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I. Motivations

Cell equation Consider Hpx, pq a Tonelli Hamiltonian: C2, autonomous,
periodic in x, super-linear in p, and definite positive. The cell equation is

Hpx, dxuq � H̄, u as a viscosity solution

Objective The cell equation is very degenerate. There are two
approaches:

� a PDE approach (L.P.V.),
� a dynamical approach using Fathi’s weak KAM theory.

� A third approach:

H̄ and u are thermodynamic objects that
can be obtained as a limit when

the temperature of some the system goes to 0
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Discretization in time (Bardi, Capuzzo-Dolcetta, Falcone, 2008)
� solve the discounted cell equation

δuδ �Hpx, dxuδq � 0

� use the representation formula

uδpxq � inf
γ

» 0

�8

e�δ|t|Lpγ, 9γq dt

where γ : p�8, 0s Ñ Rd is absolutely continuous and γp0q � x
� apply the Lions-Papanicolaou-Varadhan theorem (1987)

�δuδ
C0

Ñ H̄,
���uδ � H̄

δ

���
8
¤ C, Lippuδq ¤ C.

Take a sub-sequence δi Ñ 0 so that uδ �
H̄
δi

C0

Ñ u

Theorem (Davini, Fathi, Iturriaga, Zavidovique, 2015)

uδ �
H̄
δ

C0

Ñ u, solution of the cell equation Hpx, dxuq � H̄

(A true limit as δ Ñ 0)
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Discretization in time
� discretize the representation formula

uδpxq � inf
γ

» 0

�8

e�δ|t|Lpγ, 9γq dt

� τ time step

uτ,δpxq � inf
pv�kqk¥0

�8̧

k�0

p1� τδqkτLpx�k�1, v�k�1q

expp�δτkq � p1� τδqk, x�k � x�k�1 � τv�k�1

� Dynamical programming principle

uτ,δpx0q � infx�1

 
p1� τδquτ,δpx�1q � τLpx�1,

x0�x�1

τ q
(

� it is easy to see, for fixed δ ¡ 0, uτ,δ Ñ uδ as τ Ñ 0

What happens if τ is fixed and δ Ñ 0?
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Theorem (Xifeng Su, Ph. Thieullen) Hpx, pq is a Tonelli Hamiltonian.
Let τ, δ ¡ 0 and uτ,δ be a solution of the discrete discounted cell equation

uτ,δpyq � inf
xPRd

!
p1� τδquτ,δpxq � τL

�
x,
x� y

τ

	)
, @y P Rd

Then as δ Ñ 0
� uniformly in x, τδuτ,δpxq Ñ Ēτ
� uniformly in x, uτ,δpxq �

Ēτ
τδ Ñ uτ pxq, uτ is Lipschitz

� uτ is a particular solution of the discrete cell equation

uτ pyq � Ēτ � infxPRd
 
uτ pxq � Eτ px, yq

(
, @y P Rd

where Eτ px, yq � τLpx, y�xτ q is the discrete Lagrangian

� uniformly in τ , }uτ }8 ¤ C, Lippuτ q ¤ C
� for some sub-sequence τ Ñ 0,

� Ēτ
τ Ñ H̄

uτ Ñ u (some solution of Hpx, dxuq � H̄
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Conclusion Discretization in time of the cell equation
ðñ solving an additive eigenvalue problem of the form:

T�rus � u� Ē, with T�ruspyq � infxPRd
 
upxq � Epx, yq

(
(T�rus is called (backward) Lax-Oleinik operator). Epx, yq � τLpx, y�xτ q

Proposition If Epx, yq is C0, coercive Epx, yq Ñ �8 as }y � x} Ñ �8
and periodic Epx� k, y � kq � Epx, yq, then

� Ē is the unique additive eigenvalue
� Du periodic, but u may not be unique.

Remark The minimization can be taken on r0, 1sd

Ẽpx, yq � min
kPZd

Epx� k, yq ùñ TE� rus � T Ẽ� rus

Program of research Identify the solution pĒ, uq as the ground level of
some associated dynamical system. Simplify the problem by assuming,
the space is discrete, txi : i � 1...Nu a grid of r0, 1sd, and the operator
is discrete

T�ruspxjq � min1¤i¤N

 
upxiq � Ẽpxi, xjq

(
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II. Termodynamic formalism

Objective Give a precise meaning to the notion of configurations at
equilibrium for some temperature T ¡ 0.

configuration = p� � � , xi�2
, xi�1

| xi0 , xi1 , � � � q, xi P grid of r0, 1sd

Notations � S � t1, � � � , Nu, some finite state space
� Ω � SZ, the space of all configurations,

ω � p� � � , ω�1 | ω0, ω1, � � � q, ωk P S

� σ : Ω Ñ Ω, the left shift on the indices

σpωq � p� � � , ω�1, ω0 | ω1, ω2, � � � q

� E : Ω Ñ R, some Hölder function (long range interaction)
A short range interaction: Epωq � Epω0, ω1q
Before we had Epxi, xjq � τL

�
xi,

xj�xi
τ

�
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Important notions
� stationary or invariant measure µ: a probability measure such that if

ri0, � � � , insk :� tω P Ω : ωk � i0, ωk�1 � i1, � � � , ωk�n � inu

then µpri0, � � � , inskq is independent of k. For example

i.i.d. measure : µpri0, � � � , insq �
� 1

N

	n�1

� the entropy of an invariant measure

Entnpµq :�
¸

i0���in�1

�µpri0, � � � , in�1sq lnµpri0, � � � , in�1sq

lim
nÑ�8

1

n
Entnpµq � exists :� Entpµq.

For example Entpi.i.d.q � lnN
� the free energy, let be β�1 ¡ 0 called the temperature

Ēβ :� inf
µ invariant

! ³
E dµ� β�1Entpµq

)
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Theorem (Bowen, Ruelle, �1970) To simplify: Epωq � Epω0, ω1q
� The infimum in the free energy

Ēβ :� inf
µ invariant

! »
E dµ� β�1Entpµq

)
is reached by a unique invariant measure: called Gibbs measure at
temperature β�1 and denoted µβ

� There is an explicit formula

µβpri0, � � � , insq �
exp

�
� β

°n�1
k�0 Epik, ik�1q

�
Zβpi0, � � � , inq

1

Zβpi0, � � � , inq
� φ�β pi0q exppβnĒβqφ

�
β pinq

� φ�β are backward and forward eigenfunctions of the transfer operator

for the largest eigenvalue λβ � expr�βĒβs

L�β rφ
�
β spjq :�

Ņ

i�1

φ�β piq expr�βEpi, jqs � expr�βĒβsφ
�
β pjq

L�β rφ
�
β spiq :�

Ņ

j�1

expr�βEpi, jqsφ�β pjq � expr�βĒβsφ
�
β piq
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Transfer operator and Lax-Oleinik
� The backward case

L�β rφspjq :�
Ņ

i�1

φpiq expr�βEpi, jqs

� The Hopf technique:

φpiq � expr�βupiqs, L�β rexpp�βuqspjq � expr�βT�β ruspjqs

� let β Ñ �8 in

exp
�
� βT�β ruspjq

�
�

Ņ

i�1

exp
�
� β

�
upiq � Epi, jq

��

� the zero-temperature of the transfer operator = Lax-Oleinik

T�β ruspjq Ñ T�ruspjq :� min1¤i¤N

�
upiq � Epi, jq

�
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Important and simple facts
� The eigenvalue problem for transfer operator at temperature β�1

and for the Lax-Oleinik operator

T�β ruβs � uβ � Ēβ versus T�rus � u� Ē

� there exists C ¡ 0, }uβ}8 ¤ C, Lippuβq ¤ C

� Ēβ � infµ
 ³
E dµ� β�1Entpµq

(
Ñ infµ

³
E dµ � Ē

� there exists βi Ñ �8, µβi Ñ µmin and uβi Ñ u

µmin P arg minµ invariant

³
E dµ, MatherpEq � Yµminsupppµminq

Conclusion In the discrete case, both in time and in space

Hpx, dxuq � H̄ ðñ

$'&
'%
u “=” lim

βÑ�8
�

1

β
lnφβ

�H̄ = lim
βÑ�8

Ēβ � lim
βÑ�8

�
1

β
lnλβ

� problem: the limit has to be taken along a sub-sequence
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III. Selection principle

Question By freezing the system, do the Gibbs measure select a
particular configuration?

Counter example (Chazottes-Hochman, 2010) There exists an Hölder
energy E : Ω Ñ R, (long range), such that µβ does not converge.

Question For which energy E do Ēβ and uβ converge?#
uβ � � 1

β lnφβ

Ēβ � � 1
β lnλβ

#
Lβrφβs � λβφβ

Lβpi, jq � exp
�
� βEpi, jq

�
, (short range)

A simpler question: for which E, do the Gibbs measure µβ converge?

Theorem (Brémont, 2003) For short-range energy Epi, jq, µβ Ñ µ8
selects a particular minimizing invariant measure (µ8 P arg minµ

³
E dµ).
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A simple example Consider Ω � t1, 2uZ and Epi, jq �

�
0 100
1 0

�
.

The energy is short range, null at the two fixed points, and positive along
any other periodic cycle

Ep1Zq � 0 � Ep2Zq, i0 � in ñ
n�1̧

k�0

Epik, ik�1q ¡ 0

As µβpri0, � � � , insq � exp
�
� β

°n�1
k�0 Epik, ik�1q

�
{Zβpi0, � � � , inq the

Gibbs measure chooses the configurations with the least energy

µβ Ñ
1

2
δ1Z �

1

2
δ2Z

For example Epi, jq �

�
0.1 100
1 0

�
, µβ Ñ δ2Z

Question What can we say about the explicit convergence of µβ when

Lβpi, jq �

�
� 1 e�111β e�45β

e�β 1 e�63β

e�β e�β 1

�
� , or Mεpi, jq �

�
� 1 εa εb

εa
1

1 εc

εb
1

εc
1

1

�
�
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Algorithm (E. Garibaldi, Ph. Thieullen, 2012) By induction on the
dimension of the matrix Mεpi, jq. The framework needs to be extended

Mεpi, jq � Api, jqεapi,jq � opεapi,jqq

opεapi,jqq � A1pi, jqε
a1pi,jq �A2pi, jqε

a2pi,jq � � � � = a Puiseux series

api, iq   a1pi, jq   a2pi, jq   � � � (but akpi, jq are not rational)

Let λε, φ
�
ε be the eigenvalue and eigenvectors of Mε¸

i

φ�ε piqMεpi, jq � λεφ
�
ε pjq,

¸
j

Mεpi, jqφ
�
ε pjq � λεφ

�
ε piq

Objective: find a Puiseux series expansion of λε, φε, µε

Observation 1 (Special case for short-range E) if µβ Ñ µ8, for some
sub-sequence, then µ8 is a barycenter of measures supported on
minimizing cycles

Observation 2 (In general) The Mather set Yµminsupppµminq may have
several components; µ8 chooses the one with the largest topological
entropy
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Proposition Mεpi, jq � Api, jqεapi,jq � opεapi,jqq ùñ λε � ᾱεā

� Remember Ē � infµ
³
E dµ � limβÑ�8 Ēβ � limεÑ0

lnλε
ln ε

� ā

Definitions
� ā � inf

cycles

1
n

°n�1
k�0 apik, ik�1q, cycle � pi0, � � � , inq with in � i0

For example

Mε �

�
εa εb

εc εd

�
, ùñ ā � min

�
a, d,

b� c

2

	

� Gmin � S � S the sub-graph of minimizing cycles.
� Amin � rApi, jqspi,jqPGmin the restriction of A to Gmin

For example

b� c

2
  minpa, dq ùñ Amin �

�
0 Ap1, 2q

Ap2, 1q 0

�

� ᾱ = the spectral radius of Amin
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Reduction I Let Mεpi, jq � Api, jqεapi,jq � opεapi,jqq
Then solve the discrete Lax-Oleinik equation for api, jq, that is find upiq#

api, jq ¥ upjq � upiq � ā @i, j

api, jq � upjq � upiq � ā ðñ pi, jq P Gmin

� Let ∆ε � diagpεup1q, � � � , εupNqq, then

M I
ε :� ∆εMε∆

�1
ε {εā �

�
�A1min 0 0

0 A2min 0
0 0 0

�
��Nε, Nε � opIdq

with ρpA2minq   ρpA1minq � ᾱ

M I
ε �

�
A1min 0

0 D

�
�Nε, A1min � diagpA1

min, � � � , A
r
minq

with ρpA1
minq � � � � � ρpArminq � ᾱ

From now on Mε is reduced to its normal form
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Reduction II Mε �

�
A 0
0 D

�
�Nε, A � diagpA1, � � � , Arq with

ρpDq   ρpA1q � � � � � ρpArq � ᾱ. We already know λε � ᾱ
� Rε, Lε the right and left eigenvectors of Mε for λε#

MAA
ε RAε �MAD

ε RDε � λεR
A
ε

MDA
ε RAε �MDD

ε RDε � λεR
D
ε

Extract RDε � pλε �MDD
ε q�1MDA

ε RAε and substitute
� We are left to study Mε of the form

Mε �

�
��
A1 � � � 0
...

. . .
...

0 � � � Ar

�
���Nε, ρpA1q � � � � ρpArq � ᾱ

� Riε, L
i
ε the restriction of Rε, Lε to the indices of Ai

� Ri, Li the right and left eigenvectors of Ai for ᾱ

Proposition
Riεpxq

Riεpyq
�
Ripxq

Ripyq
, @x

i
� y but

Riεpxq

Rjεpyq
Ñ?? for i �� j
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Reduction II Mε � diagpA1, � � � , Arq �Nε, ρpA1q � � � � � ρpArq � ᾱ
Write a system of r equations by blocs

pAi �N ii
ε qR

i
ε �

°
j ��i

N ij
ε R

j
ε � λεR

i
ε

Take the scalar product with the left fixed eigenvector Li of Ai�LiN ii
ε R

i
ε

LiRiε

	
LiRiε �

¸
j ��i

�LiN ij
ε R

j
ε

LiRjε

	
LiRjε � pλε � ᾱqLiRiε

M II
ε pi, jq :�

�LiN ij
ε R

j
ε

LiRjε

�
, M II

ε R
II
ε � pλε � ᾱqRII

ε

M II
ε pi, jq � AIIpi, jqεa

IIpi,jq � opεa
IIpi,jqq,

aIIpi, jq ¡ 0, λε � ᾱ � ᾱp2qεā
p2q

(by induction)

The missing case There is a problem if r � N

Mε � ᾱId�Nε, pMε � ᾱIdq � Nε � Bpi, jqεbpi,jq � opεbpi,jqq

diagpNεq � diagpB1qεb
1

� � � � � diagpBsqεb
s

�N II
ε

the minimizing sub-graph of N II
ε either contains a cycle of order at least

2, or the number of cycles of order 1 est less than the dimension of N II
ε
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An example N � 3, Mεpi, jq � expr�βEpi, jqs. Reduction I gives

� A unique dominant irreducible component: ᾱ � 1,

M I
ε �

�
�εa 1 εb

1

εc
1

εb 1

1 εa
1

εc

�
� or

�
�εa 1 εd

1 εb εe

εd
1

εe
1

εc

�
� or

�
� 1 εa εc

εa
1

εb εd

εc
1

εd
1

εe

�
� .

� Two irreducible components with equal dominant spectral radius

ᾱ � 1, M I
ε �

�
� 1 εa εb

εa
1

εc 1

εb
1

1 εd

�
� or

�
� 1 εa εb

εa
1

1 εc

εb
1

εc
1

εd

�
� .

� Three irreducible components with equal dominant spectral radius:

ᾱ � 1, M I
ε �

�
� 1 εa εb

εa
1

1 εc

εb
1

εc
1

1

�
� .

� µβ Ñ a barycenter of the periodic minimizing cycles

µβ Ñ µHmin :� c1δ1Z � c2δ2Z � c3δ3Z
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Example A 3� 3 matrix with three irreducible components

b >
 a

a

b

c'

c'(c+c')/2

=1abc /3...
min
H =[1

3
, 1

3
, 1

3
]

=1cc ' /2...
min
H =[0 , 1

2
, 1

2
]

(c+c')/2 < (a+b+c)/3
a <

 (a
+b

+c
)/3

b < (a+b+c)/3

=1b...
min
H =[1

2
,0 , 1

2
]

 (c
+c

')/
2 

< 
a

(c+c')/2 < b=1a...
min
H =[1

2
, 1

2
,0 ]

=1cc ' /2...
min
H =[1,1 ,1]/32

=12cc ' /2...
min
H =[ 1

4
, 1

2
, 1

4
]

=12cc ' /2...
min
H =[ 1

4
, 1

4
, 1

2
]

=12a...
min
H =[ 1

2
, 1

4
, 1

4
]

=1a...
min
H =[1 ,1 ,1]/32

=1 b...
min
H =[1 ,1,1]/32

c

=1a...
min
H =[ ,1 , 1]/2

=1cc ' /2...
min
H =[1 , , 1]/2

=1cc ' /2...
min
H =[1 ,1 , ]/2

c
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