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Outline

- Dynamics of endomorphisms on P*(C)

- Large deviation of the maximal entropy measure

Dimension sprectrum for rational maps

- Pressure and phase transition

- Billiards and decay of correlation

- Thermodynamic formalism for C* algebras

- Spectral analysis of time series of chaotic systems

- Ergodic optimization
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- An algebraic dynamics given by an endomorphism
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where P(z,w) and Q(z,w) are homogeneous polynomials,

deg P = deg@ =: d and no common zeros except (0,0)

Fouesnant, June 2011 From complex dynamics to ergodic optimization 3/19



Dynamics of endomorphisms Ergodic optimization

Dynamics of endomorphisms on P*(C)

Notations
- The Riemann sphere C := P'(C), a compact surface

- An algebraic dynamics given by an endomorphism
f(lzw]) = [P(z,w); Q(z,w)], oo =[1;0]
where P(z,w) and Q(z,w) are homogeneous polynomials,
deg P = deg@ =: d and no common zeros except (0,0)
- Question: Fixe some a € P!, and consider the algebraic roots of

f"(x) =a for somen >0 and x € P!

ff=fo---of mntimes.

How do they distribute ?
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Dynamics of endomorphisms on P*(C)

Basic definitions
- The Fatou set:

Fatou(f) := {x € P! : 3 neighborhood U of z s.t

f"|u is a normal family}

the dynamics {f"},, belongs to a compact family of endomorphisms.
- The Julia set: Julia(f) = P!\ Fatou(f)

Julia set: compact, invariant and never empty
- The exceptional set Excep(f) is such that

VU open, UNJulia# 0 = f*(U)=P"\ Excep(f), n large
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Dynamics of endomorphisms on P*(C)

Main theorem [A. Freire, A. Lopes, R. Mafié: Bol. Soc. Bras. Mat.,
Vol. 14 (1983), 42-62]
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Dynamics of endomorphisms on P*(C)

Main theorem [A. Freire, A. Lopes, R. Mafié: Bol. Soc. Bras. Mat.,
Vol. 14 (1983), 42-62]

- Uniformly in 2 € P! \ Excep(f), the following limit exists

1
a Z Op — Wuf

p: fr(p)=w

(counted with algebraic multiplicity)
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Main theorem [A. Freire, A. Lopes, R. Mafié: Bol. Soc. Bras. Mat.,
Vol. 14 (1983), 42-62]

- Uniformly in 2 € P! \ Excep(f), the following limit exists
1
7 2
p: fr(p)=x

(counted with algebraic multiplicity)

- py is f-invariant, is supported on the Julia set and has constant
Jacobian

Lilugl =d py, Lsldl(z) = > ¢

p:f(p)==x
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Dynamics of endomorphisms on P*(C)

Main theorem [A. Freire, A. Lopes, R. Mafié: Bol. Soc. Bras. Mat.,
Vol. 14 (1983), 42-62]

- Uniformly in 2 € P! \ Excep(f), the following limit exists
1
7 2
p: fr(p)=x

(counted with algebraic multiplicity)
- py is f-invariant, is supported on the Julia set and has constant
Jacobian

Lilugl =d py, Lsldl(z) = > ¢

p:f(p)==x

- py is the unique measure of maximal entropy
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Dynamics of endomorphisms on P*(C)

An active research area: generalization in dimension &
- A potential theory approach: F(zq,z21,...,2;) : RFtl — RF+1
homogeneous of degree d and non-degenerate

1
d—nlnHF”(x)HﬂUF(z) exists V x = (z9,...,2k)

Uy is called the Green function, is plurisubharmoinc
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Dynamics of endomorphisms on P*(C)

An active research area: generalization in dimension &

- A potential theory approach: F(zq,z21,...,2;) : RFtl — RF+1
homogeneous of degree d and non-degenerate

1
d—nlnHF”(x)HﬂUF(z) exists V x = (z9,...,2k)

Uy is called the Green function, is plurisubharmoinc

- There exists a unique closed positive (1,1)-current wg called Green

current 1
—ddUp = m*wy, =*:RFL Pk
2 f

(d=0+0, d°=i(0-29). dd°=AdzAdy)
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Dynamics of endomorphisms on P*(C)

An active research area: generalization in dimension &

- A potential theory approach: F(zq,z21,...,2;) : RFtl — RF+1
homogeneous of degree d and non-degenerate

1
d—nlnHF”(x)HﬂUF(z) exists V x = (z9,...,2k)

Uy is called the Green function, is plurisubharmoinc

- There exists a unique closed positive (1,1)-current wg called Green

current 1
—ddUp = m*wy, =*:RFL Pk
2 f

(d=0+0, d°=i(0-0). dd°= AdzxAdy)
- Let py:=wyp A... Awy, k times: iy is a positive measure
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Some results among many overs:[Briend, Dinh, Hubbard, Sibony, ...]
- pp =ws A...Awy is the unique measure of maximal entropy of f

- Let Excep be the largest proper algebraic subset of P* completely

invariant
1

¥In Z 0p — py, VYV a ¢& Excep

p:f"(p)=x
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Dynamics of endomorphisms on P*(C)

Some results among many overs:[Briend, Dinh, Hubbard, Sibony, ...]
- pp =ws A...Awy is the unique measure of maximal entropy of f

- Let Excep be the largest proper algebraic subset of P* completely

invariant 1
¥In Z 0p — py, VYV a ¢& Excep

p:f"(p)=x

- htozo(,“f) =klnd, X\ >1In Vd,
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Dynamics of endomorphisms on P*(C)

Some results among many overs:[Briend, Dinh, Hubbard, Sibony, ...]
- pp =ws A...Awy is the unique measure of maximal entropy of f

- Let Excep be the largest proper algebraic subset of P* completely
invariant 1
¥In Z 0p — py, VYV a ¢& Excep
pfr(p)==

- hiop(py) = klnd, A >1In Vd,
- The Lyapunov exponents are equal to In+/d iff f is a Lattes map:

ck/A —2 5 Ck/A

l l

pe L p
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Dynamics of endomorphisms on P*(C)

Some results among many overs:[Briend, Dinh, Hubbard, Sibony, ...]

pf =ws A...Awy is the unique measure of maximal entropy of f

Let Excep be the largest proper algebraic subset of P* completely

invariant 1

¥In Z 0p — py, VYV a ¢& Excep
pfr(p)=x

Piop(py) = klnd, X\; > In/d,
The Lyapunov exponents are equal to In+/d iff f is a Lattes map:

Ck/A —2— CF/A
& &
Pk _ Pk

A thermodynamic formalism for “algebraic” observables ¢ # 07
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Ergodic optimization

Three different types of examples in ergodic optimization:
- Discrete iteration of a dynamical system
- Mané-Fathi weak KAM theory
- Aubry-Mather theory
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Discrete dynamics: (Bousch-Jenkinson, ...)

- Concider f(z) =2z mod 1, on T and the minimization problem

E(\) = min { /Ek(x) du(z) @ pis f—inv.}7 Ey(z) := cos2m(x—A\)
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Discrete dynamics: (Bousch-Jenkinson, ...)
- Concider f(xz) =2z mod 1, on T and the minimization problem

E(\) = min { /Ek(as) du(z) @ pis f—inv.}7 Ey(z) := cos2m(x—A\)

- There exists a unique minimizing measure py; f|supp(uy) is
conjugate to a rotation of angle wy

- There exists a unique corrector or Mafé-Bousch-Lax-Oleinik solution

ur(z) + E(\) = y:ﬁl?j?:w{ux(y) + Ex(y)}, minuy =0
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Discrete dynamics: (Bousch-Jenkinson, ...)
- Concider f(xz) =2z mod 1, on T and the minimization problem

E(\) = min { /Ek(as) du(z) @ pis f—inv.}7 Ey(z) := cos2m(x—A\)

- There exists a unique minimizing measure py; f|supp(uy) is
conjugate to a rotation of angle wy
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Ergodic optimization

Discrete dynamics: (Bousch-Jenkinson, ...)

- Concider f(xz) =2z mod 1, on T and the minimization problem

E(\) = min { /Ek(as) du(z) @ pis f—inv.}7 Ey(z) := cos2m(x—A\)

- There exists a unique minimizing measure py; f|supp(uy) is
conjugate to a rotation of angle wy

- There exists a unique corrector or Mafé-Bousch-Lax-Oleinik solution

ur(z) + E(\) = y:ﬁl?j?:w{ux(y) + Ex(y)}, minuy =0

- The null set Ny := {uro f —ux+E(X) — Ex(z) = 0} = [ya, 71 + 3]
- supp(pa) C Ny is the unique f-inv measure called Sturm measure

- locking at Q-frequencies: Uy, /4eqint{A : wx = 2} has full measure
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Theorem: (Maiié-Fathi-Contreras-Gomes...)

- Consider a Tonelli Lagrangian and the minimizing problem

L(P) := min { /L(a:,v)—P.v du(x,v) : pis EL flow inv}, x € T
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Ergodic optimization

Theorem: (Maiié-Fathi-Contreras-Gomes...)

Consider a Tonelli Lagrangian and the minimizing problem

L(P) := min { /L(a:,v)—P.v du(x,v) : pis EL flow inv}, x € T

There exists (semi-concave) correctors of the Lax-Oleinik equation

u_(x) +tL(P) =T [u_](z), Vt>0
0

T! [u_](z) := inf {uf(v(—t)) +/ L(v(s),7(s)) — PA(s)ds :

—i

v : [=t,0] = T¢, ~(0) = m}
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Theorem: (Maiié-Fathi-Contreras-Gomes...)

- Consider a Tonelli Lagrangian and the minimizing problem

L(P) := min { /L(a:,v)—P.v du(x,v) : pis EL flow inv}, x € T

- There exists (semi-concave) correctors of the Lax-Oleinik equation

u_(x) +tL(P) =T [u_](z), Vt>0
0
T! [u_](z) := inf {u,(v(—t)) + /_tL(v(s),ﬁ(s)) — PA(s)ds :

v : [=t,0] = T¢, ~(0) = Js}

- a-limit set of any calibrated curves contains minimizing measures
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Ergodic optimization

Theorem: (Maiié-Fathi-Contreras-Gomes...)

- Consider a Tonelli Lagrangian and the minimizing problem

L(P) := min { /L(a:,v)—P.v du(x,v) : pis EL flow inv}, x € T

- There exists (semi-concave) correctors of the Lax-Oleinik equation

u_(x) +tL(P) =T [u_](z), Vt>0
0

T! [u_](z) := inf {u,(v(—t)) +/ L(v(s),7(s)) — PA(s)ds :

—i

v : [=t,0] = T¢, ~(0) = Js}

- a-limit set of any calibrated curves contains minimizing measures
H(x,Du_(x)) = —L(P) in the viscosity sense
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Ergodic optimization
Aubry-Mather theory: a configuration approach
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Ergodic optimization
Aubry-Mather theory: a configuration approach
- The physical model: The model describes the set of configuration of
a chain of atoms at equilibrium

Elastic interaction

X, X; Xivl Xisa

Periodic potential
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Ergodic optimization
Aubry-Mather theory: a configuration approach
- The physical model: The model describes the set of configuration of
a chain of atoms at equilibrium

Elastic interaction

X, X; Xit1 Xitn

Periodic potential

- The original 1D-FK:  E(x,y) = W(z,y) + V(x)
W(x,y) = %|y — x|2, V(z) = (;7:)2 (1 — cos(27m:))

Ex(z,y) = Eo(z,y) — My — ).
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Minimizing configurations:
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Ergodic optimization
Minimizing configurations:
- E(x,y) C?-smooth, periodic E(x + 1,y +1) = E(x,y),

9°E 1 superlinear in (y — x)

twist 920y
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Ergodic optimization
Minimizing configurations:
- E(x,y) C?-smooth, periodic E(x + 1,y +1) = E(x,y),
gjg/ < —1, superlinearin (y — x)
- A configuration x := (z})rez with the smallest total energy

twist

+oo
Eioi(x) := Z E(rg, zp+1) < Eiot(y), Vy

k=—o0
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Ergodic optimization
Minimizing configurations:
- E(x,y) C?-smooth, periodic E(x + 1,y +1) = E(x,y),

- 2 . .
twist gﬂfy < —1, superlinearin (y — x)

- A configuration x := (z})rez with the smallest total energy

+oo
Eioi(x) := Z E(rg, zp+1) < Eiot(y), Vy

k=—o0

- A box of consecutive atoms x := (Zyn, Tyt ---,ZTn)
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Ergodic optimization
Minimizing configurations:
- E(x,y) C?-smooth, periodic E(x + 1,y +1) = E(x,y),

- 2 . .
twist gﬂfy < —1, superlinearin (y — x)

- A configuration x := (z})rez with the smallest total energy

+oo
Eioi(x) := Z E(rg, zp+1) < Eiot(y), Vy

k=—o0

- A box of consecutive atoms x := (Zyn, Tyt ---,ZTn)

E(Tm, Tmi1,---,Tn) i= ZZ;:R E(zk, Trt+1)
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Ergodic optimization
Minimizing configurations:
- E(x,y) C?-smooth, periodic E(x + 1,y +1) = E(x,y),

- 2 . .
twist gmgy < —1, superlinearin (y — x)

- A configuration x := (z})rez with the smallest total energy

+oo
Eioi(x) := Z E(rg, zp+1) < Eiot(y), Vy

k=—o0

- A box of consecutive atoms x := (Zyn, Tyt ---,ZTn)

E(Tm, Tmi1,---,Tn) i= Zz;ln E(zk, Trt+1)
E(xm7"'7xn) S E(ym77yn)
V y configuration s.t. ym = Tm and y, = Tn,
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Ergodic optimization
Minimizing configurations:
- E(x,y) C?-smooth, periodic E(x + 1,y +1) = E(x,y),
gjgy < —1, superlinearin (y — x)
- A configuration x := (z})rez with the smallest total energy

twist

+oo
Eiot(x) := Z E(xg, r41) < Eiot(y), Vy
k=—o0
- A box of consecutive atoms x := (Zyn, Tyt ---,ZTn)
E(Tm, Tty -y Tn) = Soper BTk, Thy1)

E@m, - ,Zn) < EYm,---,Yn)
V y configuration s.t. yYm = m and yp, = Tp,

Remark: Let E)\(z,y) := E(z,y) — A+ (y — x) then

(zk)kez 1s minimizing for £ <= (xk)kez 1S minimizing for E
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Ergodic optimization

Minimizing measures:
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Ergodic optimization

Minimizing measures:
- A optimization problem: E\(z,y) = E(z,y) — A.(y — )

E(\) = min{/EA(m,y) 7(dz,dy) : m holonomic }
D

D fundamental domain (D =T x R), 7(D) = 1 is normalized,
pri(m) = prZ(w) has same marginals
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Ergodic optimization

Minimizing measures:
- A optimization problem: E\(z,y) = E(z,y) — A.(y — )

E(\) = min{/EA(m,y) 7(dz,dy) : m holonomic }
D
D fundamental domain (D =T x R), 7(D) = 1 is normalized,

pri(m) = prZ(w) has same marginals

Rotation number: (or mean spacing)
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Ergodic optimization

Minimizing measures:
- A optimization problem: E\(z,y) = E(z,y) — A.(y — )

E(\) = min{/EA(m,y) 7(dz,dy) : m holonomic }
D

D fundamental domain (D =T x R), 7(D) = 1 is normalized,
pri(m) = prZ(w) has same marginals
Rotation number: (or mean spacing)

- If the limit exists

5 Tn — Tm
w(@p)gez = llm —
n—m—+oco 1. — M
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Ergodic optimization

Minimizing measures:
- A optimization problem: E\(z,y) = E(z,y) — A.(y — )

E(\) = min{/EA(m,y) 7(dz,dy) : m holonomic }
D

D fundamental domain (D =T x R), 7(D) = 1 is normalized,
pri(m) = prZ(w) has same marginals
Rotation number: (or mean spacing)

- If the limit exists

. LTy — Tm
w(@p)gez = llm —

n—m—+oo N — 1M
Calibrated configuration
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Ergodic optimization

Minimizing measures:
- A optimization problem: E\(z,y) = E(z,y) — A.(y — )

E(\) = min{/EA(m,y) 7(dz,dy) : m holonomic }
D

D fundamental domain (D =T x R), 7(D) = 1 is normalized,
pri(m) = prZ(w) has same marginals
Rotation number: (or mean spacing)

- If the limit exists
Tp— X
w(l’k)kez = lim =
n—m—+oo N — 1M
Calibrated configuration

- A stronger notion of minimizing configurations which
differentiates F
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Ergodic optimization
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Ergodic optimization
Effective potential and calibrated configurations:

- Effective potential (Chou-Griffiths): A periodic C° function u(z)

{ u(y) + E(\) = ming{u(z) + Ex(z,y)}, Vy (backward)
u(z) + E(A\) = max,{u(y) — Ex(z,y)}, Vz (forward)

(effectif potential = discrete viscosity solution = calibrated solution
= corrector)
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u(z) + E(A\) = max,{u(y) — Ex(z,y)}, Vz (forward)

(effectif potential = discrete viscosity solution = calibrated solution
= corrector)

- Calibrated configurations: A configuration (zy)rez such that

3 u(x) effective potential s.t.
w(@py1) + E(QQ) = u(zr) + Ex(@p, 2x11), VEkEZ
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Effective potential and calibrated configurations:
- Effective potential (Chou-Griffiths): A periodic C° function u(z)

{ u(y) + E(\) = ming{u(z) + Ex(z,y)}, Vy (backward)
u(z) + E(A\) = max,{u(y) — Ex(z,y)}, Vz (forward)

(effectif potential = discrete viscosity solution = calibrated solution
= corrector)

- Calibrated configurations: A configuration (zy)rez such that

3 u(x) effective potential s.t.
w(@py1) + E(QQ) = u(zr) + Ex(@p, 2x11), VEkEZ

Two easy results: -
There always exist effective potentials (but F(\) is unique)
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Ergodic optimization

Effective potential and calibrated configurations:
- Effective potential (Chou-Griffiths): A periodic C° function u(z)

{ u(y) + E(\) = ming{u(z) + Ex(z,y)}, Vy (backward)
u(z) + E(A\) = max,{u(y) — Ex(z,y)}, Vz (forward)

(effectif potential = discrete viscosity solution = calibrated solution

= corrector)

- Calibrated configurations: A configuration (zy)rez such that

3 u(x) effective potential s.t.
w(@py1) + E(QQ) = u(zr) + Ex(@p, 2x11), VEkEZ

Two easy results: -
There always exist effective potentials (but F(\) is unique)
A calibrated configuration is a minimizing configuration

Fouesnant, June 2011 From complex dynamics to ergodic optimization 14/19
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Ergodic optimization
Theorem (Aubry-Mather):
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some F
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- A recurrent minimizing configuration is a calibrated configuration for
some F

- A — E()\)is a C! concave function
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Ergodic optimization
Theorem (Aubry-Mather):

- A recurrent minimizing configuration is a calibrated configuration for
some F

- A — E()\)is a C! concave function

- A recurrent minimizing configuration admits a rotation number

Tn — Tm dE
nem

w = lim
n—m—+oo N — 1M

(for any X which calibrates the configuration)
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Ergodic optimization
Theorem (Aubry-Mather):

- A recurrent minimizing configuration is a calibrated configuration for
some F

- A — E()\)is a C! concave function

- A recurrent minimizing configuration admits a rotation number

Tn — Tm dE
nem

w = lim
n—m—+oo N — 1M

(for any X which calibrates the configuration)
- Let A(w) := {As.t. w = —2E(N\)}, then

Uwegint(A(w)) has full measure

(locking at rational frequencies)
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Ergodic optimization
Theorem (Aubry-Mather):

- A recurrent minimizing configuration is a calibrated configuration for
some F

A — E()\) is a C! concave function

A recurrent minimizing configuration admits a rotation number

Tn — Tm dE
nem

w = lim
n—m—+oo N — 1M

(for any X which calibrates the configuration)
- Let A(w) := {As.t. w = —2E(N\)}, then

Uwegint(A(w)) has full measure

(locking at rational frequencies)

If w € Q, A(w) is reduced to a point: a unique calibrating A
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Ergodic optimization

Phase locking at rational rotation numbers: (the original
Frenkel-Kontorova model)
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Ergodic optimization

Phase locking at rational rotation numbers: (the original
Frenkel-Kontorova model)

1
Exk(z,y) = 3ly =2 = My — ) + 55 (1 - cos(2mz)), K =3

K
()2
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Ergodic optimization

Phase locking at rational rotation numbers: (the original

Frenkel-Kontorova model)

1
Eyk(z,y) = §|y —z’ - Ay —=) +
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Ergodic optimization
_OE(\K)

Phase transition in parameters space (\, K): w= E
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Ergodic optimization

OE(\N, K

Phase transition in parameters space (\, K): w = —%
K

(2m)?

E\k(z,y) = %|y -z - Ay—=z)+ (1 — cos(2mz))
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Ergodic optimization
Phase transition in parameters space (\, K):

L _OE(K)
o oA\
1 K
By k(z,y) = §|Z/ -z’ - Ay—=)+

(2m)?

(1 — cos(2rz))
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Ergodic optimization
Conclusion: How are the three problems related?
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Ergodic optimization
Conclusion: How are the three problems related?
- Discrete dynamics problem: twist map or FK model

Brxe(w,9) = 5y — ol = My = 2) + = (1 — cos(2me))

K
(2m)?
uxk(z) + E(\ K) = Hlyin {urx () + Exx(y,2)}
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Ergodic optimization
Conclusion: How are the three problems related?
- Discrete dynamics problem: twist map or FK model

Bxie(o,y) = gly— 2l — My —2) + %u — cos(2mz))
un k() + E(, K)—IHIH{UAK )+ Exk(y,z)}

e Hamilton-Jacobi problem:

C
(2m)?
Hpco(x, Dupc(z) + P) = H(P,C)

Hpo(z,p) = |p—|—P\2 (1 —cos(27r:1c))
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Ergodic optimization
Conclusion: How are the three problems related?
- Discrete dynamics problem: twist map or FK model

Brxe(w,9) = 5y — ol = My = 2) + = (1 — cos(2me))

.
(2m)?

uy i (z) + E(\, K) = Hlyin {urnx(y) + Ex x(y,2)}
e Hamilton-Jacobi problem:

1
Hpo(z,p) = §|p—|— PP? - 1 — cos(2mz))

ol
(2m)?
Hp7c($, DUP,c(IL') + P) = H(P, C)
o Homogenezation problem: 7, a time discretization
1 - _
fﬁE(TP, 2C) — H(P,C)
1

;UTP,T2C(I) — upc(x)

Fouesnant, June 2011 From complex dynamics to ergodic optimization 18/19



Dynamics of endomorphisms ... Ergodic optimization
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for this conference

many thanks to Artur
for all the mathematics | have learnt
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