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Abstract. Livšic theorem asserts that, for Anosov diffeomorphisms, a Lipschitz
observable is a coboundary if all its Birkhoff sums on every periodic orbits are
equal to zero. The transfer function is then Lipschitz. We prove a positive

Livšic theorem which asserts that a Lipschitz observable is bounded from below
by a coboundary if and only if all its Birkhoff sums on periodic orbits are non
negative. The new result is that the coboundary can be chosen Lipschitz with

a uniform control on the Lipschitz norm. In addition our result holds true for
possibly non invertible and not transitive C1 maps. We actually prove the main
result in the setting of locally maximal hyperbolic sets for general C1 map. The

construction of the coboundary uses a new notion of the Lax-Oleinik operator
that is a standard tool in the discrete Aubry-Mather theory.

1. Introduction and main results. A Cr dynamical system, r ≥ 1, is a couple
(M,f) where M is a Cr manifold of dimension dM ≥ 2, without boundary, not
necessarily compact, and f : M → M is a Cr map, not necessarily injective nor
transitive. The tangent bundle TM is assumed to be equipped with a Finsler norm
‖ · ‖ depending Cr−1 with respect to the base point. A topological dynamical system
is a couple (M,f) where M is a metric space and f : M → M is a continuous
map. We recall several standard definitions. The theory of Anosov systems is well
explained in Hasselblatt, Katok [15], or in Bonatti, Diaz, Viana [1].

Definition 1.1. Let (M,f) be a Cr dynamical system and Λ ⊆M be a compact
set strongly invariant by f , f(Λ) = Λ. Let dM = du + ds, du ≥ 1, ds ≥ 1, (du and
ds denote the dimensions of the unstable and stable vector spaces respectively).

i. Λ is said to be hyperbolic if there exist constants λs < 0 < λu, CΛ ≥ 1, and a
continuous equivariant splitting over Λ, that is
(a) ∀x ∈ Λ, TxM = EuΛ(x)⊕ EsΛ(x),
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(b) the two maps{
Λ → Grass(TM, du)
x 7→ EuΛ(x)

{
Λ → Grass(TM, ds)
x 7→ EsΛ(x)

are C0,
(c) the tangent map is hyperbolic in the following sense

∀x ∈ Λ, Txf(Eu(x)) = Eu(f(x)), Txf(Es(x)) ⊆ Es(f(x)),

∀x ∈ Λ, ∀n ≥ 0,

{
∀v ∈ EsΛ(x), ‖Txfn(v)‖ ≤ CΛ e

nλs‖v‖,
∀v ∈ EuΛ(x), ‖Txfn(v)‖ ≥ C−1

Λ enλ
u‖v‖.

ii. Λ is said to be locally maximal if there exists an open neighborhood U of Λ of
compact closure such that ⋂

n∈Z
fn(Ū) = Λ.

We also consider a Lipschitz continuous observable φ : U → R. We want to
understand the structure of the orbits that minimize the Birkhoff averages of φ. We
recall several standard definitions.

Definition 1.2. Let (M,f) be a topological dynamical system, Λ ⊆ M be an
f -invariant compact set, U ⊇ Λ be an open neighborhood of Λ, and φ : U → R be a
continuous function.

i. The ergodic minimizing value of φ restricted to Λ is the quantity

φ̄Λ := lim
n→+∞

1

n
inf
x∈Λ

n−1∑
k=0

φ ◦ fk(x). (1.1)

ii. A continuous function u : U → R is said to be a subaction if

∀x ∈ U ∩ f−1(U), φ(x)− φ̄Λ ≥ u ◦ f(x)− u(x). (1.2)

iii. A function ψ of the form ψ = u ◦ f − u for some u is called a coboundary.
iv. The Lipschitz constant of φ is the number

Lip(φ) := sup
x,y∈U, x 6=y

|φ(y)− φ(x)|
d(x, y)

,

where d(·, ·) is the distance associated to the Finsler norm.

The first main result is the following. We would remark that the new result here
is the fact that u is Lipschitz continuous, improving the known Hölder regularity.

Theorem 1.3. Let (M,f) be a C1 dynamical system, Λ ⊆M be a locally maximal
compact hyperbolic set, φ : M → R be a Lipschitz continuous function, and φ̄Λ be
the ergodic minimizing value of φ restricted to Λ. Then there exist an open set ΩAS
containing Λ and a Lipschitz continuous function u : M → R such that

∀x ∈ ΩAS , φ(x)− φ̄Λ ≥ u ◦ f(x)− u(x).

Moreover, Lip(u) ≤ KΛLip(φ) for some constant KΛ depending only on the hyper-
bolicity of f on Λ.

The constant KΛ is semi-explicit

KΛ = max

(
(NAS + 1)diam(ΩAS)

εAS
, KAS

1 + exp(−λAS)

1− exp(−λAS)

)
,
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where

ΩAS = {x ∈M : d(x,Λ) < εAS}
and εAS , KAS , λAS are constants of the shadowing lemma defined in Theorem 1.5,
and NAS denotes a covering number of ΩAS by balls of radius εAS/2.

The positive Livšic theorem becomes then a simple corollary of the Theorem 1.3
by taking φ̄Λ ≥ 0. Notice that the dynamical systems (Λ, f) we are studying possess
a dense set of periodic orbits (see Corollary 6.4.19 in [15]).

Corollary 1.4. Let (M,f) be a C1 dynamical system, Λ ⊆M be a locally maximal
compact hyperbolic set, and φ : M → R be a Lipschitz continuous function. Assume
the Birkhoff sum of φ on every periodic orbit on Λ is non negative. Then there exist
an open neighborhood Ω of Λ, a Lipschitz continuous function u : M → R, such that

∀x ∈ Ω, φ(x)− u ◦ f(x) + u(x) ≥ 0.

The proof of Theorem 1.3 depends on a new version of the shadowing lemma. We
recall that a sequence (xi)0≤i≤n of points of M is said to be an ε-pseudo orbit (with
respect to the dynamics f) if

∀ i ∈ J0, n− 1K, d(f(xi), xi+1) ≤ ε.

The sequence is said to be a periodic ε-pseudo orbit if xn = x0.

Theorem 1.5 (Improved Anosov shadowing lemma). Let (M,f) be a C1 dynamical
system and Λ ⊆ M be an f-invariant compact hyperbolic set. Then there exist
constants εAS > 0, KAS ≥ 1, and λAS > 0, such that for every n ≥ 1, for every
εAS-pseudo orbit (xi)0≤i≤n in the neighborhood ΩAS = {x ∈ M : d(x,Λ) < εAS},
there exists a point y ∈M such that

∀ i ∈ J0, nK, d(xi, f
i(y)) ≤ KAS

n∑
k=1

d(f(xk−1), xk) exp(−λAS |k − i|), (1.3)

n∑
i=0

d(xi, f
i(y)) ≤ KAS

n∑
k=1

d(f(xk−1), xk). (1.4)

Both equations (1.3) and (1.4) are new for two reasons: the map f is not necessarily
invertible (the proof could actually be extended in infinite dimension), the distance
between the pseudo orbit (xi)

n
i=0 and the shadowing orbit (f i(y))ni=0 is not bounded

by the number of jumps n (an estimate that the standard Anosov shadowing lemma
would give) but by the sum of the errors d(f(xi−1), xi).

In order to obtain a periodic shadowing point in Λ, we assume in addition in the
next corollary that Λ is locally maximal.

Corollary 1.6 (Anosov periodic shadowing lemma). Let (M,f) be a C1 dynamical
system and Λ ⊆M be a locally maximal compact hyperbolic set. Then there exists
a constant KAPS ≥ 1 such that for every n ≥ 1, for every periodic εAS-pseudo
orbit (xi)0≤i≤n of the neighborhood ΩAS := {x ∈M : d(x,Λ) < εAS}, there exists a
periodic point p ∈ Λ of period n such that

n∑
i=1

d(xi, f
i(p)) ≤ KAPS

n∑
k=1

d(f(xk−1), xk), (1.5)

where KAPS = KAS
1+exp(−λAS)
1−exp(−λAS) , and εAS, KAS, λAS are the constants given in

Theorem 1.5.
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Notice that the standard shadowing lemma would give the estimate

max
0≤i≤n−1

d(xi, f
i(p)) ≤ KAPS max

0≤k≤n−1
d(f(xk), xk+1). (1.6)

We conclude the introduction by comparing our results with other results related
to the positive Livšic theorem.

• The existence of a Lipschitz subaction is the first unavoidable step for proving
Contreras’ theorem [5] claiming that, for a generic observable, the Mather set is
a unique periodic orbit. The proof in [5] was nevertheless done only for one-sided
subshifts or expanding maps. A multidimensional version of Contreras’ theorem
is worth considering without coding.
• Weaker versions of Theorem 1.3 were known. The regularity of the subaction

in [20], [21], and [19] is only Hölder. In Bousch’s article [4], the setting is
more abstract. The existence of a C-Lipschitz subaction is proved under the
condition (1.1) similar to our “discrete positive Livšic criterion with distortion C”
(Definition 3.2). Our main contribution is twofolds: we emphasize the role of the
Lax-Oleinik operator and the role of the ergodic minimizing value in section 3;
we mainly show in sections 2 and 4 how to compute the constant C = KΛLip(φ)
with respect to the Lipschitz norm of φ for some constant KΛ depending only
on the hyperbolic set, compared to (3.2) in [4] where the supremum of φ is used.
• Huang, Lian, Ma, Xu, and Zhang quote Bousch’s result in [17, Appendix A] and

obtain an integrated version 1
N

∑N−1
k=0 [φ− φ̄] ≥ uN ◦ fN − uN for some large

integer N ≥ 1 and some uN Lipschitz. The size of N and the Lipschitz size of
u is not clearly explained. We show it is true for N = 1 and gives a precise
estimate of the Lipschitz norm of the subaction in terms of the Lipschitz norm
of the observable.
• The improved Anosov shadowing lemma may be used in other contexts. As we

do not assume f to be invertible, the lemma is also true in infinite dimension
where the tangent map admits an equivariant splitting with a finite dimensional
unstable direction and a possibly infinite dimensional stable direction that could
contain the kernel of the tangent map. This abstract setting could be applied
for instance in the study of compact attractors for the Navier-Stockes equation.
A review of the dynamical aspects of these equations is developed in [22].
• We introduce in section 3 a notion of calibrated subactions for maps, that is

stronger than the notion of subaction (Definition 1.2). Calibrated subactions
or weak KAM solutions have been introduced in the continuous setting for
Lagrangian dynamics by Fathi [6], and in the discrete setting for twist maps in
[12]. The main advantage of our construction is that it enables us to construct
backward calibrated orbits and obtain, both numerically and theoretically,
the Aubry set (defined in Definition 11 of [20]) as α-limit sets of these orbits.
We leave as a question the fact that the Aubry set could be obtained as⋂
{φ− φ̄ = u ◦ f − u} over all subactions u.

• We highlight the notion of “discrete positive Livšic criterion” (Definition 3.2)
because it implies the existence of a Lipschitz subaction even in the case the
dynamics is not hyperbolic. As the referee suggested, for instance, the proof in
section 3 could be used for showing the existence of a weak KAM solution in
Aubry-Mather theory. In this framework M = Td × Rd, E : Rd × Rd → R is
a ferromagnetic generating function, f : M →M is the twist map associated
to E. Adapting the proof in section 3, it is not difficult to obtain a Lipschitz
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calibrated subaction as in Definition 3.1, defined on the whole set M , also
referred as weak KAM solution.
• We intend to extend Theorem 1.3 in the continuous setting for Anosov flows,

see [25]. The main technical estimate of the present paper, Theorem 2.1, is used
again in [25] for the Poincaré maps.

The plan of the proof is the following. We revisit the Anosov shadowing lemma
in section 2. We extend in section 3 to any C1 maps the techniques of construction
of a coboundary in [12], valid only for twist maps, by introducing a new Lax-Oleinik
operator, Definition 3.1, and by showing under the assumption of positive Livšic
criterion the existence of calibrated subactions, Proposition 3.3. We then check in
section 4 that a locally maximal hyperbolic set satisfies the positive Livšic criterion
and prove the main result. The proof of Theorem 1.5 requires a precise description
of the notions of adapted local hyperbolic maps and graph transforms with respect to
a family of adapted charts. We revisit these notions in Appendix A for non invertible
hyperbolic maps.

2. An improved shadowing lemma for maps. We show in this section an
improved version of the shadowing lemma, Theorem 1.5 that will be needed in the
next section to check the existence of a fixed point of the Lax-Oleinik operator.

The heart of the proof is done through the notion of adapted local charts. In
appendix A, we recall the notion of adapted local dynamics in which the dynamics is
observed through the iteration of a sequence of maps which are uniformly hyperbolic
with respect to a family of norms that are adapted to the unstable/stable splitting
and the constants of hyperbolicity.

The following Theorem 2.1 is the technical counterpart of Theorem 1.5. We
consider a sequence of local hyperbolic maps as described more rigorously in Appendix
A

fi : Bi(ρ)→ Rd, Bi(ρ) ⊂ Rd = Eui ⊕ Esi = Eui+1 ⊕ Esi+1, Ai = T0fi,

where E
u/s
i are the unstable/stable vector spaces, Ai is the tangent map of fi at the

origin which is assumed to be uniformly hyperbolic with respect to an adapted norm
‖ · ‖i and the constants of hyperbolicity (σs, σu, η, ρ). The constants σs < 1 < σu

represent the contraction term and the expansion term along respectively the stable
and unstable direction. The constant η > 0 represents the size of the perturbation
of the non linear term fi(v)− fi(0)−Aiv. The constant ρ > 0 represents the size of
the domain of definition of fi; Bi(ρ) is the ball of radius ρ for the adapted norm
‖ · ‖i, and ‖fi(0)‖i ≤ ε(ρ) is the size of the shadowing constant with ε(ρ)� ρ.

As previously said, the maps fi are not supposed to be invertible. In particular
that hypothesis will prevent us to use the backward graph transform along the stable
direction. The forward graph transform along the unstable direction is though well
defined and recalled in Appendix A.3.

Theorem 2.1 (Adapted Anosov shadowing lemma). Let (fi, Ai, E
u/s
i , ‖ · ‖i)n−1

i=0 be
a family of adapted local hyperbolic maps and (σu, σs, η, ρ) be a set of hyperbolic
constants as in Definition A.1. Assume the stronger estimate (compare to (A.1))

η < min
( (1− σs)2

12
,
σu − 1

6

)
.

Define λΓ and KΓ by,
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exp(−λΓ) := max
(σs + 3η

1− 3η
,

1

σu − 3η

)
, KΓ :=

7(
1− exp(−λΓ)

)2 .
Let (qi)

n
i=0 be a “pseudo sequence” of points in the sense

∀ i ∈ J0, n− 1K, qi ∈ Bi
(ρ

2

)
and fi(qi) ∈ Bi+1

(ρ
2

)
.

Then there exists a “true sequence” of points (pi)
n
i=0, pi ∈ Bi(ρ), such that

i. ∀ i ∈ J0, n− 1K, fi(pi) = pi+1, (the true orbit),

ii. ∀ i ∈ J0, nK, ‖qi − pi‖i ≤ KΓ

n∑
k=1

‖fk−1(qk−1)− qk‖k exp(−λΓ|k − i|),

iii.

n∑
i=0

‖qi − pi‖i ≤ KΓ

n∑
k=1

‖fk−1(qk−1)− qk‖k,

iv. max
0≤i≤n

‖qi − pi‖i ≤ KΓ max
1≤k≤n

‖fk−1(qk−1)− qk‖k.

Moreover assume (fi, Ai, E
u/s
i , ‖ · ‖i)i∈Z is n-periodic in the sense

fi+n = fi, Ai+n = Ai, E
u/s
i+n = E

u/s
i , ‖ · ‖i+n = ‖ · ‖i,

assume in addition that (qi)i∈Z is a periodic pseudo sequence in the following sense

∀ i ∈ Z, qi+n = qi, qi ∈ Bi
(ρ

2

)
, fi−1(qi−1) ∈ Bi

(ρ
2

)
.

Then there exists a periodic true sequence (pi)i∈Z satisfying

v. ∀ i ∈ Z, fi(pi) = pi+1, pi+n = pi,

vi.

n−1∑
i=0

‖qi − pi‖i ≤ K̃Γ

n∑
k=1

‖fk−1(qk−1)− qk‖k,

with K̃Γ := KΓ(1 + exp(−λΓ))/(1− exp(−λΓ)).

Notice that the items ii and iii are the technical counterparts of the estimates
(1.3) and (1.4). The main difficulty of the proof comes from the fact that f may not
be injective and that the backward graph transform does not exist anymore. We
use as an alternative the backward invariance of the stable cones as recalled in A.7.

For the reader’s convenience, before going into the details of the proof, we sketch
the main argument, by pointing out the following steps.

• In Step 1, we construct a grid of points Qi(j, k) and prove item i;
• The proof of item ii is divided into Steps 2-4, and the proof of items iii and iv

follows readily from item ii;
• In Step 5, we show the existence of a periodic orbit and finish the proof of items

v and vi.

Proof. Let Pui , P
s
i be the projections onto Eui , E

s
i respectively. Let

α =
6η

σu − σs
, δi = ‖fi−1(qi−1)− qi‖i, (2.1)

where α is the a priori slope of the unstable graphs given in (A.2). Let Cui and Csi
be the unstable and stable cone of angle α as in Definition A.6.

Step 1. We construct by induction a grid of points

Qi(j, k) ∈ Bi(ρ) for i ∈ J0, nK, j ∈ J0, n− iK, and k ∈ J0, iK

in the following way (see Figure 1):
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Figure 1. A schematic description of the grid Qi(j, k) for n = 5.
The horizontal axis is the unstable direction attached at each qi,
the vertical axis is the stable direction. The dashed “horizontal
lines” are obtained by iteration of the horizontal axes by the forward
graph transform; they are graphs of small slope α. We highlight
the positions of the two points qi and fi−1(qi−1) at each index i
to show that they must be close. The points Qi(0, k), k ∈ J0, iK,
are obtained by intersecting the vertical axis with these dashed
horizontal lines. The other points are obtained recursively, starting
at i = n, by taking the preimages by fi−1 of the dashed “vertically
aligned” points at index i except those on the horizontal axis.
These new points are pushed by f−1

i−1, down and to the right of
the previously defined points Qi−1(0, k). The representation as
vertical dashed lines and the relative positions of the points Qi(j, k)
are only a convenient way to index the grid as a product (j, k) in
J0, n − iK × J0, iK. The points pi = Qi(n − i, i) we are looking for
are located at the upper right corner of the grid. By definition
fi−1(pi−1) = pi.

(a) For all i ∈ J0, nK, let Gi,0 : Bui (ρ) → Bsi (ρ) be the horizontal graph passing
through the point qi,

∀ v ∈ Bui (ρ), Gi,0(v) = P si qi.

For all i ∈ J1, nK and k ∈ J1, iK, let Gi,k : Bui (ρ)→ Bsi (ρ) be the graph obtained
by the graph transform of Gi−k,0 (see Proposition A.3 and equation (A.3)),
iterated k times,

Gi,k = (T )ui−1 ◦ · · · ◦ (T )ui−k(Gi−k,0).
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Notice that ‖Gi,k(0)‖i ≤ ρ/2 and Lip(Gi,k) ≤ α, see (A.2).
(b) For all i ∈ J0, nK and k ∈ J0, iK, let Qi(0, k) be the point on Graph(Gi,k) whose

unstable projection is Pui qi, or more precisely,

Qi(0, k) = Pui qi +Gi,k(Pui qi).

(c) We then define recursively the other points starting at i = n. Assume that the
points Qi(j, k), i ≥ 1, have been defined for all j ∈ J0, n− iK and k ∈ J0, iK. Let
j ∈ J1, n− i+ 1K and k ∈ J0, i− 1K. As Qi(j − 1, k + 1) ∈ Graph(Gi,k+1), there
exists a unique point Qi−1(j, k) on Graph(Gi−1,k) such that

fi−1(Qi−1(j, k)) = Qi(j − 1, k + 1).

For j = 0, the points Qi−1(0, k) have been defined in item (b).

We will then choose pi = Qi(n− i, i). By construction

∀ i ∈ J1, nK, fi−1(pi−1) = pi,

and item i is proved.

Step 2. Let hi,j := ‖P si
[
Qi(j, 0)−Qi(j, i)

]
‖i. We claim that, for all i ∈ J1, nK,

hi,0 ≤
[
(1 + α) +

α

1− α2

σs + 3η

σu − 3η

]
δi +

σs + 3η

1− α2
hi−1,0. (2.2)

The quantity hi,0 corresponds to the length between qi = Qi(0, 0) and the furthest
point Qi(0, i) above qi on the vertical axis. We decompose this quantity into two
lengths Qi(0, 0) − Qi(0, 1) and Qi(0, 1) − Qi(0, i). We will also use the quantity
hi−1,1 that corresponds to the length between the vertically aligned points Qi−1(1, 0)
and Qi−1(1, i− 1), located next to the vertical axis at index i− 1 and sent by fi−1

to the points Qi(0, 1) and Qi(0, i).
Proposition A.3 with slope α = 6η/(σu − σs) for the unstable graphs shows that

‖P si
[
Qi(0, 0)−Qi(0, 1)

]
‖i

≤ ‖P si
[
qi − fi−1(qi−1)

]
‖i + ‖P si

[
fi−1(qi−1)−Qi(0, 1)

]
‖i

≤ δi + α‖Pui
[
fi−1(qi−1)−Qi(0, 1)

]
‖i

≤ δi + α‖Pui
[
fi−1(qi−1)− qi

]
‖i

≤ (1 + α)δi. (2.3)

By forward induction, using (A.4) in Lemma A.7, we justify the vocabulary “hori-
zontally aligned points”,

Qi−1(j, k)−Qi−1(j′, k) ∈ Cui−1 ⇒ Qi(j − 1, k + 1)−Qi(j′ − 1, k + 1) ∈ Cui ,
‖Pui−1

[
Qi−1(j, k)−Qi−1(j′, k)

]
‖i−1

≤ 1

σu − 3η
‖Pui

[
Qi(j − 1, k + 1)−Qi(j′ − 1, k + 1)

]
‖i.

In particular, taking k = 1, j = 0, and j′ = 1, one obtains with the convention
Qi(−1, 1) = fi−1(qi−1),

‖Qi−1(0, 0)−Qi−1(1, 0)‖i−1 ≤
1

σu − 3η
‖Pui

[
fi−1(qi−1)−Qi(0, 1)

]
‖i

≤ 1

σu − 3η
‖Pui

[
fi−1(qi−1)− qi

]
‖i

≤ 1

σu − 3η
δi. (2.4)
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By backward induction, using (A.5) in Lemma A.7, we justify the vocabulary
“vertically aligned points”,

Qi(j, k)−Qi(j, k′) ∈ Csi ⇒ Qi−1(j + 1, k − 1)−Qi−1(j + 1, k′ − 1) ∈ Csi−1,

‖P s
[
Qi(j, k)−Qi(j, k′)

]
‖i

≤ (σs + 3η)‖P s
[
Qi−1(j + 1, k − 1)−Qi−1(j + 1, k′ − 1)

]
‖i−1.

In particular, taking j = 0, k = 0, and k′ = i, and using (2.3), one obtains

hi,0 = ‖P si
[
Qi(0, 0)−Qi(0, i)

]
‖i

≤ ‖P si
[
Qi(0, 0)−Qi(0, 1)

]
‖i + ‖P si

[
Qi(0, 1)−Qi(0, i)

]
‖i

≤ (1 + α)δi + (σs + 3η)hi−1,1. (2.5)

We estimate hi−1,1 using a path passing through the vertical axis

Qi−1,(1, 0)→ Qi−1(0, 0)→ Qi−1(0, i− 1)→ Qi−1(1, i− 1).

We obtain

hi−1,1 ≤ ‖P si−1

[
Qi−1(1, 0)−Qi−1(0, 0)

]
‖i−1

+ ‖P si−1

[
Qi−1(0, 0)−Qi−1(0, i− 1)

]
‖i−1

+ ‖P si−1

[
Qi−1(0, i− 1)−Qi−1(1, i− 1)

]
‖i−1

≤ hi−1,0 + α‖Pui−1

[
Qi−1(0, i− 1)−Qi−1(1, i− 1)

]
‖i−1. (2.6)

The last inequality is obtained using P si−1

[
Qi−1(1, 0)−Qi−1(0, 0)

]
= 0 and the fact

that the top horizontally aligned branch Qi−1(0, i− 1)−Qi−1(1, i− 1) belongs to
the cone Cui−1. The top branch is estimated using the path

Qi−1(0, i− 1)→ Qi−1(0, 0)→ Qi−1(1, 0)→ Qi−1(1, i− 1).

We obtain

‖Pui−1

[
Qi−1(0, i− 1)−Qi−1(1, i− 1)

]
‖i−1

≤ ‖Pui−1

[
Qi−1(0, i− 1)−Qi−1(0, 0)

]
‖i−1

+ ‖Pui−1

[
Qi−1(0, 0)−Qi−1(1, 0)

]
‖i−1

+ ‖Pui−1

[
Qi−1(1, 0)−Qi−1(1, i− 1)

]
‖i−1

≤ 1

σu − 3η
δi + αhi−1,1. (2.7)

The last inequality is obtained using Pui−1

[
Qi−1(0, i− 1)−Qi−1(0, 0)

]
= 0 for the

first term, (2.4) for the second term, the fact that Qi−1(1, 0)−Qi−1(1, i− 1) belongs
to the cone Csi−1 for the third term, and the estimate

‖Pui−1

[
Qi−1(1, 0)−Qi−1(1, i− 1)

]
‖i−1 ≤ α‖P si−1

[
Qi−1(1, 0)−Qi−1(1, i− 1)

]
‖i−1.

Combining (2.6) and (2.7), we obtain

hi−1,1 ≤ hi−1,0 +
α

σu − 3η
δi + α2hi−1,1,

≤ 1

1− α2
hi−1,0 +

α

(1− α2)(σu − 3η)
δi. (2.8)

Using (2.5) and (2.8) one obtains

hi,0 ≤ (1 + α)δi + (σs + 3η)hi−1,1
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≤
[
(1 + α) +

α

1− α2

σs + 3η

σu − 3η

]
δi +

σs + 3η

1− α2
hi−1,0,

which proves the claim of Step 2.

Step 3. We claim that, for every i ∈ J0, n− 1K,

‖Pui
[
Qi(0, i)−Qi(1, i)

]
‖i ≤

δi+1

(1− α2)(σu − 3η)
+

α

1− α2
hi,0. (2.9)

The estimate (2.9) follows readily from (2.7) and (2.8) as

‖Pui
[
Qi(0, i)−Qi(1, i)

]
‖i ≤

1

σu − 3η
δi+1 + αhi,1

hi,1 ≤
1

1− α2
hi,0 +

α

(1− α2)(σu − 3η)
δi+1.

Step 4. We simplify the previous inequalities

σs + 3η

σu − 3η
≤ 1, α ≤ 1

2
, (1 + α) +

α

1− α2

σs + 3η

σu − 3η
≤ 13

6
. (2.10)

Then for every i ∈ J0, n− 1K, using the fact that Qi(k, i)−Qi(k + 1, i) belongs to
the cone Cui and the estimate (2.9), one obtains

‖Pui
[
Qi(0, i)−Qi(n− i, i)

]
‖i ≤

n−i−1∑
k=0

‖Pui
[
Qi(k, i)−Qi(k + 1, i)

]
‖i

≤
n−i−1∑
k=0

( 1

σu − 3η

)k
‖Pui+k

[
Qi+k(0, i+ k)−Qi+k(1, i+ k)

]
‖i+k

≤
n−i−1∑
k=0

( 1

σu − 3η

)k( δi+k+1

(1− α2)(σu − 3η)
+

α

1− α2
hi+k,0

)
. (2.11)

Using ‖P si
[
Qi(0, i)−Qi(n− i, i)

]
‖i ≤ α‖Pui

[
Qi(0, i)−Qi(n− i, i)

]
‖i, the estimate

(2.11) becomes for every i ∈ J0, nK,

‖Qi(0, i)−Qi(n− i, i)‖i ≤ (1 + α)‖Pui
[
Qi(0, i)−Qi(n− i, i)

]
‖i

≤ 1

1− α

n∑
k=i+1

( 1

σu − 3η

)k−i
δk

+
α

1− α

n−1∑
k=i

( 1

σu − 3η

)k−i
hk,0. (2.12)

Using (2.5), ‖P si
[
Qi(0, 0) − Qi(0, i)

]
‖i = ‖Qi(0, 0) − Qi(0, i)‖i, and h0,0 = 0, one

obtains

hi,0 = ‖Qi(0, 0)−Qi(0, i)‖i ≤
13

6

i∑
k=1

(σs + 3η

1− α2

)i−k
δk. (2.13)

As 12η ≤ (1− σs)2 ≤ (σu − σs)2 , we have α2 ≤ 3η. Let

σΓ := max
(σs + 3η

1− α2
,

1

σu − 3η

)
≤ exp(−λΓ).
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Combining (2.12) and (2.13), we obtain

‖Qi(0, 0)−Qi(n− i, i)‖i ≤
13

3

n∑
k=1

σ
|k−i|
Γ δk +

n−1∑
k=i

σk−iΓ hk,0, (2.14)

n∑
k=i

σk−iΓ hk,0 ≤
13

6

n∑
k=i

σk−iΓ

k∑
`=1

σk−`Γ δ` =
13

6

n∑
`=1

σ
|`−i|
Γ

( ∑
k≥max(i,`)

σk−iΓ σk−`Γ

σ
|`−i|
Γ

)
δ`.

(2.15)

In both cases, k ≥ i ≥ ` or k ≥ ` ≥ i,
σk−iΓ σk−`Γ

σ
|`−i|
Γ

= σ
2(k−i)
Γ or

σk−iΓ σk−`Γ

σ
|`−i|
Γ

= σ
2(k−`)
Γ .

Equation (2.15) becomes
n∑
k=i

σk−iΓ hk,0 ≤
13

6

1

1− σ2
Γ

n∑
`=1

σ
|`−i|
Γ δ`. (2.16)

We obtain item ii by adding (2.14) and (2.16): for every i ∈ J0, nK,

‖pi − qi‖i = ‖Qi(0, 0)−Qi(n− i, i)‖i ≤
13

2

1

1− σ2
Γ

n∑
`=1

σ
|`−i|
Γ δ`.

Items iii and iv follow from

∀ ` ∈ J1, nK,
n∑
i=0

σ
|`−i|
Γ ≤ 1 +

2σΓ

1− σΓ
=

1 + σΓ

1− σΓ
.

Step 5. Consider now a periodic sequence (qj)j∈Z. For every integer s ≥ 1, consider
the restriction of that sequence over J−sn, snK and apply item ii with a shift in
the indices i = j + sn. There exists a sequence (psj)

sn
j=−sn such that, for every

j ∈ J−sn, sn− 1K, fj(psj) = psj+1, and

‖psj − qj‖j ≤ KΓ

sn∑
k=−sn+1

‖fk−1(qk−1)− qk‖k exp(−λΓ|k − j|)

≤ KΓ

n∑
l=1

‖fl−1(ql−1)− ql‖l
s−1∑
h=−s

exp(−λΓ|l + hn− j|). (2.17)

Adding (2.17) over j ∈ J0, n− 1J, one obtains

n−1∑
j=0

‖psj − qj‖j ≤ KΓ

n∑
l=1

‖fl−1(ql−1)− ql‖l
n∑
j=1

s−1∑
h=−s−1

exp(−λΓ|j + hn− l|)

≤ KΓ

n∑
l=1

‖fl−1(ql−1)− ql‖l
(s+1)n−1∑
k=−(s−1)n

exp(−λΓ|l − k|). (2.18)

By compactness of the balls Bj(
ρ
2 ) one can extract a subsequence over the index

s of (psj)
sn
j=−sn converging for every j ∈ Z to a sequence (pj)j∈Z. In particular we

have for every j ∈ Z, fj(pj) = pj+1. Notice that

+∞∑
k=−∞

exp(−λΓ|k|) =
1 + exp(−λΓ)

1− exp(−λΓ)
.
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The estimate (2.17) becomes

‖pj − qj‖j ≤ KΓ

1 + exp(−λΓ)

1− exp(−λΓ)

n∑
l=1

‖fl−1(ql−1)− ql‖l.

The estimate (2.18) becomes

n−1∑
j=0

‖pj − qj‖j ≤ KΓ

1 + exp(−λΓ)

1− exp(−λΓ)

n∑
l=1

‖fl−1(ql−1)− ql‖l,

Define p̃j := pj+n. As ‖p̃j − pj‖j is uniformly bounded in j and both sequences
satisfy fj(p̃j) = p̃j+1, fj(pj) = pj+1, for every j ∈ Z, the cone property given in
Lemma A.7 implies p̃j = pj for every j ∈ Z and therefore (pj)j∈Z is a periodic
sequence, pj+n = pj for every j ∈ Z.

The proofs of Theorem 1.5 and Corollary 1.6 are standard and consist in rewriting
a pseudo orbit under the dynamics of f as a pseudo orbit in a family of adapted
local charts.

Proof of Theorem 1.5 and Corollary 1.6. The proof follows from items ii, iii,
vi of Theorem 2.1, and from the precise description of the notion of a family of local
charts as described in Definition A.4.

3. The discrete Lax-Oleinik operator. We extend the definition of the Lax-
Oleinik operator (usually defined for Hamiltonian dynamics [9] or for discrete twist
maps [12]) for general maps (bijective or not) and show how it produces a particular
subaction (item ii of Definition 1.2) that we call a calibrated subaction.

Definition 3.1 (Discrete Lax-Oleinik operator). Let (M,f) be a topological dy-
namical system, Λ ⊆ M be a compact f -invariant subset, Ω ⊃ Λ be an open
neighborhood of Λ of compact closure, and φ ∈ C0(Ω̄,R). Let C ≥ 0 and φ̄Λ be the
ergodic minimizing value of the restriction of φ to Λ, see (1.1).

i. The Discrete Lax-Oleinik operator is the nonlinear operator T acting on the
space of functions u : Ω̄→ R defined by

∀x ∈ Ω̄, T [u](x) := inf
x′∈Ω̄

{
u(x′) + φ(x′)− φ̄Λ + Cd(f(x′), x)

}
. (3.1)

ii. A calibrated subaction of the Lax-Oleinik operator is a continuous function
u : Ω̄→ R solution of the equation

T [u] = u. (3.2)

Item ii implies readily that a calibrated subaction is a particular subaction

∀x ∈ Ω ∩ f−1(Ω), u ◦ f(x) = T [u] ◦ f(x) ≤ u(x) + φ(x)− φ̄Λ.

The Lax-Oleinik operator is a fundamental tool for studying the set of minimizing
configurations in ergodic optimization (Thermodynamic formalism) or discrete
Lagrangian dynamics (Aubry-Mather theory, weak KAM theory). It appears for the
first time without any name for expanding maps in Bousch [2, Lemma A], [3, Theorem
1] and under the name Lax-Oleinik operator for continuous Lagrangian dynamics
in Fathi [6, 7]. Then Gomes [13, Theorem 3.3] understood the connection between
the continuous and the discrete versions of the two operators. Garibaldi, Lopes
[11] extended the definition of the Lax-Oleinik operator for more general expanding
maps. Garibaldi, Thieullen [12] adapted the notion of the Lax-Oleinik operator
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for interaction models (or generating functions, or generalized Frenkel-Kontorova
models). Su, Thieullen [23] studied the discounted Lax-Oleinik operator and its
convergence to the non-discounted one. Complete reviews on Ergodic Optimization
are given in Garibaldi [10] and Jenkinson [18].

A calibrated subaction is in some sense an optimal subaction. For expanding
endomorphisms or one-sided subshifts of finite type, the theory is well developed, see
for instance Definition 3.A in Garibaldi [10]. Unfortunately the standard definition
requires the existence of many inverse branches. Definition 3.1 is new though its
use is implicit in the proof of [4, Proof of Lemma 1.1]. The extended Lax-Oleinik
operator has the further advantage that it may be used for invertible dynamics.

Definition 3.2 (Discrete positive Livšic criterion). Let (M,f, φ,Λ,Ω, C) be as in
Definition 3.1. We say that φ satisfies the discrete positive Livšic criterion on Ω
with distortion constant C if

inf
n≥1

inf
(x0,x1,...,xn)∈Ω̄n+1

n−1∑
i=0

(
φ(xi)− φ̄Λ + Cd(f(xi), xi+1)

)
> −∞. (3.3)

The discrete positive Livšic criterion is the key ingredient of the proof of the
existence of a calibrated subaction with a controlled Lipschitz constant. Here Lip(φ),
Lip(u), denote the Lipschitz constant of φ and u restricted on Ω̄ respectively.

Proposition 3.3. Let (M,f, φ,Λ,Ω, C) be as in Definition 3.1. Assume that φ
satisfies the discrete positive Livšic criterion on Ω with distortion C. Then

i. the Lax-Oleinik operator admits a C0 calibrated subaction,
ii. every C0 calibrated subaction u is Lipschitz with Lip(u) ≤ C.

Notice that conversely the discrete positive Livšic criterion is satisfied whenever
φ admits a Lipschitz subaction u with Lip(u) ≤ C. When C = 0 and the infimum
in (3.3) is taken over true orbits instead of all sequences, there always exists a lower
semi-continuous subaction (1.2) as it is discussed in [24].

We recall without proof some basic facts of the Lax-Oleinik operator.

Lemma 3.4. Let T be the Lax-Oleinik operator as in Definition 3.1. Then

i. if u1 ≤ u2 then T [u1] ≤ T [u2],
ii. for every constant c ∈ R, T [u+ c] = T [u] + c,

iii. for every sequence of functions (un)n≥0 bounded from below,

T [ inf
n≥0

un] = inf
n≥0

T [un].

The proof of Proposition 3.3 is well known in weak KAM theory, see [6, 8, 9]. We
give the proof for the convenience of the reader.

Proof of Proposition 3.3. Define

∀x, y ∈ Ω̄, E(x, y) := φ(x)− φ̄Λ + Cd(f(x), y),

and

I := inf
n≥1

inf
(x0,x1,...,xn)∈Ω̄n+1

n−1∑
i=0

E(xi, xi+1).

Part 1. We show that T [u] is C-Lipschitz whenever u is continuous. Indeed if
x′, y′ ∈ Ω̄ are given,

T [u](x′) = u(x) + E(x, x′), for some x ∈ Ω̄,
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T [u](y′) ≤ u(y) + E(y, y′), for every y ∈ Ω̄.

Then by choosing y = x in the previous inequality, we obtain

T [u](y′)− T [u](x′) ≤ E(x, y′)− E(x, x′) = C
[
d(f(x), y′)− d(f(x), x′)

]
≤ Cd(y′, x′).

Part 2. Let v := infn≥0 T
n[0]. Notice that v ≤ 0. We show that v is C-Lipschitz

and satisfies T [v] ≥ v. Indeed we first have

∀n ≥ 1, ∀x′ ∈ Ω̄, Tn[0](x′) = inf
x0,...,xn=x′

n−1∑
i=0

E(xi, xi+1) ≥ I.

In particular v is bounded from bellow by I. Moreover v is C-Lipschitz since Tn[0]
is C-Lipschitz thanks to part 1. Finally we have

T [v] = T [ inf
n≥0

Tn[0]] = inf
n≥0

Tn+1[v] ≥ v.

Part 3. Let u := supn≥0 T
n[v] = limn→+∞ Tn[v]. We show that u is a C-Lipschitz

calibrated subaction. We already know from parts 1 and 2 that Tn[v] is C-Lipschitz
for every n ≥ 0. Using the definition of φ̄Λ, we know that, for every n ≥ 1 there
exists x ∈ Λ such that

∑n−1
i=0

(
φ ◦ f i(x)− φ̄Λ

)
≤ 0, and using the fact that Tn[v] is

C-Lipschitz, we have

Tn[v](fn(x)) ≤ v(x) +

n−1∑
i=0

E(f i(x), f i+1(x)) = v(x) +

n−1∑
k=0

(φ ◦ fk(x)− φ̄Λ) ≤ 0,

Tn[v](x′) ≤ Cd(x′, fn(x)) ≤ Cdiam(Ω̄), ∀x′ ∈ Ω̄.

In particular u is bounded from above. As T [v] ≥ v, we also have T [u] ≥ u. We
next show T [u] ≤ u. Let x′ ∈ Ω̄. For every n ≥ 1, T [Tn[v]] = Tn+1[v] ≤ u, there
exists xn ∈ Ω̄ such that

Tn[v](xn) + E(xn, x
′) ≤ u(x′).

By compactness of Ω̄, (xn)n≥1 admits a converging subsequence (denoted the same
way) to some x∞ ∈ Ω̄. Thanks to the uniform Lipschitz constant of the sequence
(Tn[v])n≥1 and the fact that limn→+∞ Tn[v] = u, we obtain,

∀x′ ∈ Ω̄, T [u](x′) = inf
x∈Ω̄
{u(x) + E(x, x′)} ≤ u(x∞) + E(x∞, x

′) ≤ u(x′).

We have proved T [u] = u and u is C-Lipschitz.

4. The discrete positive Livšic criterion. Let (M,f) be a C1 dynamical system,
Λ ⊆ M be a locally maximal hyperbolic compact subset, and φ : M → R be a
Lipschitz continuous function. A calibrated subaction u (3.2) is in particular a
subaction (1.2)

∀x ∈ Ω̄, u ◦ f(x)− u(x) ≤ φ(x)− φ̄Λ.

Theorem 1.3 is therefore a consequence of Proposition 3.3 provided we prove that f
satisfies the discrete positive Livšic criterion (3.3).

Proposition 4.1. Let (M,f,Λ, φ) be as in Theorem 1.3. Define

C = max
( (NAS + 1)diam(ΩAS)

εAS
, KAPS

)
Lip(φ),

ΩAS = {x ∈M : d(x,Λ) < εAS},
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where εAS, KAPS have been defined in Theorem 1.5 and Corollary 1.6, NAS is a
covering number of ΩAS by balls of radius εAS/2. Then φ satisfies the discrete
positive Livšic criterion on ΩAS with distortion C.

For a true orbit instead of a pseudo orbit, the positive Livšic criterion amounts to
bounding from below the normalized Birkhoff sum 1

n

∑n−1
i=0

(
φ ◦ f i(x)− φ̄

)
. As we

saw in [24], this is equivalent to the existence of a bounded lower semi-continuous
subaction. To obtain a better regularity of the subaction we need the stronger
criterion (3.3).

We first start by proving two intermediate lemmas, Lemma 4.2 for periodic
pseudo-orbits, and Lemma 4.4 for pseudo-orbits.

Lemma 4.2. Let C ≥ KAPSLip(φ). Then for every periodic εAS-pseudo orbit
(xi)

n
i=0 of ΩAS,

n−1∑
i=0

(
φ(xi)− φ̄Λ + Cd(f(xi), xi+1)

)
≥ 0.

Proof. Corollary 1.6 tells us that there exists a periodic orbit p ∈ Λ, fn(p) = p, such
that

n−1∑
i=0

d(xi, f
i(p)) ≤ KAPS

n−1∑
i=0

d(f(xi), xi+1).

Then

n−1∑
i=0

(
φ(xi)− φ̄Λ + Cd(f(xi), xi+1)

)
≥
n−1∑
i=0

(
φ ◦ f i(p)− φ̄Λ

)
+

n−1∑
i=0

(
φ(xi)− φ ◦ f i(p) + Cd(f(xi), xi+1)

)
≥
n−1∑
i=0

(
φ ◦ f i(p)− φ̄Λ

)
+

n−1∑
i=0

(
− Lip(φ)d(xi, f

i(p)) + Cd(f(xi), xi+1)
)

≥
n−1∑
i=0

(
φ ◦ f i(p)− φ̄Λ

)
≥ 0.

Lemma 4.3. Let NAS ≥ 1 be the smallest number of balls of radius εAS/2 that
can cover ΩAS. Let (xi)

n
i=0 be a sequence of points of ΩAS. Then there exists

r ∈ J1, NASK and times 0 = τ0 < τ1 < · · · < τr = n such that,

i. ∀ k ∈ J1, r − 1K, ∀ l ∈ J0, k − 1K, ∀ j ∈ Jτk, n− 1K, d(xj , xτl) ≥ εAS,
ii. ∀ k ∈ J1, r − 1K, if τk ≥ τk−1 + 2 then d(xτk−1, xτk−1

) < εAS,
iii. either d(xτr−1, xτr−1

) < εAS or d(xτr , xτr−1
) < εAS.

Proof. We construct by induction the sequence τk. Assume we have constructed
τk < n. Define

T := {j ∈ Jτk + 1, nK : d(xj , xτk) < εAS}.
If T = ∅, choose τk+1 = τk + 1; if T 6= ∅ and max(T ) < n then τk+1 = max(T ) + 1,
d(xτk+1−1, xτk) < εAS and for every j ≥ τk+1, d(xj , xτk) ≥ εAS ; if max(T ) = n then

τk+1 = n. Since (xτk)r−1
k=0 are ε apart, r ≤ NAS .
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x τ0
=x0 x τ1

x τk
x τk+1

xτr
=xn

ϵAS

x τ2

xn−1ϵAS ϵAS ϵAS

Figure 2. The schematic r returns of Lemma 4.3. The orbit starts
at time τ0 = 0 and waits until the last return time to the ball
B0 = B(xτ0 , εAS). Either there is no return time, then τ1 = 1; or
xn ∈ B0, then r = 1 and τ1 = n; or xn /∈ B0, then τ1 ≥ 2, τ1 − 1 is
the last return and xj /∈ B0 for every j ≥ τ1. The orbit restarts at
τ1, let B1 = B(xτ1 , εAS), wait until the last return to B1, and so
on.

Lemma 4.4. Let C = KAPSLip(φ) and NAS be the smallest number of balls of
radius εAS/2 that can cover ΩAS. Let δAS := NAS diam(ΩAS). Then for every
εAS-pseudo orbit (xi)

n
i=0 of ΩAS,

n−1∑
i=0

(
φ(xi)− φ̄Λ + Cd(f(xi), xi+1)

)
≥ −Lip(φ)δAS .

Proof. We split the pseudo orbit (xi)
n−1
i=0 into r ≤ NAS segments of the form

(xi)
τk+1−1
i=τk

according to Lemma 4.3, for 0 ≤ k ≤ r−1 with 0 = τ0 < τ1 < · · · < τr = n.
To simplify the notations, denote

φi := φ(xi)− φ̄Λ + Cd(f(xi), xi+1).

Notice that for every i ∈ J0, n− 1K

φi ≥ φ(xi)− φ̄Λ = lim
n→+∞

1

n
sup
x∈Λ

n−1∑
k=0

(
φ(xi)− φ ◦ fk(x)

)
≥ −Lip(φ)diam(ΩAS).

If τk+1 ≥ τk + 2 and k ∈ J0, r − 1J then d(xτk , xτk+1−1) < εAS , (xi)
τk+1−1
i=τk

is a
periodic pseudo orbit as in Lemma 4.2 and

τk+1−2∑
i=τk

φi ≥ 0,

τk+1−1∑
i=τk

φi ≥ −Lip(φ)diam(ΩAS).

If τr ≥ τr−1 + 2 then either (xi)
τr−1
i=τr−1

or (xi)
τr
i=τr−1

is a periodic pseudo orbit. In

both cases we have
τr−1∑
i=τr−1

φi ≥ −Lip(φ)diam(ΩAS).

If τk+1 = τk + 1 then

τk+1−1∑
i=τk

φi = φτk ≥ −Lip(φ)diam(ΩAS).

By adding these inequalities for k ∈ J0, r − 1K, we have

τr−1∑
i=τ0

φi ≥ −Lip(φ)NASdiam(ΩAS).



672 XIFENG SU, PHILIPPE THIEULLEN AND WENZHE YU

We recall that KAPS , εAS , have been defined in Theorem 1.5, Corollary 1.6, and
NAS , δAS , in Lemma 4.4.

Proof of Proposition 4.1. Let (xi)
n
i=0 be a sequence of points of ΩAS . We split

the sequence into disjoint segments (xi)
τk+1−1
i=τk

, 0 = τ0 < τ1 < · · · < τk < τk+1 <
· · · < τr = n, having one of the following form.

Segment of the first kind: τk+1 = τk + 1 and d(f(xτk), xτk+1
) ≥ εAS . Then

φ(xτk)− φ̄Λ ≥ −Lip(φ)diam(ΩAS), d(f(xτk), xτk+1) ≥ εAS .
By choosing C ≥ Lip(φ)diam(ΩAS)/εAS , we obtain

φ(xτk)− φ̄Λ + Cd(f(xτk), xτk+1) ≥ 0.

Segment of the second kind: τk+1 ≥ τk + 2 and{
∀ τk ≤ i ≤ τk+1 − 2, d(f(xi), xi+1) < εAS ,
d(f(xτk+1−1), xτk+1

) ≥ εAS .

Then (xi)
τk+1−1
i=τk

is a pseudo orbit. By using Lemma 4.4 and C ≥ KAPSLip(φ), we
have

τk+1−2∑
i=τk

(
φ(xi)− φ̄Λ + Cd(f(xi), xi+1)

)
≥ −Lip(φ)δAS ,

φ(xτk+1−1)− φ̄Λ + Cd(f(xτk+1−1), xτk+1
) ≥ −Lip(φ)diam(ΩAS) + CεAS .

By choosing C ≥ Lip(φ)(δAS + diam(ΩAS))/εAS , we obtain

τk+1−1∑
i=τk

(
φ(xi)− φ̄Λ + Cd(f(xi), xi+1)

)
≥ 0.

Segment of the third kind: if it exists, this segment is the last one and (xi)
τr
i=τr−1

is a pseudo orbit. By using again Lemma 4.4

τr−1∑
i=τr−1

(
φ(xi)− φ̄Λ + Cd(f(xi), xi+1)

)
≥ −Lip(φ)δAS .

Proof of Theorem 1.3. The proof readily follows from the conclusions of Propo-
sitions 3.3 and 4.1.

Acknowledgments. The authors thank the anonymous referees for their careful
reading and for several suggestions that have improved the paper.

Appendix A. Local hyperbolic dynamics. We recall in this section the local
theory of hyperbolic dynamics. The dynamics is obtained by iterating a sequence
of (non linear) maps defined locally and close to uniformly hyperbolic linear maps
that may be non invertible. The notion of adapted local charts is defined in A.3. In
these charts the expansion along the unstable direction, or the contraction along the
stable direction, is realized at the first iteration, instead of after some number of
iterations. It is a standard notion that can be extended in different directions, see
for instance, Hasselblatt, Katok [15] or Gourmelon [14]. We will not give any proof
here.

It will be important to keep in mind that we are considering maps that may not
be invertible. These maps are seen as perturbations of their tangent maps. We only
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assume that the tangent maps are invertible along the unstable direction. They
may have a kernel belonging to the stable direction. In particular, the following
description is also valid for quasi-compact maps in infinite dimension.

A.1. Adapted local hyperbolic map. A local hyperbolic map is a Lipschitz
perturbation of a hyperbolic linear map that could be non injective. The constants
(σs, σu, η, ρ) that appear in the following definition are used in the proof of Theorem
2.1.

Definition A.1 (Adapted local hyperbolic map). Let (σs, σu, η, ρ) be positive real

numbers called constants of hyperbolicity. Let Rd = Eu ⊕ Es and Rd = Ẽu ⊕ Ẽs
be two Banach spaces equipped with two norms | · | and ‖ · ‖ respectively. Let
Pu : Rd → Eu and P s : Rd → Es be the two linear projectors associated with the
splitting Rd = Eu ⊕ Es and similarly P̃u : Rd → Ẽu and P̃ s : R→ Ẽs be the two
projectors associated with Rd = Ẽu ⊕ Ẽs. Let B(ρ), Bu(ρ), Bs(ρ) be the balls of

radius ρ on each E,Eu, Es respectively, with respect to the norm | · |. Let B̃(ρ),

B̃u(ρ), B̃s(ρ) be the corresponding balls with respect to the norm ‖ · ‖. We assume
that both norms are sup norm adapted to the splitting in the sense,{

∀v, w ∈ Eu × Es, |v + w| = max(|v|, |w|),
∀v, w ∈ Ẽu × Ẽs, ‖v + w‖ = max(‖v‖, ‖w‖).

In particular B(ρ) = Bu(ρ)×Bs(ρ), B̃(ρ) = B̃u(ρ)× B̃s(ρ). We also assume

σu > 1 > σs, η < min
(σu − 1

6
,

1− σs

6

)
(A.1)

ε(ρ) := ρmin
(σu − 1

2
,

1− σs

8

)
.

An adapted local hyperbolic map with respect to the two norms and the constants of
hyperbolicity is a set of data (f,A,Eu/s, Ẽu/s, | · |, ‖ · ‖) such that:

i. f : B(ρ)→ Rd is a Lipschitz map,
ii. A : Rd → Rd is a linear map which may not be invertible and is defined into

block matrices

A =

[
Au Du

Ds As

]
,

{
(v, w) ∈ Eu × Es,
A(v + w) = ṽ + w̃,

⇒
{
ṽ = Auv +Duw ∈ Ẽu,
w̃ = Dsv +Asw ∈ Ẽs,

that satisfies{
∀ v ∈ Eu, ‖Auv‖ ≥ σu‖v‖,
∀w ∈ Es, ‖Asw‖ ≤ σs‖w‖, and

{
‖Du‖ ≤ η, Lip(f −A) ≤ η,
‖Ds‖ ≤ η, ‖f(0)‖ ≤ ε(ρ),

where the Lip constant is computed using the two norms | · | and ‖ · ‖.

The constant σu is called the expanding constant, σs is called the contracting
constant, ker(As) could be non trivial. The constant ρ represents a uniform size of
local charts. The constant ε(ρ) represents the error in a pseudo-orbit. The constant
η represents a deviation from the linear map and should be thought of as small
compared to the gaps σu − 1 and 1− σs. Notice that ε(ρ) is independent of η. The
map f : B(ρ)→ Rd should be considered as a perturbation of its linear part A.
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A.2. Adapted local graph transform. The graph transform is a perturbation
technique of a hyperbolic linear map. A hyperbolic linear map preserves a splitting
into an unstable vector space on which the linear map is expanding, and a stable
vector space on which the linear map is contracting. It is standard to show that a
Lipschitz map close to a hyperbolic linear map also preserves similar objects that
are Lipschitz graphs tangent to the unstable direction. We recall that the operator
A may have a non trivial kernel and that we don’t assume f to be invertible.

Definition A.2. Let (σu, σs, η, ρ), Rd = Eu⊕Es = Ẽu⊕Ẽs be as in Definition A.1.
We denote by Gu the set of Lipschitz graphs over the unstable direction Eu with
controlled Lipschitz constant and height. More precisely, let

Gu =
{

[G : Bu(ρ)→ Bs(ρ)] : Lip(G) ≤ 6η

σu − σs
, |G(0)| ≤ ρ

2

}
, (A.2)

and similarly G̃u the set of Lipschitz graphs using the norm ‖ · ‖. The graph of
G ∈ Gu is by definition the subset of B(ρ):

Graph(G) := {v +G(v) : v ∈ Bu(ρ)}.

Notice that, thanks to (A.1), Lip(G) ≤ 1
2 for every G ∈ Gu. Notice also that

the Lipschitz constant of G goes to zero as f becomes more and more linear, as
η → 0, independently of the location of f(0) controlled by ε(ρ) depending only on
(σu, σs, ρ).

Proposition A.3 (Forward local graph transform). Let (σu, σs, η, ρ, ε), Rd = Eu⊕
Es = Ẽu ⊕ Ẽs, and (A, f) be as defined in Definition A.1. Then

i. For every graph G ∈ Gu there exists a unique graph G̃ ∈ G̃u such that{
∀ ṽ ∈ B̃u(ρ), ∃! v ∈ Bu(ρ), ṽ = P̃uf(v +G(v)),

G̃(ṽ) = P̃ sf(v +G(v)).

ii. For every G1, G2 ∈ Gu and G̃1, G̃2 the corresponding graphs,

‖G̃1 − G̃2‖∞ ≤ (σs + 2η) |G1 −G2|∞.
iii. The map

T u :=

{
Gu → G̃u,
G 7→ G̃,

(A.3)

is called the forward graph transform.
iv. for every G ∈ Gu, f(Graph(G)) ⊇ Graph(G̃) ,

∀ q1, q2 ∈ Graph(G) ∩ f−1(Graph(G̃)), ‖f(q1)− f(q2)‖ ≥ (σu − 3η) |q1 − q2|.

For a detailed proof of this proposition we suggest the monography by Hirsch,
Pugh, Shub [16]. As we don’t assume f to be invertible, the backward graph
transform cannot be defined.

A.3. Adapted local charts. We consider in this section a C1 dynamical systems
(M,f) on a manifold M of dimension d ≥ 2 without boundary, Λ ⊆M a hyperbolic f -
invariant compact set, and Ω ⊃ Λ an open neighborhood of Λ of compact closure. Let
λs < 0 < λu, CΛ ≥ 1, and TxM = EuΛ(x)⊕EsΛ(x) as in Definition 1.1. We show that
we can construct a family of local charts well adapted to the hyperbolicity of Λ. The
existence of such a family depends only on the continuity of x ∈ Λ 7→ EuΛ(x)⊕EsΛ(x)
and the C1 regularity of f .
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Definition A.4 (Adapted local charts). Let (M,f) be a C1 dynamical system,
U ⊆M be an open set, and Λ ⊆ U be an f -invariant compact hyperbolic set with
constants of hyperbolicity (λu, λs). A family of adapted local charts is a set of data
ΓΛ = (Γ, E,N, F,A) and a set of constants (σu, σs, η, ρ) satisfying the following
properties:

i. The constants (σu, σs, η, ρ) are chosen so that,

exp(λs) < σs < 1 < σu < exp(λu)

η < min
(σu − 1

6
,

1− σs

6

)
, ε(ρ) := ρmin

(σu − 1

2
,

1− σs

8

)
where λu, λs are the constants of hyperbolicity of Λ as in Definition 1.1. Notice
that ε(ρ) < ρ/8.

ii. Γ = (γx)x∈Λ is a parametrized family of charts such that for every x ∈ Λ,
γx : B(1) ⊂ Rd →M is a diffeomorphism from the unit ball B(1) of Rd onto an
open set in M , γx(0) = x, and such that the C1 norm of γx, γ

−1
x is uniformly

bounded with respect to x.

iii. E = (E
u/s
x )x∈Λ is a parametrized family of splitting Rd = Eux ⊕Esx obtained by

pull backward of the corresponding splitting on TΛM by the tangent map T0γx
at the origin of Rd,

Eux = (T0γx)−1EuΛ(x), Esx := (T0γx)−1EsΛ(x),

and by Id = Pux + P sx , the corresponding projectors onto Eux , E
s
x respectively.

iv. N := (‖ · ‖x)x∈Λ is a C0 parametrized family of norms. The adapted local norm
is a sup norm adapted to the splitting Eux ⊕ Esx that satisfies

∀ v ∈ Eux , w ∈ Esx, ‖v + w‖x = max(‖v‖x, ‖w‖x).

The ball of radius ρ centered at the origin of Rd is denoted by Bx(ρ).
v. The constant ρ is chosen so that γx(Bx(ρ)) ⊂ U and

∀x, y ∈ Λ,
[
f(x) ∈ γy(By(ρ)) ⇒ f(γx(Bx(ρ)) ⊆ γy(B(1))

]
.

vi. F := (fx,y)x,y∈Λ is a family of C1 maps fx,y : Bx(ρ) → B(1) which is
parametrized by couples of points (x, y) ∈ Λ satisfying f(x) ∈ γy(By(ρ)).
The adapted local map is defined by

∀ v ∈ Bx(ρ), fx,y(v) := γ−1
y ◦ f ◦ γx(v).

vii. A := (Ax,y)x,y∈Λ is the family of tangent maps Ax,y : Rd → Rd of fx,y at
the origin, that is parametrized by the couples of points x, y ∈ Λ satisfying
f(x) ∈ γy(By(ρ)). Let

Ax,y := Dfx,y(0),

where Dfx,y(0) denotes the differential map of v 7→ fx,y(v) at v = 0.
viii. For every x, y ∈ Λ satisfying f(x) ∈ γy(By(ε)), the set of data

(fx,y, Ax,y, E
u/s
x , Eu/sy , ‖ · ‖x, ‖ · ‖y)

is an adapted local hyperbolic map with respect to the constant of hyperbolicity
(σu, σs, η, ρ) as in Definition A.1. We have

Ax,y =

[
Puy Ax,yP

u
x Puy Ax,yP

s
x

P syAx,yP
u
x P syAx,yP

s
x

]
,
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∀ v ∈ Eux , ‖Ax,yv‖y ≥ σu‖v‖x,
∀ v ∈ Esx, ‖Ax,yv‖y ≤ σs‖v‖x,

,

{
‖P syAx,yPux ‖x,y ≤ η,
‖Puy Ax,yP sx‖x,y ≤ η,

{
‖fx,y(0)‖y ≤ ε(ρ),
∀v ∈ Bx(ρ), ‖Dfx,y(v)−Ax,y‖x,y ≤ η,

where ‖ · ‖x,y denotes the matrix norm computed according to the two adapted
local norms ‖ · ‖x and ‖ · ‖y.

The existence of a family of adapted local norms is one of the central results in
the Definition A.4. We don’t repeat the proof here.

Definition A.5 (Admissible transitions for maps). Let ΓΛ be a family of adapted

local charts as given in Definition A.4. Let x, y ∈ Λ. We say that x
ΓΛ→ y is a

ΓΛ-admissible transition if

f(x) ∈ γy(By(ε(ρ))) ( ⇔ fx,y(0) ∈ By(ε(ρ)) ).

A sequence (xi)
n
i=0 of points of Λ is said to be ΓΛ-admissible if xi

ΓΛ→ xi+1 for every
0 ≤ i < n.

A.4. Adapted local unstable cones.

Definition A.6 (Unstable/stable cones). Let Rd = Eu⊕Es be a splitting equipped
with a norm | · |. Let α ∈ (0, 1)

i. The unstable cone of angle α is the set

Cu(α) :=
{
w ∈ Rd : |P sw| ≤ α|Puw|

}
.

ii. The stable cone of angle α is the set

Cs(α) :=
{
w ∈ Rd : |Puw| ≤ α|P sw|

}
.

Notice that the unstable cone Cu(α) contains the unstable vector space Eu.

Lemma A.7 (Equivariance of unstable/stable cones). We consider the notations
of Definition A.1, where (σu, σs, ρ, η, ε) are some positive constants, Rd = Eu ⊕ Es
and Rd = Ẽu ⊕ Ẽs are two vector spaces with norms | · | and ‖ · ‖ respectively, and
(A, f) is an adapted local hyperbolic map. Let

α ∈
( 6η

σu − σs
, 1
)

and β :=
ασs + 3η

σu − 3η
.

Then β ≤ α and, for every a, b ∈ B(ρ) = Bu(ρ) +Bs(ρ),

i. if b− a ∈ Cu(α), then f(b)− f(a) ∈ C̃u(β) and

‖P̃u(f(b)− f(a))‖ ≥ (σu − 3η)|Pu(b− a)|, (A.4)

ii. if f(b)− f(a) ∈ C̃s(α), then b− a ∈ Cs(β) and

‖P̃ s(f(b)− f(a))‖ ≤ (σs + 3η)|P s(b− a)|. (A.5)
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in Dynamics (II). Astérisque, 287 (2003), 135-146.
[21] M. Pollicott and R. Sharp, Livsic theorems, maximizing measures and the stable norm,

Dynamical Systems, 19 (2004), 75-88.

[22] J. C. Robinson, Hindawi Publishing Corporation, SRN Mathematical Analysis, Volume 2013,
Article ID 291823, 29 pages

[23] X. Su and P. Thieullen, Convergence of the discrete Aubry-Mather model in the continuous

limit, Nonlinearity, 31 (2018), 2126-2155.
[24] X. Su and P. Thieullen, Gottschalk-Hedlund theorem revisited, Math. Res. Lett., 28 (2021),

285-300.

[25] X. Su and P. Thieullen, Lipschitz sub-actions for locally maximal hyperbolic sets of a C2 flow,
Preprint is available at https://arxiv.org/abs/2205.10135.

Received November 2022; 1st revision June 2023; 2nd revision August 2023; early
access October 2023.

http://www.ams.org/mathscinet-getitem?mr=MR2105774&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1785392&return=pdf
http://dx.doi.org/10.1016/S0246-0203(00)00132-1
http://www.ams.org/mathscinet-getitem?mr=MR1841880&return=pdf
http://dx.doi.org/10.1016/S0012-9593(00)01062-4
http://www.ams.org/mathscinet-getitem?mr=MR2829831&return=pdf
http://dx.doi.org/10.5802/afst.1284
http://www.ams.org/mathscinet-getitem?mr=MR3529118&return=pdf
http://dx.doi.org/10.1007/s00222-015-0638-0
http://www.ams.org/mathscinet-getitem?mr=MR1451248&return=pdf
http://dx.doi.org/10.1016/S0764-4442(97)87883-4
http://www.ams.org/mathscinet-getitem?mr=MR1650261&return=pdf
http://dx.doi.org/10.1016/S0764-4442(98)80144-4
http://www.ams.org/mathscinet-getitem?mr=MR1473840&return=pdf
http://dx.doi.org/10.1016/S0764-4442(97)84777-5
http://www.ams.org/mathscinet-getitem?mr=MR3701349&return=pdf
http://dx.doi.org/10.1007/978-3-319-66643-3
http://www.ams.org/mathscinet-getitem?mr=MR2422016&return=pdf
http://dx.doi.org/10.1017/S0143385707000491
http://www.ams.org/mathscinet-getitem?mr=MR2765475&return=pdf
http://dx.doi.org/10.1088/0951-7715/24/2/008
http://www.ams.org/mathscinet-getitem?mr=MR2128794&return=pdf
http://dx.doi.org/10.3934/dcds.2005.13.103
http://www.ams.org/mathscinet-getitem?mr=MR2371598&return=pdf
http://dx.doi.org/10.1017/S0143385707000272
http://www.ams.org/mathscinet-getitem?mr=MR501173&return=pdf
http://dx.doi.org/10.1007/BFb0092042
http://www.ams.org/mathscinet-getitem?mr=MR4000508&return=pdf
http://dx.doi.org/10.1017/etds.2017.142
http://www.ams.org/mathscinet-getitem?mr=MR2257442&return=pdf
http://dx.doi.org/10.3934/dcds.2007.17.403
http://dx.doi.org/10.3934/dcds.2007.17.403
http://www.ams.org/mathscinet-getitem?mr=MR2040005&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2038273&return=pdf
http://dx.doi.org/10.1080/14689360410001658990
http://www.ams.org/mathscinet-getitem?mr=MR3816667&return=pdf
http://dx.doi.org/10.1088/1361-6544/aaacbb
http://dx.doi.org/10.1088/1361-6544/aaacbb
http://www.ams.org/mathscinet-getitem?mr=MR4248004&return=pdf
http://dx.doi.org/10.4310/MRL.2021.v28.n1.a12
https://arxiv.org/abs/2205.10135

	1. Introduction and main results
	2. An improved shadowing lemma for maps
	3. The discrete Lax-Oleinik operator
	4. The discrete positive Livšic criterion
	Acknowledgments
	Appendix A. Local hyperbolic dynamics
	A.1. Adapted local hyperbolic map
	A.2. Adapted local graph transform
	A.3. Adapted local charts
	A.4. Adapted local unstable cones

	REFERENCES

