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We define a sequence of uniform Lyapunov exponents in the setting of Banach 
spaces and prove that the Hausdorff dimension of global attractors is bounded 
from above by the Lyapunov dimension of the tangent map. This result 
generalizes the papers by Douady and Oesterl6 (1980) and Ledrappier (1981) in 
finite dimension and Constantin et aL (1985) for Hilbert spaces. 
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1. INTRODUCTION 

Some partial differential equations with a dissipative term possess a com- 
pact global attractor K invariant with respect to the semigroup of solutions 
{~bt}t~>o, ~b'(K) ~ K (cf. Constantin et aL (1985)). The fact that the tangent 
semigroup {T~}t>~o is composed of compact operators (or at least 
asymptotically compact) enables us to work in a finite-dimensional setting. 
For these equations, the surrounding space is a Hilbert space and the 
definition of local Lyapunov exponents is obtained by computing the 
asymptotic growth of the norm of the exterior product of the tangent semi- 
group IIAPTLII. Although the notion of p-dimensional volume does not 
exist in Banach spaces, one can still construct such a family of exponents 
(Marl6, 1983; Thieullen, 1987). 

The beginning of this paper gives a geometric definition of these local 
exponents {2i(x)}i~l as critical values of the a-entropy h(T, ~, x) of the 
tangent semigroup. This c~-entropy generalizes the usual notion of entropy 
and is computed by counting the number of balls R(T~, e -n~) with 
exponentally decreasing radius which cover the image of the unit ball under 
the tangent semigroup: 
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h ( T , ~ , x ) =  lim - l logR(T2,  e -n~)= ~ d , ( x ) [ 2 , ( x ) + e ]  + 
n ~  +oo H i~>l 

where the limit exists for any regular point x e A, that is, on a set of points 
possessing good statistical properties: a set invariant under the semigroup, 
~b'(A)=A, with full measure for any invariant finite measure m 
(m o ~-* = m). Particularly, points satisfy 

lim 1 n~l - 6r (weakly) 
n ~  + o z n  i = o  

where {(~x}xeA is the Dirac measure at x and m~ is an ergodic measure 
(the only invariant sets have measure 0 or 1). 

We define after uniform Lyapunov exponents using the same formula: 

1 
h~(T, c~) = lira - sup log R(T2 ,  e - ~ )  = ~ d~(T)[2~/(T) + ~-] + 

n ~  + ~ 1 7 6  Fl x e K  i > ~ l  

which enables us to bound from above the fractal dimension of K when 
r  = K: 

dime(K) ~< n + 2~(T) + --. + 2U(T) 
I),nu+ I ( T ) I  

Finally, we give a more precise upper bound for the Hausdorff dimen- 
sion of K when #(K) = K: 

dimu(K) <~ sup{dimL(T, m): m ergodic invariant } 

where dimL is the Lyapunov dimension of m, the smallest "dimension d" 
from which the tangent semigroup contracts d-dimensional volumes. 

These latter two results generalize the same inequality obtained by 
Ledrappier (1981) and by Constantin et al. (1985). 

2. RESULTS 

2.1. General Setting 

Let (E, IJ" II) be a Banach space, d a nonempty compact set in E, 
( ~ b : s J - + d )  a continuous map defined on d and preserving 
d ( ~ ( d )  __ sJ), and ( r :  sr -~ L(E); x ~ Tx) a quasidifferential of ~b: that is, 
(i) Tx is a continuous linear operator for each x ~ d and continuous with 
respect to x, and (ii) there exists a decreasing function (C: R § ~ R +) such 
that for all e > 0, x in d ,  p in the ball of radius e centered at x B(x, ~), 
l i e ( p ) - O ( x ) -  r x .  ( p -  x)ll ~< C(~) l i P -  xtl and l im,~ o C(e) = 0. 
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In those circumstances, we will say that the dynamical bundle ~ - -  
(E, d ,  r T) has class C i. If, moreover, ~b is a homeomorphism and Tx is 
injective for each x in ~4, ~,~ will be called an invertible dynamical bundle. 
If T is a quasidifferential of qt, then T ~ is a quasidifferential of ~b ", where 
T~_~ Tr176 Tr . . . . .  To(~)o T~ and C~+ l(e) ~ r~C(e) + (~  + C(~)) 
C,(e(z + C(e))), ~ ~ supx~ d IJ T~II- 

Following Kuratowski [cf. Sadovskii (1972) for a better survey of 
measure of noncompactness], we define the index of compactness of any 
bounded subset A in E as being the smallest nonnegative real number 
such that for any r ' >  c~, A can be covered by a finite number of balls of 
radius r' (not necessarily centered on ~r We define also the index of 
compactness of any map S: E --+ E as being the number 

[Is[I ~ ~ inf{k > 0: ~(S(A)) <~ k~(A) for any bounded set A in E} 

If S is a continuous linear operator, then [[SN~ = c~(S(Be)) where B e is 
the open unit ball of E and [J �9 ]l ~ is a multiplicative norm: 

IIS+ Z ] l ~  < IlSIl~ + [ITII~, HSo TI[~4 j[SH= IIZJl~ 

Then the existence of compact global attractors for some partial differential 
equations (cf. Babin and Vishik, 1983) can be proved using the following 
proposition. 

2.1.1. Proposition. Given a continuous semiflow (S'),>~o in a complete 
metric space (X, el) (St: J(--* X) is a continuous map for each t >>.O, such 
that (1) l im,~ +oo 1/t Log[IStl[~ < 0 and (2) there exists a set B in X such 
that U ~  S'(B) is bounded for some r > 0 .  Then sr O,>~ U,~>~ SS(B) is 
a nonempty compact set which satisfies S ' ( d ) = ~  r for all t>~z and 
lim,~ +co sup{ d( S'(x), sJ): xE Us>_~ SS(B)} = O. If, moreover, U,>~ St(B) is 
connex, then ~r is connex too. 

2.2. Oseledec's Theorem and Regular Points 

The notion which generalizes the set of fixed hyperbolic points is the 
one of regular points in d .  

2.2.1. Definition of Regular Points. A point x in d is said to be 
regular if there exists a nonincreasing sequence (2i)i~> 1 of real numbers 
(possibly equal to - o o )  and a nonincreasing sequence of closed subvector 
spaces (Fz)i~>l satisfying the following properties: 

865/4/1-9 
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(i) 2 . ( x ) ~ l i m , ~  +~ 1/nln HT~ll~=infi>~;~i, 

(ii) 2~=l im,~  +~ 1/nln ]lT~ I F~lh =l im,_.  +~ 1/nln HT~.vll for any 
v ~ Fi\Vi +1, 

(iii) FI=E;  if 2 ~ > ~ ( x ) ,  then 2~>)~+~, l ~ c o d i m ( F / F ~ + , ) ~  
d~< + ~ ,  if 2 i=2~(x) ,  then F~+ 1 = F i  and d ~ 0 .  

We remark that (2~)~.> 1, (F~)i>.m, and (d~)i>.m are actually functions of 
regular points x: {2~: 2~>2~(x)} = {l > ~ ( x ) :  ~v e E l  = lira sup,~  +~ 
1/n In IlT~.vll}, F~(x) = {veE:  lira sup,~  +~ 1/n In IIT~.vll ~<2i(x)}. 

We denote by A(~-) the set of regular points, J/{~(d, ~b) the set of 
probability ~b-invariant measures m defined on d (m(o~-l(A))= m(A) for 
any Borel set A in ~ ' )  and dg](~' ,  ~b) the set of ergodic measures m in 
~g~(d, (~), (~b-'(A)= A <~ m(A)=  0 or 1). The main theorem about the set 
of regular points is the following (Osledec, 1968; Ruelle, 1979, 1982; Marl6, 
1983; Thieullen, 1987). 

2.2.2. Oseledec's Theorem. For any measure m in J/gl(d,~b), 
there exists a Borel set B in A ( ~ )  such that fA(B)cB, re(B)= 1, 
(2i)i.>1 (Fi)i>.l (di)i>~l are measurable functions on B. 

If Y is an invertible dynamical bundle, a notion o f  strong regular 
points can be defined and a stronger Oseledec's theorem can be proved 
(cf. Appendix B). 

Since d is compact, any weak limitpoint of (1In ~-1 ~i=0 (~bi(x)}n~l 
(x fixed in d )  is a measure in Jgx(d, ~b). Therefore the set of regular points 
is not empty, but could be reduced to a single fixed point. When (E, [I ~ I[) 
is a Hilbert space, (2i)i.>1 and (di)~.>l can be defined in a different manner 
(cf. Appendix A for the notations). 

2.2.3. Oseledec's Theorem in Hilbert Spaces. For any measure m in 
M/ll(d , (;), and for almost every point x in d :  

lim 1 n n - 1 z , ( T x )  = ~ , ( x )  
n o + ~ n  

(where {~i(x) }i>~, is the sequence of Lyapunov exponents counted as many 
times as their multiplicity di(x) if  ).i(x) > 2~(x)  and once if 2i(x) = 2~(x)) .  

2.3. o-Entropy of Operators 

The main new idea in this paper is the notion of a-entropy of 
operators. In opposition to the g-entropy of a map (cf. Thieullen, 1987), an 
exact formula can be given for operators. On the one hand, this new 
definition will enable us to prove Oseledec's theorem in Hilbert spaces 
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[cf. Ruelle (1982) for the original proof];  on the other hand, we will define 
uniform Lyapunov exponents in the general case of Banach spaces. 

2.3.1. Definition of Covering Number. If A is a bounded set in a 
metric space (X, d) and e a positive real number, let r(A, a) be the smallest 
integer n ~> 1 such that A can be covered by n balls of radius strictly less 
than e (not necessarily centered on A); r(A, e )=  + ~  if such an integer 
does not exist. 

If (E, []" J]) is a normed space and A, B are two bounded sets, then 
r(A + B, e + rl) <~ r(A, e) r(B, 11). If S and T are two bounded operators, 
then r(SoT(BE),~I)<~r(S(BE), e) r(T(BE), q). To simplify the notations, 
we will write r(T, ~) instead of r(T(BE), ~). A related notion of entropy 
numbers has been studied by Carl (1981), Pajor and Tomezak-Jaegermann 
(1985), and Tomczak-Jaegermann (1987). 

2.3.2. Definition of a-Entropy. Given a E R, we define the relative 
a-entropy of T at x and the uniform a-entropy of T over d by 

h( T, a, x) -~ lira sup -1 In r( T~, e ~)  
n ~ + ~  n 

1 
h"( T, ~) _~ lira sup sup - In r( T~, e- '~) 

n ~  + ~  x ~ d  n 

We notice that {f,(x)=r(T~,e-n~)}n>~o is a subadditive sequence 
(fm+, < fm + f~ ~ ~m), SO that the second limit is an infimum and the first 
limit exist m-almost everywhere for any m in d{l(~', r The following 
lemma is not simple and can be seen as the generalized entropic Ruelle's 
formula for operators: 

2.3.3. Lemma. I f  ~ = ( E ,  ~r ~, T) is a dynamical bundle in a 
Banach space, m a measure in ./Hl(d, ~), then (x)a.e. in ~ and .for 
all real number a < - ) ~ ( x ) ,  limn ~ +~ 1/n In r(T~, e -"~) = h(T, a, x) = 
~i>~1 di(x)(2i(x) + a) + [where a + means max(a, 0)]. 

The next theorem is the main one in this section. It allows us to define 
a sequence of uniform Lyapunov exponents over d and, for example, will 
give us a sharper upper bound of the fractal dimension of d .  

2.3.4. Theorem. Let ~ = (E, d ,  (9, T) be a C 1-dynamical bundle. 
Then there exists a non&creasing sequence {2,~(T)}, ~>1, of real numbers in 
[ - o% + oo ), and a sequence of integers {d,~(T)}n~> ~ such that 
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(i) 2~(T)=lim,,~ +co 1 / n l n s u p x ~  Ilrn]l; 
u i + ~  n (ii) , ~ ( T ) = l m n o  1 / n l n s u p ~  IjT~jl~=inf~l 2~(T); 

2 - (iii) If 2~(T) > ~(T), then d~(T) >~ 1, otherwise d~(T) = O; 

(iv) for any c~< - ) ~ ( T ) ,  h~(T, e ) = ~ > ~ l  d~(T)(2~(T)+cO +, and 
there exists a measure m~ in d/zel(sJ, O) such that h"(T, e ) =  
h(T, ~, x) m~ a.e. 

This sequence depends on the tangent map as well as on the attractor 
itself: for example, they are increasing with respect to the ~b-invariant sets. 
To prove this theorem, we need actually a great amount of ergodic theory; 
in particular, we need the following variational principle. 

2.3.5. Lemma. Let {f,}~>~l be a sequence of subadditive upper semi- 
continuous functions defined on the compact set d .  Then there exists a 
measure m in d/[~(~, ~) such that 

1 1 1 l" 
l im - sup f ~ ( x )  = inf  - | f~ dm = lira - f . ( x )  m.a.e. 

n ~  +<:~ n x ~ r  n ~ > l  n ") n ~  + c o  n 

2.4. Di f ferent  N o t i o n s  of  U n i f o r m  Lyapunov  Exponents  

When (E, I[" II) is a Hilbert space, Constantin et al. (1985) defined 
uniform Lyapunov exponent by induction: 

fi~(T)+ +f i~(T)= lim l l n s u p  d . . .  IIA ~r~l l  
n>~ + ~  n x c ~  

fi~(T) - ~  if lim 1 In sup a = - IIA T x l [  = - ~  
~ +~ n x~,~ 

They defined the Lyapunov curve by 

1 ; rx l l  =U(T,d)~ lira - I n  sup I[APT~[I 1-" II Ap+I n s 

(where d = p + s and 0 ~< s < 1 ). 
We define now the sequence {~(T)}i~> 1, where 2~(T)is counted d~/(T) 

times when d~'(T) >/1 and once otherwise, and we define another Lyapunov 
curve: 

7"(T, d) ~ ~ ( T )  + ..- + ip(T) +Slp +l (T) 

(where d = p + s  and 0~<s< 1). 
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The following proposition explains the relationship between these two 
curves: 

2.4.1. Proposition. In the general case [d>~O~---~?~(T,d)] is' the 
opposite of  the Legendre transform of the curve [a ~-* h"(T, a)]: 

7"(T, d) = inf{h U(T, a) - ad: a < - 2  ~ (T) } 

I f  we assume, moreover, that E is a Hilbert space, then 

�9 for anypositive d, zr"(T, d)~<7"(T, d); 

�9 for any d= d~(T) + ...  + d~(T), ~z"(T, d) = ?"(T, d). 

2.5. Uniform Hansdorff and Fractal Dimension: Entropy 

The definition of these dimensions is given by Constantin et al. (1985). 
We define first what is usually called the Lyapunov dimension of the 
tangent map: 

2.5.1. Definition. Let Y = (E, d ,  r T) be a C 1-dynamical bundle in 
a Banach space E such that 2 ~ ( T ) <  0. Then there exists an integer p >~ 0 
such that ~ ( T ) +  .-. +~p(T)>~0 and 7q(T) + ... + ~ p + l ( T ) < 0 .  We call 
the uniform Lyapunov dimension the real number: 

~ ( r )  + -.. + ~ ( T )  
dim~(T) ~ p + 

One may use two other equivalent definitions: 

d i m [ ( T ) = i n f { ! h " ( T , a ) : O < a < - 2 o o ( T ) }  

dim L(T) = inf{d >/0: 7~(7; d) < 0 } 

It is not now difficult to prove the following more accurate upper 
bound of the fractal dimension of d .  

2.5.2. Theorem. Let ~ = (E, sJ, r T) be a C I-dynamical bundle in a 
Banach space E such that 2~(T) < 0 and (~(d) = d ;  then 

d i m F ( d  ) ~< dim~(T) 

Actually it is possible to prove a sharper inequality. Let h(q}, a) be 
the metric a-entropy of the map ~b(h(~b,a)~lim~o l imsup~_+~ 1/n 
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r dr ~maxl~i~<n {d(Oi(x) ,  Oi(y))  el~ �9 Then for In r ( d ,  ~, d n ), where 
any 0 ~< ~ < - 2 ~ ( T ) :  

d i m F ( d )  ~< h(~b, ~) ~< hU(T, ~) 

dimF(d)<~inf{d>>.O:7(~,d)<O } where 

7(~b, d) ~ inf{h(~b, ~) - ~d: 0 < ~ < - 2 ~ ( t ) }  

The next theorem gives an affirmative answer to an old conjecture. 
For any ergodic measure m in //{{(d,~b), {2i(x)} and {d~(x)} are 
constant almost everywhere, so that we can write h ( T , ~ , m ) =  
~ 1  d~(m)(2~(m)+ ~)+ and define in the same manner: 

7(T, d, m) ~ inf{h(T, ~, m) - ~d: ~ < -2o~(m)} 

= ~l(m) + .. .  + ~p(m) + S~p+ l(m) 

~l(m) + ... + ~p(m) 
dimL(T, m) ~ inf{d ~> 0: y(T, m, d) < 0} -- p + 

2.5.3. Theorem. Let ~,~ = (E, d ,  O, T) a C 1-dynamical bundle on a 
Banach space E such that 2~(T)  < 0 and O(sff) = d .  Then 

d imn(~ '  ) ~< sup {dimL(T, m): m e dg~(~', ~b)) 

This theorem improves an estimate of Constantin et al. (1985); they 
have defined a different notion of Lyapunov dimension in the Hilbert ease, 
namely, 

dim*(T) ~ inf{d~> 0: ~ ( T ,  d) < 0) 

Under the same assumptions as in Theorem 2.5.3, we have 

sup{direr(T, m): m ~ dg~(~', ~b)} ~< dim*(T) 

dim*(T) ~< p + ill(T) + " '  + / ~ ( T )  ~< dimL(T ) 

dim~(T)~< max l +  

Finally, Theorem 2.5.3 can be improved in the case of Hilbert spaces. 

2.5.4. Proposition. Let ~" = (E, ~ ,  O, T) be a C 1-dynamical bundle on 
a Hilbert space E such that 2~(T)  < 0, then there exists an ergodic measure 
m o in ~ ( d ,  qJ) such that 

sup{dimr(T, m): m ~ J/g~(d, ~b)} = dimL(T, too) 
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3. PROOFS 
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3.1. General Setting 

The proof of Proposition 2.1.1 is well known for compact operators 
(Babin and Vishik, 1983) and the generalization to uniformly asymptoti- 
cally compact operators (lim,~ +~ 1/nln ]IS'[I~<0) does not introduce 
new difficulties. 

3.1.1. Proof of Proposition 2.1.1. Let us call B* ~ Y,>~ S'(B), 
then S~(B*)~B * for every t>~z. Since g(U~S"(B))<~c~(S'(B*))<~ 
jlS~lt~ c~(B*), e (B*)< +oe and J)S'II~ goes to - 0 %  g(Y~>~ S"(B)) goes to 
0 when t goes to + ~ .  tf {xi}~0 is a sequence of points in B* and {t~}~>~0 
is an increasing sequence of times to +0% then {St'(x~)}~>o possesses 
a convergent subsequence (each set {S"(x~): i>~n} can be covered by a 

finite number of balls of radius ~,=c~(U~>~,~ and X is a complete 
metric space). In particular sr is a nonempty closed set such that 
c~(~')~<c% for all n: thus s /  is a nonempty compact set. Suppose 
lim s u p ~  +o~ sup{d(S'(x), s/) :  x e B*} > e > 0, there exist {x~}~.>0 in B* 
and { ti} ~ o increasing such that d(S'~(xi), d)>~ e, which is a contradiction 
since {S'~(x~)}~>o has a convergent subsequence in s/ .  If B* is connexe and 
suppose that ~r is not, d = s / ~  ~ r  were ~ are nonempty disjoint 
compact sets, e=inf{d(xl, x2): xze ~4,~} > 0, then for t large enough S'(B*) 
is contained in JV~(dl) w Jg~(s/2), where ~ . (~-)  = {x e X: d(x, ~ )  < ~/2 }, 
which is a contradiction since S'(B*) is connexe and intersects each open 
set ~f~(~). 

3.2. Oseledec's Theorem and Regular Points 

In Section 3.3, we will prove Lemma 2.3.3, which is the main step in 
the proof of Oseledec's theorem in Hilbert spaces. 

3.2.1. Proof of Theorem 2.2.3. Let m be a probability measure 
in ~ ' ~ ( d ,  ~b). Since (In JlAPT~II }~>.0 is a subadditive sequence of bounded 

T n ~> 0, m-almost everywhere functions, and []APT~t[--I-[P= 1 g i ( x )  for each p 
/~i(x)=lim~_ +~ 1/nln)~i(T~) exists (Kingman's theorem (1968)). Using 
Lemma2.3.3, it is enough to prove limn~ +~ 1/nlnr(T~,e -~ )= 
Zi~>l (/~i(x)+~) + m.a.e, on {~< - # ~ ( x ) }  for each real number ~ and 
#~(x)  ~_ inf{/~(x): i>~ 1 } = ;~(x) .  To prove the second inequality, we need 
Kingman's and Lebesque's theorem: 



136 Thieullen 

P i = l  

= inf i f  lira l l n  IIAPT~II dm(x) 
p > ~ l p  a l n ~  +oo n 

= inf inf --1 ~ ln  ]IAPTxlln dm(x) 
p >~ l n >~ l lqp J l  

inf lira -li t  n n>~l p ~ + o o n  l n Z p ( T x ) d m ( x )  

= lira _1( In jlT~,[l~dm(x) 
n ~  +oo n , l I  

= fl 2~(x)  dm(x) 

The last equality is true for any invariant set I, / ~ ( x ) = 2 ~ ( x )  a.e. To 
prove the first equality, we use Lemma A.5.3. If ~ < - / ~ ( x ) ,  there exists 
r~> 1 such tha t /~(x)  ~< --~'<Pr+j(X). Assume, moreover, that ~ is not one 
of these/~i(x); then for n large enough, 

Zr(r~)  < e "~(r + l)  -~ < Zr+ ~(T;) 

C,-'  IIA'T;[I e '~<~r(T;,  e-'~)<~ Cr IIArT;[I e nrc~ 

3.3. a-Entropy of Operators 

The main theorem of this section requires two lemmas: Lemma 2.3.3 
and Lemma 2.3.5. To begin with, we prove 3.3.1, which may be omitted 
for a first reading. It allows us to apply Kingman's theorem to bounded 
functions {r(T~, Mexp(-~n(x))}n,>0.  We then prove Lemma 3.3.3 in the 
invertible case and, finally, in the general case. 

3.3.1. Technical Lemma. Let be m in Jgl(~4, 0), (~:x~--~(x)) a 
O-invariant function such that ~(x)<  - 2 ~ ( x ) a . e .  and ~>0.  Then there exist 
a bounded function (a: x ~ a(x)), a constant M>~ 1 and a r set A 
such that 

(i) 
(ii) 

(iii) 

re(A) > 1 - e; 

~]i=o a~ is uniformly bounded on A for all r ( T ~ , M e x p -  , . 1  
n>~0; 

lira, +~ 1/n n-1 -~ ~2/=o a~162 a.e. 
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Proof  of  Lemma 3.3.1. Let fl be a ~b-invariant function such that 
~ < f i < - 2 ~  a.e., and 7 a constant such that max(0, supx~d [tTxH)<e 7. 
For  any integer N, R/> 5, we define the Borel set: 

B =  {x ~ d :  r(T2, e N~(x))~<R} 

If N and R are large enough, the measure of B is close to one. Let us 
now define the Borel set: 

A = {x ~ d :  ~(x) + 7m(B~:l Y )  <~ fl(x) m(B [ 3-), m(B I 3-) > O, fl(x) <~ R} 

where m(B[ 3-) means the conditional expectation with respect to the 
a-algebra of invariant sets 3-. A is an invariant set and has measure at least 
1 - e  if N and R are large enough. Finally, we define the bounded 
function a: 

+ 7m(B ~" [ 
a ~ .  3 - ) ~ B t ~ A - - 7 ~ B C c .  A 

re(B] 3-) 

The function a satisfies (iii) of the lemma, and for all x in A we have 

r(T~, e-Na(x)) <~ R 

kN r Tx , e x p - N  ~ a o~b~N(x) <<.R ~ (Vk~>l) 
i = 0  

r T~k+~)N, e x p T N - N  ~ ao(yN+J(x) <~R k (Vk>~I, VO<~j<N) 
i~O 

[since T(~ k + I ) N  N - - j  iN j = T~i~+j(x ) o T~;(x ) o Tx] , 

k N - - I  N - - I  k - -1  k - -1  

a~ = Z 2 a~  yN+j<~N max 2 a~ b~v+j 
i - - 0  j = 0  i--O O<.j<~N--1 i = 0  

r T(xk+~)N, expyN - ~ aoq)~(x) <~R k (Vk~>l) 
i = 0  

We can choose M = exp N(7 + R). 

3.3.2. Proof of Lemma 3.3.3 in the Invertible Case. We assume here 
that the dynamical bundle is invertible (cf. Appendix B). It is enough to 
prove the inequality h(T, ~, x)>~Z~>~l d~(x)[2~(x)+c~] + a.e. since the 
other inequality has been proved by Thieullen (5987). This proof looks like 
the one in Lemma A.5.2 if, in addition, we assume that 

(i) l im,~ +~ 1In In [ITo-,("x) lE~oq)"(x)l I =2~(x) m.a.e., 

(ii) l i ra,_ +~ 1/n In ]]Pro(J'(X)][ = 0  m.a.e. (Vr~> 1), 
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where P~(x) denotes the projection onto @~=1 E~(x) paralM to F~+l(x). 
The first limit says that T2(BE) is still a ball and the second says that the 
angle between @~=~ E~(x) and Fr+~(x) does not decrease too fast. Let r, 
/~ be such that -2r(X) </3 < ~ < --2r+ ~(X). 

Since E = O ~ = ~ E ~ |  we can define the projections 
(~1,..., n~+l) onto (El(X),..., E~(x), Fr+l(x)). 

1 

r i _ l  

T~(B~) - | Tx(B~,r 
r i = l  

r( T~(BE,(~)), e - ~ )  >~ {e"P/(di(x) II T:(\) I El~ ~b~(x)ll )}d~(~/ 

s( T~( B E), 2e "~) >>. (]  s( T~( B Ee(~)), e -"~) 
i=l  

The last inequality is true provided that 

2e - ~  < e - ~ / m a x  I]~:i o ~b"(x)[[ 
l<~i<~r 

We complete the proof using (i) and (ii) and the inequality 

r( T~(BE), e-"~) >t s( T~(Be), 2e -"~) 

3.3.4. Proof of Lemma 3.3.3 in the General Case. Let ~ be a C ~- 
dynamical bundle and o~ its natural extension. Let m be a probability 
measure in ~g1(~r ~b) and rh its natural extension to 2 .  We will prove that 
for any real ~, 

lim l-In r(T~(~), e -"~) =h(T,  ~, x) rh.a.e, on {~orc< - 2 o  o~} 
n - ~  + o o  F/ 

" -"  and so lim, +o~ 1/n Since ~(B~) c BE, r(T~(x) ,e  "~) <~ r(Tx,e  -"~) 
in r( T~(~), e -"~) <<. h( T, ct, x). 

Conversely, choose ~ a ~b-invariant function such that c~ < - 2 ~  a.e. 
Then there exists a ~b-invariant measurable set A of measure at least 1 - e  
(cf. Lemma 3.3.1) such that r(T~, M e x p - % ( x ) )  is uniformly bounded 
on A. If N is large enough, eU~>~M, b x = a N - N e ,  r(T2, exp --bN(X)) is 
uniformly bounded on A. Then we can construct a finite set of vectors V(x) 
in E such that 

(i) card V(x) = r(T2, exp --bN(X)) , 

(ii) N T x (BE) = V(x) + exp(--bu(x)) B E. 
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Given  a vector  v in B e, there exists 

vl e V(x) such that  T~ �9 v e U 1 "~ exp ( - -bN(x ) )  Be, 

such that  

T~ N �9 v e T ~ .  vl + exp(- -bN(X))  v2 

such that  

For  any 
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v2 ~ Vo ~"(x) 

+exp(--bN(X)--bNO~N(X)) BE, vk~ Vo~(K-I)N(x) 

T~ ~ . v ~ T ~  k ~ > u . v l + e x p ( _ b N )  T~ k-2)s 'v2+ ... 

+ exp ( -  i~ I b~o ~(x)) B~ 

(Vl, v2,..., vk), we define a vector  w(v~, v2,..., vk) in E in the 
following way: 

w(vi ..... vk) a (wk~, WkN- 1,'.., W~, 0, 0,...) 

where f o r i > l l  a n d 0 ~ < j < N ,  

J. ( vl+exp(--bN) Tx0-2)zv- v2 + " -  WiN+j~T~(~) T~ i -~N .  

+ e x p  - ~ bN ~ eN vi 
k ~ 0  

Then for any w e B~ and v = ~z(w) we associate (vl,..., vk), and by definition 
of w(vl ..... vk) we have the following inequalities: 

112*~ ~ �9 w -  w ( v l , . . . ,  v~)lf ~ 

2" ~;2N .N--j)[[T2'~o'+J'v--WiN+jll 2 + ~ 7~ HWel/2 
N ~  i N + j ~  kN i )  (k -- I)N 

~< ~ 2 exp 2 j ? -  b No ~IN(Xo) + 7 2 ~kN-- ( iN+j)  (k 1)N 
N<~iN+j<.kN / =0  

where e v = sup~ ~ .~ ]1T~]I, and Xo = re(x). 

If I ~ U .  w - w ( ~ , , . . . ,  ~,)11 ~ 
k-- 1 " I N " x  ,~  2 

< ~ M ( x o )  e x p  - 2  ~ b N o ~ ( o ) )  +'~/(k-~.lN 
/=0  
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where 

M(x0)= ~ 7~exp{2isup(a -e )}  sup exp{2 j (7+sup(a -e ) )}  
i>~O A O<~j<N A 

If k is large enough (depending on x), then (Birkhoff's theorem) 

M(xo) exp - 2  bN~ ~ - ~ ; ( k - - 1 ) N  

l = 0  

~< exp -k(E[BNO n I 3-u] -- Ne) 

and 

k - - 1  

r(T~ N, exp -k(E[buo n I J-~v; -Ne)<~ [I card Vo qtm(x0)a.e, on g- l (A)  
/ = 0  

where ~-u is the a-algebra of ~N-invariant sets. When k goes to infinity, 
rh-almost everywhere on n ~(A), we have 

1 o t + E ~li(x) ~ i ( X ) + N E [ a N  ]r I ~'N] --2e 
i>~1 

1 
~< ~ E[ln r(T~x), exp(Ne - aN~ n)) I J-ul 

If we integrate that inequality with respect to ~-, we get 

E 
i>~1 

~l i (x){~i (x)+lE[aNonl  J- ]  -- 2e} + 

1 
~< ~ E [ l n  r(T~N(x), exp(Ne--aNorC)) [ ~-] 

when N goes to infinity, the last inequality becomes 

di~ n(x){ 2io n(x) + ~o n ( x ) -  2e} + 
i>~ l 

~< lira inf 1 In r(~(~), e T . . . . .  (x)) 
n ~  + o o  /'/ 

rh-almost everywhere on n '(A), which completes the proof. 

3.3.5. Proof of Lemma 2.3.5 (ef. Ledrappier, 1981). Let {x,}.>~o in 
d be such that f . ( x . ) = s u p x ~ f . ( x ) ,  then l~inf.~>l (1/n)f.(xn)= 
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limk~ +~ (1/kN)fkN(XkN) for all N>~ 1. Using the subadditiveness of the 
sequence {f~ }, >/1 we have 

k 2 

LN<~fJ + E fu~ fN--J ~ 
i = 0  

~ f k u ~  3F 1 kN-1 1 

where 

for all O<~j<N 

F ~ m a x  max ]f/(x)l 
x 6 ~  O < ~ i < ~ N  

Let m be a weak limitpoint of mk_~ (1/kN)y~kU-I C~ o r [where 8(x) i = 0  

is the Dirac measure at x]. Since {f.  },,> 0 are upper semicontinuous, 

lira ~-~fkN(X~N) ~ ~ fN dm 
k ~  + o o  

lim l f . (x . )= lira l f f ,  - ,din 
n ~ + o r  Yl n ~ + o o  n 

Using Choquet's representation theorem, there exists a probability measure 
P defined on the set of ergodic r probability measures ~{~(d,  4) 
such that, for any bounded Borel function f ,  

f ~ f  dm=fs~(d,~)(!~f de)dP(e' 

Then P almost everywhere on ~ ' ~ ( d ,  4) we have 

lim - I f . ( x . ) =  lira - l f f .  de 
n ~  + o 3  H n ~  + :x~  / ' /  

~ u  
3.3.6. Proof of Theorem 2. For any ~ <  - z ~ ( T ) ,  we define a sub- 

additive sequence of upper semicontinuous functions: 

fn,~(x) ~ In r(T~, e -~) (x e d )  

For each ~ < - 2~ (T) ,  there exists m~ in J t ~ ( d ,  4) such that 

hU(T, c0= lim fn,~dm~= lim -f.,~(x) m~-a .e .  
n ~  + G o  F/ n ~  + o o  t"/ 

For any ergodic r measure m in d4'~(~4, ~b), h(T, o~, x) is con- 
stant m-almost everywhere; we may write h(T, c~, m). Thus we have proved 
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that, for all e < -2~ (T) ,  there exists m s in ~ ( ~ r  ~b) such that h~(T, ~) = 
h(T,e,m~), and for all m in J~ (d ,~b ) ,  hU(T,e)>~h(T,e,m). Since 
( ~ h ( T ,  ~, m)) is a nondecreasing convex curve, (e~h"(T,  ~)) is also a 
nondecreasing convex curve. In particular, it is a continuous curve with 
right and left derivative A+(e), A~(e). In the same manner, we define 
A+(~), A~(e) the right and left derivative of h(T, ~, m). The main point is 
that A+(~) and Am(~) are integers. For any ~ < -2~(T) ,  we have 

m ~  m ~  ~_(~) ~< ~ (~) ~< ~ + (~) ~< ~ ( ~ )  

If hU(T, ~) is differentiable at ~, then its derivative is an integer. Thus 
there exists a nonincreasing sequence {2~}i>~1 and an increasing sequence 
of positive integers {A~}~>~ such that 

(i) inf/~ 1 2i .u . --z~(T),  

(ii) 2~>2~+~if 2 i > ) ~ ( T ) ;  

(iii) if - , ~ < ~ < - 2 ~ + ~  and h"(T,~) differentiable at ~, then its 
derivative is equal to ~J~; 

(iv) if ~ < -2~ and h~(T, ~) differentiable at ~, then its derivative is 
equal to zero. 

The four previous properties imply h ~( T, ~) = ~ i  >~ 1 di (2 i + ~) + for all 
< - 2~ ( T ) ,  where d ;~  A~- A~_ ~ (Ao ~ 0"). 

Moreover, 2~ has the property that h~(T, ~ ) = 0  for ~ < - 2 ~ ,  and 
h~(T,~)>0  for ~ > - 2 ~ .  Since {In IIT~]l},~>~ is a subadditive sequence, 
there exists rn in ~/{1(~r ~b) such that 

lira -lln(sup IIT~ll)=2~(m) ~- lim -lln IIT~I[ m.a.e. 
n ~  + ~  /7 x ~ r  n ~  + ~  F/ 

For c~<-2~(m), s u p ~ , l [ T ~ l l < e  n~ for large n, r(T~,e-"~)=l and 
h~(T,~)=0.  For ~ > - 2 ~ ( m ) ,  h"(T,~)>>.h(T,~,m)>O; which proves 
2~ = 2~(m). 

3.4. Different Notions of Uniform Lyapunov Exponents 

3.4.1. Proof of Proposition 2.4.1. For any ergodic measure m in 
J / ~ ( d ,  ~b), the opposite of the Legendre transform of (~ ~-~ h(T, ~, m)) is 
7(T,d,m) 

h(T,a,m)= ~ (~i(m)+cQ + 
i ~ > l  

7(T,d,m)=~l(rn)+ ... +~p(m)+s~?+l(rn) (d=p+s,O<~s<l) 
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and when E is a Hilbert space (cf. Theorem 2.2.3), 

1 
7(T, d , m ) =  lira -ln(IIAPT211 t-~ I]AP+~T2II ~) m.a.e. 

n~ + c~ Fl 

Since {ln(JIAPT~jII-SfJAP+~T~]I')},,>~I is a subadditive sequence 
bounded from above; for each d~> 0 there exists a measure m in ~#~(d,  ~b) 
such that ~z"(T, d) = 7(T, d, m). Since h(T, ~, m) <~ h"(T, ~) for all 
a <  - 2~ ( T ) ,  ),(T, d,m)<~7"(T, d) for all d>~0. We have just proved that 
zc"(T, d) ~< ~"(T, d) for all d>~ O. 

�9 ),u If d =  d~((T)+ .. + d~(T) and ~ has been chosen such that - ~ ( T ) <  
~ <  -27+1(T), there exists m in J~(~r  r such that h(T, ~, m)=h~(T, ~). 
Since h~(T, ~) and h(T, ~z, m) have the same derivative d at ~, the value of 
their Legendre transform at d is the same: 7"(T, d)=  7(T, d, m)~< ~"(T, d) 
and so g"(T, d ) =  7~(T, d). 

3.5. Uniform Hausdorff and Fraetal Dimension: Entropy 

Instead of proving Theorem 2.5.2, we will prove the sharper inequality 
[ Y  is a Cl-dynamical bundle but we do not assume ~(~r162 

h(~,~)<~h"(T,~) for all ~ <  - 2 ~ ( T )  

3.5.1. Proof of the Last Inequality. Let ~ < f l <  -2~ (T) ,  N large 
enough (e-N/~< �88 ~ small enough (CN(e) < e N,), then 

n B ~N(B(x ,  e)) ~ ~)N(x) 7 t- ~Tx(  E) -~ CN(~) ~BE (for all x) 

~N(B(x, C)) can be covered by r(T~, e -N~) balls of radius 28[CN(e)+ 
8 -Nil ] ~ e -N~, 

We construct by induction points y(io ..... ik) in ckN(~), i0 ~ I0,---, ik S Ik 
such that 

1o 

&+le/k+l 

card(Io) = r d ,  , card(I#) ~< sup r(T~, e -Np) 
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For each (io-.-ik) in Io • -.. • Ik we define a point x(io. . . ik)  in (~k-1 l = 0  

r  i1), (e/2) e lN~)], if nonempty, which proves 

r ( d ,  ~, ~k j ..~ r d ,  [ sup r ( r~ ,  e-g~)] k 

The ideas in the proof of the next theorem are new. But the rela- 
tionship between the Hausdorff dimension and the Legendre transform of 
the c~-entropy is not well understood. 

3.5.2. Proof  of Theorem 2.5.3. The proof is divided into four steps. 

First Step. Given nonnegative constants A, d, we will prove that 
{info<~<Aln{r(T~:, e -n~)e-n~a}}~o is a subadditive sequence. For any 
O<~ ~<~A, O<~fl <~A, m, n>/O, 

o < a m +  fin<~ A 
m + n  

and prove 

Second Step. 

and r( ~+ . . . . . .  ~ ~ e m~) ,, T x , e )<~r(T~, r ( T ~ ,  e - ~ )  

We define for all d, A ~> 0 the curve 

cA(d) = inf sup inf -1 ln{r(T~, e -n~) e -"~d} 
n ~ l  x ~ d  O ~ < ~ A  n 

dim~/(d)  ~< inf{d~> O: C~(d) < O} 

If d ~  0 such that cA(d ) < 0 and c chosen such that CA(d ) < C < O, then for 
n large enough and for all x in d ,  there exists ~ in [0, A ] such that 

r( T~, e - ~ )  e "~d <<. e'~ 

If {B(xi, ~i)}e~l is a covering of s t  with balls of radius less than e, then 
each Cn(B(xi, el)) can be covered by Ni = r(T2 i, e -n~i) balls of radius less 
than 2~[e-n~i+  Cn(e~)]. Let 8o be small enough such that C~(%)< e -hA 
and define 



Entropy and the Hausdorff Dimension for Dynamical Systems 145 

Then ma(d, 4~)~<4ae"~ma(~ ', e) for all e <eo. Using the same ideas, if 
0 < f l <  -2~o(T), p~>0 and e~, such that 8(e P~+ Cp(el))<~ l, then 

ma(~,e)<~supr(TP, e-P~)ma(~,4e ) for all e<e~ 

If n has been chosen such that 4ae "c sup~ .+  r( T p, e :pfl) ~ �89 

ma(~,e)<<.�89 for e ~<min(e0, el) 

Third Step. Once more we will use Lemma 2.3.5. If A, d~>0, there 
exists an ergodic measure m in Jg~ (d ,  q~) such that 

1 
CA(d)= lira - inf 

n--~ + o r  I ' l O < ~ < ~ A  
ln{r (T; ,  e ~:) e . . . .  a} 

which implies 

cA(d ) <~ inf 
O~<c~<A 

cA(d) <~ inf 
O~<~x~<A 

inf 
0 ~ e ~ A  

lim 1-1n{r(T'~,e-"~)e-"~a}} 

{ h ( r ,  m)  - 

Fourth Step. We will prove that, if d > sup{dimL(T, m): 
m e +g~(d,  q~)}, then there exists A > 0  such that for any ergodic measure 
m in/ /g~(~' ,  q~), 

inf {h(T,e ,m)-~d}<O 

Choose 3, v, A such that 

d >  6 > sup {dimL(T, m): m ~ J { ~ ( d ,  ~b)} 

v > max(2~(T), 0) 

by 
A= 

d - 6  

Assume now that for any 0 < ~ < min(A, -2oo(m)),  

h(T, ~, m)>~d 

865/4/'1-10 
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In particular, ,~,l(m)~0 and A~<-2~(m) .  If ~ [ A , - 2 ~ ( m ) ] ,  since 
[or ~, m)] is convex, 

h(T, ~, m) >~ 
Ad(~ + J.l(rn)) 

A + )~l(m) 

1 A + v  
-h(T ,  oc, m)>~ >16 

A + 21(m ) 

which is a contradiction. 
In the case of a Hilbert space E, we can improve Theorem 2.5.3. 

3.5.3. Proof of Proposition 2.5.4. We have already shown in 3.4.1 that 
nU(T, d)>~7(T, d, m) for all d>~0 and rn ~ Jg~ (d ,  ~b); and for all d~>0 there 
exists a measure m in Jg~ (d ,  ~b) such that nU(T, d) = ~,(T, d, m). 

Let d* = sup{dimL(T,m):  ~/~(d,~b)}.  Then ~zU(T,d)>0 for 
0 < d < d *  and nU(T,d)<O for d>d*.  We claim that n(T,d*)>~O, 
which shows that there exists m 0 in J / /~(d ,  ~b) such that 7(T, d*, too) >~ 0 or 
d* =dimL(T,  too). To prove the claim, we choose an integer p such that 
p < d * ~ p + l .  If n U ( T , p + l ) = - o %  then ).p+l(m):--oo and so 
dimL(T,m)<~ p for all m in J/g~(~,~b). Thus ~ ( T , p + l ) > - o %  the 
function [d~(p,p+l)~-*~U(T,d)]  is convex and so continuous. If 
p < d * < p + l ,  then nU(T ,d* )=0 ;  if d * = p + l ,  then 7zU(T,d*)~>0; 
otherwise dimL(T, m) ~< p + [nU(T, p)]/[~U(T, p) - n~(T, p + 1)] < p + 1 
for all rn in ~ / ~ ( d ,  ~b). 

A. APPENDIX ON SPECTRAL ANALYSIS OF 
LIMIT-COMPACT OPERATORS 

The notion of index of compactness has been introduced by 
Kuratowski. To prove Oseledec's theorem, we need to introduce this 
notion; even if we start with a compact dynamical bundle (each operator 
is compact), its natural extension is no longer compact but still remains 
asymptotically compact. 

In this appendix, a review of Oseledec's theory for a single operator is 
given. In particular, we will generalize the spectral decomposition theorem 
and the Fredholm alternative for noncompact operators in the case of 
Hilbert spaces, and we will be able to give a different definition for the 
sequence of Lyapunov exponents. We introduce a notion of a-entropy of 
operators; this notion can be considered in Banach spaces as a generaliza- 
tion of the notion of p-dimensional volume. 
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A.1. Definition of Lyapunov Exponents in Banach Spaces 

The main theorem about the existence of Lyapunov exponents in 
Banach space is the following. 

A.I.1. Theorem. Let E be a Banach space and T: E-* E a continuous 
linear operator. We define 

Z~o(T)~ lira llnl]T~[l~ 
n ~  + o o  n 

F;.(T)~ {ve  E: l~m sup l ln HT~'vH <~ 
~ + o v  n 

E;~(T)~{veE: 3(w,),~>0 s.t. Wo=V, T.w,,+l=w,,  

andlimsup~ln]lw,[l<~-2} 
~ q-o9  

Then E~(T) and F;(T) are vector spaces invariant with respect to T; there 
exists a nonincreasing sequence {2;}i>~1, of numbers in [ - o r ,  or) such that 

(i) inf;~l 2;=2oo(T), 2 1 = l i m , ~  +~ (1/n) ln [[T"H; 

(ii) F~(T) is a closed subvector space, and for all v e F~(T)\F~+'(T), 

lim l ln j ]Tn[F)" (T) ] [=)~ ;=  lim l ln l [T~-vH 
n ~  + o e  n n ~  + o o  n 

(iii) tf 2; > 2~(T), then 2; > 2;+ 1 , 1 ~< dimE~'(T) ~ d i < + ~ ;  
F~i(T)= E~i(T)@ F~'i+I(T), T restricted to E;'(T) is invertible 
and limn~ +~ (1/n)ln I[Tn[E;~'(T)tl = 2; = limn~ +oo --( l /n)  
In liT "IE;~'(T)][. 

The sequence {2i}~>1 is uniquely determined by T and called the 
sequence of Lyapunov exponents. The sequence {Fg(T)-~Fg(T)};~I is 
called the sequence of Lyapunov vector spaces; {d~(T)};>~ 1, the sequence of 
their multiplicities l-d~(T)= 0 by convention for 2 ; (T)=  2~(T)] .  

The proof of this theorem requires two lemmas, a geometric lemma 
and a combinatorial lemma (cf. 2.3.1 for a definition of covering numbers). 

A.l.2. Lemma. Let E, F be two Banach spaces of dimension d>~ 1, and 
[ T: E ~ F] a linear invertible operator. Then for ay s > 0 

max[(de HT-II]) -d, 13 <~r(T, e)<~ {ent[d IITIJ ~-~3 + 1} d 
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A.1.3. Lemma. Let be X a set, [ T : X - + X ]  a map, [ f : Y ~ R ]  a 
function. Let us denote 

k = l  

Sk( f )  ~- ~, f o T' 
i - - O  

and A p ~ { x e X : 3 1 < ~ k < ~ p  S k ( f ) o T  p k(x)~<0} 

Then for any n ~ 1 and p >1 1, 

S , ( f )  <~ S,({ A; f )  + Sp(Ifl) 

This last lemma has been proved by Silva and Thieullen (1991) in a 
more general setting. Actually this lemma is too strong compared to what 
we need in the proof of Theorem A.I.1; it shortens the proof of Oseledec's 
theorem for a dynamical bundle: using the notations of Thieullen (1987) 
we define 2 ~  X x  E\{0} ,  {:F: 2 ~  2}  :F(x, v) ~ (~b(x), T~. v), {)7: X ~  R} 
)7(x, v )~  In II Tx ~ vll/llvll, {n: 2--, x} the first projection (Tx is supposed to 
be one-to-one for all x). If we denote 

B p ~ { X e X : 3 v e E \ { O } V k ~ l ~ < P l l r  p Xovll<l lTf~ 

2 p ~  {(x, v ) e 2 :  31<~k~pSk( jT)oSP-k(x ,  v)~<O} 

then n(A~) = Bp and if f is uniformly bounded by v, then 

A.1.4. Proof of Theorem A.I.1. The proof is by induction. Let 
)~1 =,LI(T), E1 = E;~(T)(T), and assume that 2oo(T) < 21 (otherwise there is 
nothing to prove). The first step consists in proving that EI(T ) is not 
reduced to {0}. Let us choose 2oo(T)<) .<21,  normed vectors {v,} ,>l  
such that l i m , ~ + ~ 2 ~ = 2 1  [where 2';=(1/n)ln(llT".v,l[/llv,lL)], v= 
In II TII, and f ( v )  = ln(lk T-  vll/llvll). Using Lemma A.1.3, (l/n) S,( f )(vn)  = 
2 ~ - 2 .  ( 2 1 -  2 ) / (v-2)~<l im inf,~ +oo (l/n) S,(~ A;) for any p. The fact that 

c ~ such that [lUpkll ~< Ap is not empty shows that there exist vectors Up 
k - 1 for all 1 ~< k ~< p. For fixed k/> 1, e x p ( - k 2 )  Ilu~ Ilu~ = 1, T k �9 ukp = Up 

since c~({@:p>>.k}) is less than limp~ +~ IITP-~II e P:'=0, we can con- 
struct a normed vector u such that T - n .  u exists for all n >~0 and satisfies 
lIT n~ ull ~<e - ~  IlulL. The second step consists in proving that E~(T) has 
finite dimension for any 2 > 2 ~ ( T ) .  If E~(T) contains a subspace F of 
dimension d and i f / t  has been chosen such that 2 ~ ( T ) < #  <2,  then for 
large n, BF is included in e "T" (Bs ) ;  and for any c ~ < - 2 ~ ( T ) ,  
r(BF, e -n(~+")) <~ r(T~,e-"~), d(c~+ 2) ~< l im,~ +~ (1 /n ) ln r ( r " , e  - ~ )  < 



Entropy and the Hausdorff Dimension for Dynamical Systems 149 

+oo. In the last step, we prove the existence of a closed subvector space 
F invariant under T such that FO El(T)= E. If G is any closed subvector 
space such that G |  E l ( T ) =  E, rc the projection onto G parallel to El(T) 
and S =( Tr oTI  G). Then G is invariant under S and 21(S)<21(T):  
otherwise there would exist a finite-dimensional space GI(S) invariant under 
S satisyfing l i m ~  +oo (1/n)ln ]IS "tGI(S)tl = - ) ~ l ( T ) = l i m . ~  +oo (l/n) 
In liT "]Et(T)ll, CJ= GI(S)OEI(T) would be invariant under T, and on 

we would have 

n - - I  

T - ' = T - ' o ( I - - T z ) +  ~ T - k o ( I - r c ) o T - l o S k - " + l o T r + S - ' o z  
k = 0  

IFT-'t011 <.K ~ IIT-S' I EI(T)II [IS k " I GI(T)II 
k = 0  

which would show lira sup. ~ +~ (I/n) In II T " �9 vii ~< - ~ x ( Z )  for any v e G. 
Thus the following series is convergent U ~ 3~. >1 o T - ' -  1 o (I-- ~r) o To S" 
and satisfies U2=  U, Im(U)=EI(T),  T(ker(U))cker(U); the required 
space is then F =  ker(U). 

A.2. Definition of Characteristic Exponents in Hiihert Spaces 

The main Theorem A.I.1, applied to bounded symmetric operators, 
leads us to the notion of characteristic exponents of a general bounded 

operator T as Lyapunov exponents of x / - ~ .  
In the case of Hilbert spaces we have different definitions of index of 

compactness of operators. 

A.2.1. Definition. If E is a Banach space, A~ the space of bounded 
operators, ~.~ff(E) the space of compact bounded operators, we define a 
new norm in 5s by ll:rll = i n f { l l T - K l l :  KeJ(C(E)}, satisfying 
IISo TI[ < IIS[I NTII. 

Proof. IISoTlt < IISor + K o L -  K o T -  SoLH < I I S - g l l .  
r -  Lll 

A.2.2. Proposition. I f  E is a Hilbert space, then [[Tll= : Itrll for any T 
m ~ ( E) .  

Proof. liT[Is= I IT-KII~< tIT--KH for any K63C(E), so lITtler< IITII. 
Conversely, let e > II TII =, then T(BE) can be covered by a finite number of 
e-balls centered on xl ..... xr. Let ~ be the orthogonal projection onto the 
space spanned by {xi}7= 1, then II T -  ~ o Tll ~< ~. 
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A.2.3. Corollary. (See Beauzamy, 1987a, b.) I f  T is a bounded 
operator of  a Hilbert space E, then for any sequence {v,},~> o of  normed 
vectors weakly converging to zero, lim sup,~  +co IIT. v, II ~< liTtle, and this 
inequality becomes an equality for at least one such sequence. 

Proof. If KeoU(E),  then l im.~ +~ K(vn) =0,  thus lim sup.~ +~ 
I[Tov.]l = lira sup.~  +~ I l T ~  I <~ IIT-KII. To prove the second 
assertion we construct a sequence of orthonormal vectors {v.}.>~0 such 
that IIT. v~+I [ I~>I IT[F . [ [ - [1 / (n+I ) ] ,  where F .=span{vo  ..... v.} • and 
v,,+leF,~+l. Since B E c B F o O B I ~ ,  c~(T(Bs.)) <~ c~(T(Bs) ) <<. e(T(BF.)) + 
~(z(n~,,)) = c4T(BFo)), which shows II T I Fnll/> II T I F.I] = = H Tll ~. 

The only result, which can be proved for an arbitrary Banach space, 
is the following. 

.4.2.4. Proposition. I f  E is a Banach space, then 2 ~ ( T ) = l i m , ~  +~ 
(l/n) In II T"ll. 

Proof. Using the main Theorem A.I.1, we construct a compact 
operator K n = g ~ o T  [Tzn the projection onto ~'__-~Ei(T) parallel to 
F,(T)] .  Since limk~ +co (1/k) ln II(T-K,)kl l  =2,(T) ,  2~(T)~<limk~ +~ 
(i /k) In II Tkll ~< 2~(T). 

The next theorem is a simple consequence of the main one for 
symmetric operators. 

A.2.5. Theorem. I f  E is a Hilbert space and IT: E---r E] a bounded 
symmetric operator, then 

(i) tf  2i(T) > 2~(T), Ei (T  ) = K e r ( T -  e~(V)Id) �9 Ker (T+  e~(T)Id) 
and is orthogonal to Fi+ I(T); 

(ii) 2~ (T) = In II T I Fi (T)I1 = (1/n) In II T" I Fi (T)II (Vi >~ 1, Vn/> 1 ); 

(iii) 2~(T)=lnlITI]~=(1/n) lnIIT"l l~ (Vn~>l); 

(iv) E =  (~i>~l E i ( T ) G  Nz>~I F~(T). 

The sequence {zi(T)=e)i(r)}i>. 1 is called the sequence of charac- 
teristic exponents. 

Proof. For any bounded symmetric operator T, II Tnll = II TII n, which 
proves (ii). Since E~(T) is invariant under T and has finite dimension, T is 
diagonalizable; if v e E~(T) and w ~ F~+ l(Z) [2~(T) > 2 ~ ( T ) ] ,  then 

I(v, w)l =e -';~T) I ( T n ~  w) l  =e  .,;~,~T) I(V, T " ~  

[(v, w)l ~ e  -n;~<r) IIT" I Fi+I(T)[I 
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and so (v, w) = 0, which proves (i). Since in [I TI[ ~ ~< In [/T i Fi( T) II ~ L ( T ) ,  
in []Tll~=2oo(T), which proves (iii). If v is orthogonal to @~>~E~(T), 
and veFi(T),  v = u + w ,  usEi(T) ,  weFg+I(T), then O=(u,v)=lluH 2, 
v ~ Fi+ I(T), which proves (iv). 

A.2.6. Definition. If T is any bounded operator of a Hilbert space, we 
generalize the notion of characteristic exponent by 

Zoo(T) ~ inf z~(T) 
i>~1 

A.2.7. Remark. For any bounded operator of a Hilbert space, 
Zoo(T) = II TII = = II T* II ~ = Zoo(T*). 

Proof. Following Riesz and Nagy (1968), there exist two partially 
isometries U and V (in particular, [i UII ~< 1 and II VII ~< 1) such that T =  
U ~  and ~ =  VT. Thus IlZll~: I [ ~ [ l ~ ,  IIT*TII ~/2= I 1 ~ ] 1  
Ecf. (iii) of Theorem A.2.5], which proves IITII~ ~< [IT*[I~. 

A.3. Relationship Between Lyapunov Exponents and Spectrum 

We will show that the spectrum of T inside the annulus 
exp 2oo(T)< r~<exp 21(T) is discrete and any point of its closure has an 
absolute value equal to one of the values exp Zi(T). 

A.3.1. Proposition. Let T be a bounded operator on a Banach space 
and a(T) the complex spectrum of T. I f  l ea(T)  and In Ill >~Zoo(T), then 
In [/[ =Zi(T) for some i e N * u  { ~ } ,  Conversely, for any i e U * w  {~} ,  
there exists l s a( T) such that In [ll= Zi(T). 

Proof. I f l e C  such that 21(T)~>ln Ill >2oo(T), we can find a decom- 
position of E, E =  E@ F, E and F are invariant under T, /~ has finite 
dimension and limn_ +oo (1/n)ln IITn I Ftl < In  II[. For large n, IITn [ Fit < 
[l[ ", 1 ' 7 - T  n is invertible on Fc  and so l i - T  is invertible on F c too 
[Nc( I I -  F) ~ Nc(lnI - T") and Rc(lnI - T") c R c ( l I -  T) thanks to the 
equality 1~I-  T" = ( / / -  T)(I" - 11+ l" - 2 T + -.. + T n- 1) ]. Thus l ~ a(T) if 
and only if l e a ( T l  E,), and 2>~ln [ll is a Lyapunov exponent of T if and 
only if 2 is a Lyapunov exponent of (TI ~2). Then it is enough to prove this 
proposition when E has finite dimension. Since a(T) is compact and 
Zoo(T) =infix> 1 2i(T), there exists l~ a(T) such that In Ill = 2oo(T). 
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A.4. A Different Definition of Characteristic Exponents 

If  T is a bounded  opera to r  on a Hilber t  space, we denote  by 
{2i(T)}i~>l the sequence of its characterist ic exponents  repeated as m a n y  
times as their multiplicities {J i (T)}~>j .  The next theorem gives two 
different ways to compute  this sequence. 

A . 4 J .  Theorem. I f  T is a bounded operator on a Hilbert space, then 
for  any i>~ 1, 

(i) ~i(T) = sup{inf{ II T .  vii: v e F, [Ivlt = 1 }: d im F =  i}, 

(ii) I[A ~ r[I = ~ I ( T ) . . . ) ~ ( T ) .  

This theorem is well known  for compac t  operators .  The  only difficult 
par t  lies in the case l[ TH~ = [1T[I. Fur thermore ,  if T is a bounded  opera to r  
and R = ~ / T * T ,  then [ [ A i R . v l l = l l A i T o v l l  for any v E A i E  and i~>1, 
which shows that  we can assume T is symmetric.  To  begin with we need 
the following lemma.  

A.4.2. Lemma.  For any vectors (el . . . . .  ep) in E, 

lie1A -..  A epll =inf{llvall "'" [IvpH: V l  A " ' "  A Vp=e 1 A " ' "  A e p }  

Proof.  We m a y  assume that  (el ..... ep) are linearly independent  
(equivalent to el A -.- A ep ~ 0). Using G r a m  Schmidt  process, there exists 
a p by p uper  t r iangular  matr ix  A = (ao) with l 's  on the main  diagonal  
such that  (vj~-Y~a~e~) are o r thogona l  and satisfy ([[vjll~<l]e/[[). Since 
vl A . . .  A v p = d e t ( A ) e l  /x . . .  /x ep, lie1 A . . .  A epll = Ilvlll " "  Ilvp]l. 

A.4.3. P roo f  of  Theorem A.4.1. The p roof  is divided into three parts.  
In the first par t  we prove  the theorem when IITH~ = H TI[ = 1. Given 

any e > 0 ,  by induct ion over  p~>l ,  we claim that  there exist (el,.. . ,ep) 
or thono rma l  such tha t  l iT~  A . . .  /x T ~  p [this will prove 
the second assert ion 1 >~ HA p Tll > ~ ( 1 - e ) P ,  and the first assertion, 
1 ~>inf{llTovll: v e s p a n ( e l . - - e p ) ,  Ilvl[ = 1} > / ( 1 - e ) P ] .  Let  us assume the 
claim is true for p, and let us define G ~ [ s p a n ( e l . . . e p ) ]  ~ and 
HA_--[span(Toe~ ..... To ep)] • re the o r thogona l  project ion onto  H and 
~ (rco T I G), which satisfies II T[[ ~< 1. Since Be  c BG | BG,, T(BE) 
(zroT)(BG) + ( I - g ) o T ( B G ) + T ( B c ~ ) ,  1 = ~(T(BE))  <<. ~(T(Bc) )  ~< 
117"ll ~<1. There  exists a no rmed  vector  ep+ 1 in G such that  IlT~ 
1 --~, then HT. el A .-- A T .  ep+lH = l i T ' e l  A . . .  A T .  epl] [Ir~ 
(1 - e )  p+I.  

In the second par t  we prove  the first assertion in the general case. Let 
p ~> 1 be fixed. Either ~p(T)> H TI[~; then there exist ( e l ' - - e p )  o r thonorma l  
vectors such that  T~ e~ = _+x~(T) ei and I[ T[  G~_ 1]l ~< ~p(T), which proves  
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inf{jlTovll: v~Gp,  Ilvll : 1} =)~p(T) [-where G i ~ s p a n ( e l  . . . e , )  for any 
i >~ 1 ] and the inequality ~< with F of dimension p instead of Gp, since 
there always exists a normed vector v e F orthogonal to ap_ 1. Or zp(T)= 
IlTIl~; then there exists an invariant subspace G such that dim G •  
IITII== IITI G][~= IITI GII. If F is a subspace of dimension p, inf{llT, v[I: 
v ~F, [Iv[[ = 1 }, since there exists a normed vector in Fc~ G. Using the first 
part, given e > 0  we can construct (er+l ..... ep) orthonormal vectors in G 
such that inf{[]T~ v6span(er+l .--ep),  I lv ] l= l}~>(1-e)  p-~IITII~, 
which completes the proof. 

In the last part, we prove the second assertion in the general case. We 
begin to prove by induction ]IA p TI[ ~< ~P=I z i ( r )  �9 If (/)1'''Up+ 1) are p + 1 
orthonormal vectors and Wp+ 1 is a normed vector in Gp+ ~ 
span(vl.-.Vp+l), we can construct w l . . . W p  in Gp+~, orthonormal and 
orthogonal to Wp+l, then l i T ~  . . .  A r~ [ = I l rowl  A "" A 
T~ ~< IIr.  w , A  . . .  A T~ I l r ,  w~+~lI ~< IIAPTIt IIT~ 
which proves IIA p+ 1 Z[I ~ I[A p TIJ ~p+ l(Z). To prove the other inequality, 
let us assume p such that ~p(T)= IJTII= (the other case is easier). Let us 
define r~>l such that Xr(Z)> IlZll~ and 2~+1= IJZll=. If (el-.-e~) is an 
orthonormal basis such that T ,  ee= _+)~e(Z) ei, Gr = span(el .--er) and 
(er+l . . .ep)  any orthonormal vectors in Gr l ,  then IIAPTII~>I7 ~ i= 1 2i( T) 
I]T~ A . . .  A Toepl[, [[APTJI>~I-[7=12~(T) [IA p ~Tll=l-[r  12~(T) 

p - - r  Ii Tll ~ 

A.4.5. Corollary. For any bounded operator T on a Hilbert space, 

(i) ~p (T )=~p(T*) ,  

(ii) Zp(T) : inf{sup{ [I T-  v[[: v e F • [[v[] = 1 }: dim F =  p - 1 }. 

Proof. Since IIAPT]I= [IAPT*I], by induction we have ~p(T)= 
Zp(T*). TO prove the second assertion, we may assume T symmetric. 
Then for any p >/1, there exists a subspace F of dimension p -  1 such that 
[]Tt F• ~p(T)  (if Zp_I(T)> I[TH=, F ~  (~P-I 1 K e r ( T - e i ~ i ( T ) I d ) ;  
if Z p _ I ( T ) :  ][Tll~, we choose F ~  0 i>~1Ei(T) ) .  If G is any subspace of 
dimension p, and F of dimension p -  1, G n F  l # {0} and so [[TI F• ~> 
i n f { [ I T . v : v ~ G , l ] v [ ] = l } ,  which proves the other inequality using 
Theorem A.4.1. 

A.5. Relationship Between Lyapunov and Characteristic Exponents 

Oseledec's (1968) theorem has been first proved in Hilbert spaces by 
Ruelle (1979). In this paper, Ruelle defines the sequence of Lyapunov 
exponents using the asymptotic limit of characteristic exponents of T n. The 
following theorem shows that his definition coincides with the one given in 
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the main Theorem A.I.i. If T is a bounded operator of a Banach space, we 
will write {~i(T)}~>~ for the sequence of Lyapunov exponents of T 
repeated as many times as their multiplicity {di(T)}~>~l. 

A.5.1. Theorem. I f  T is a bounded operator on a Hilbert space, then 

lim llnzAr")=:~Ar) (Vp~>l) 
n ~ + ~ n  

The proof requires two lemmas. The main notion is the notion of 
a-entropy of an operator (which has been defined in 2.3.2 for a dynamical 
bundle): h(T, e) ~ lim n ~ +co (l/n) In r (T  n, e n~) for e < -2o~(T). The proof 
consists in finding an exact formula between h(T , e )  and either the 
characteristic or the Lyapunov exponents. 

A.5.2. Lemma. I f  T is a bounded operator on a Banach space, then for 
any e < - 2  ~ (T), 

h(T, e)= y, d,(T)GIr)+e) + 
/>~1 

Proof. Let r be such that --2r(T)<e< - 2 r + l ( T )  and ( ~ 1  . . . . .  ~ r + l )  

the family of projections associated with the decomposition E =  
E I ( T ) O  " " G E r ( T )  OFr+I(T) .  Then, applying LemmaA.1.2 on each 
E~ (T), we have 

r 

i = l  

r 

i = 1  

| IIT"JFr+I(T)II II=r+lll BFr+I(T ) 

r( T n, e - '~) <~ f i  r( T" [ Ei( T), e -'/3) 
\ 

i - - 1  

r( T" I E,(  T), e "~)<~ {ent[di(T)II T" I E,(T)[I e -~/~] + 1 }d,(r) 

if fl has been chosen in (e, - 2 r +  I(T)) and n i> 1 such that 

e -"/~ < ]trcill e -"~ 
i = 1  



Entropy and the Hausdorff Dimension for Dynamical Systems 155 

Conversely, if/~ E (-)~r(T), ~) and n/> 1 such that 

e ~ <  ~ (2r I[Tr/[I) - l e  -'/~ 
i = l  

1 r 

B E ~ - ( @  BE~(T)) 
r \ i=l  

r 

r(Tn(Be), e "~) >~ ~I s(T"(aee(r)), e ,ts) 
i = 1  

s(T,(BE,(T)) ' e-,,~)>>.maxE(2e,~d~(T) , ]IT-~ t E~(T)II l)J,~v), 1] 

A.5.3. Lemma. I f  T is a bounded operator on a Hilbert space, then for 
any integer p >~ 1 and positive real e ~ (~p + I( T), f~p( T) ), 

c;' IIA" TII ~ p <<. r(T, s(p + 1)) ~< Cp [I/~ p TII s-P 

where Cp is a constant which depends only on p. 

Proof. We may assume that T is already a symmetric operator 
(r(T, e)= r ( x f ~ T ,  e)). Let r ~> 1 be such that z~(T)= 2p(T) and Z~+ , (T)= 
)~p + I(T). Then 

r 

r(T, e(p + 1))~< l~ r(T[ E,(T), e) 
i = l  

r(TI E~(T), e) <~ {ent(6~(T) zg(T) e-~) + 1 }~,(r) 

r(T, ~(p+ ~))<  2;p~ II/~; TII e ~ 

conversely, 
r 

r(T, ~(p+ I))> ~ s( T( B E,( T) ), X ~ ( p +  1)2 -1 ) 
i = l  

r(T, e(p+ 1))~>(p+ l) 3p IIA~ TIIe -p 

A.5.4. Proof of Theorem A.5.1. Let us define for all i~>l" 
pi(T) = limn~ + ,  (l/n)~i(Tn). We begin to prove that infp tip(T)= 2o~(T): 
since for any p~> 1, (1/p)Y~P=I fi/=inf,  (1/pn) ~ P l  l n ~ ( T ' ) ,  2~(T)~< 
infpfip ~ infp inf~ (1/pn) Z pi=I ln~i (T ' )  < inf, ( l /n ) In  IlT"il~=2o~(T). 
The proof is then complete if we prove the equality h(T,~)=  
Z p > l ( ~ / + ~ ) +  for any ~<- -2~(T) .  If ~e ( - - f ip , - t ip+ i ) ,  for n large 

~ T n enough ( ~ p + l ( T ' ) > ( p +  l ) - l  e -"~> Zp ( )), 

P P 

Cp ~ ~I ~i(T") e "p= ~ r(T ~, e "~) ~ Cp I~ Z~(T~) e~P~ 
i = 1  i = 1  



1 5 6  T h i e u l l e n  

B. APPENDIX IN THE NATURAL EXTENSION 

The proof of Oseledec's theorem in the Banach case assumes that the 
map ~b is an homeomorphism and each operator T~ is one-to-one. But 
there is a natural way to get rid of these assumptions using the notion 
of natural extension. The original bundle then becomes a factor of the 
invertible one. 

B.1. Extension of Regular Points 

B.I.1. Definition of the Natural Extension. If ~ = (E, d ,  ~b, T) is a 
Cl-dynamical bundle and {Tn }n/> o a decreasing sequence satisfying ?o = 1, 
0<?m+n~<?m?~, lim._. +~ (1/n) l n ? . = - - ~ ,  we define its natural exten- 
sion ~ = (E, ~ ,  ~, I") by 

n > ~ 0  

~ {x = (x,)~>~o e sJ~: r 1) = x~ for all n/> 0} 

~(x)~(r Xl,...) for all x =  (x~L~>o 

]'~.v~-(TxooVo, Vo, Vl .... ) forall v=(v.),~>o 

rt �9 v ~ Vo (the projection onto the first coordinate) 

We remark that E is a Banach space with the norm Ilvl12= 
32~>o7~ Ilvnll 2 (if E is a Hilbert space, then E is a Hilbert space, too), 

is a compact subset of /~, ~ is a homeomorphism on ~ ,  ~ - l ( x ) =  
(Xl, x2,...)), :Y is a quasidifferential of ~, and each :Fx is one-to-one. Besides, 
if ~ is C l't-quasidifferentiable, then ~ is also C l't-quasidifferentiable. 

B.1.2. Definition of Strongly Regular Points. If Y is an invertible 
dynamical bundle, a point x in d is said to be strongly regular, if it is 
regular and there exists a family of finite-dimensional spaces {Ei}i~>l such 
that 

(i) Fi(x)=EiGFi+~(x) for all i~> 1; 

(ii) if hi(x)>2~(x)  and v~Ei\{O}, then T~n~ exists for all n>~0 
and 

lim l l n l [ T 2 " ~  lim - l l n l [ T x " l E i l l : - h i ( x )  

1 1 
lim - in [I T~ �9 vii : lim - In ]1T~ I Eill = L(x)  

n ~  + o o  H n ~  + c o  H 
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(iii) if 2i (x)  > )~oo(x) and v E Fi+ l (x)\{O} such that  T~ " �9  v exists for 
all n >~ 0, then 

1 
lim - In  I[ T~-"  �9 vii > - L ( x )  

n ~  + c o  /'l 

The family {Ei}i>~l iS uniquely determined by the strongly regular 
point  x. We denote  Z ( Y )  the set of strongly regular points. 

B.1.3. Theorem. I f  ~ = ( E, d ,  ~, T) is a dynamical and 
= (E., ~ ,  ~, 7") its natural extension, then ~z(Z(~))  ___ A( f f ) ,  in particular, 

r io  n(x)  = ~o Fi(x) ,  2io ~(x) = ~i(x) and dio ~(x) = di(x) for all x in X(~) .  

The proof  of this theorem requires the following lemma. 

B.1.4. Lemma. I f  (an)n>~o and (bn)n>~o are sequences of  positive real 
numbers such that (an)n>~o is decreasing and lim,,~ +~ ( l /n)  In bn = - o %  if  

- -  n a we denote a n - Z k = 0  kb~--k, then 

(i) lira s u p . ~  +~ (I /n)  In a,, = l i r a  s u p , ~  +o~ ( l /n)  In a , ,  

(ii) lira inf~ ~ +~ ( l /n)  In a n = lim infn ~ +~ ( l /n)  in a~. 

Proof. The inequality l iminf  n ~ +~ (1/n)lna~<.~liminf,~ +~ (1/n)lna~ 
is the main difficult one. For  any n, p ~> 1, we have 

p 1 n + p  

an+p = 2 akbn k+ 2 akb.-k<'ao 2 bk+ap 2 bk 
k = O  k = p  k>~n k>~O 

Let us suppose lim inf .~  +~ ( I / n ) I n  a .  < e and let us choose ~ e (0, 1) and 
< min(O, ~/fi). 

Since l im( t / n ) In  b.  < fl, for p large enough,  we have 

aem(~p)+p<<.aoexp(ent(@)fl)+ap ~ bk 
k>~O 

and thus for infinitely many  p's, 

GemOp)+ P ~ I aO'Jc 2 b k ] e x p ( a p )  
J-  k > ~ O  A 

which shows 

lira inf 1_ In an ~< ,,~ +~ n 1 + 6  for any 6~ (0 ,  1) 
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B.1.5. Proof of Theorem B.1.3. We will prove that, for any 
Xoen(S(~'))  and x ~ Z ( ~ )  such that n(x) = Xo, {~e(x)}i~l and 
{noP~(x)}i>~m are the sequences of Lyapunov exponents and Lyapunov 
spaces at Xo. 

Since K e r n  c 0i~>lF/(x), codimn(Fi(x) )  = codimF/(x)  and 
~ [ L ( x ) \ L  . ~(x)] = ~ [ L ( x )  ] \ ~ E L  + i(x)]. 

Since ~ �9 v = (T~0 �9 Vo, T~" 0 1. Vo,..., T~0 �9 Vo, Vo, v,,...). 

& n ~ ~n Txll < ~ -  ~ , , -k 
k = O  

For any closed subspace P of E containing Ker ~, using the fact that 
7t is open, re(F)~ F is a closed subvector space and ~ is also open con- 
sidered as a map from P onto re(P). In particular, rc(Bp) contains a ball of 
7z(F):rBr, for some r>~0 and 

r IITZo I FH ~< I[:FZ I Fll ~< IITZo k I rll 2ql/2 

For any vector v in E, 

xo rol l  < 11 Tx ~ vll <<. ~'k I] T2o k" rol l  ~ 11vll 
o l lvoll 

Using the previous lemma for any strongly regular point x, 

lim 1 In II xo[l~ lim 1 In -~ T . T n -n - = I IT~I I~  ( a , , =  il x o l l ~  ) 
n ~  + o o  n n ~  + ~ / ' /  

lim _1 In IlZx"o I FI[ = lim l l n  IITZ I FII 
n ~  + ~  F/ n ~  + c o  iv/ 

(a, = IIT~o I FII v -" )  

lim -lln Ilrxon. %11 = lim l l n  II:F~.vll 
n ~  + o o  17 n ~ ,  + o o  F/ 

n 
(a, = II Tx0 ~ roll ~ ") 
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