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|. Motivations

Cell equation Consider H(z,p) a Tonelli Hamiltonian: C?, autonomous,
periodic in x, super-linear in p, and definite positive. The cell equation is

H(x,d,u) = H, w as a viscosity solution

Objective The cell equation is very degenerate. There are two
approaches:

+ a PDE approach (L.P.V.),

+ a dynamical approach using Fathi's weak KAM theory.

o A third approach:

H and u are thermodynamic objects that
can be obtained as a limit when
the temperature of some the system goes to 0
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Discretization in time (Bardi, Capuzzo-Dolcetta, Falcone, 2008)
¢ solve the discounted cell equation

dus + H(z,dyus) =0

+ use the representation formula

0

ug(z) = infj e M L(~,4) dt

7 )y

where v : (—00,0] — R% is absolutely continuous and 7(0) = z
o apply the Lions-Papanicolaou-Varadhan theorem (1987)

< C, Lip(us) <C.

oxX

ous S, Jus+

— 0
Take a sub-sequence §; — 0 so that us + g Su

Theorem (Davini, Fathi, lturriaga, Zavidovique, 2015)

_ 0 _
us + &% % u,  solution of the cell equation H(z,d,u) =H

(A true limit as § — 0)
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Discretization in time
«+ discretize the representation formula

0
us(x) = inf e M L(~,4) dt

RN
* T time step
+0

urs(x) = inf 1 — 70 rL(z 1, v_j
o(@) ot kZ::O( ) TL(T_g—1,V——1)

exp(—07k) ~(1—78)*, 2 p =2 p 1 +7T0 4 1
+ Dynamical programming principle

U‘r,é(fﬂO) = inf;,;_l {(1 = 7'(5)7.14.,-)5({[71) L TL(x,l, ato—Tx_l )}

o it is easy to see, for fixed 6 >0, wu,5—>us as7—0

What happens if 7 is fixed and § — 07
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Theorem (Xifeng Su, Ph. Thieullen) H(z,p) is a Tonelli Hamiltonian.
Let 7,0 > 0 and u, s be a solution of the discrete discounted cell equation

urs(y) = inf {(1 —70)urs(x) + TL(:E, - y) }, Yy e R?
zeR4 ’
Thenasd — 0 ~
o uniformly in z, 7Téu,s5(x) - E;

o uniformly in z,  wu,s(x) — % — u.(x), wu, is Lipschitz

¢ u, is a particular solution of the discrete cell equation
UT(y) + ET = inf, cga {ur(x) + ET(m,y)}, Vy e R4

where E.(z,y) = TL(x, ¥=%) is the discrete Lagrangian

e uniformly in 7, |Ju;|» < C, Lip(u,) <C
o for some sub-sequence 7 — 0,

B g
Ur = U (some solution of H(x,d,u) = H
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Conclusion Discretization in time of the cell equation
<= solving an additive eigenvalue problem of the form:

T_[u] =u+E, with T_[u](y) = inf,epe {u(z) + E(z,y)}

(T-[u] is called (backward) Lax-Oleinik operator). E(z,y) = 7L(x, ¥=%)

Proposition If E(z,y) is CY, coercive E(z,y) — +w as |y — x| = +o
and periodic E(x + k,y + k) = E(x,y), then

+ E is the unique additive eigenvalue

+ Ju periodic, but u may not be unique.

Remark The minimization can be taken on [0, 1]¢

E(x,y) = ireunE(:r—i- ky) = TF[u] = TF[u]

Program of research Identify the solution (E,u) as the ground level of
some associated dynamical system. Simplify the problem by assuming,
the space is discrete, {x; : i = 1...N} a grid of [0, 1]¢, and the operator
is discrete

T_[u](z;) = minj<i<n {u(am) + E(ml,m])}
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Il. Termodynamic formalism

Objective Give a precise meaning to the notion of configurations at
equilibrium for some temperature 7' > 0.

configuration = (-++,@;_,, %, | Ziy, iy, +), x; € grid of [0, 1]¢

Notations « S ={1,--- N}, some finite state space
+ Q=52 the space of all configurations,

w:(--.7w71|w0’w1,...)7 kaS
e 0 : ) — (), the left shift on the indices
U(W) = ( ,W—1,Wo | w17w2,"')

¢+ £:Q— R, some Hdlder function (long range interaction)
A short range interaction: E(w) = E(wg,w1)
Before we had E(z;, z;) = 7L(x;, =)
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Important notions
+ stationary or invariant measure p: a probability measure such that if

[Z.07-.- ,@n]k} = {wEQ:wk :iOawkH»l :ila"' 7wk+’n:in}

then wu([ég, -+ ,in]k) is independent of k. For example

i d . . 1\n+1
i.i.d. measure : u([ig,- - ,in]) = (N)
+ the entropy of an invariant measure
Entn(,u) = Z _M([ioa"' ain—l])lnﬂ([im'" 7in—1])

10 rin—1

1
lim —Ent, (u) = exists := Ent(u).

n—+w n

For example Ent(i.i.d.) =In N
« the free energy, let be 37! > 0 called the temperature

Eg:= inf { SEdp — ﬂ_lEnt(u)}

[ invariant
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Theorem (Bowen, Ruelle, ~1970) To simplify: F(w) = E(wp,w1)
¢ The infimum in the free energy
Eg:= inf {JE dp — ﬁ_lEnt(,u)}
o invariant

is reached by a unique invariant measure: called Gibbs measure at
temperature 3! and denoted yp
+ There is an explicit formula

exp [ — B4 Elik,ins1)]
Zﬂ(iOa e 7Zn)

= 65 (io) exp(BnEp)df (in)

,U'ﬁ([iOa e 7in]) =
1
Zg(io,* in)
. qb% are backward and forward eigenfunctions of the transfer operator
for the largest eigenvalue \s = exp[—BE3]

Z% i) exp[~BE(i, )] = exp[-BE3] o5 (j)

Lilog1G Z exp[—BE(i, j)|¢5 () = exp[-BEs] ¢ (i)
=1
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Transfer operator and Lax-Oleinik
¢ The backward case

+ The Hopf technique:

¢(i) = exp[—=puli)], Lglexp(=pu)](j) = exp[=FT5 [u](5)]

e let f— +o0in

exp| — BTy [u Zexp u(i) + E(i, 4))]

¢ the zero-temperature of the transfer operator = Lax-Oleinik

Ty [ul(5) — T~ [u](§) := minycicn [u() + B, )]
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Important and simple facts
+ The eigenvalue problem for transfer operator at temperature 51
and for the Lax-Oleinik operator

Ty lug]l =us+ Es versus T~ [u] =u+E
o there exists C' > 0, |ug|» < C, Lip(ug) <C
o Eg=inf, {{Edy— B 'Ent(n)} — inf, (Edu=F
+ there exists 3; = +00, g, = fmin and ug, = u

Hmin € arg min,u invariant SE dp, Mather(E) = Uniosa Supp(umin)

Conclusion In the discrete case, both in time and in space

1
~ U =" lim ——Ingg
H(z,dyu) = H < B Poteo p 1
—-H = 1 Es= 1 ——=1InA\
ot P ot B P

¢ problem: the limit has to be taken along a sub-sequence
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[11. Selection principle

Question By freezing the system, do the Gibbs measure select a
particular configuration?

Counter example (Chazottes-Hochman, 2010) There exists an Holder
energy E : Q — R, (long range), such that pis does not converge.

Question For which energy F do Ejs and ug converge?

ug = —5Ings Lslos] = Asos
Eg = —% InAg L3(i,j) = exp | — BE(i,7)], (short range)
A simpler question: for which E, do the Gibbs measure pg converge?

Theorem (Brémont, 2003) For short-range energy E(%, ), pg — poe
selects a particular minimizing invariant measure (j. € argmin,, {E dy).
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A simple example Consider Q = {1,2}? and E(i,j) = [(1) 180].

The energy is short range, null at the two fixed points, and positive along
any other periodic cycle

n—1

E(1%)=0=EQ2"), io=in = ), Elir,ixs1)>0
k=0

As  pg(lio, -+ vinl) = exp | = BY5 g E(in, ik1)]/Zslio, -~ 1 in) the
Gibbs measure chooses the configurations with the least energy

1 1
Hg — 5(51Z + 5521

For example E(i, j) = [Oil 180], 11 — Sy

Question What can we say about the explicit convergence of 115 when

1 e~ 1118 ,—458 1 €@ b
Lp(i,5) = |eP 1 e8|, or M(i,j) = e 1 e
67’8 676 1 Eb €€ 1
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Algorithm (E. Garibaldi, Ph. Thieullen, 2012) By induction on the
dimension of the matrix M.(i, j). The framework needs to be extended

Mé(lv]) = A(i)j)él(@j) + O(GG(i’j))
o(eBD)) = Ay (i, j)em9) + Ay(i, j)e®2™) + ... = a Puiseux series
a(i,i) < ay(i,j) < ag(i,j) <--- (but ax(i,j) are not rational)

Let A, ¢F be the eigenvalue and eigenvectors of M,

Z¢ c(i,) = Ao, ( ZM (i, 5)¢d () = Aol (i)

Objective: find a Puiseux series expansion of A., ¢¢, fie

Observation 1 (Special case for short-range E) if ug — pi., for some
sub-sequence, then ., is a barycenter of measures supported on
minimizing cycles

Observation 2 (In general) The Mather set u,,, .. supp(fimin) may have
several components; i, chooses the one with the largest topological
entropy
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Proposition M, (i,j) = A(i, 7)) + o(e?(1)) =\, ~ ae®

_ Ae
¢ Remember E = inf, {Edu = limg_, o, Eg = lim._,o il =a
ne
Definitions
e aG=inf L Zk o @ik, ips1), cycle = (ig,- -+ ,4,) with i, =i
cycles ™
For example
€ e _ b+c
MENEC gl = e=m (ad2>

¢ Gupin © S x S the sub-graph of minimizing cycles.
¢ Amin = [A(4,5)](,j)eG s the restriction of A to Gin
For example
b
% <min(a,d) = Apin= [

¢ «a = the spectral radius of A,,in
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Reduction | Let M, (i, ) = A(i,5)e(") 4 o(e2(39))

Then solve the discrete Lax-Oleinik equation for a(i, 7), that is find (%)

WV
<
=

—u(i)+a Vi j

[l
<
—~
.
N—r

{a(z‘,j)
a(i, j)

o Let A, = diag(e*™),--. €M), then

A0 0
M = AMA Y= 0 A 0| +N,,
0 0 0

with p(A” ) < p(A. ) =a

min min

A0 .
MEI [ 0 D] + N, A . =diag(A}

with p(A'}nzn) =" (AT ) =0

min

From now on M, is reduced to its normal form
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Reduction Il M, = [61 10)] + N., A=diag(Al,---, A") with

p(D) < p(Al) =---=p(A") =a. We already know A\ ~ @
¢ R, L. the right and left eigenvectors of M, for A,

MAARY + MAPRP = ARA
MPARA + MPPRP = X.RP

Extract RP = (\. — MPP)~1MPARA and substitute
+ We are left to study M, of the form
Al ... 0
Me=|: . i [+Ne, p(AY)=--p(A") =a
0 --- AT

¢ RY, L the restriction of R, L. to the indices of A’
e R', L the right and left eigenvectors of A’ for &

B@) R@ oo B0

Proposition — ~ =",
Ri(y)  R'(y) Re(y)

—77 fori#j
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Reduction Il M, = diag(AL,-- , A™) + N., p(A}) =--- = p(A") = &
Write a system of r equations by blocs
(A" + NI)R+ X NJR] = AR
JFi
Take the scalar product with the left fixed eigenvector L? of A°

<L1N“RZ>L1RZ + 3 (LlN”R ) ‘Rl = (A\. —a)L'R.

LiR: S\ LiR]
. LiNii R )
M0, g) = [T ] MIRY = (A~ @)Y

M, j) = A"(i, 5)e” 0D 4 o (49)),
a"(i,j) >0, A —a~ a®en® (by induction)
The missing case There is a problem if r = N

M, =ald + N, (M, —ald) = N, = B(i, §)e?®9) 4 o(b(9))
diag(N,) = diag(B)e?' + - -- + diag(B*)e*” + N/
the minimizing sub-graph of N!! either contains a cycle of order at least
2, or the number of cycles of order 1 est less than the dimension of NE”
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An example N =3, M(i,j) =exp[—BE(i,j)]. Reduction | gives

+ A unique dominant irreducible component: a =1,

, _
N e 1 € 1 €* €°
/ I
M!=|e" ¢ or [1 € e for[er €& €
’ 1 ! ’ !
1 € ¢ e e e e e e

1 e € [1 e ¢
_ ! 7
a=1, M =|e" ¢ 1| or [ 1 ¢
U / /
b ed b

1 e €
7
a=1, M =] 1 ¢
v e
€ 1

¢ g — a barycenter of the periodic minimizing cycles
ug — /Lgm = 1012 + 209z + €303z
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Example A 3 x 3 matrix with three irreducible components

b A _1+\/§€(c+c'blz+.“ A€:1+elc+c')lz+“'

H 19 11

TR I uth,=lo. 1]

N
A —1+pE(L+L HZ+... g _1+ ‘HL ,/2+
b [lpl]/(2+p) ,,,,,,,,,,,,,,, [T [1 1+x,1+k [/(3+2k)
¢

A=1+ke“+.. , A=ltpeay

=[14+k,1+x,1]/(3+2k) wk =[1,1, pll(2+p)

Honin

A=l+e+ | £
Hr=15,4,0]

(a+b+c)/3

=l+e

H _py (cte)2<b
umm—[;x

A —1+\/Ee‘“"“+m

et
RS T <t =L, L
H 4\’5 i 4’4’2
o =Lp, 1, 1]/(2+p) o
e[/ A=1+ke+...
Hini [1+K,1,1+K]/3+2K) ‘
; ; >
7'”' < _ (c+)2 ] ¢
D/ :l+\/2€a+... A=1+e"+..
H 111 H_[1 o1
e Hmn=14,0,1]
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