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Outline

- Dynamics of endomorphisms on Pk(C)
- Large deviation of the maximal entropy measure

- Dimension sprectrum for rational maps

- Pressure and phase transition

- Billiards and decay of correlation

- Thermodynamic formalism for C∗ algebras

- Spectral analysis of time series of chaotic systems

- Ergodic optimization
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Dynamics of endomorphisms ... Ergodic optimization

Dynamics of endomorphisms on Pk(C)

Notations

- The Riemann sphere Ĉ := P1(C), a compact surface

- An algebraic dynamics given by an endomorphism

f([z;w]) := [P (z, w);Q(z, w)], ∞ = [1; 0]

where P (z, w) and Q(z, w) are homogeneous polynomials,

degP = degQ =: d and no common zeros except (0, 0)

- Question: Fixe some a ∈ P1, and consider the algebraic roots of

fn(x) = a for some n ≥ 0 and x ∈ P1

fn = f ◦ · · · ◦ f n times.

How do they distribute ?
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Dynamics of endomorphisms on Pk(C)

Basic definitions

- The Fatou set:

Fatou(f) := {x ∈ P1 : ∃ neighborhood U of x s.t
fn|U is a normal family}

the dynamics {fn}n belongs to a compact family of endomorphisms.

- The Julia set: Julia(f) = P1 \ Fatou(f)

Julia set: compact, invariant and never empty

- The exceptional set Excep(f) is such that

∀ U open, U ∩ Julia 6= ∅ ⇒ fn(U) = P1 \ Excep(f), n large
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Dynamics of endomorphisms on Pk(C)

Main theorem [A. Freire, A. Lopes, R. Mañé: Bol. Soc. Bras. Mat.,
Vol. 14 (1983), 42–62]

- Uniformly in x ∈ P1 \ Excep(f), the following limit exists

1
dn

∑
p: fn(p)=x

δp −→ µf

(counted with algebraic multiplicity)

- µf is f -invariant, is supported on the Julia set and has constant
Jacobian

L∗f [µf ] = d µf , Lf [φ](x) :=
∑

p:f(p)=x

φ(p)

- µf is the unique measure of maximal entropy
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Dynamics of endomorphisms on Pk(C)

An active research area: generalization in dimension k

- A potential theory approach: F (z0, z1, . . . , zk) : Rk+1 → Rk+1

homogeneous of degree d and non-degenerate

1
dn

ln ‖Fn(x)‖ → UF (x) exists ∀ x = (z0, . . . , zk)

UF is called the Green function, is plurisubharmoinc

- There exists a unique closed positive (1, 1)-current ωF called Green
current

1
2π
ddcUF = π∗ωf , π∗ : Rk+1 → Pk

(d = ∂ + ∂̄, dc = i(∂ − ∂̄). ddc = ∆dx ∧ dy)

- Let µf := ωf ∧ . . . ∧ ωf , k times: µf is a positive measure
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Dynamics of endomorphisms on Pk(C)

Some results among many overs:[Briend, Dinh, Hubbard, Sibony, ...]

- µf = ωf ∧ . . . ∧ ωf is the unique measure of maximal entropy of f

- Let Excep be the largest proper algebraic subset of Pk completely
invariant

1
dkn

∑
p:fn(p)=x

δp −→ µf , ∀ x 6∈ Excep

- htop(µf ) = k ln d, λi ≥ ln
√
d,

- The Lyapunov exponents are equal to ln
√
d iff f is a Lattès map:

Ck/Λ D−−−−→ Ck/Λyσ yσ
Pk f−−−−→ Pk

- A thermodynamic formalism for “algebraic” observables φ 6= 0?
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Dynamics of endomorphisms ... Ergodic optimization

Ergodic optimization

Three different types of examples in ergodic optimization:

- Discrete iteration of a dynamical system

- Mañé-Fathi weak KAM theory

- Aubry-Mather theory
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Ergodic optimization

Discrete dynamics: (Bousch-Jenkinson, ...)

- Concider f(x) = 2x mod 1, on T and the minimization problem

Ē(λ) = min
{∫

Eλ(x) dµ(x) : µ is f -inv.
}
, Eλ(x) := cos 2π(x−λ)

- There exists a unique minimizing measure µλ; f |supp(µλ) is
conjugate to a rotation of angle ωλ

- There exists a unique corrector or Mañé-Bousch-Lax-Oleinik solution

uλ(x) + Ē(λ) = min
y:f(y)=x

{uλ(y) + Eλ(y)}, minuλ = 0

- The null set Nλ := {uλ ◦ f −uλ+ Ē(λ)−Eλ(x) = 0} = [γλ, γλ+ 1
2 ]

- supp(µλ) ⊂ Nλ is the unique f -inv measure called Sturm measure

- locking at Q-frequencies: ∪p/q∈Qint{λ : ωλ = p
q } has full measure
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uλ(x) + Ē(λ) = min
y:f(y)=x

{uλ(y) + Eλ(y)}, minuλ = 0

- The null set Nλ := {uλ ◦ f −uλ+ Ē(λ)−Eλ(x) = 0} = [γλ, γλ+ 1
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uλ(x) + Ē(λ) = min
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Dynamics of endomorphisms ... Ergodic optimization

Ergodic optimization

Theorem: (Mañé-Fathi-Contreras-Gomes...)

- Consider a Tonelli Lagrangian and the minimizing problem

L̄(P ) := min
{∫

L(x, v)−P.v dµ(x, v) : µ is EL flow inv
}
, x ∈ Td

- There exists (semi-concave) correctors of the Lax-Oleinik equation

u−(x) + tL̄(P ) = T t−[u−](x), ∀ t ≥ 0

T t−[u−](x) := inf
{
u−(γ(−t)) +

∫ 0

−t
L(γ(s), γ̇(s))− P.γ̇(s) ds :

γ : [−t, 0]→ Td, γ(0) = x
}

- α-limit set of any calibrated curves contains minimizing measures

H(x,Du−(x)) = −L̄(P ) in the viscosity sense
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Theorem: (Mañé-Fathi-Contreras-Gomes...)

- Consider a Tonelli Lagrangian and the minimizing problem

L̄(P ) := min
{∫

L(x, v)−P.v dµ(x, v) : µ is EL flow inv
}
, x ∈ Td

- There exists (semi-concave) correctors of the Lax-Oleinik equation

u−(x) + tL̄(P ) = T t−[u−](x), ∀ t ≥ 0

T t−[u−](x) := inf
{
u−(γ(−t)) +

∫ 0

−t
L(γ(s), γ̇(s))− P.γ̇(s) ds :

γ : [−t, 0]→ Td, γ(0) = x
}

- α-limit set of any calibrated curves contains minimizing measures

H(x,Du−(x)) = −L̄(P ) in the viscosity sense

Fouesnant, June 2011 From complex dynamics to ergodic optimization 10/19



Dynamics of endomorphisms ... Ergodic optimization

Ergodic optimization
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Dynamics of endomorphisms ... Ergodic optimization

Ergodic optimization
Aubry-Mather theory: a configuration approach

- The physical model: The model describes the set of configuration of
a chain of atoms at equilibrium

xi1xi−1 xi xi2

Elastic interaction

Periodic potential

- The original 1D-FK: E(x, y) = W (x, y) + V (x)

W (x, y) =
1
2
|y − x|2, V (x) =

K

(2π)2

(
1− cos(2πx)

)
Eλ(x, y) = E0(x, y)− λ(y − x).

Fouesnant, June 2011 From complex dynamics to ergodic optimization 11/19



Dynamics of endomorphisms ... Ergodic optimization

Ergodic optimization
Aubry-Mather theory: a configuration approach

- The physical model: The model describes the set of configuration of
a chain of atoms at equilibrium

xi1xi−1 xi xi2

Elastic interaction

Periodic potential

- The original 1D-FK: E(x, y) = W (x, y) + V (x)

W (x, y) =
1
2
|y − x|2, V (x) =

K

(2π)2

(
1− cos(2πx)

)
Eλ(x, y) = E0(x, y)− λ(y − x).

Fouesnant, June 2011 From complex dynamics to ergodic optimization 11/19



Dynamics of endomorphisms ... Ergodic optimization

Ergodic optimization
Aubry-Mather theory: a configuration approach

- The physical model: The model describes the set of configuration of
a chain of atoms at equilibrium

xi1xi−1 xi xi2

Elastic interaction

Periodic potential

- The original 1D-FK: E(x, y) = W (x, y) + V (x)

W (x, y) =
1
2
|y − x|2, V (x) =

K

(2π)2

(
1− cos(2πx)

)
Eλ(x, y) = E0(x, y)− λ(y − x).

Fouesnant, June 2011 From complex dynamics to ergodic optimization 11/19



Dynamics of endomorphisms ... Ergodic optimization

Ergodic optimization
Minimizing configurations:

- E(x, y) C2-smooth, periodic E(x+ 1, y + 1) = E(x, y),

twist ∂2E
∂x∂y < −1, superlinear in (y − x)

- A configuration x := (xk)k∈Z with the smallest total energy

Etot(x) :=
+∞∑

k=−∞

E(xk, xk+1) ≤ Etot(y), ∀ y

- A box of consecutive atoms x := (xm, xm+1 . . . , xn)

E(xm, xm+1, . . . , xn) :=
∑n−1

k=m E(xk, xk+1)
E(xm, . . . , xn) ≤ E(ym, . . . , yn)
∀ y configuration s.t. ym = xm and yn = xn

- Remark: Let Eλ(x, y) := E(x, y)− λ · (y − x) then

(xk)k∈Z is minimizing for E ⇐⇒ (xk)k∈Z is minimizing for Eλ
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Dynamics of endomorphisms ... Ergodic optimization

Ergodic optimization

Minimizing measures:

- A optimization problem: Eλ(x, y) = E(x, y)− λ.(y − x)

Ē(λ) := min
{∫

D

Eλ(x, y) π(dx, dy) : π holonomic
}

D fundamental domain (D = T× R), π(D) = 1 is normalized,
pr1
∗(π) = pr2

∗(π) has same marginals

Rotation number: (or mean spacing)

- If the limit exists

ω(xk)k∈Z := lim
n−m→+∞

xn − xm
n−m

Calibrated configuration

- A stronger notion of minimizing configurations which
differentiates Eλ
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Dynamics of endomorphisms ... Ergodic optimization

Ergodic optimization

Effective potential and calibrated configurations:

- Effective potential (Chou-Griffiths): A periodic C0 function u(x){
u(y) + Ē(λ) = minx{u(x) + Eλ(x, y)}, ∀ y (backward)
u(x) + Ē(λ) = maxy{u(y)− Eλ(x, y)}, ∀ x (forward)

(effectif potential = discrete viscosity solution = calibrated solution
= corrector)

- Calibrated configurations: A configuration (xk)k∈Z such that

∃ u(x) effective potential s.t.
u(xk+1) + Ē(λ) = u(xk) + Eλ(xk, xk+1), ∀ k ∈ Z

Two easy results:
There always exist effective potentials (but Ē(λ) is unique)
A calibrated configuration is a minimizing configuration
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u(y) + Ē(λ) = minx{u(x) + Eλ(x, y)}, ∀ y (backward)
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Dynamics of endomorphisms ... Ergodic optimization

Ergodic optimization

Theorem (Aubry-Mather):

- A recurrent minimizing configuration is a calibrated configuration for
some Eλ

- λ→ Ē(λ) is a C1 concave function

- A recurrent minimizing configuration admits a rotation number

ω := lim
n−m→+∞

xn − xm
n−m

= −dĒ
dλ

(λ)

(for any λ which calibrates the configuration)

- Let Λ(ω) := {λ s.t. ω = −dĒdλ (λ)}, then

∪ω∈Qint(Λ(ω)) has full measure

(locking at rational frequencies)

- If ω 6∈ Q, Λ(ω) is reduced to a point: a unique calibrating λ
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∪ω∈Qint(Λ(ω)) has full measure

(locking at rational frequencies)

- If ω 6∈ Q, Λ(ω) is reduced to a point: a unique calibrating λ

Fouesnant, June 2011 From complex dynamics to ergodic optimization 15/19



Dynamics of endomorphisms ... Ergodic optimization

Ergodic optimization

Theorem (Aubry-Mather):

- A recurrent minimizing configuration is a calibrated configuration for
some Eλ
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Ergodic optimization
Phase locking at rational rotation numbers: (the original
Frenkel-Kontorova model)

Eλ,K(x, y) =
1
2
|y − x|2 − λ(y − x) +

K

(2π)2

(
1− cos(2πx)

)
, K = 3
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Ergodic optimization
Phase transition in parameters space (λ,K): ω = −∂Ē(λ,K)

∂λ

Eλ,K(x, y) =
1
2
|y − x|2 − λ(y − x) +

K

(2π)2

(
1− cos(2πx)
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Ergodic optimization
Conclusion: How are the three problems related?

- Discrete dynamics problem: twist map or FK model

Eλ,K(x, y) =
1
2
|y − x|2 − λ(y − x) +

K

(2π)2
(1− cos(2πx))

uλ,K(x) + Ē(λ,K) = min
y

{
uλ,K(y) + Eλ,K(y, x)

}
• Hamilton-Jacobi problem:

HP,C(x, p) =
1
2
|p+ P |2 − C

(2π)2

(
1− cos(2πx)

)
HP,C(x,DuP,C(x) + P ) = H̄(P,C)

• Homogenezation problem: τ , a time discretization

− 1
τ2
Ē(τP, τ2C) −→ H̄(P,C)

1
τ
uτP,τ2C(x) −→ uP,C(x)
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