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We define a sequence of uniform Lyapunov exponents in the setting of Banach
spaces and prove that the Hausdorff dimension of global attractors is bounded
from above by the Lyapunov dimension of the tangent map. This result
generalizes the papers by Douady and Oesterlé (1980) and Ledrappier (1981) in
finite dimension and Constantin et al. (1985) for Hilbert spaces.
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1. INTRODUCTION

Some partial differential equations with a dissipative term possess a com-
pact global attractor K invariant with respect to the semigroup of solutions
{$'} 50, #(K)= K (cf. Constantin ez al. (1985)). The fact that the tangent
semigroup {7:},., is composed of compact operators (or at least
asymptotically compact) enables us to work in a finite-dimensional setting.
For these equations, the surrounding space is a Hilbert space and the
definition of local Lyapunov exponents is obtained by computing the
asymptotic growth of the norm of the exterior product of the tangent semi-
group {A”T.|. Although the notion of p-dimensional volume does not
exist in Banach spaces, one can still construct such a family of exponents
(Mafié, 1983; Thieullen, 1987).

The beginning of this paper gives a geometric definition of these local
exponents {i,(x)};,, as critical values of the a-entropy A(T, a, x) of the
tangent semigroup. This «-entropy generalizes the usual notion of entropy
and is computed by counting the number of balls R(T7,e ") with
exponentally decreasing radius which cover the image of the unit ball under
the tangent semigroup:
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1
MT, o x)= lim ;log R(TZ, e™)= Y d,(x)[A;(x)+a]™
n— +o0o i1
where the limit exists for any regular point x € 4, that is, on a set of points
possessing good statistical properties: a set invariant under the semigroup,
¢'(A)=A, with full measure for any invariant finite measure m
(mo ¢~ =m). Particularly, points satisfy

n—1

1
i=0

n— 400

where {J,},., is the Dirac measure at x and m, is an ergodic measure
{the only invariant sets have measure 0 or 1).
We define after uniform Lyapunov exponents using the same formula:

1
(T, «)= lim =suplog R(TZ, e ™)=Y d(T)[AUT)+a]*

n— +oo H o x i=1

which enables us to bound from above the fractal dimension of K when
$(K)=K:
AT+ - +4(T)

1454 (TN

Finally, we give a more precise upper bound for the Hausdorff dimen-
sion of K when ¢(K)=K:

dim ,(K) < sup{dim, (7, m): m ergodic invariant }

dim(K)<n+

where dim, is the Lyapunov dimension of m, the smallest “dimension d”
from which the tangent semigroup contracts d-dimensional volumes.

These latter two results generalize the same inequality obtained by
Ledrappier (1981) and by Constantin et al. (1985).

2. RESULTS

2.1. General Setting

Let (E, ||+|) be a Banach space, & a nonempty compact set in E,
(p: o/ > /) a continuous map defined on o/ and preserving
A(p(A)< o), and (T: o - L(E); x+— T,) a quasidifferential of ¢: that is,
(i) T, is a continuous linear operator for each x € & and continuous with
respect to x, and (ii) there exists a decreasing function (C: R* — R™) such
that for all ¢>0, x in &, p in the ball of radius ¢ centered at x B(x, ¢),
¢(p)—é(x)— T, - (p—x)| < C(e) | p— x| and lim, ,, C(¢) =0.
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In those circumstances, we will say that the dynamical bundle & =
(E, o, ¢, T) has class C". If, moreover, ¢ is a homeomorphism and T, is
injective for each x in &, & will be called an invertible dynamical bundle.
If T is a quasidifferential of ¢, then 7" is a quasidifferential of ¢", where
T72Tynryo Tyn-rge - o Tyo T, and  C,, (e} =1"Cle) + (z" + C(e))
C,(e(t + C(e))), T=sup,c . 1T,

Following Kuratowski [cf. Sadovskii (1972) for a better survey of
measure of noncompactness ], we define the index of compactness of any
bounded subset 4 in E as being the smallest nonnegative real number o
such that for any ' >a, A can be covered by a finite number of balls of
radius #' (not necessarily centered on .«/). We define also the index of
compactness of any map §: E — E as being the number

18], = inf{k > 0: a(S(A4)) < ka(A) for any bounded set 4 in E}

If S 1s a continuous linear operator, then || S|, = «(S(Bg)) where B is
the open unit ball of £ and | ¢ ||, is a multiplicative norm:

IS+ T < ISl + 1T, 1S T, <[SI [T

Then the existence of compact global attractors for some partial differential
equations (cf. Babin and Vishik, 1983) can be proved using the following
proposition.

2.1.1. Proposition. Given a continuous semiflow (S'),.q in a complete
metric space (X, d) (S X — X) is a continuous map for each t >0, such
that (1) lim,_, . 1/t Log|S'|, <0 and (2) there exists a set B in X such
that \J, . S'(B) is bounded for some 1>0. Then of =(\,5. U 5. S°(B) is
a nonempty compact set which satisfies S' (LY=o for all t=1 and
lim, , ,, sup{d(S‘(x), &): xeJ,..S(B)} =0. If, moreover, |}, . S'(B) is
connex, then & is connex too.

2.2. Oseledec’s Theorem and Regular Points

The notion which generalizes the set of fixed hyperbolic points is the
one of regular points in 7.

2.2.1. Definition of Regular Points. A point x in & is said to be
regular if there exists a nonincreasing sequence (4,);., of real numbers
(possibly equal to —o0) and a nonincreasing sequence of closed subvector
spaces (F;);. ; satisfying the following properties:

865/4/1-9
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(1) Ao(x)zlim,_. ., 1/nln||T7],=inf;s, 4,
(i) A;=lim,,  ,U/nln||T7| Fl=lm,_, ., 1/nln||T7«v| for any
veF\F,, 1,
(i) Fy=E; if 4,;>4,(x), then A,>41,,,, 1<codim(F,/F,, )=
d;< +o0, if ,;=4,(x), then F,,,=F; and d,=0.

We remark that (4,),. 1, (F;);»,, and (d,);, are actually functions of
regular points x: {4, 4,>A,(x)} = {{ > A(x): e El = limsup, , ,
Unln |T7ev|}, Fi(x) = {veE:limsup,_ ., I/nln||T"ev| < 2,(x)}.

We denote by A(F) the set of regular points, .#, (<7, ¢) the set of
probability ¢-invariant measures m defined on o7 (m(¢~'(4))=m(4) for
any Borel set 4 in /) and #5(/, ¢) the set of ergodic measures m in
M(A, $), (7' (A)=A<>m(A4)=0 or 1). The main theorem about the set
of regular points is the following (Osledec, 1968; Ruelle, 1979, 1982; Mafié,
1983; Thieullen, 1987).

2.2.2. Oseledec’s Theorem. For any measure m in M(s/,P),
there exists a Borel set B in A(F) such that ¢(Byc B, m(B)=1,
(A)is1 (Fi)isi (dy);» are measurable functions on B.

If # is an invertible dynamical bundle, a notion of strong regular
points can be defined and a stronger Oseledec’s theorem can be proved
(cf. Appendix B).

Since ./ is compact, any weak limitpoint of {1/n Y720 &) }ns1
(x fixed in &) is a measure in .#, (<7, ¢). Therefore the set of regular points
is not empty, but could be reduced to a single fixed point. When (E, ||« ||)
is a Hilbert space, (4,);-, and (d;);5, can be defined in a different manner
(cf. Appendix A for the notations).

2.2.3. Oseledec’s Theorem in Hilbert Spaces. For any measure m in
M(A, ¢), and for almost every point x in -

1
lim —Iny,(77)= 7 (x)
n— +oo M

(where {I,-(x)},-21 is the sequence of Lyapunov exponents counted as many
times as their multiplicity d;(x) if 2,{x)> A, (x) and once if 2;(x)=A(x)).

2.3. a-Entropy of Operators

The main new idea in this paper is the notion of a-entropy of
operators. In opposition to the a-entropy of a map (cf. Thieullen, 1987), an
exact formula can be given for operators. On the one hand, this new
definition will enable us to prove Oseledec’s theorem in Hilbert spaces
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[cf. Ruelle (1982) for the original proof]; on the other hand, we will define
uniform Lyapunov exponents in the general case of Banach spaces.

2.3.1. Definition of Covering Number. If 4 is a bounded set in a
metric space (X, d) and ¢ a positive real number, let (4, £) be the smallest
integer n 21 such that 4 can be covered by # balls of radius strictly less
than ¢ (not necessarily centered on A4); r(4, ¢)= +oo if such an integer
does not exist.

If (E, |[+]]) is a normed space and A4, B are two bounded sets, then
r(A+Be+n)<r(d,¢) r(B,n) If § and T are two bounded operators,
then r(So T(Bg), en) < r(S(Bg), ¢) r(T(Bg), n). To simplify the notations,
we will write #(7, ¢) instead of r(T(Bg), ¢). A related notion of entropy
numbers has been studied by Carl (1981), Pajor and Tomczak-Jaegermann
(1985), and Tomczak-Jaegermann (1987).

2.3.2. Definition of a-Entropy. Given ae R, we define the relative
a-entropy of T at x and the uniform «-entropy of T over «/ by

1
(T, «, x)=lim sup —In /(T7, e ™)
n

H-—> +C

1
h(T, a)=lim sup sup —In r(TZ, e ")

n— +0 xe

We notice that {f,(x)=rT7, e ™)},5, is a subadditive sequence
(Jnin<font fucd™), so that the second limit is an infimum and the first
limit exist m-almost everywhere for any m in #,(</, ¢). The following
lemma is not simple and can be seen as the generalized entropic Ruelle’s
formula for operators:

2.3.3. Lemma. If F =(E o, ¢, T) is a dynamical bundle in a
Banach space, m a measure in M (A, P), then (x)ae. in o and for
all real number o< —Ag(x), im,_, o l/nInr(T, e ")=h(T, o x)=
Yot di(xX)A;(x)+ )T [where at means max(a, 0)].

The next theorem is the main one in this section. It allows us to define
a sequence of uniform Lyapunov exponents over o/ and, for example, will
give us a sharper upper bound of the fractal dimension of .&7.

2.34. Theorem. Let F =(E, o4, ¢, T) be a C'-dynamical bundle.
Then there exists a nonincreasing sequence {A“(T)}, , of real numbers in
[—o0, + ), and a sequence of integers {d(T)},  such that
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(i) A{T)=lim,_ , I/nlnsup.., IT];
(i) A (T)zlim, , ,, 1/nlnsup,. ., TP, =inf;,, A7(T);
(iii) if AUTYy> A% (T), then d}(T) = 1, otherwise d(T)=0;
(iv) for any a< —A*(T), WL, 0)=>,5,d(T)AT)+a)*, and
there exists a measure m, in M(A, ¢) such that h*(T, )=
T, o, x)m,ae.

This sequence depends on the tangent map as well as on the attractor
itself: for example, they are increasing with respect to the ¢-invariant sets.
To prove this theorem, we need actually a great amount of ergodic theory;
in particular, we need the following variational principle.

2.3.5. Lemma. Let {f,},>, be a sequence of subadditive upper semi-
continuous functions defined on the compact set /. Then there exists a
measure m in M (A, ) such that

1 1 1

lim =~ sup f,(x)= inf -j fodm= lim - f,(x)mae.
n— +oo M oo nzln n— +oo N

2.4. Different Notions of Uniform Lyapunov Exponents

When (E, ||«]||) is a Hilbert space, Constantin e al. (1985) defined
uniform Lyapunov exponent by induction:

1
BT + - +4(T) 2 lim ~In sup 4977

nz 4o xesf

1
i(T)=—co if lim =Insup [|49T7| = —0

n— +0 xesl

They defined the Lyapunov curve by

1
T, d)= lim —Insup [A?T"|'~* |47+ 1T7|

n— +o xe ot

(where d=p+sand 0<s< 1)

We define now the sequence {1“(T)},., where 2*(T) is counted d*(T)
times when d¥(T) = 1 and once otherwise, and we define another Lyapunov
curve:

v (T, d) 2 FUT)+ -+ Z4T) + 57, (T)

(where d=p+ s and 0<s<1).
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The following proposition explains the relationship between these two
curves:

2.4.1. Proposition. In the general case [dz0ry*(T,d)] is the
opposite of the Legendre transform of the curve [a+s h*(T, a)]:

y(T, d)=inf{h*(T, 0) —ad: a < —A(T)}
If we assume, moreover, that E is a Hilbert space, then

*  for any positive d, n*(T, d) <y*(T, d);
« for any d=dX(T)+ - +dX(T), n(T, d)= (T, d).

2.5. Uniform Hausdorff and Fractal Dimension: Entropy

The definition of these dimensions is given by Constantin er al. (1985).
We define first what is usually called the Lyapunov dimension of the
tangent map:

2.5.1. Definition. Let #F =(E, o, ¢, T) be a C'-dynamical bundle in
a Banach space E such that 1“ (7)< 0. Then there exists an integer p >0
such that Z4(T)+ - +74T) 20 and Z{(T)+ --- + 1%, (T)<0. We call
the uniform Lyapunov dimension the real number:

24T)+ - +714T)
7%, ()]

p+1

dim{(T)=p+

One may use two other equivalent definitions:

1
dim*(T) = inf {E BT, a): 0<a< ~—/100(T)}
dim®(T) =inf{d > 0: y(T, d) <0}

It is not now difficult to prove the following more accurate upper
bound of the fractal dimension of .

2.5.2. Theovem. Let F =(E, o/, ¢, T) be a C'-dynamical bundle in a
Banach space E such that % (T) <0 and ¢(of/ )= of ; then

dim (/) < dim¥(T)

Actually it is possible to prove a sharper inequality. Let h(9, «) be
the metric a-entropy of the map ¢(h(4, o) =lim, , limsup,_ ., 1/n
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Inr(ot, & d®*), where d?*(x,y) 2max, <, <, {d($(x), #'(y)) €*}). Then for
any O0<a< —A% (T):
o dim (7 ) < (g, @) < (T, )
dimﬂ%)ginf{d? 0: (¢, d) <0} where
¢, d) =inf{h(¢, 0) —ad: 0 <a < —2* (1)}

The next theorem gives an affirmative answer to an old conjecture.
For any ergodic measure m in #{(</,¢), {2;(x)} and {d.(x)} are
constant almost everywhere, so that we can write A(T, o, m)=
Sis1di(m)(A;(m)y+a)* and define in the same manner:

YT, d, m) 2 inf{h(T, o, m) —ad: « < —A(m)}
=T,(m)+ - + L, (m)+ s, ., (m)
Zi(m)+ - +7,(m)
lzp-\—l(m)‘

2.5.3. Theorem. Let ¥ =(E, oA, ¢, T) a C'-dynamical bundle on a
Banach space E such that A% (T) <0 and ¢(/)= 4. Then

dim (/) <sup{dim (T, m): me H(L, ¢)}

dim (T, m) = inf{d > 0: y(T, m, d) <0} = p +

This theorem improves an estimate of Constantin et al. (1985); they
have defined a different notion of Lyapunov dimension in the Hilbert case,
namely,

dim#(T) = inf{d > 0: n“(T, d) <0}
Under the same assumptions as in Theorem 2.5.3, we have
sup{dim (7, m):me H(, $)} <dim}(T)
BUT) + - +EAT)

dmHT<p+ — <dimy(T
N <+ S ()
. (1) + -+ 1(7)
dim% (7)< max {l+ -~
£ 1<i<p ay (T

Finally, Theorem 2.5.3 can be improved in the case of Hilbert spaces.

2.5.4. Proposition. Let F = (E, sZ, ¢, T) be a C'-dynamical bundle on
a Hilbert space E such that 1% (T) <0, then there exists an ergodic measure
my in M(A, ) such that

sup{dim (T, m): me MH(L, )} =dim (T, m,)
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3. PROOFS

3.1. General Setting

The proof of Proposition 2.1.1 is well known for compact operators
(Babin and Vishik, 1983) and the generalization to uniformly asymptoti-
cally compact operators (lim,_, . 1/nln ||S*],<0) does not introduce
new difficulties.

3.1.1. Proof of Proposition 2.1.1. Let us call B*=\J,..S(B),
then S'(B*)< B* for every izt Since x({J,s,SYB))<a(SY(B*))<
I1S1f, «(B*), a{ B*) < +o0 and ||S)}, goes to — oo, a(lJ,=, S*(B)) goes to
0 when ¢ goes to +o00. If {x,},., is a sequence of points in B* and {#,},5,
is an increasing sequence of times to +oo, then {S%x;)};5, possesses
a convergent subsequence (each set {S“(x;): i=n} can be covered by a
finite number of balls of radius o, =a({J,., S“(B)) and X is a complete
metric space). In particular & is a nonempty closed set such that
a(e/)<a, for all n: thus & is a nonempty compact set. Suppose
lim sup,_, , . sup{d(S'(x), &) xe B*} >¢>0, there exist {x;},,, in B*
and {1,},>, increasing such that d(S"(x;), /) > ¢, which is a contradiction
since {S"(x,)};»0 has a convergent subsequence in .«7. If B* is connexe and
suppose that &/ is not, &/ =) U, were & are nonempty disjoint
compact sets, ¢ =inf{d(x, x,): x;€ &} >0, then for f large enough S*(B*)
is contained in N(of,) U N (sh), where N ()= {xe X:d(x, o) <e2},
which is a contradiction since S‘(B*) is connexe and intersects each open
set N ().

3.2. Oseledec’s Theorem and Regular Points

In Section 3.3, we will prove Lemma 2.3.3, which is the main step in
the proof of Oseledec’s theorem in Hilbert spaces.

3.2.1. Proof of Theorem 2.2.3. Let m be a probability measure
in #5(<£, ¢). Since {In [|A?T%||},-, is a subadditive sequence of bounded
functions, and | A?T7 =117_,; x,(T%) for each p =0, m-almost everywhere
fi(x)=lim,_, , 1/nlnx,(T7) exists (Kingman’s theorem (1968)). Using
Lemma 2.3.3, it is enough to prove lim,_ ,,  l/minr(T! e )=
Yisq (fi{x)+a)" mae on {a< —p,(x)} for each real number o and
Bo(x)=inf{fi;(x): i= 1} =24_(x). To prove the second inequality, we need
Kingman’s and Lebesque’s theorem:
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J oty ame) = int > 5 ] ) i)

i=1"1

{ q
— inf —j lim =ln [APT7| dm(x)
I

pzlpdrn—> 4+ R

1
= inf inf — j In | AT dm(x)
I

pzlnzlhnp

1
—inf lim - j In ,(T7) dm(x)
nyy

nzl p— +o

o1
lim —f In | T2, dm(x)
I

n— +oo 1

Il

= [ 2 (x) dm(x)

The last equality is true for any invariant set I, p(x)=4,(x) ae. To
prove the first equality, we use Lemma A.5.3. If o < —pu (x), there exists
r>1 such that ji(x)< —a<f,, ,(x). Assume, moreover, that « is not one
of these fi,(x); then for n large enough,

AT <e ™(r+1)7' <y, 1(T7)
ColNAT e <H(Ty, e ™)< C, AT ™

3.3. a-Entropy of Operators

The main theorem of this section requires two lemmas: Lemma 2.3.3
and Lemma 2.3.5. To begin with, we prove 3.3.1, which may be omitted
for a first reading. It allows us to apply Kingman’s theorem to bounded
functions {r(T%, M exp(—a,(x))},»o- We then prove Lemma 3.3.3 in the
invertible case and, finally, in the general case.

3.3.1. Technical Lemma. Let be m in #,(H,¢$), (a:x—a(x)) a
d-invariant function such that a(x) < —A,(x) a.e. and ¢ > 0. Then there exist
a bounded function (a: x — a(x)), a constant M =21 and a ¢-invariant set A
such that

(i) m(Ad)>1—¢;
(ii) r(T?, Mexp—Y72s ac@'(x)) is uniformly bounded on A for all
nz=0; :

(iii) hm,_ ,. 1/nYi "t acd(x)=a(x) ae.
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Proof of Lemma 3.3.1. Let f be a g-invariant function such that
a<fp< —A, ae, and y a constant such that max(0, sup,., 17.])<e.
For any integer N, R> 1, we define the Borel set:

B={xeo:r(T", e )< R}

If N and R are large enough, the measure of B is close to one. Let us
now define the Borel set:

A={xed a(x)+ym(B | T)<P(x)m(B| T ),m(B|T)>0, f(x)<R}

where m(B|.7) means the conditional expectation with respect to the
o-algebra of invariant sets 7. 4 is an invariant set and has measure at least
1—¢ if N and R are large enough. Finally, we define the bounded
function a:

o+ ym(B° | T) ﬂ
=B 7)) AT Y B a

The function a satisfies (iii) of the lemma, and for all x in 4 we have

r(T_,]CV, E—Na(x))SR

k—1
’(T’;N,eXp~—N > ao¢"”(x)><R" (Vk>1)
i=0

k—1

(T esp N <N S 0o ) | SRS (Y3 1102 < )
i=0

[since TN = TN o Tiy o T7],

AN —1 N—1k—1 k—1

Z ao¢i(x): Z Z ao¢iN+j<N max Z aoqj’w'*'j

i=0 j=0 i=0 0sjsN-1,_g

kN —1
r<T;k+1)N’exp-))N_ Z ao¢i(x))<Rk (Vk?l)

i=0

We can choose M =exp N(y + R).

3.3.2. Proof of Lemma 3.3.3 in the Invertible Case. We assume here
that the dynamical bundle is invertible (cf. Appendix B). It is enough to
prove the inequality A(T, o, x)=> ;5 d;(x)[4,(x)+a]" ae. since the
other inequality has been proved by Thieullen (1987). This proof looks like
the one in Lemma A.5.2 if, in addition, we assume that

(i) lim, . o Unln Tyl | E;o¢"(x)] = 4;(x) mae,
(i) Lim, . ,., U/nln||P,o¢"(x)] =0 mae. (Vr3z1),
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where P,(x) denotes the projection onto @’_, E,(x) parallel to F,, ((x).
The first limit says that T7(B) is still a ball and the second says that the
angle between @/_, E,(x) and F,_ ;(x) does not decrease too fast. Let r,
p be such that — 4, (x)<f<a< —4, (x).

Since E=@,_,E,®F,, (x) we can define the projections
() 50es Ty 1) ODEO (E(),..0; (), Fp (X))

1 r
Bpo>- @ BEi(x)
Fiot

l r
T;l(BE)D; @® Tﬁ(BEi(x))

i=1

HTUBrw) e ") 2 {)(d,(x) | Tyt | Eiop"(x)]) 34

S(T}(Bg), 2¢"™) = n S(T(B g, ), e ")

i=1
The last inequality is true provided that

267" <o/ max |mo §"(x)]|

1<isr
We complete the proof using (i) and (ii) and the inequality
HTXBg), e ™) = s(T(Bg), 2¢™™)

3.34. Proof of Lemma 3.3.3 in the General Case. Let # be a C'-
dynamical bundle and & its natural extension. Let m be a probability
measure in .#(sZ, ¢) and # its natural extension to %. We will prove that
for any real o,

1 ~
lim =Inr(T7,, e "™)=h(T,a x) Mae on {aonw< —Agom}
n—> +oo 1

Since n(Bgz) < Bg, r(Tr,,e ™) < rT", e ™) and so lim,_ ., 1/n
Inr(T5 . e ™)< AT, o, x).

Conversely, choose o a ¢-invariant function such that a< —/1,, a.e.
Then there exists a ¢-invariant measurable set 4 of measure at least 1 —¢
(cf. Lemma 3.3.1) such that #(T7, M exp —a,(x)) is uniformly bounded
on A. If N is large enough, e"*> M, by=ay— Ne, r(T}, exp —by(x)) is
uniformly bounded on A. Then we can construct a finite set of vectors V(x)
in E such that

(i) card V(x)=r(T", exp —bp(x)),
(il) TY(Bg)<V(x)+exp(—by(x)) Bg.
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Given a vector v in By, there exists
vy € V(x) such that T7eve v, +exp(—by(x)) Bg, v, € Vog"(x)
such that
TN eveTYev, +exp(—by(x)) v,
+exp(—by(x) = byo$V(x) By, vpe Vodt Y (x)
such that
TNepe TH W ey texp(—by) TE P Nep, 4 -
+exp ( - kil byo ¢fN(x)> B,
i=0
For any (v,, 0s,.., v,), we define a vector w(v,, vs,., ;) in E in the
following way:
WD [ 5ers Ug) 2 (Wens Wiy — 1500 Wavs 0, 0,0)

where for iz 1 and 0 j <N,

~ j i — 1N i — 2)N
W,-NJFJ-:T;:'N(X)(T: ) .vl—i—exp(—b,\,)T;’ ) LE72% IR

i—2
~I—exp<- Y bNo¢kN> u,-)
k=0

Then for any we B and v=n(w) we associate (v,,...,, v;), and by definition
of w(vy,.., v,) we have the following inequalities:

15N o w = w(oy 50y )12

< Z ’))lchf(iN-%—j) HT;(\,/JFJ’U“WWJrj“z‘F Z “/,2 [lwill?
NN+ j<kN i> (- N
i1

< Z V}%N_(,‘NJrj)esz(jV_' Z bN°¢1N(XO))+ka1)N
N<IN+j<kN /=0

where ¢’ =sup,. ., | T.l, and x,=n(x).

TN o w—w(vy,y 1))

k-1
< M(x,) exp ("2 Z byo ¢1N(xo)) + ”/fk* LN
1=0
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where

M(xo)=) v exp{2zsup(a—s)} sup exp{2j(y+sup(a—s))}

iz0 O0<j<N
If k is large enough (depending on x), then (Birkhoff’s theorem)

k—1
M<x0>exp(~2 5 bNo¢’N(xo))+v%k_l)N

=0

<exp —k(E[Byon| Iy]— Ne)

and
- - k—1
r(TEN, exp —k(E[byon| Ty]— Ne)< [ card Vo g™ (x,) ae. on ™ (A)
I1=0

where 4 is the g-algebra of ¢ -invariant sets. When k goes to infinity,
m-almost everywhere on .~ '(4), we have

Y 40 L+ Blayen | )25

1 -
v Bl r(Try, exp(Ne —ayom)) | Ty ]

If we integrate that inequality with respect to 7, we get

Zd(x){ x)+ E[aNonI 71— 28}+

izl

SEURA(TY,, exp(Ne —aye)) | 71

when N goes to infinity, the last inequality becomes
Y dien(x){Aem{x) +oom(x)—2¢}*
izl

7mx°n(x))

1
<liminf—In (77, e

n— +oo N

r-almost everywhere on n~!(A4), which completes the proof.

3.3.5. Proof of Lemma 2.3.5 (cf. Ledrappier, 1981). Let {x,},5, in
of be such that f,(x,)=sup,.., f.(x), then I=inf, _, (1/n)f,(x,)=
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lim,_, .o (1/AN) frn(x,n) for all N> 1. Using the subadditiveness of the
sequence {f,},>, we have

k—2
fin< fi+ Z fnod™ T+ fy_jop® DN/ forall 0<j<N

3F 1"’”11

oSt T /v

where

Fzmax max |f;{(x)|
xesdd 0<KigN

Let m be a weak limitpoint of m, = (1/kN) YV 1 50 ¢'(x, ) [where 5(x)
is the Dirac measure at x]. Since {f,},s, are upper semicontinuous,

. 1 1
lim — finCoin) < [ f dm

k— +

lim Lf(x)= lim - f £ dm

n—r +oo 1 n— +co H

Using Choquet’s representation theorem, there exists a probability measure
P defined on the set of ergodic ¢-invariant probability measures .# (., ¢)
such that, for any bounded Borel function £,

L{f dm = o < L fde) dP(e)

Then P almost everywhere on .# (<, ¢) we have

lim L f(x)= lim lj £, de

n— +ow A n-—> +oc 1

3.3.6. Proof of Theorem 2. For any x< —1*(T), we define a sub-
additive sequence of upper semicontinuous functions:

Srax)=Inr(T7, e™™) (xe.of)

For each o < —4% (T'), there exists m, in .# (s, $) such that

1
BT, 2)= lim —jf,,,admf lim %f,,,m(x) m,—ae.

n— +o0 N n— +w

For any ergodic ¢-invariant measure m in # (s, ¢), H(T, o, x) is con-
stant m-almost everywhere; we may write 4(T, «, m). Thus we have proved
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that, for all o < —A% (T), there exists m, in .# (s, ¢) such that (T, a) =
WT,a,m,), and for all m in #{(,¢), KT, a)=nT,a m). Since
(a— A(T, o, m)) is a nondecreasing convex curve, (ar—> h*(T, o)) is also a
nondecreasing convex curve. In particular, it is a continuous curve with
right and left derivative 4% (o), 4" (¢). In the same manner, we define
A" (o), A™ (o) the right and left derivative of A(7, «, m). The main point is
that A" (o) and 4" («) are integers. For any o < —4% (T), we have

A" () S 4™ (o) S A7) < 4% ()

If A*(T, a) is differentiable at o, then its derivative is an integer. Thus
there exists a nonincreasing sequence {4,},., and an increasing sequence
of positive integers {4,},-, such that

(i) inf,., A, =24 (T)
(i) A;>24,0f 4,> 25, (T);
(i) if —A;<a< —4,,; and A*(T, «) differentiable at o, then its
derivative is equal to 4;;

(iv) if «< —4, and AT, ) differentiable at a, then its derivative is

equal to zero.

The four previous properties imply A*(T, o) =3, d;(A;+ a)" for all
a< —A¥(T), where d;=A,— 4, | (4,20).

Moreover, 4, has the property that »*(T,a)=0 for a< —4,, and

h(T,a)>0 for a> —A4,. Since {In [T7||},., is a subadditive sequence,
there exists m in # (<, ¢) such that

.1 .1
Iim —In(sup |T})|)=4A;(m)= lim -in |T7| m.ae.
n-—> +w xexf n— +oo A
For a< —A4,(m), sup,.., |Ti| <e™™ for large n, r(T?, e "™)=1 and
(T, a)=0. For a> —Ai,(m), W(T,a)z=h(T,a m)>0; which proves
Ay = Ay(m).

3.4. Different Notions of Uniform Lyapunov Exponents

3.4.1. Proof of Proposition 2.4.1. For any ergodic measure m in
ME(f, ¢), the opposite of the Legendre transform of (x+— A(T, o, m)) is
(T, d, m).

h(Ta a, m)= Z (It(m) + C()+

izl

WT, d,my=T,(m)+ -+ +2,(m)+sZ,, (m) (d=p+s50<s<]l)
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and when F is a Hilbert space (cf. Theorem 2.2.3),
1
WT,d, m)= lim =In(JA7T"}*'~* |47+ T"|*) m.ae.
n— 4o 1

Since {In(|[A7T7|' > |47+ 'T?[*)},-, is a subadditive sequence
bounded from above; for each d > 0 there exists a measure m in .#$(, ¢)
such that =T, d) = (T, d, m). Since h(T, o, m) < h*(T, o) for all
a< =A% (T), v(T, d, m)<y*(T, d) for all d=0. We have just proved that
(T, d) <y*(T, d) for all 4= 0.

Ifd=d{(T)+ --- +d(T) and « has been chosen such that —A%(T) <
a<< =A%, (T), there exists m in .#5(/, ¢) such that A(T, o, m) =h*(T, ).
Since A*(T, a) and A(T, «, m) have the same derivative d at a, the value of
their Legendre transform at d is the same: y(T, d)=9(T, d, m) < n*(T, d)
and so n*(T, d) =y*(T, d).

3.5. Uniform Hausdorff and Fractal Dimension: Entropy

Instead of proving Theorem 2.5.2, we will prove the sharper inequality
[# is a C'-dynamical bundle but we do not assume ¢(.of) = .o/ ]:

h(p, 0)<h“(T,a) forall a< —A(T)

3.5.1. Proof of the Last Inequality. Let a<f< —A%(T), N large
enough (¢ =¥ < 1e~™), ¢ smali enough (Cy(e) <e "#), then

¢Y(B(x, &) = ¢™(x) +eTi(Bg) + Cule) eBy  (for all x)

#™(B(x, ¢)) can be covered by r(T",e ) balls of radius 2¢[Cy(e) +
e Ml<e M

We construct by induction points y(i,..., i) in ¢*V(#), i€ Iy,..., ir €1,
such that

= B (i)

st 05

o e _ ;
< U B(.V(lo,---, lk+1),‘2‘e (k+1)N>

ikr1€dk 41

card({y)=r <M, g), card(1,) < sup #(TY, e~ ")

xesd
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For each (iy---i;) in Iyx --- x I, we define a point x(iy---i,) in (V52
¢ N[ B(y(iy---i)), (¢/2) e~"™*)], if nonempty, which proves

Mt e, df ) <r( 0,2 ) [sup (T2, e~ )14
k 2 x

xeud

The ideas in the proof of the next theorem are new. But the rela-
tionship between the Hausdorff dimension and the Legendre transform of
the a-entropy is not well understood.

3.5.2. Proof of Theorem 2.5.3. The proof is divided into four steps.

First Step. Given nonnegative constants 4, d, we will prove that
{infycpe  In{r(T", e ™) e "}},., is a subadditive sequence. For any
O0<o<4,0<8<4, m n=0,

(Xm‘}‘[))n m+n ,~mo—nf m ,—mx n —nf
0< m+n <A and r(Tx , € )<r(Tx’e )r(T¢m(X)7e )

Second Step. We define for all d, 4 =0 the curve

1
c d)=inf sup inf =In{r(T7, e ™)e "}

nzl xeof OSuSAn

and prove
dim (/) <inf{d>0: C ,(d) <0}

If d>0 such that ¢ ,(d) <0 and ¢ chosen such that ¢,(d) <c <0, then for
n large enough and for all x in &/, there exists « in [0, 4] such that

r(T;l, eAnoc) €7n“d<€nc

If {B(x;, &;)};c, 18 a covering of & with balls of radius less than ¢, then
each ¢"(B(x;, ¢;)) can be covered by N,=r(T}, e~ ") balls of radius less
than 2¢,[e ™ + C,(e;)]. Let g, be small enough such that C,(gy) <e "
and define

my(sf, €)= inf {Z r®.of =) B(x;, ¢,), &< 8}

iel I
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Then m,(sZ, 4e) <4%"“m, (o, ¢) for all e<e,. Using the same ideas, if
0<f< —A%(T), p=0 and ¢,, such that 8(e ?* + C,(¢;)) < 1, then

my(ot, )< sup (TP, e PPymy(sf,4c)  forall e<g
xesf

If n has been chosen such that 4% sup,. . , H(T?, e P#) <,

my(of, ey <imy(of,e)  for e<min(ey,é;)

Third Step. Once more we will use Lemma 2.3.5. If 4, 4> 0, there
exists an ergodic measure m in (., ¢) such that

1
cd)= lim = inf In{r(77, e "™)e "™}

n— +oo RO0<a<s 4

which implies

0<asd {(n—> +c N

L
CA(d)< inf { lim —ln{r(T;,e*”“)e-nad}}

cd)< inf {Z d,-(m)(/li(m)-i-oc)*—ad}

O0gaxs 4 i<l

= inf {A(T, o, m)—od}

Osas 4

Fourth Step. We will prove that, if d > sup{dim, (T, m):
me M(A, ¢)}, then there exists 4 >0 such that for any ergodic measure
min Mi(s, ),

inf  {A(T, o, m)—ad} <0
A

O0<axg

Choose 6, v, A such that

d>dé>sup{dim (T, m): me M(4, §)}
v>max(4%T), 0)

ov

=75

Assume now that for any 0 <o <min(4, —Ai_(m)),

T, o, m)zod

865/4/1-10
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In particular, A,(m)=0 and A< —A_(m). If ae[4, —1,(m)], since
[a— A(T, o, m)] is convex,

Ad(a+ A,(m))
A+ 4,(m)
A+v
—_—z
A+ 2i(m)

T, o, m)>

1
—h(T,o,m) =0
o
which is a contradiction.
In the case of a Hilbert space E, we can improve Theorem 2.5.3.

3.5.3. Proof of Propesition 2.5.4. We have already shown in 3.4.1 that
(T, d) 2 y(T, d, m) for all d>0 and me #5(<Z, ¢); and for all >0 there
exists a measure m in .# (<, ¢) such that (T, d) =y(T, d, m).

Let d* = sup{dim, (T, m): #5(</, ¢)}. Then =*(T,d)>0 for
0<d<d* and 7n%(T,d)<0 for d>d* We claim that =(T,d*)>=0,
which shows that there exists m, in 4 $(, ¢) such that y(7, d*, my) =0 or
d* =dim,(T, m,y). To prove the claim, we choose an integer p such that
p<d*<p+1. If n{T,p+1)=—c0, then A, (m)=—co and so
dim,(T,m)<p for all m in #(,¢). Thus n*(T, p+1)> —oo, the
function [de(p, p+ 1) n*(T,d)] is convex and so continuous. If
p<d*<p+1, then n%T7T,d*)=0; if d*=p+1, then =n*(7T,d*)=0;
otherwise  dim (7, m)< p+ [#*(T, p)1/[=*(T, p)—n*(T, p+1)]<p+1
for all m in A 5(<, ¢).

A. APPENDIX ON SPECTRAL ANALYSIS OF
LIMIT-COMPACT OPERATORS

The notion of index of compactness has been introduced by
Kuratowski. To prove Oseledec’s theorem, we need to introduce this
notion; even if we start with a compact dynamical bundle (each operator
is compact), its natural extension is no longer compact but still remains
asymptotically compact.

In this appendix, a review of Oseledec’s theory for a single operator is
given. In particular, we will generalize the spectral decomposition theorem
and the Fredholm alternative for noncompact operators in the case of
Hilbert spaces, and we will be able to give a different definition for the
sequence of Lyapunov exponents. We introduce a notion of a-entropy of
operators; this notion can be considered in Banach spaces as a generaliza-
tion of the notion of p-dimensional volume.
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A.1. Definition of Lyapunov Exponents in Banach Spaces

The main theorem about the existence of Lyapunov exponents in
Banach space is the following.

A.1.1. Theorem. Let E be a Banach space and T: E— E a continuous
linear operator. We define

1
Ag(T)= Hm —In [T,

n— 4w A

1
FAT)= {UEEI lim sup —In | 77| S/l}
n

n- +c0

EXT) = {veE: I W) psoSt.wo=0, Tew,, =w,

1
and lim sup ;ln [w,ll < -/1}

n— +o0

Then EX(T) and FX(T) are vector spaces invariant with respect to T; there
exists a nonincreasing sequence {4}, |, of numbers in [ — oo, co) such that

(1) infn, A;=2A,(T), Ay=lm, , . (1/n)In |T"];
(ii) F*(T) is a closed subvector space, and for all ve F*(T)\F*+(T),

1 1
im =In||T"| FX(T)|=4,= lim —In |T"«0]
n

n— +oo 1 n— +om
(i) if 3, > A (T), then 4, > A, ., 1 < dim EXT) 2 d, < +oo;
FYTy=EMT)Y® F*+\(T), T restricted to E*(T) is invertible

and lim, , ., (I/m)In |[T" | EX(T)| = Z; = lim,, o, —(1/n)
In |77 | EX(T)I.

The sequence {1,},., is uniquely determined by 7 and called the
sequence of Lyapunov exponents. The sequence {F'(T)z=F,(T)},», Is
called the sequence of Lyapunov vector spaces; {d,(T)},s ;, the sequence of
their multiplicities [d;(7)=0 by convention for 1,{T)=A,(T)].

The proof of this theorem requires two lemmas, a geometric lemma
and a combinatorial lemma (cf. 2.3.1 for a definition of covering numbers).

A.J1.2. Lemma. Let E, F be two Banach spaces of dimension d> 1, and
[T: E— F] a linear invertible operator. Then for ay £¢>0

max[(de | T7']) 7 11< (T, &) < {ent[d | T &' ]+ 1}¢
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A.1.3. Lemma. Let be X a set, [T X—>X] a map, [/ X—-R] «a
function. Let us denote

k=1

Se(f)= ), foT" and A,2{xeX:I<k<p S(f)o T? *(x)<0}

Then for any nz1 and p > 1,
SA )< S, (e f)+S,(1/1)

This last lemma has been proved by Silva and Thieullen (1991) in a
more general setting. Actually this lemma is too strong compared to what
we need in the proof of Theorem A.1.1; it shortens the proof of Oseledec’s
theorem for a dynamical bundle: using the notations of Thicullen (1987)
we define ¥ = Xx E\{0}, {T: X > X} T(x,v)2($(x), T,*v), {: X >R}
JO,vy21n | T, ev|/llv]l, {m: ¥ > X} the first projection (T, is supposed to
be one-to-one for all x). If we denote

2{xeX: e E\{O}VES1I<p T2 Fev| <||T7ev|}
A,2{(x,0)e XN <k<pSUT)e T *(x,v)<0}

then n(Z;) = B, and if f is uniformly bounded by v, then
1 |
L5y si(ig)eneE
R n n

A.14. Proof of Theorem A.1.1. The proof is by induction. Let
Ay =A\(T), E,=E*T(T), and assume that A (7T) <A, (otherwise there is
nothing to prove). The first step consists in proving that E(T) is not
reduced to {0}. Let us choose A, (T)<Zi<A4,, normed vectors {v,},5;
such that lim,_ ., A7=4, [where A7={(1/m)In{(||T"sv,l/lv.1)], v=
In | 7Y, and f(v)=In(|Tsv|/|lv]). Using Lemma A.1.3, (1/n) S,(f N v,)=
A=A (A =A)/(v=2)<liminf, , . (1/n) S, (1, )for any p- The fact that
Aj is not empty shows that there exist vectors uy such that [luk| <
exp(—ka) udl, lugll =1, T*euf=us~" for all 1<k< p. For fixed k>1
since o {u p>k}) is less than hmp_, vw TP % e 7*=0, we can con-
struct a normed vector u such that T-"eu exists for all >0 and satisfies
[T "eul <e "* ||lull. The second step consists in proving that E*(T) has
finite dimension for any A> A (7). If E(T) contains a subspace F of
dimension 4 and if p has been chosen such that 1,(7T)<u<4, then for
large n, B is included in e "™T"(Bg); and for any a< —A,(T),
HBp, e "¢ty < 1(T" e ™), dla+4) < lim,, . (I/n)Inr(T" e™™) <



Entropy and the Hausdorff Dimension for Dynamical Systems 149

+00. In the last step, we prove the existence of a closed subvector space
F invariant under T such that F@® E,(T)=E. If G is any closed subvector
space such that G@® E,(T) = E, n the projection onto G parallel to E,(T)
and S=(noT|G). Then G is invariant under S and A,(S)<A,(T):
otherwise there would exist a finite-dimensional space G(S) invariant under
S satisyfing lim, , o, (1/m)In |S™" [ G((S)Il = — A(T) =lim,, , ., (1/n)
In||T~"| E(T)|, G=G,(S)® E,(T) would be invariant under 7, and on
G we would have

n—1

T"=T"e(I—m)+ ¥ T e(I—m)eT 'S "*lon+ S "on

k=0

1T~ GI<K Y 1T E(DI IS "] G(T)]

k=0

which would show lim sup,,_, ,., (1/n)In [|T~"ev|| < —4,(T) for any veG.
Thus the following series is convergent U=, ., T7" 'o(I—m)oToS"
and satisfies U?=U, Im(U)=E(T), T(ker(U))cker(U); the required
space is then F=ker(U).

A.2. Definition of Characteristic Exponents in Hilbert Spaces

The main Theorem A.1.1, applied to bounded symmetric operators,
leads us to the notion of characteristic exponents of a general bounded
operator T as Lyapunov exponents of ./ T*T.

In the case of Hilbert spaces we have different definitions of index of
compactness of operators.

A.2.1. Definition. If E is a Banach space, #(F) the space of bounded
operators, /4 (E) the space of compact bounded operators, we define a
new norm in Z(E)/A(E) by |T|=inf{|T—K|: Ke A (E)}, satisfying
IS Th < IS} | TY.

Proof. |5o7| < |SoT + KoL — KoT — SoL| < |S—K]+
17— Lj.

A.2.2. Proposition. If E is a Hilbert space, then |T|,= | T| for any T
in L(F).

Proof. |T|,=|7T-K|,<|T— K]l for any Ke #'(E), so ||T|,<|T].
Conversely, let e > || T|,, then T(Bg) can be covered by a finite number of
e-balls centered on x,,.., x,. Let © be the orthogonal projection onto the
space spanned by {x;}/_,, then |T—n-T|| <e.
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A.2.3. Corollary. (See Beauzamy, 1987a,b.) If T is a bounded
operator of a Hilbert space E, then for any sequence {v,},, of normed
vectors weakly converging to zero, limsup,_, . |Tev,| <|Tl,, and this
inequality becomes an equality for at least one such sequence.

Proof. If Ke #'(E), then lim,_ .. K(v,)=0, thus limsup,_, .
fTev,| = limsup, ., .o [Tev,—Kev,| <|T—K)]. To prove the second
assertion we construct a sequence of orthonormal vectors {v,},., such
that |Tev,, | =T F,|—[1/(n+1)], where F,=span{vg,..,v,}* and
Uny1€F, . Since Bgc By, @ By, o(T(Bp)) < a(T(Bg)) < o(T(Bg)) +
a(T(Bg:)) = a(T(Bg,)), which shows ||T'| F, | Z [T | F,ll,={Tll,-

The only result, which can be proved for an arbitrary Banach space,
is the following.

A.2.4. Proposition. If E is a Banach space, then A (T)=1lim, _ .
(1/n)In | T7|.

Proof. Using the main Theorem A.l1.1, we construct a compact
operator K,=mn,oT [=, the projection onto @7 ! E,(T) parallel to
Fy(T)]. Since lim, , o, (1/k)In [(T—K,)| = 2(T), A(T)<lim;_ .o
(1/k) In | T) < 4,(T).

The next theorem is a simple consequence of the main one for
symmetric operators.

A.2.5. Theorem. If E is a Hilbert space and [T: E— E] a bounded
symmetric operator, then

(i) if A(T)> A (T), E,(T)=Ker(T—e""1d)® Ker(T+ *?1d)
and is orthogonal to F,, (T);

(i) A(T)=In|T| F(T)| = (Un)In |T"| E,(T)| (¥i>1,¥n>1);

(ii) A (T)=In||T,=1/n)In T"|, (Vn=1);

(v) E=@ 5 EAT)® iz FAT).

The sequence {y;(T)=e*™},. is called the sequence of charac-
teristic exponents.

Proof. For any bounded symmetric operator 7, [T”| = | T||", which
proves (ii). Since E;(T) is invariant under T and has finite dimension, T is
diagonalizable; if ve E,(T) and we F; . (T) [4,(T)> 1,(T)], then

[{o, wh|=e ™ |[{T o0, wH| =e "0 [ <o, T" e w)|

[{v, wH| <e™™ D | T" | F,y (T
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and so {v, w) =0, which proves (i). Since In | T| ,<In || T | F,(T)| < 4,(T),
In |7, =A,(T), which proves (iii). If v is orthogonal to @ ;. E,(T),
and veFi(T), v=u+w, ueE(T), weF,, (T), then 0= {u, v)>=|ul?
veF, (T), which proves (iv).

A.2.6. Definition. If T is any bounded operator of a Hilbert space, we
generalize the notion of characteristic exponent by

1D 26V T*T), 6T =d(/T*T) (Vi=1)
Xoo(T) = 1nf x;(T)

izl

A.27. Remark. For any bounded operator of a Hilbert space,
Lo D) =T =1T*]o= 1o (T*).

Proof. Following Riesz and Nagy (1968), there exist two partially
isometries U and V (in particular, |[U] <1 and ||V]| <1) such that 7=
U/T*T and /T*T=VT. Thus |T|,=|/T*T|,, | T*T|"* = ||/ T*T|
[cf. (iii) of Theorem A.2.57, which proves | T, < | T*|..

A.3. Relationship Between Lyapunov Exponents and Spectrum

We will show that the spectrum of T inside the annulus
exp A.(T) <r<exp A,(T) is discrete and any point of its closure has an
absolute value equal to one of the values exp 4,(T).

A.3.1. Proposition. Let T be a bounded operator on a Banach space
and o(T) the complex spectrum of T. If le o(T) and In |l| =i (T), then
In|lf =/,(T) for some ie N* U {o0}. Conversely, for any ie N¥u {0},
there exists le a(T) such that In |l| = A,(T).

Proof. 1If /e C such that A, (T)=In |/| >4 (T), we can find a decom-
position of E, E=E®F, E and F are invariant under T, E has finite
dimension and lim, , ,, (1/n)In |T"| F| <In |/|. For large n, |T"| F| <
)", I"I—T" is invertible on F¢ and so /[— T is invertible on Fg too
[Ne(lI-F)c Ne(I"I—-T") and Re(I"I—T")= Re(II—T) thanks to the
equality /"] —T"= (U~ TYI""'"I+1""’T+ -.- + T"~')]. Thus /e o(T) if
and only if /eo(T | E), and A>1n|l| is a Lyapunov exponent of T if and
only if 4 is a Lyapunov exponent of (7| E). Then it is enough to prove this
proposition when E has finite dimension. Since ¢(T) is compact and
Ao(T)=1nf,, | 4,(T), there exists /e o(T) such that In |/| = 4 _ (7).
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Ad. A Different Definition of Characteristic Exponents

If T is a bounded operator on a Hilbert space, we denote by
{#:(T)},5, the sequence of its characteristic exponents repeated as many
times as their multiplicities {6,(7)};»,. The next theorem gives two
different ways to compute this sequence.

Ad.1. Theorem. If T is a bounded operator on a Hilbert space, then
for any i21,

(i) FAT)=sup{inf{||Tev|:veF, |v]=1}:dim F=i},

(it) N T =7(T)- 7:(T).

This theorem is well known for compact operators. The only difficult
part lies in the case ||T|,= [ T|. Furthermore, if 7 is a bounded operator
and R=./T*T, then [A'Rev||=|A'Tev|| for any ve A’E and i>1,
which shows that we can assume T is symmetric. To begin with we need
the following lemma.

A4.2. Lemma. For any vectors (ey,..,e,) in E,

leg A -+ Al =inf{[o)l -~ v iy A - Av,=e; A - Ae,)

sl ,

Proof. We may assume that (e,,.., e,) are linearly independent
(equivalent to e; A --- A e,#0). Using Gram Schmidt process, there exists
a p by p uper triangular matrix 4= (a,) with I’s on the main diagonal
such that (v;=3 age,) are orthogonal and satisfy (|v,| <|e,l). Since
vy A s Av,=det(d) e A o ey, fleg A s Al =logl - [,

A.4.3. Proof of Theorem A.4.1. The proof is divided into three parts.

In the first part we prove the theorem when ||T|,=|T|=1. Given
any ¢>0, by induction over p>1, we claim that there exist (e, ¢,)
orthonormal such that |Tee, A --- A Tee,|>(1—¢)? [this will prove
the second assertion 1= ||A”T|=(1—¢)?, and the first assertion,
1>inf{||Tev|:vespan(e, ---e,), [v] =1}>(1—¢)”]. Let us assume the
claim is true for p, and let us define G= [span(e,---e,)]" and
H = [span(Tee,,., Tee,)]", n the orthogonal projection onto H and
T=(noT|G), which satisfies |T||<1. Since Byc Bs® Bg:, T(Bg) <
(noT)(Bg) + (I—m)oT(Bg)+T(Bg:), 1 = a(T(Bg)) < a(I(Bg)) <
| 7]l < 1. There exists a normed vector e,,, in G such that |Tee,, | >
l—¢ then |[Toe, A --- AToe, |=|Toe;n - ATee,l [Tee,, |>
(1—g)?*

In the second part we prove the first assertion in the general case. Let
p =1 be fixed. Either 7,(T)> | T|l,; then there exist (e, - --e,) orthonormal
vectors such that Tee,= +x,(T)e, and |T| G,_,| <7,(T), which proves
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inf{{|Tev|: veG,, |v]|=1}=%,(T) [where G,zspan(e,---¢;) for any
iz 1] and the inequality < with F of dimension p instead of G,, since
there always exists a normed vector v € F orthogonal to G, ;. Or ((T)=
[ Tll,; then there exists an invariant subspace G such that dim G* < p,
1T, =IT|Gll,=IT|G|. If Fis a subspace of dimension p, inf{|T«vf:
veF, ||v]| =1}, since there exists a normed vector in F G. Using the first
part, given ¢>0 we can construct (e, ,.., e,) orthonormal vectors in G
such that inf{||7v|: vespan(e,,,---¢,), lv|=1}=(1—¢)" " ||T|,,
which completes the proof.

In the last part, we prove the second assertion in the general case. We
begin to prove by induction |A” T|| <[17_, 7,(T). If (v, ---v,,,) are p+1
orthonormal vectors and w,,, is a normed vector in G, =
span(v, ---v,, ), we can construct w;---w, in G,,,;, orthonormal and

14
orthogonal to w,,, then |[Tev, A .- ATov, || = [[Tow, A -+ A
Tewpill < I Towyn - ATow, || [|Tew, (| < (AT [Tow,, ],

which proves |A?*! T < AP T %, +1(T). To prove the other inequality,
let us assume p such that 7,(7)= |7, (the other case is easier). Let us
define r>1 such that ¥ (T)> |7, and %, ., =Tl,. If (e;---e,) is an
orthonormal basis such that Tee,= +7,(T)e;,, G,=span(e,---e,) and
(€,+1---e,) any orthonormal vectors in G;, then [|A? T|=T1;_, 7:AT)
liT”'e,H A ANTee ), AN TIZTT 2 2(T) A" TI=T1;-, %:(T)
[T|z-.

A.4.5. Corollary. For any bounded operator T on a Hilbert space,

(i) 7 (T)=7,(T*),
(ii) ¥,(T)=inf{sup{|Tev|:veF*, |vj=1}:dim F=p—1}.

Proof. Since |A” T|=[A” T*|, by induction we have IAT)=
7,(T*). To prove the second assertion, we may assume T symmetric.
Then for any p > 1, there exists a subspace F of dimension p— 1 such that
ITVFAI<7,(T) (f 7,-oT)>|T),, F=@PZ' Ker(T—e,7,(T)1d);
if ¥, (T)=|Tl,, we choose F>@,., E,(T)). If G is any subspace of
dimension p, and F of dimension p—1, GAF*+# {0} and so |T| F*| >
inf{||Tev:veG,|lv| =1}, which proves the other inequality using
Theorem A 4.1.

A.5. Relationship Between Lyapunov and Characteristic Exponents

Oseledec’s (1968) theorem has been first proved in Hilbert spaces by
Ruelle (1979). In this paper, Ruelle defines the sequence of Lyapunov
exponents using the asymptotic limit of characteristic exponents of 7. The
following theorem shows that his definition coincides with the one given in



154 Thieullen

the main Theorem A.1.1. If T is a bounded operator of a Banach space, we
will write {Z,(T)},», for the sequence of Lyapunov exponents of T
repeated as many times as their multiplicity {d,(T)},5 .

A.S5.1. Theorem. If T is a bounded operator on a Hilbert space, then

lim %m (T =1(T) (¥p=1)

n— +oo

The proof requires two lemmas. The main notion is the notion of
a-entropy of an operator (which has been defined in 2.3.2 for a dynamical
bundle): /(T, a) =lim, _, ,, (1/n)In r(T", e~ ") for o < —A(T). The proof
consists in finding an exact formula between A(T,«) and either the
characteristic or the Lyapunov exponents.

A.5.2. Lemma. If T is a bounded operator on a Banach space, then for
any o< —i,(T),

WT,a)= Y, d(T)(AT)+a)*

izl

Proof. Let r be such that —A (T <a< —4,,(T) and (7., T, )
the family of projections associated with the decomposition E=
E(T)® ---®E(TY®F,,(T). Then, applying Lemma A.1.2 on each
E,(T), we have

.
By @ mil Brn® 7, 4l BF,+1(T)

i=1
T"(Bg) = @ =il Tn(BEi(T))

i=1

@ NT" | F, o T N7, 4 BF,H(T)

r

T e ™)< ] (T | EAT), e ")
i=1 N

HWT" | E(T), e ") < {ent[d(T) | T" | E{T)| e "]+ 1}4T

if § has been chosen in (%, —4,, (7)) and n>1 such that

r+1 —1
e—"ﬂ<(z |1n,~||) o
i=1
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Conversely, if fe(—A,(T), o) and #n>1 such that

e "< Z @rm)"e”

i=1

1 r
Bp> "j < ©® BEi(T)>

i=1

rH(T™(Bg),e ™)z H S(T™(Bg,r))s e ")
i=1
S(T"(Bgyry), e ")z max[(2e™d ()" | T~ | E(T)| )", 1]

A.5.3. Lemma. [f T is a bounded operator on a Hilbert space, then for
any integer p> 1 and positive real e € (§, . (T), ¥,(T)),

C, N T e < r(T, e(p+ D) C, N Tl 677
where C, is a constant which depends only on p.

Proof. We may assume that 7 is already a symmetric operator
(r(T,e)=r(/T*T, ¢&)). Let r > 1 be such that y,(T)=7,(T) and x,, (T)=
Xp+1( ) Then

HT, e(p+1)) [] (T| E/(T), ¢)

HT | E(T), &)< {ent(5,(T) x(T) e~ ")+ 1}
H(Te(p+ 1) <27 NP T &7

conversely,

r

HT, e(p+ 1) = [] S(T(Bgn)/re(p+1)271)

i=1

rTe(p+1))2(p+ 1)~ A Tl e™”

A.54, Proof of Theorem A.5.1. Let us define for all i>1:
AA{T)=lim,_, ,, (1/n) 7,(T"). We begin to prove that inf, i (T)=4,(T):
since for any p=>1, (l/p)Z Vis=inf, (I/pn) 327_, In 72(T"), A.(T)<
inf, i, < inf, inf, (1/pn) 3F_, In7,(T") < inf, (I/n) In |T"],= A(T).
The proof is then complete if we prove the equality A(T, a)=
Yosi (@ +o)” for any a< —A (T). If ae(—f,, —fi,,,), for n large
enough (7, (T")>(p+ 1)~ e ™>7,(T"),

:‘m

C— Z (Tn) npczgr(Tn, e—nac)<C

1 i

(T e

N :m

i
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B. APPENDIX IN THE NATURAL EXTENSION

The proof of Oseledec’s theorem in the Banach case assumes that the
map ¢ is an homeomorphism and each operator T, is one-to-one. But
there is a natural way to get rid of these assumptions using the notion
of natural extension. The original bundle then becomes a factor of the
invertible one.

B.1. Extension of Regular Points

B.1.1. Definition of the Natural Extension. If # =(E, o/, ¢, T) is a
C'-dynamical bundle and {y,},-, a decreasing sequence satisfying y,=1,
0<ym+,,<ymy,,, lim,,_, +oo (1/n)Iny,= —oo, we define its natural exten-
sion # = (E, o, ¢, T) by

Ee{v=(vn)nzerN: T 32 o2 < +oo}

nz0

A2 {x=(X)ns0€ AV p(x, ) =x,foralln>0}
#(x) = (4( xO)aXOsxls-") forall x=(x,),>0

T eva(T, 000,09, 0,.)  forall v=(v,),50

oD =0, (the projection onto the first coordinate)

We remark that £ is a Banach space with the norm |[v||*=
Z,,>0yn Iv,I? (if E is a Hilbert space, then E is a Hilbert _space, too),
A is a compact subset of E, 4 is a homeomorphism on A, §~Yx)=
(x4, X5,...)), T is a quasidifferential of #, and each T is one-to-one. Besides,
if ¢ is C'-quasidifferentiable, then ¢ is also C"'-quasidifferentiable.

B.1.2. Definition of Strongly Regular Points. If % is an invertible
dynamical bundle, a point x in o is said to be strongly regular, if it is
regular and there exists a family of finite-dimensional spaces {E,};5 such
that

(i) F(x)=E,®F, ,(x)foralliz=1;

(ii) if 4,(x)>A,(x) and ve E\{0}, then T_"ev exists for all n>0
and

1
lim —lnHT "-vll—— 11m —InH T E | = —4d(x)

n— +o N

1 o1
lim —In||7T7ev||= lim —In |7} E;l =4,(x)
n n— +oo 1

n-—- +oo
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@) if A,(x)>A.(x) and ve F,, (x)\{0} such that T_" v exists for
all =0, then

1
lim —In [T "ev|> —A4,(x)
n

H— 400 fi

The family {E;};,, is uniquely determined by the strongly regular
point x. We denote 2'(F) the set of strongly regular points.

B.1.3. Theorem. If ¥ ={(FE, A,¢,T) is a dynamical and
F =(E, o, §, T) its natural extension, then n(2(F)) < A(F), in particular,
Fiom(x)=moF,(x), A;on(x)=1,(x) and d,on(x)=d,(x) for all x in X(F).

The proof of this theorem requires the following lemma.
B.1.4. Lemma. If (a,),-, and (b,),-, are sequences of positive real

numbers such that (a,), s is decreasing and lim,,_, ,  (1/n)Inb,= —co, if
we denote G, =3 7 _,a;b, ., then

(i} limsup,_ , (I/n)lna,=limsup,_ ., (I/n)ing,,
(ii) liminf, , . (1/n)lna,=liminf,_ ., (1/n)lng,.

Proof. The inequality liminf,  , . (1/n)Ineo,<liminf, , , _ (1/n}Ina,
is the main difficult one. For any n, p>1, we have

p—1 n+p

Opnyp= Z aib, i+ Z agb,_r<ag Z bi+a, Z by

k=0 k=p kzn k=0

Let us suppose lim inf, , . (1/#)In a, <o and let us choose é (0, 1) and
B < min(0, o/d). v
Since lim(1/n)In b, < f, for p large enough, we have

Cenvop) + » < Ao €xplent(p) f) +a, Z b,
k20

and thus for infinitely many p’s,
Jem(&p} +p < [GO + Z bk:l eXp(ap)
k>0

which shows

liminfll <—— 0e(0, 1
-lno,<
amntln o, < 7= orany 6¢€{0,1)
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B.1.5. Proof of Theorem B.1.3. We will prove that, for any
xoen(X(F)) and x € X(F) such that n(x) = x,, {A(x)};>; and
{noF,(x)};5, are the sequences of Lyapunov exponents and Lyapunov
spaces at x;.

Since Kern < ()5, Fi(x), codimn(F;(x)) = codim F,(x) and
2L (\F, ;5 (x)]=n[F, (x)]\n[Ft+1(x)]

Since T, -v—(T evg, T" Lev,,.., T, *vg, Vg, Vgseee)

xQ

T2 < T2, < zfnw “II

For any closed subspace F of E containing Ker r, using the fact that
7 is open, n(F)= F is a closed subvector space and = is also open con-
sidered as a map from F onto n(F). In particular, n(Bz) contains a ball of
7(E):rBp, for some r>0 and

n 1/2
T FI<|T7]F <l: Y o ITE k| F!Iﬂ

k=0

For any vector v in F,

n Frn z n—k 2 12 HU“
175 e vol S NT7evl <) X v IT% o ol T
k=0 ool
Using the previous lemma for any strongly regular point x,
.1 o
lim *1n ITl= lim ~In || T7], (@, =Tl =™")
n— +co N n— +oo H

1 ~
lim —ln 1T | Fi= lim —In{TTLF| (@, =T Fl ™)
- +o

n-—

1 1 ~
lim ~In|T%evo) = lim =In|Trev]  (a,= T o0l v")
n— +w R n-> +owo R
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