

uτ ,δ(y)−
Ēτ

τδ
− uτ (y) � (1 − τδ)

[
uτ ,δ(x)−

Ēτ

τδ
− uτ (x)

]

+
[
Eτ (x, y)− uτ (y) + uτ (x)− Ēτ

]
− τδuτ (x).

		 Let x be a backward calibrated point for y with respect to uτ . Then, by definition of y, we 
have

uτ ,δ(x)−
Ēτ

τδ
− uτ (x) � uτ ,δ(y)−

Ēτ

τδ
− uτ (y),

uτ ,δ(y)−
Ēτ

τδ
− uτ (y) � −uτ (x),

uτ ,δ(y)−
Ēτ

τδ
� osc(uτ ) � C.

		 On the other hand, let y be a point realizing the minimum of uτ ,δ(y)− Ēτ

τδ − uτ (y) and x 

be a discounted backward calibrated point for y, that is

uτ ,δ(y) = (1 − τδ)uτ ,δ(x) + Eτ (x, y).

		 Then similar to what we have done in part 1, we obtain

uτ ,δ(y)−
Ēτ

τδ
− uτ (y) = (1 − τδ)

[
uτ ,δ(x)−

Ēτ

τδ
− uτ (x)

]

+
[
Eτ (x, y)− uτ (y) + uτ (x)− Ēτ

]
− τδuτ (x).

		 As Eτ (x, y)− uτ (y) + uτ (x)− Ēτ � 0, we obtain uτ ,δ(y)− Ēτ

τδ − uτ (y) � −uτ (x) or 
uτ ,δ(y)− Ēτ

τδ � −osc(uτ ) � −C.
		 Part 2. We claim that for every τ , δ ∈ (0, 1], π ∈ M∗(Eτ ), µ = pr1

∗(π),
∫

Td

[
uτ ,δ(x)−

Ēτ

τδ

]
dµ(x) � 0.
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		 By definition of the discounted discrete solution uτ ,δ, we have

uτ ,δ(y) � (1 − τδ)uτ ,δ(x) + E∗
τ (x, y), ∀x, y ∈ Rd.

		 By integrating the previous inequality, we obtain
∫

Td
uτ ,δ(y)µ(dy) � (1 − τδ)

∫

Td
uτ ,δ(x)µ(dx) +

∫∫

Td×Td
E∗
τ (x, y)π(dx, dy).

		 The last integral is equal to Ēτ  and τδ
∫
Td uτ ,δ(x)µ(dx) � Ēτ.

		 Part 3. Let τ > 0 be fixed. Let δi → 0 be a sequence converging to 0. For every δi, let 
(xi

−k)
+∞
k=0  be a discounted backward calibrated configuration,

uτ ,δi(x
i
−k) = (1 − τδi)uτ ,δi(x

i
−k−1) + Eτ (xi

−k−1, xi
−k).

		 Let πi be the probability measure on Td × Td  defined by

πi :=
∑
k�0

τδ(1 − τδ)kδ(xi
−k−1,xi

−k)
.

		 We claim that every weak∗ accumulation measure π of {πi}∞i=1 is a minimizing plan. 
Assume that πi → π as i → ∞ to simplify the notations.

		 We first prove that π is a stationary plan. Let ϕ : Td → R be a continuous function, then
∫∫

Td×Td
ϕ(y)πi(dx, dy) =

∑
k�0

τδi(1 − τδi)
kϕ(xi

−k)

= τδiϕ(xi
0) + (1 − τδi)

∑
k�0

τδi(1 − τδi)
kϕ(xi

−k−1)

= τδiϕ(xi
0) + (1 − τδi)

∫∫

Td×Td
ϕ(x)πi−1(dx, dy).

		 We complete the proof by letting δi → 0. We next prove that π is minimizing:
∫∫

Td×Td
E∗
τ (x,y)πi(dx, dy) =

∑
k�0

τδi(1 − τδi)
kE∗

τ (x
i
−k−1, xi

−k)

=
∑
k�0

τδi(1 − τδi)
k[uτ ,δi(x

i
−k)− (1 − τδi)uτ ,δi(x

i
−k−1)

]
= τδiuτ ,δi(x

i
0).

		 We conclude the proof thanks to part 1 which implies τδiuτδi → Ēτ  uniformly.

		 Part 4. Since Lip(uτ ,δ) and 
∥∥uτ ,δ − Ēτ

τδ

∥∥
∞ are uniformly bounded with respect to δ, there 

exists a subsequence δi → 0 and a C0 periodic function uτ  such that

uτ ,δi −
Ēτ

τδi
→ uτ , in the C0 -topology.

		 We first prove that uτ  is a discrete weak KAM solution. On the one hand, by letting 
δi → 0 in

uτ ,δi(y)−
Ēτ

τδi
� (1 − τδi)

[
uτ ,δi(x)−

Ēτ

τδi

]
+ Eτ (x, y)− Ēτ ,
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		 one obtains uτ (y)− uτ (x) � Eτ (x, y)− Ēτ, for every x, y ∈ Rd . On the other hand, for 
every y there exists xi ∈ Rd such that

uτ ,δi(y)−
Ēτ

τδi
= (1 − τδi)

[
uτ ,δi(xi)−

Ēτ

τδi

]
+ Eτ (xi, y)− Ēτ .

		 Proposition 11 implies there exists a constant R > 0, independent of δ, such that 
‖y − xi‖ � τR. By taking possibly a subsequence, one may assume xi → x for some 
x ∈ Rd. One then obtains uτ (y)− uτ (x) = Eτ (x, y)− Ēτ. The proof is finished.

			  We next prove that uτ = u∗τ  given by proposition 18. Let π ∈ M∗(Eτ ) and 
µ = pr1

∗(π). By letting δi → 0 in part 2, one obtains 
∫
Td uτ (x) dµ(x) � 0 and

uτ (y) � sup
{

w(y) : Tτ [w] = w + Ēτ ,
∫

Td
w(x) pr1

∗(π)(dx) � 0, ∀π ∈ M∗(Eτ )
}

.

		 Conversely, let w be a discrete weak KAM solution satisfying 
∫
Td w dpr1

∗(π) � 0 for 
every π ∈ M∗(Eτ ). Let y ∈ Rd and for every δi, (xi

−k)k�0 be a discounted backward 
calibrated configuration starting at y = xi

0. Then

uτ ,δi(x
i
−k)−

Ēτ

τδi
− w(xi

−k) = (1 − τδi)
[
uτ ,δi(x

i
−k−1)− w(xi

−k−1)−
Ēτ

τδi

]

+
[
Eτ (xi

−k−1, xi
−k)− w(xi

−k) + w(xi
−k−1)− Ēτ

]
− τδiw(xi

−k−1).

		 As Eτ (xi
−k−1, xi

−k)− w(xi
−k) + w(xi

−k−1)− Ēτ � 0, by iterating these inequalities, one 
obtains

uτ ,δi(y)−
Ēτ

τδi
− w(y) �

∑
k�0

−τδi(1 − τδi)
kw(xi

−k−1) = −
∫ ∫

Td×Td
w(x)πi(dx, dy),

		 where πi is the probability measure defined in part 3. As πi converges to a minimizing plan 

π, one obtains uτ (y)− w(y) � −
∫
Td w dpr1

∗(π) � 0 and therefore uτ � u∗τ . Since u∗
τ  is 

the only accumulation point of uτ ,δ − Ēτ

τδ, the proof of proposition 19 is complete.� □

The only results in theorem 20 to be proved are items (i) and (iic). Items (iia) and (iib) are 
particular cases of proposition 11. Item (iii) is a particular case of proposition 19. Item (iv) is 
a consequence of item (iic) and the existence of the balanced weak KAM solution (7).

Proof of item (i) of theorem 20. 

		 Part 1. Let τ > 0 and {xτ ,δ
n }n�0  be a discounted backward calibrated configuration for the 

discrete action Lτ ending at x. We note

vτ ,δ
n :=

1
τ

(
xτ ,δ

n+1 − xτ ,δ
n

)
, ∀n � −1.

		 We show in this part that there exists a constant C > 0, independent of n, δ and x, such 
that ‖vτ ,δ

n − vτ ,δ
n−1‖ � Cτ  for all n � −1. Let xn := xτ ,δ

n  and vn := vτ ,δ
n . By the definition 

of the calibration we have

uτ ,δ(xn+1) = (1 − τδ)uτ ,δ(xn) + Lτ (xn, xn+1)

= (1 − τδ)2uτ ,δ(xn−1) + (1 − τδ)Lτ (xn−1, xn) + Lτ (xn, xn+1)

� (1 − τδ)uτ ,δ(x) + Lτ (x, xn+1), ∀x ∈ Rd

� (1 − τδ)2uτ ,δ(xn−1) + (1 − τδ)Lτ (xn−1, x) + Lτ (x, xn+1), ∀x ∈ Rd.
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		 In other words {xτ ,δ
n }n�0  is minimizing in the following sense:

(1 − τδ)Lτ (xn−1, xn) + Lτ (xn, xn+1) � (1 − τδ)Lτ (xn−1, x) + Lτ (x, xn+1), ∀x ∈ Rd,

		 and satisfies the discounted discrete Euler–Lagrange equation

(1 − τδ)
∂Lτ

∂y
(xn−1, xn) +

∂Lτ

∂x
(xn, xn+1) = 0

⇐⇒ (1 − τδ)
∂L
∂v

(xn−1, vn−1)−
∂L
∂v

(xn, vn) + τ
∂L
∂x

(xn, vn) = 0

⇐⇒ 1
τ

[∂L
∂v

(xn, vn)−
∂L
∂v

(xn−1, vn−1)
]
=

∂L
∂x

(xn, vn)− δ
∂L
∂v

(xn−1, vn−1).
� (16)

		 Proposition 11 shows there exists R > 0 such that ‖vτ ,δ
n ‖ � R, ∀n � −1. The property of 

positive definiteness (L1) implies the existence of a constant α(R) > 0 such that for every 
x ∈ Rd, v ∈ Rd satisfying ‖v‖ � R

∂2L
∂v∂v

(x, v).(h, h) � α(R)‖h‖2, ∀h ∈ Rd.

		 By integrating over t ∈ [0, 1], the term d
dt

(
∂L
∂v

(
xn−1 + t(xn − xn−1), vn−1 + t(vn − vn−1)

))
 

and by taking the scalar product with (vn − vn−1), one obtains

α(R)‖vn − vn−1‖ �
∥∥∥ ∂L
∂x∂v

∥∥∥ ‖xn − xn−1‖+ τ
( ∥∥∥∂L

∂x

∥∥∥+ δ
∥∥∥∂L
∂v

∥∥∥
)

		 where all norms ‖ · ‖ are taken over Td ×
{

v ∈ Rd : ‖v‖ � R‖
}

. As ‖xn − xn−1‖ � τR, 
thanks to item (iib) of proposition 11, one obtains ‖vn − vn−1‖ � τC , for some constant 
C > 0, uniformly in n, δ and x.

		 Part 2. Let γx
τ ,δ : (−∞, 0] → Rd be the piecewise affine path interpolating the points xn at 

time nτ . We show that γx
τ ,δ is Lipschitz uniformly in n, δ and {xτ ,δ

n }n�0 . To simplify, we 
write γ = γx

τ ,δ. Let s < t < 0. Either s, t belong to the same interval ((n − 1)τ , nτ ]; as γ 
is affine with speed bounded by R, we obtain ‖γ(t)− γ(s)‖ � |t − s|R. Or s, t belong to 
different intervals; by introducing the points xn corresponding to the intermediate times 
s � nτ � t, one again obtains the same estimate.

		 Part 3. We choose a subsequence τi → 0 and a discounted backward calibrated configura-
tion {xi

n}n�0 such that γi := γx
τi,δ → γx

δ uniformly on any compact interval of (−∞, 0] 
for some Lipschitz function γx

δ. We claim there exists a uniformly Lipschitz function 
V : (−∞, 0] → Rd  such that

∫ 0

t
V(s) ds = x − γx

δ(t), ∀t � 0.

		 Let T ⊂ (−∞, 0) be a countable dense subset. Let Vi : (−∞, 0) → Rd such that

Vi(t) :=
1
τi

(
xi

n − xi
n−1

)
, ∀t ∈ [(n − 1)τi, nτi), ∀n � 0.

		 By compactness of the ball {v : ‖v‖ � R}, by taking a subsequence if needed, we may 
assume Vi(t) → V(t) exists for every t ∈ T . Let s < t < 0 and m � n be nonpositive 
integers such that (m − 1)τi � s < mτi and (n − 1)τi � t < nτi. Part 1 implies
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‖Vi(t)− Vi(s)‖ = ‖vi
n−1 − vi

m−1‖ � (n − m)τiC � |t − s|C + τiC.

		 By letting τi → 0, one obtains ‖V(t)− V(s)‖ � |t − s|C for every s, t ∈ T . Let 
V : (−∞, 0) → Rd  be the unique Lipschitz extension of V . Then Vi(t) → V(t) for every 
t ∈ (−∞, 0). Since

∫ 0

t
Vi(s) ds = x − γi(t), ∀t < 0,

		 the claim is proved and γx
δ is a C1,1 path.

		 Part 4. Item (iia) of proposition 11 shows there exists a constant C > 0 such that 
Lip(uτi,δ) � C . By taking a subsequence if necessary, we may assume that ui := uτi,δ → u 
uniformly for some Lipschitz function u. We claim that

u(x)− etδu(γx
δ(t)) =

∫ 0

t
esδL(γx

δ(s), γ̇
x
δ(s)) ds, ∀x ∈ Rd, ∀t � 0.

		 Indeed using the notations in part 3, we have for every n � −1,

ui(x) = (1 − τiδ)
−nui ◦ γi(nτi) +

−1∑
k=n

(1 − τiδ)
−k−1τiL

(
γi(kτi), Vi(kτi)

)
.

		 Let t < 0 be fixed, n � 0 be such that (n − 1)τi � t < nτi. Then

I :=
∣∣∣

−1∑
k=n

(1 − τiδ)
−k−1τiL

(
γi(kτi), Vi(kτi)

)
−

∫ 0

nτi

esδL(γi(s), Vi(s)) ds
∣∣∣

		 can be bounded from above by the following three terms I1, I2, I3

I1 =

−1∑
k=n

(1 − τiδ)
−k−1

∫ (k+1)τi

kτi

∣∣L(γi(kτi), Vi(kτi)
)
− L(γi(s), Vi(s))

∣∣ ds

� R
∥∥∥∂L
∂x

∥∥∥τi

δ
,

I2 =

−1∑
k=n

[
(1 − τiδ)

−k−1 − (1 − τiδ)
−k
] ∫ (k+1)τi

kτi

∣∣L(γi(s), Vi(s))
∣∣ ds

� τi‖L‖
(

1 − (1 − τiδ)
−n

)
� τi‖L‖,

I3 =

−1∑
k=n

∫ (k+1)τi

kτi

[
esδ − (1 − τiδ)

−k
] ∣∣L(γi(s), Vi(s))

∣∣ ds

� ‖L‖
[ ∫ 0

nτi

esδ ds − τi

−1∑
k=n

(1 − τiδ)
−k
]
� τi‖L‖.

		 We finally obtain

I � R
∥∥∥∂L
∂x

∥∥∥τi

δ
+ 2τi‖L‖,
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		 and the claim is proved by letting τi → 0, since nτi → t , ui → u uniformly on Rd, and 
both γi → γx

δ and Vi → γ̇x
δ uniformly on any compact set of (−∞, 0].

		 Part 5. We claim that

u(x)− e−tδu(x − tv) �
∫ 0

−t
esδL(x + sv, v) ds, ∀x ∈ Rd, ∀t � 0, ∀v ∈ Rd.

		 We choose as before n � 0 such that (n − 1)τi � t < nτi. Let xi
k := x − kτiv, 

∀k ∈ {n, . . . ,−1, 0}. By definition of ui = uτi,δ, we have

ui(x) � (1 − τiδ)
−nui(xi

n) +

−1∑
k=n

(1 − τiδ)
−k−1τiL(xi

k, v).

		 Then the expression |
∑−1

k=n(1 − τiδ)
−k−1τiL(xi

k, v)−
∫ 0

nτi
esδL(x + sv, v) ds| is estimated 

in the same way as before, and the claim is proved.
		  Part 6. By approximating any C2 path piecewise linearly, we obtain that for any 

γ ∈ C2((−∞, 0],Rd) ending at γ(0) = x ,

u(x)− e−tδu(γ(−t)) �
∫ 0

−t
esδL(γ(s), γ̇(s)) ds, ∀x ∈ Rd, ∀t � 0, ∀v ∈ Rd.

		 We have just proved that u is uniquely given by (6), and that γx
δ is a C2 minimizer by the 

Tonelli–Weierstrass theorem.� □

Proof of item (iic) of theorem 20.  We first show uτ ,δ − uδ � C τ
δ. Thanks to item (i), there 

exists a constant C1 > 0 such that for every x ∈ Rd there exists a C1,1 curve γx
δ : (−∞, 0] → Rd, 

satisfying γx
δ(0) = x , ‖γ̇x

δ‖ � C1 and Lip(γ̇x
δ) � C1 uniformly on (−∞, 0], and

uδ(x) =
∫ 0

−∞
esδL(γx

δ(s), γ̇
x
δ(s)) ds.

Let x−k := γx
δ(−kτ), v−k := (x−k+1 − x−k)/τ , for every k � 0. Then

uτ ,δ(x) �
∑
k�0

(1 − τδ)kLτ (x−k−1, x−k),

(1 − τδ)uτ ,δ(x)− uδ(x) �
∑
k�0

∫ −kτ

−(k+1)τ

[
(1 − τδ)k+1 − esδ

]
L(x−k−1, v−k−1)

+
∑
k�0

∫ −kτ

−(k+1)τ
esδ[L(x−k−1, v−k−1)− L(γδ(s), γ̇δ(s))

]
ds.

For every s ∈ [−(k + 1)τ ,−kτ ],

‖γδ(s)− x−k−1‖ � C1τ , ‖γ̇δ(s)− v−k−1‖ � C1τ ,
|L(x−k−1, v−k−1)− L(γδ(s), γ̇δ(s))| � ‖DL‖∞C1τ ,

(where ‖DL‖∞ is computed by taking the supremum of ‖DL(x, v)‖∞ over x ∈ Rd and 
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‖v‖ � C1). Moreover

∑
k�0

∫ −kτ

−(k+1)τ

[
esδ − (1 − τδ)k+1

]
�

1
δ
− τ(1 − τδ)

τδ
= τ .

Let ‖L‖∞ be the supremum of L(x, v) over x ∈ Rd and ‖v‖ � C1. Then item (ii) of proposition 
11 implies

uτ ,δ(x)− uδ(x) � 2‖L‖∞τ + ‖DL‖∞C1
τ

δ
�

(
2‖L‖∞ + ‖DL‖∞C1

)τ
δ

:= C
τ

δ
.

We next show uτ ,δ − uδ � −C τ
δ . Let x ∈ Rd and {x−k}k�0 be a discounted backward cali-

brated configuration for Lτ starting at x, then

uτ ,δ(x) =
∑
k�0

(1 − τδ)kLτ (x−k−1, x−k).

Let γ : (−∞, 0] → Rd be the piecewise linear path interpolating the points x−k at the times 
−kτ . Then, the property (6) implies

uδ(x) �
∫ 0

−∞
esδL(γ(s), γ̇(s)) ds.

Using item (iib) of proposition 11, we notice that for every s ∈ [−(k + 1)τ ,−kτ ],

‖γ(s)− x−k−1‖ � ‖x−k − x−k−1‖ � Rτ , γ̇(s) = (x−k − x−k−1)/τ := v−k−1,

|L(x−k−1, v−k−1)− L(γ(s), γ̇(s))| �
∥∥∥∂L
∂x

∥∥∥
∞

Rτ ,

(where 
∥∥∂L

∂x

∥∥
∞ is computed by taking the supremum of 

∥∥∂L
∂x (x, v)

∥∥ over x ∈ Rd and ‖v‖ � R). 
Let C3 := infx,v∈Rd L(x, v). Then item (ii) of proposition 11 implies

uτ ,δ(x)− uδ(x) �
(

C3 − ‖L‖ −
∥∥∥∂L
∂x

∥∥∥
∞

R
)τ
δ

:= −C
τ

δ
.�

□ 
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