Convergence of the Gibbs potential for infinite-range interaction energy in one-dimensional lattices

Philippe Thieullen

Université Bordeaux 1, Institut de Mathématiques

São Paulo, 25 October 2011

São Paulo, 25 October 2011 Zero-temperature Gibbs measures 1/21

1. The general setting 2. The finite-rage case 3. The Hölder case 4. Impro

– Outline –

◆□ > ◆□ > ◆三 > ◆三 > ● □ > ◆○ >

São Paulo, 25 October 2011 Zero-temperature Gibbs measures 2/21

– Outline –

- 1. The general setting
- 2. The finite-range case
- 3. The Hölder (or infinite-range) case: known facts
- 4. Some improvements in the Hölder case

◆ロト ◆昂 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Notations

São Paulo, 25 October 2011 Zero-temperature Gibbs measures 3/21

Notations

- Let (σ, Σ_G) be a (one-sided) subshift of finite type

$$\Sigma_G := \{ (x_0, x_1, \ldots) \in S^{\mathbb{N}} : x_k \xrightarrow{G} x_{k+1} \quad \forall \ k \ge 0 \}$$

 ${\cal G}$ is an irreducible directed graph on a finite alphabet ${\cal S}$

Notations

- Let (σ, Σ_G) be a (one-sided) subshift of finite type

$$\Sigma_G := \{ (x_0, x_1, \ldots) \in S^{\mathbb{N}} : x_k \xrightarrow{G} x_{k+1} \quad \forall \ k \ge 0 \}$$

 ${\boldsymbol{G}}$ is an irreducible directed graph on a finite alphabet ${\boldsymbol{S}}$

- $\sigma: \Sigma_G \to \Sigma_G$ is the left shift

Notations

- Let (σ, Σ_G) be a (one-sided) subshift of finite type

$$\Sigma_G := \{ (x_0, x_1, \ldots) \in S^{\mathbb{N}} : x_k \xrightarrow{G} x_{k+1} \quad \forall \ k \ge 0 \}$$

 ${\boldsymbol{G}}$ is an irreducible directed graph on a finite alphabet ${\boldsymbol{S}}$

- $\sigma: \Sigma_G \to \Sigma_G$ is the left shift
- $H: \Sigma_G \to \mathbb{R}$ is a Hölder continuous interaction energy

Notations

- Let (σ, Σ_G) be a (one-sided) subshift of finite type

$$\Sigma_G := \{ (x_0, x_1, \ldots) \in S^{\mathbb{N}} : x_k \xrightarrow{G} x_{k+1} \quad \forall \ k \ge 0 \}$$

 ${\boldsymbol{G}}$ is an irreducible directed graph on a finite alphabet ${\boldsymbol{S}}$

- $\sigma: \Sigma_G \to \Sigma_G$ is the left shift
- $H: \Sigma_G \to \mathbb{R}$ is a Hölder continuous interaction energy
- β is a parameter (inverse of temperature) $\rightarrow +\infty$

Notations

- Let (σ, Σ_G) be a (one-sided) subshift of finite type

$$\Sigma_G := \{ (x_0, x_1, \ldots) \in S^{\mathbb{N}} : x_k \xrightarrow{G} x_{k+1} \quad \forall \ k \ge 0 \}$$

 ${\boldsymbol{G}}$ is an irreducible directed graph on a finite alphabet ${\boldsymbol{S}}$

- $\sigma: \Sigma_G \to \Sigma_G$ is the left shift
- $H: \Sigma_G \to \mathbb{R}$ is a Hölder continuous interaction energy
- β is a parameter (inverse of temperature) $\rightarrow +\infty$

Gibbs measure at temperature β^{-1}

Notations

- Let (σ, Σ_G) be a (one-sided) subshift of finite type

$$\Sigma_G := \{ (x_0, x_1, \ldots) \in S^{\mathbb{N}} : x_k \xrightarrow{G} x_{k+1} \quad \forall \ k \ge 0 \}$$

 ${\boldsymbol{G}}$ is an irreducible directed graph on a finite alphabet ${\boldsymbol{S}}$

- $\sigma: \Sigma_G \to \Sigma_G$ is the left shift
- $H: \Sigma_G \to \mathbb{R}$ is a Hölder continuous interaction energy
- β is a parameter (inverse of temperature) $\rightarrow +\infty$

Gibbs measure at temperature β^{-1}

- μ_{β} is σ -invariant probability on Σ_G and minimizes the free energy:

$$\bar{H}_{\beta} := -\frac{1}{\beta} \operatorname{Pres}(-\beta H) = \min\left\{\int H \, d\mu - \frac{1}{\beta} \operatorname{Ent}(\mu) : \mu \ \sigma \text{-inv.} \right\}$$

4 The local sector

200

Notations

- Let (σ, Σ_G) be a (one-sided) subshift of finite type

$$\Sigma_G := \{ (x_0, x_1, \ldots) \in S^{\mathbb{N}} : x_k \xrightarrow{G} x_{k+1} \quad \forall \ k \ge 0 \}$$

 ${\boldsymbol{G}}$ is an irreducible directed graph on a finite alphabet ${\boldsymbol{S}}$

- $\sigma: \Sigma_G \to \Sigma_G$ is the left shift
- $H: \Sigma_G \to \mathbb{R}$ is a Hölder continuous interaction energy
- eta is a parameter (inverse of temperature) $ightarrow +\infty$

Gibbs measure at temperature β^{-1}

- μ_{β} is σ -invariant probability on Σ_G and minimizes the free energy:

$$\bar{H}_{\beta} := -\frac{1}{\beta} \operatorname{Pres}(-\beta H) = \min\left\{\int H \, d\mu - \frac{1}{\beta} \operatorname{Ent}(\mu) : \mu \ \sigma \text{-inv.} \right\}$$

- $\operatorname{Ent}(\mu)$ is the entropy of μ :

$$\operatorname{Ent}(\mu) := \lim_{n \to +\infty} \frac{1}{n} \sum_{C_n: \text{ cylinder}} -\mu[C_n] \ln \mu[C_n]$$

São Paulo, 25 October 2011 Zero-temperature Gibbs measures 3/21

- Let's recall
$$\bar{H}_{\beta} = \min \left\{ \int H \, d\mu - \frac{1}{\beta} \text{Ent}(\mu) : \mu \ \sigma \text{-inv.} \right\}$$

- Let's recall $\bar{H}_{\beta} = \min \left\{ \int H \, d\mu \frac{1}{\beta} \text{Ent}(\mu) \; : \; \mu \; \sigma \text{-inv.} \; \right\}$
- Then, as $\beta \to +\infty$, (since $\operatorname{Ent}(\mu)$ is bounded)

$$\bar{H}_{\beta} \rightarrow \bar{H} := \min \left\{ \int \! H \, d\mu \ : \ \mu \text{ is } \sigma \text{-inv.} \ \right\} = \int \! H \, d\mu_{min}$$

- Let's recall $\bar{H}_{\beta} = \min \left\{ \int H \, d\mu \frac{1}{\beta} \text{Ent}(\mu) \; : \; \mu \; \sigma \text{-inv.} \; \right\}$
- Then, as $\beta \to +\infty$, (since $\operatorname{Ent}(\mu)$ is bounded)

$$\bar{H}_\beta \to \bar{H} := \min \Big\{ \int \! H \, d\mu \ : \ \mu \text{ is } \sigma \text{-inv. } \Big\} = \int \! H \, d\mu_{min}$$

 $ar{H}$: the minimizing ergodic value, μ_{min} : minimizing measure

- Let's recall $\bar{H}_{\beta} = \min \left\{ \int H \, d\mu \frac{1}{\beta} \text{Ent}(\mu) \; : \; \mu \; \sigma \text{-inv.} \; \right\}$
- Then, as $\beta \to +\infty$, (since $\operatorname{Ent}(\mu)$ is bounded)

$$\bar{H}_\beta \to \bar{H} := \min \Big\{ \int \! H \, d\mu \ : \ \mu \text{ is } \sigma \text{-inv. } \Big\} = \int \! H \, d\mu_{min}$$

 \bar{H} : the minimizing ergodic value, μ_{min} : minimizing measure - Because the variational problem

$$\min_{p: \text{ probability vector}} \left\{ \sum_{n} \left(H_n p_n + \frac{1}{\beta} p_n \ln p_n \right) \right\}$$

- Let's recall $\bar{H}_{\beta} = \min \left\{ \int H \, d\mu \frac{1}{\beta} \text{Ent}(\mu) \; : \; \mu \; \sigma \text{-inv.} \; \right\}$
- Then, as $\beta \to +\infty$, (since $\operatorname{Ent}(\mu)$ is bounded)

$$\bar{H}_\beta \to \bar{H} := \min \Big\{ \int \! H \, d\mu \ : \ \mu \text{ is } \sigma \text{-inv. } \Big\} = \int \! H \, d\mu_{min}$$

 \bar{H} : the minimizing ergodic value, μ_{min} : minimizing measure - Because the variational problem

$$\min_{p: \text{ probability vector}} \left\{ \sum_{n} \left(H_n p_n + \frac{1}{\beta} p_n \ln p_n \right) \right\}$$

admits a unique minimizer

$$p_n = e^{-\beta H_n} / Z(\beta), \quad Z(\beta) = e^{-\beta \bar{H}} = \sum_n e^{-\beta H_n}$$

- Let's recall $\bar{H}_{\beta} = \min \left\{ \int H \, d\mu \frac{1}{\beta} \text{Ent}(\mu) \; : \; \mu \; \sigma \text{-inv.} \; \right\}$
- Then, as $\beta \to +\infty$, (since $\operatorname{Ent}(\mu)$ is bounded)

$$\bar{H}_{\beta} \rightarrow \bar{H} := \min \left\{ \int \! H \, d\mu \ : \ \mu \text{ is } \sigma \text{-inv.} \ \right\} = \int \! H \, d\mu_{min}$$

 \bar{H} : the minimizing ergodic value, μ_{min} : minimizing measure - Because the variational problem

$$\min_{p: \text{ probability vector}} \left\{ \sum_{n} \left(H_n p_n + \frac{1}{\beta} p_n \ln p_n \right) \right\}$$

admits a unique minimizer

$$p_n = e^{-\beta H_n} / Z(\beta), \quad Z(\beta) = e^{-\beta \bar{H}} = \sum_n e^{-\beta H_n}$$

- the Gibbs measure is unique:

$$\mu_{\beta}[C_n(x)] \asymp \exp\left(-\beta \left[\sum_{k=0}^{n-1} H \circ \sigma^k(x) - n\bar{H}_{\beta}\right]\right)$$

São Paulo, 25 October 2011 Zer

Zero-temperature Gibbs measures 4/21

- Describe the set of minimizing measures, their support

- Describe the set of minimizing measures, their support
- Describe the possible limits of the Gibbs measure μ_{eta}

- Describe the set of minimizing measures, their support
- Describe the possible limits of the Gibbs measure μ_{eta}
- Describe the speed of convergence or the existence of a large deviation principle

- Describe the set of minimizing measures, their support
- Describe the possible limits of the Gibbs measure μ_{eta}
- Describe the speed of convergence or the existence of a large deviation principle

More difficult questions:

- Describe the set of minimizing measures, their support
- Describe the possible limits of the Gibbs measure μ_{eta}
- Describe the speed of convergence or the existence of a large deviation principle

More difficult questions:

- Extends the theory to countable subshifts of finite type (as in Bissacot and dos Santos Freire Jr.)

- Describe the set of minimizing measures, their support
- Describe the possible limits of the Gibbs measure μ_{eta}
- Describe the speed of convergence or the existence of a large deviation principle

More difficult questions:

- Extends the theory to countable subshifts of finite type (as in Bissacot and dos Santos Freire Jr.)
- Extends to higher dimensional lattices and finite-range interactions

- Describe the set of minimizing measures, their support
- Describe the possible limits of the Gibbs measure μ_{eta}
- Describe the speed of convergence or the existence of a large deviation principle

More difficult questions:

- Extends the theory to countable subshifts of finite type (as in Bissacot and dos Santos Freire Jr.)
- Extends to higher dimensional lattices and finite-range interactions
- Construct a thermodynamic formalism for the Frenkel-Kontorova model: $\mu_{\beta}(dx) := \phi_{+}(x)\phi_{-}(x) dx$, $\phi_{\pm}(x) C^{0}$ 1-periodic,

$$\int_0^1 \left[\sum_{k\in\mathbb{Z}} e^{-\beta E(x,y+k)}\right] \phi_+(y) dy = e^{-\beta \bar{E}_\beta} \phi_+(x)$$
$$\int_0^1 \phi_-(x) \left[\sum_{k\in\mathbb{Z}} e^{-\beta E(x-k,y)}\right] dx = e^{-\beta \bar{E}_\beta} \phi_-(y)$$

Theorem

[Brémont 2003, Leplaideur 2005, Chazottes-Gambaudo-Ugalde 2009]

Theorem

[Brémont 2003, Leplaideur 2005, Chazottes-Gambaudo-Ugalde 2009]

For finite-range interaction $H(x) = H(x_0, x_1)$

Theorem

[Brémont 2003, Leplaideur 2005, Chazottes-Gambaudo-Ugalde 2009]

For finite-range interaction $H(x) = H(x_0, x_1)$

- There exists a subshift $\Omega_{GS} \subset \Sigma_G$, $\Omega_{GS} = \Sigma_{G_{GS}}$ is a SFT,

 $x \stackrel{G_{GS}}{\to} y \quad \Longleftrightarrow \quad x \stackrel{G}{\to} y \text{ belongs to a minimizing cycle of } G$

Theorem

[Brémont 2003, Leplaideur 2005, Chazottes-Gambaudo-Ugalde 2009]

For finite-range interaction $H(x) = H(x_0, x_1)$

- There exists a subshift $\Omega_{GS} \subset \Sigma_G$, $\Omega_{GS} = \Sigma_{G_{GS}}$ is a SFT,

 $x \stackrel{G_{GS}}{\to} y \quad \Longleftrightarrow \quad x \stackrel{G}{\to} y \text{ belongs to a minimizing cycle of } G$

- $G_{GS} = G_1 \cup \ldots \cup G_r$ is a semi-irreducible subgraph of G

$$S = S_0 \cup S_1 \cup \ldots \cup S_r, \quad G_i \subset S_i \times S_i$$
$$\Omega_{GS} = \Omega_1 \cup \ldots \cup \Omega_r, \quad \Omega_i = \Sigma_{G_i}$$

Theorem

[Brémont 2003, Leplaideur 2005, Chazottes-Gambaudo-Ugalde 2009]

For finite-range interaction $H(x) = H(x_0, x_1)$

- There exists a subshift $\Omega_{GS} \subset \Sigma_G$, $\Omega_{GS} = \Sigma_{G_{GS}}$ is a SFT,

 $x \stackrel{G_{GS}}{\to} y \quad \Longleftrightarrow \quad x \stackrel{G}{\to} y \text{ belongs to a minimizing cycle of } G$

- $G_{GS} = G_1 \cup \ldots \cup G_r$ is a semi-irreducible subgraph of G

$$S = S_0 \cup S_1 \cup \ldots \cup S_r, \quad G_i \subset S_i \times S_i$$
$$\Omega_{GS} = \Omega_1 \cup \ldots \cup \Omega_r, \quad \Omega_i = \Sigma_G.$$

- μ is minimizing $\quad \Longleftrightarrow \quad \mathrm{supp}(\mu) \subset \Omega_{GS}$

Theorem

[Brémont 2003, Leplaideur 2005, Chazottes-Gambaudo-Ugalde 2009]

For finite-range interaction $H(x) = H(x_0, x_1)$

- There exists a subshift $\Omega_{GS} \subset \Sigma_G$, $\Omega_{GS} = \Sigma_{G_{GS}}$ is a SFT,

 $x \stackrel{G_{GS}}{\to} y \quad \Longleftrightarrow \quad x \stackrel{G}{\to} y \text{ belongs to a minimizing cycle of } G$

- $G_{GS} = G_1 \cup \ldots \cup G_r$ is a semi-irreducible subgraph of G

$$S = S_0 \cup S_1 \cup \ldots \cup S_r, \quad G_i \subset S_i \times S_i$$
$$\Omega_{GS} = \Omega_1 \cup \ldots \cup \Omega_r, \quad \Omega_i = \Sigma_{G_i}$$

- μ is minimizing \iff $\operatorname{supp}(\mu) \subset \Omega_{GS}$

- $\mu_{\beta} \to \mu_{\infty}$ exists, $\operatorname{supp}(\mu_{\infty}) \subset \Omega_{GS}$, $\operatorname{Ent}(\mu_{\infty}) = \operatorname{Ent}(\Omega_{GS})$

Theorem

[Brémont 2003, Leplaideur 2005, Chazottes-Gambaudo-Ugalde 2009]

For finite-range interaction $H(x) = H(x_0, x_1)$

- There exists a subshift $\Omega_{GS} \subset \Sigma_G$, $\Omega_{GS} = \Sigma_{G_{GS}}$ is a SFT,

 $x \stackrel{G_{GS}}{\to} y \quad \Longleftrightarrow \quad x \stackrel{G}{\to} y \text{ belongs to a minimizing cycle of } G$

- $G_{GS} = G_1 \cup \ldots \cup G_r$ is a semi-irreducible subgraph of G

$$S = S_0 \cup S_1 \cup \ldots \cup S_r, \quad G_i \subset S_i \times S_i$$
$$\Omega_{GS} = \Omega_1 \cup \ldots \cup \Omega_r, \quad \Omega_i = \Sigma_{G_i}$$

- μ is minimizing \iff $\operatorname{supp}(\mu) \subset \Omega_{GS}$

- $\mu_{\beta} \to \mu_{\infty}$ exists, $\operatorname{supp}(\mu_{\infty}) \subset \Omega_{GS}$, $\operatorname{Ent}(\mu_{\infty}) = \operatorname{Ent}(\Omega_{GS})$
- μ_∞ is a barycenter of finitely many μ^i_∞

$$\operatorname{Ent}(\mu_i) = \operatorname{Ent}(\Omega_i) = \operatorname{Ent}(\Omega_{GS})$$

- for the free energy $ar{H}_eta$

$$e^{-\beta \bar{H}_{\beta}} = A_0 e^{-\beta a_0} + A_1 e^{-\beta a_1} + \dots \quad a_0 < a_1 < \dots \to +\infty$$
$$A_0 = e^{\operatorname{Ent}(\Omega_{GS})}, \quad a_0 = \bar{H}$$

nac

- for the free energy \bar{H}_{eta}

$$e^{-\beta \bar{H}_{\beta}} = A_0 e^{-\beta a_0} + A_1 e^{-\beta a_1} + \dots \quad a_0 < a_1 < \dots \to +\infty$$
$$A_0 = e^{\operatorname{Ent}(\Omega_{GS})}, \quad a_0 = \bar{H}$$

- In particular, unless ${\boldsymbol{H}}$ is constant modulo a coboundary,

$$\beta(\bar{H}_{\beta} - \bar{H}) + \operatorname{Ent}(\Omega_{GS}) \sim C_1 e^{-\beta c_1}$$
 for some $C_1 < 0$

- for the free energy \bar{H}_{eta}

$$e^{-\beta \bar{H}_{\beta}} = A_0 e^{-\beta a_0} + A_1 e^{-\beta a_1} + \dots \quad a_0 < a_1 < \dots \to +\infty$$
$$A_0 = e^{\operatorname{Ent}(\Omega_{GS})}, \quad a_0 = \bar{H}$$

- In particular, unless ${\boldsymbol{H}}$ is constant modulo a coboundary,

$$\beta(\bar{H}_{\beta} - \bar{H}) + \operatorname{Ent}(\Omega_{GS}) \sim C_1 e^{-\beta c_1}$$
 for some $C_1 < 0$

- for the Gibbs measure μ_{eta} : Markov chain (μ_{eta}, Q_{eta})

$$\mu_{\beta}[x] = B_0(x)e^{-\beta b_0(i)} + B_1(x)e^{-\beta b_1(x)} + \dots, \quad \forall \ x \in S_i$$
Theorem[E. Garibaldi, Ph. Thieullen 2011] The finite-range case as before: we show the existence of Puiseux series expansions:

- for the free energy \bar{H}_{eta}

$$e^{-\beta \bar{H}_{\beta}} = A_0 e^{-\beta a_0} + A_1 e^{-\beta a_1} + \dots \quad a_0 < a_1 < \dots \to +\infty$$
$$A_0 = e^{\operatorname{Ent}(\Omega_{GS})}, \quad a_0 = \bar{H}$$

- In particular, unless ${\boldsymbol{H}}$ is constant modulo a coboundary,

$$\beta(\bar{H}_{\beta} - \bar{H}) + \operatorname{Ent}(\Omega_{GS}) \sim C_1 e^{-\beta c_1}$$
 for some $C_1 < 0$

- for the Gibbs measure μ_{eta} : Markov chain (μ_{eta}, Q_{eta})

$$\mu_{\beta}[x] = B_0(x)e^{-\beta b_0(i)} + B_1(x)e^{-\beta b_1(x)} + \dots, \quad \forall \ x \in S_i$$

- In particular

$$x, y \in S_i \Rightarrow \frac{\mu_\beta[x]}{\mu_\beta[y]} \sim \frac{B_0(x)}{B_0(y)} = \frac{\pi_i(x)}{\pi_i(y)}$$

where (π, Q_i) is the Markov chain of maximal entropy of Ω_i

São Paulo, 25 October 2011 Zero-temperature Gibbs measures 7/21

Two examples:

- Two symbols: H(1,1) = 1, H(2,2) = bH(1,2) = H(2,1) = a
- Possible minimizing ergodic values $\bar{H} \in \{1, a, b\}$
- Three symbols: assume a, a', b, b', c, c' > 0
- Possible minimizing ergodic values $\overline{H} = 0$, cycles of order 1 $\overline{H} \in \{\frac{1}{2}(a + a'), \frac{1}{2}(b + b'), \frac{1}{2}(c + c')\}$ cycles of order 2 $\overline{H} \in \{\frac{1}{3}(a + b' + c), \frac{1}{3}(a' + b + c')\}$ cycles of order 3

イロト 人間ト イヨト イヨト

DQ P

- By assumption $\bar{H} = 0$

◆ロト ◆昂 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

- μ_{eta}

a Markov chain given by (π_{eta}, Q_{eta})

イロト イヨト イヨト イヨト シック

São Paulo, 25 October 2011 Zero-temperature Gibbs measures 9/21

- μ_{β} - $M_{\beta}(x, y) = \exp[-\beta H(x, y)]$ a Markov chain given by (π_β, Q_β) the transfer matrix

イロト イヨト イヨト イヨト シック

São Paulo, 25 October 2011 Zero-temperature Gibbs measures 9/21

- μ_{β}
- $M_{\beta}(x,y) = \exp[-\beta H(x,y)]$
- $L_{\beta}(x)$, $R_{\beta}(x)$

a Markov chain given by (π_{β}, Q_{β}) the transfer matrix the left, right eigenvector

- μ_{β}
- $M_{\beta}(x,y) = \exp[-\beta H(x,y)]$
- $L_{\beta}(x)$, $R_{\beta}(x)$
- $\pi_{\beta}(x) = L_{\beta}(x)R_{\beta}(x)$

a Markov chain given by (π_{β}, Q_{β}) the transfer matrix the left, right eigenvector plus normalization

Sac

- μ_{β} - $M_{\beta}(x, y) = \exp[-\beta H(x, y)]$
- $L_{eta}(x)$, $R_{eta}(x)$
- $\pi_{\beta}(x) = L_{\beta}(x)R_{\beta}(x)$
- $Q_{\beta}(x,y) = R_{\beta}(x)^{-1}M_{\beta}(x,y)R_{\beta}(y)/\lambda_{\beta}$

a Markov chain given by (π_{β}, Q_{β}) the transfer matrix the left, right eigenvector plus normalization $y)/\lambda_{\beta}$ the transition matrix

1

DQ (V

- μ_{β} - $M_{\beta}(x, y) = \exp[-\beta H(x, y)]$ - $L_{\beta}(x), R_{\beta}(x)$
- $\pi_{\beta}(x) = L_{\beta}(x)R_{\beta}(x)$
- $Q_{\beta}(x,y) = R_{\beta}(x)^{-1}M_{\beta}(x,y)R_{\beta}(y)/\lambda_{\beta}$
- $\lambda_{\beta} = \exp(-\beta \bar{H}_{\beta})$

a Markov chain given by (π_{β}, Q_{β}) the transfer matrix the left, right eigenvector plus normalization $g)/\lambda_{\beta}$ the transition matrix the maximal eigenvalue

-

DQ (V

-
$$\mu_{\beta}$$
 a Ma
- $M_{\beta}(x, y) = \exp[-\beta H(x, y)]$
- $L_{\beta}(x), R_{\beta}(x)$
- $\pi_{\beta}(x) = L_{\beta}(x)R_{\beta}(x)$
- $Q_{\beta}(x, y) = R_{\beta}(x)^{-1}M_{\beta}(x, y)R_{\beta}(y)/\lambda_{\beta}$
- $\lambda_{\beta} = \exp(-\beta \bar{H}_{\beta})$

Main lemma: All the quantities λ_{β} , $R_{\beta}(x)/R_{\beta}(y)$, $L_{\beta}(x)/L_{\beta}(y)$ are equivalent to an expression of the form

 $A\exp(-\beta a), \quad A > 0, \quad a \in \mathbb{R}$

-
$$\mu_{\beta}$$
 a Ma
- $M_{\beta}(x, y) = \exp[-\beta H(x, y)]$
- $L_{\beta}(x), R_{\beta}(x)$
- $\pi_{\beta}(x) = L_{\beta}(x)R_{\beta}(x)$
- $Q_{\beta}(x, y) = R_{\beta}(x)^{-1}M_{\beta}(x, y)R_{\beta}(y)/\lambda_{\beta}$
- $\lambda_{\beta} = \exp(-\beta \bar{H}_{\beta})$

Markov chain given by (π_{β}, Q_{β}) the transfer matrix the left, right eigenvector plus normalization λ_{β} the transition matrix the maximal eigenvalue

SOR

Main lemma: All the quantities λ_{β} , $R_{\beta}(x)/R_{\beta}(y)$, $L_{\beta}(x)/L_{\beta}(y)$ are equivalent to an expression of the form

$$A\exp(-\beta a), \quad A > 0, \quad a \in \mathbb{R}$$

We prove actually with E. Garibaldi that all the quantities $A_{\beta} = \lambda_{\beta}$, $L_{\beta}(x)$, $R_{\beta}(x)$ admit a Puiseux series expansion. Let $\epsilon = e^{-\beta}$, then

$$A_{\epsilon} = A_0 \epsilon^{a_0} + A_1 \epsilon^{a_1} + \ldots + A_n \epsilon^{a_n} + A_{n+1} \epsilon^{a_n+1} + \ldots$$
$$a_0 < a_1 < \ldots < a_n, \quad A_i \neq 0$$

Case of 2 symbols:

$$M_{\epsilon} = \begin{bmatrix} \epsilon & \epsilon^a \\ \epsilon^a & \epsilon^b \end{bmatrix}$$

- Each phase is a convex polygon
- On 2D-phase μ_∞ is a periodic orbit
- μ_{∞} may have positive entropy
- μ_{∞} may be a barycenter of two periodic orbits

zero-temperature phase diagram for 2×2 matrix $(\Box) \times (\Box) \times ($

Case of 3 symbols:

$$M_{\epsilon} = \begin{bmatrix} 1 & \epsilon^{a} & \epsilon^{o} \\ \epsilon^{a'} & 1 & \epsilon^{c} \\ \epsilon^{b'} & \epsilon^{c'} & 1 \end{bmatrix}$$
$$a, b, c, a', b, c, c' > 0$$

- For each phase μ_{∞} is a barycenter of periodic orbits
- The coefficients of the barycenter may not be rational

$$-\rho^2 - \rho - 1 = 0$$

 $-\kappa^3 - \kappa - 1 = 0$

- The Hölder case: known facts -

A counter example

São Paulo, 25 October 2011 Zero-temperature Gibbs measures 12/21

◆ロト ◆昂 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

- The Hölder case: known facts -

A counter example

Theorem[Chazottes-Hochman 2010] There exists a compact invariant set $\Omega \subset \Sigma_{\{0,1\}}$ such that, for the specific interaction energy $H(x) = d(x, \Omega)$ (which is Hölder), μ_{β} admits at least 2 accumulation points, as $\beta \to +\infty$

Easy facts: We consider here (Σ_G, σ) an irreducible SFT anf $H : \Sigma_G \to \mathbb{R}$ a Hölder continuous function. We recall the μ_β is the unique σ -inv. measure minimizing

$$\bar{H}_{\beta} = \int H \, d\mu_{\beta} - \frac{1}{\beta} \operatorname{Ent}(\mu_{\beta})$$

nac

Easy facts: We consider here (Σ_G, σ) an irreducible SFT anf $H : \Sigma_G \to \mathbb{R}$ a Hölder continuous function. We recall the μ_β is the unique σ -inv. measure minimizing

$$ar{H}_{eta} = \int H \, d\mu_{eta} - rac{1}{eta} \mathrm{Ent}(\mu_{eta})$$

Proposition: All limit points of μ_{β} are minimizing measure

Easy facts: We consider here (Σ_G, σ) an irreducible SFT anf $H: \Sigma_G \to \mathbb{R}$ a Hölder continuous function. We recall the μ_β is the unique σ -inv. measure minimizing

$$\bar{H}_{\beta} = \int H \, d\mu_{\beta} - \frac{1}{\beta} \operatorname{Ent}(\mu_{\beta})$$

Proposition: All limit points of μ_{β} are minimizing measure **Definition:** μ_{min} is minimizing if

$$\int H \, d\mu_{min} = \min \left\{ \int H \, d\mu \, : \, \mu : \, \sigma \text{-invariant} \right\}$$

The minimizing ergodic value is

$$\bar{H} := \min\left\{\int H \, d\mu \, : \, \mu : \, \sigma \text{-invariant}
ight\}$$

SOR

Easy facts: We consider here (Σ_G, σ) an irreducible SFT anf $H: \Sigma_G \to \mathbb{R}$ a Hölder continuous function. We recall the μ_β is the unique σ -inv. measure minimizing

$$\bar{H}_{\beta} = \int H \, d\mu_{\beta} - \frac{1}{\beta} \operatorname{Ent}(\mu_{\beta})$$

Proposition: All limit points of μ_{β} are minimizing measure **Definition:** μ_{min} is minimizing if

$$\int H \, d\mu_{min} = \min \left\{ \int H \, d\mu \, : \, \mu : \, \sigma \text{-invariant} \right\}$$

The minimizing ergodic value is

$$\bar{H} := \min\left\{\int H \, d\mu \, : \, \mu : \, \sigma \text{-invariant}
ight\}$$

Question: Is it possible to characterize the set Ω_{GS} containing the support of all minimizing measures?

<ロ> <用> <用> < => < => < => < => <000</p>

Proposition: There exists a compact invariant set Ω_{GS} such that

 μ is minimizing \iff $\operatorname{supp}(\mu) \subset \Omega_{GS}$

São Paulo, 25 October 2011 Zero-temperature Gibbs measures 14/21

Proposition: There exists a compact invariant set Ω_{GS} such that

 μ is minimizing \iff $\operatorname{supp}(\mu) \subset \Omega_{GS}$

Definition: Ω_{GS} is called the ground-state configuration set, defined by

$$\begin{split} \Omega_{GS} &:= \Big\{ x \in \Sigma_G : \forall \ \epsilon > 0, \ \exists \ n \ge 1, \ \exists \ z \in \Sigma_G \quad \text{s. t.} \\ d(x,z) < \epsilon, \ d(x,\sigma^n(z)) < \epsilon \ \text{and} \ \Big| \sum_{k=0}^{n-1} [H \circ \sigma^k(z) - \bar{H}] \Big| < \epsilon \Big\}. \end{split}$$

$$\sum_{k=0}^{n-1} H \circ \sigma^k(z) \simeq n\bar{H}$$

イロト イヨト イヨト イヨト シック

São Paulo, 25 October 2011 Zero-temperature Gibbs measures 14/21

Proposition: There exists a compact invariant set Ω_{GS} such that

 μ is minimizing \iff $\operatorname{supp}(\mu) \subset \Omega_{GS}$

Definition: Ω_{GS} is called the ground-state configuration set, defined by

$$\begin{split} \Omega_{GS} &:= \Big\{ x \in \Sigma_G : \forall \ \epsilon > 0, \ \exists \ n \ge 1, \ \exists \ z \in \Sigma_G \ \text{ s. t.} \\ d(x,z) < \epsilon, \ d(x,\sigma^n(z)) < \epsilon \text{ and } \big| \sum_{k=0}^{n-1} [H \circ \sigma^k(z) - \bar{H}] \big| < \epsilon \Big\}. \end{split}$$

Question: Why do we call Ω_{GS} , the set of ground-state configurations?

$$H(x) - V \circ \sigma(x) + V(x) - \bar{H} \ge 0, \quad \forall \ x \in \Sigma_G$$

São Paulo, 25 October 2011 Zero-temperature Gibbs measures 15/21

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ クへぐ

$$H(x) - V \circ \sigma(x) + V(x) - \overline{H} \ge 0, \quad \forall \ x \in \Sigma_G$$

Proposition: Ω_{GS} is the set of ground-state configurations in the sense

$$\begin{cases} \sum_{k=0}^{n-1} H \circ \sigma^k(x) = n\bar{H} + V \circ \sigma^n(x) - V(x), & \forall x \in \Omega_{GS}, & \forall n \ge 1, \\ \sum_{k=0}^{n-1} H \circ \sigma^k(y) \ge n\bar{H} + V \circ \sigma^n(y) - V(y), & \forall y \in \Sigma_G, & \forall n \ge 1. \end{cases}$$

$$H(x) - V \circ \sigma(x) + V(x) - \bar{H} \ge 0, \quad \forall \ x \in \Sigma_G$$

Proposition: Ω_{GS} is the set of ground-state configurations in the sense

$$\begin{cases} \sum_{k=0}^{n-1} H \circ \sigma^k(x) = n\bar{H} + V \circ \sigma^n(x) - V(x), & \forall x \in \Omega_{GS}, & \forall n \ge 1, \\ \sum_{k=0}^{n-1} H \circ \sigma^k(y) \ge n\bar{H} + V \circ \sigma^n(y) - V(y), & \forall y \in \Sigma_G, & \forall n \ge 1. \end{cases}$$

Proposition: [Mañé-Conze-Guivarc'h lemma] If H is Hölder, an effective potential does exist. The existence of a stronger version, called calibrated potential, may be proved

$$V(y) + \bar{H} = \min_{x \in \Sigma_G: \sigma(x) = y} \left[V(x) + H(x) \right]$$

$$H(x) - V \circ \sigma(x) + V(x) - \bar{H} \ge 0, \quad \forall \ x \in \Sigma_G$$

Proposition: Ω_{GS} is the set of ground-state configurations in the sense

$$\begin{cases} \sum_{k=0}^{n-1} H \circ \sigma^k(x) = n\bar{H} + V \circ \sigma^n(x) - V(x), & \forall x \in \Omega_{GS}, \quad \forall n \ge 1, \\ \sum_{k=0}^{n-1} H \circ \sigma^k(y) \ge n\bar{H} + V \circ \sigma^n(y) - V(y), & \forall y \in \Sigma_G, \quad \forall n \ge 1. \end{cases}$$

Proposition: [Mañé-Conze-Guivarc'h lemma] If H is Hölder, an effective potential does exist. The existence of a stronger version, called calibrated potential, may be proved

$$V(y) + \bar{H} = \min_{x \in \Sigma_G: \sigma(x) = y} \left[V(x) + H(x) \right]$$

Theorem:[Morris 2009] Extension to weakly expanding map $f: S^1 \to S^1$ of the form $f(x) = x + x^{1+\alpha} + \ldots$, for $\alpha \in]0, 1[$. For H γ -Hölder, with $\alpha < \gamma$, there exists a calibrated potential V, $(\gamma - \alpha)$ -Hölder. For some α -Hölder H, no continuous effective potential exists

- Recall μ is minimizing iff $\operatorname{supp}(\mu)\subset\Omega_{GS}$

- Recall μ is minimizing iff $\operatorname{supp}(\mu) \subset \Omega_{GS}$
- $\operatorname{supp}(\mu_{\infty}) \subset \Omega_{GS}$, $\operatorname{Ent}(\mu_{\infty}) = \operatorname{Ent}(\Omega_{GS})$

- Recall μ is minimizing iff $\operatorname{supp}(\mu) \subset \Omega_{GS}$
- $\operatorname{supp}(\mu_{\infty}) \subset \Omega_{GS}$, $\operatorname{Ent}(\mu_{\infty}) = \operatorname{Ent}(\Omega_{GS})$

-
$$\bar{H}_{\beta} = -\frac{1}{\beta} \operatorname{Pres}(-\beta H) \to \bar{H}$$
 (the limit exists)

- Recall μ is minimizing iff $\operatorname{supp}(\mu)\subset\Omega_{GS}$
- $\operatorname{supp}(\mu_{\infty}) \subset \Omega_{GS}$, $\operatorname{Ent}(\mu_{\infty}) = \operatorname{Ent}(\Omega_{GS})$
- $\bar{H}_{\beta} = -\frac{1}{\beta} \operatorname{Pres}(-\beta H) \rightarrow \bar{H}$ (the limit exists)
- $\beta(\bar{H}_{\beta} \bar{H}) + \operatorname{Ent}(\Omega_{GS}) \to 0$ (existence of a speed)

- Recall μ is minimizing iff $\operatorname{supp}(\mu)\subset\Omega_{GS}$
- $\operatorname{supp}(\mu_{\infty}) \subset \Omega_{GS}$, $\operatorname{Ent}(\mu_{\infty}) = \operatorname{Ent}(\Omega_{GS})$
- $\bar{H}_{\beta} = -\frac{1}{\beta} \operatorname{Pres}(-\beta H) \to \bar{H}$ (the limit exists)
- $\beta(\bar{H}_{\beta} \bar{H}) + \operatorname{Ent}(\Omega_{GS}) \to 0$ (existence of a speed)
- $\operatorname{Ent}(\mu_{\beta}) \to \operatorname{Ent}(\Omega_{GS})$ exists

- Recall μ is minimizing iff $\operatorname{supp}(\mu)\subset\Omega_{GS}$
- $\operatorname{supp}(\mu_{\infty}) \subset \Omega_{GS}$, $\operatorname{Ent}(\mu_{\infty}) = \operatorname{Ent}(\Omega_{GS})$
- $\bar{H}_{\beta} = -\frac{1}{\beta} \operatorname{Pres}(-\beta H) \to \bar{H}$ (the limit exists)
- $\beta(\bar{H}_{\beta} \bar{H}) + \operatorname{Ent}(\Omega_{GS}) \to 0$ (existence of a speed)
- $\operatorname{Ent}(\mu_{\beta}) \to \operatorname{Ent}(\Omega_{GS})$ exists

Theorem:[Morris 2009] If Ω_{GS} has zero topological entropy, then for some constants C,c>0

$$C_1 \exp(-\beta c_1) \le \bar{H}_\beta - \bar{H} \le 0$$

- Recall μ is minimizing iff $\operatorname{supp}(\mu)\subset\Omega_{GS}$
- $\operatorname{supp}(\mu_{\infty}) \subset \Omega_{GS}$, $\operatorname{Ent}(\mu_{\infty}) = \operatorname{Ent}(\Omega_{GS})$
- $\bar{H}_{\beta} = -\frac{1}{\beta} \operatorname{Pres}(-\beta H) \to \bar{H}$ (the limit exists)
- $\beta(\bar{H}_{\beta} \bar{H}) + \operatorname{Ent}(\Omega_{GS}) \to 0$ (existence of a speed)
- $\operatorname{Ent}(\mu_{\beta}) \to \operatorname{Ent}(\Omega_{GS})$ exists

Theorem:[Morris 2009] If Ω_{GS} has zero topological entropy, then for some constants C,c>0

$$C_1 \exp(-\beta c_1) \le \bar{H}_\beta - \bar{H} \le 0$$

recall that in the finite-range case

$$C_1 \exp(-\beta c_1) \le \beta(\bar{H}_\beta - \bar{H}) + \operatorname{Ent}(\Omega_{GS}) \le 0$$

São Paulo, 25 October 2011 Zero-temperature Gibbs measures 16/21

- Recall μ is minimizing iff $\operatorname{supp}(\mu)\subset\Omega_{GS}$
- $\operatorname{supp}(\mu_{\infty}) \subset \Omega_{GS}$, $\operatorname{Ent}(\mu_{\infty}) = \operatorname{Ent}(\Omega_{GS})$
- $\bar{H}_{\beta} = -\frac{1}{\beta} \operatorname{Pres}(-\beta H) \to \bar{H}$ (the limit exists)
- $\beta(\bar{H}_{\beta} \bar{H}) + \operatorname{Ent}(\Omega_{GS}) \to 0$ (existence of a speed)
- $\operatorname{Ent}(\mu_{\beta}) \to \operatorname{Ent}(\Omega_{GS})$ exists

Theorem:[Morris 2009] If Ω_{GS} has zero topological entropy, then for some constants C,c>0

$$C_1 \exp(-\beta c_1) \le \bar{H}_\beta - \bar{H} \le 0$$

recall that in the finite-range case

$$C_1 \exp(-\beta c_1) \le \beta(\bar{H}_\beta - \bar{H}) + \operatorname{Ent}(\Omega_{GS}) \le 0$$

Corollary: If Ω_{GS} has a unique measure μ_{min} of maximal entropy, then $\mu_\beta \to \mu_{min}$ exists

Proposition Another case where $\mu_{\beta} \rightarrow \mu_{min}$:

São Paulo, 25 October 2011 Zero-temperature Gibbs measures 17/21

◆ロト ◆昂 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで
Proposition Another case where $\mu_{\beta} \rightarrow \mu_{min}$:

- For generic H in the sense of Baire category for Hölder functions, there is a unique minimizing measure μ_{min} and therefore $\mu_{\beta} \rightarrow \mu_{min}$

Proposition Another case where $\mu_{\beta} \rightarrow \mu_{min}$:

- For generic H in the sense of Baire category for Hölder functions, there is a unique minimizing measure μ_{min} and therefore $\mu_{\beta} \rightarrow \mu_{min}$
- (Conjecture: Contreras) For generic H, μ_{min} is a periodic orbit

Sac

Proposition Another case where $\mu_{\beta} \rightarrow \mu_{min}$:

- For generic H in the sense of Baire category for Hölder functions, there is a unique minimizing measure μ_{min} and therefore $\mu_{\beta} \rightarrow \mu_{min}$
- (Conjecture: Contreras) For generic H, μ_{min} is a periodic orbit

Proposition[Baraviera-Lopes-Thieullen 2006] If μ_{min} is unique, then μ_{β} satisfies a large deviation principle

$$\frac{1}{\beta} \ln \mu_{\beta}(C) \to -\inf_{C} I$$

- C is any cylinder
- $I(x) = \sum_{k \ge 0} [H V \circ \sigma + V \bar{H}] \circ \sigma^k(x)$ is l.s.c.
- V is any calibrated effective potential

Theorem: [Ruelle-Perron-Frobenius Theory]

Theorem: [Ruelle-Perron-Frobenius Theory]

- $\mu_{\beta} = \Phi_{\beta} \nu_{\beta}$

São Paulo, 25 October 2011 Zero-temperature Gibbs measures 18/21

Theorem: [Ruelle-Perron-Frobenius Theory]

- $\mu_{\beta} = \Phi_{\beta} \nu_{\beta}$
- Φ_{eta} , u_{eta} are the right and left eigenvectors of \mathcal{L}_{eta}

Theorem: [Ruelle-Perron-Frobenius Theory]

-
$$\mu_{\beta} = \Phi_{\beta} \nu_{\beta}$$

- Φ_{β} , ν_{β} are the right and left eigenvectors of \mathcal{L}_{β}
- $\mathcal{L}_eta \Phi_eta = \lambda \Phi_eta$, $\mathcal{L}^*_eta
 u_eta = \lambda
 u_eta$

Theorem: [Ruelle-Perron-Frobenius Theory]

-
$$\mu_{\beta} = \Phi_{\beta} \nu_{\beta}$$

- Φ_{β} , ν_{β} are the right and left eigenvectors of \mathcal{L}_{β}

- $\mathcal{L}_{eta} \Phi_{eta} = \lambda \Phi_{eta}$, $\mathcal{L}^*_{eta} \nu_{eta} = \lambda \nu_{eta}$

Question: What is the limite behavior of Φ_{β} ?

Theorem: [Ruelle-Perron-Frobenius Theory]

-
$$\mu_{\beta} = \Phi_{\beta} \nu_{\beta}$$

- Φ_{β} , ν_{β} are the right and left eigenvectors of \mathcal{L}_{β}

-
$$\mathcal{L}_eta \Phi_eta = \lambda \Phi_eta$$
 , $\mathcal{L}^*_eta
u_eta = \lambda
u_eta$

Question: What is the limite behavior of Φ_{β} ?

Normalization: $\Phi_{\beta} = \exp(-\beta V_{\beta}), \quad \lambda_{\beta} = \exp(-\beta \bar{H}_{\beta})$

Theorem: [Ruelle-Perron-Frobenius Theory]

-
$$\mu_{\beta} = \Phi_{\beta} \nu_{\beta}$$

- Φ_{β} , ν_{β} are the right and left eigenvectors of \mathcal{L}_{β}

-
$$\mathcal{L}_eta \Phi_eta = \lambda \Phi_eta$$
 , $\mathcal{L}^*_eta
u_eta = \lambda
u_eta$

Question: What is the limite behavior of Φ_{β} ?

Normalization: $\Phi_{\beta} = \exp(-\beta V_{\beta}), \quad \lambda_{\beta} = \exp(-\beta \overline{H}_{\beta})$ The transfert operator becomes

$$\sum_{x:\sigma(x)=y} \exp -\beta \left[H(x) - \bar{H}_{\beta} - V_{\beta} \circ (x) + V_{\beta}(x) \right] = 1, \quad \forall y \in \Sigma_G$$

Theorem: [Ruelle-Perron-Frobenius Theory]

-
$$\mu_{\beta} = \Phi_{\beta} \nu_{\beta}$$

- Φ_{β} , ν_{β} are the right and left eigenvectors of \mathcal{L}_{β}

-
$$\mathcal{L}_eta \Phi_eta = \lambda \Phi_eta$$
 , $\mathcal{L}^*_eta
u_eta = \lambda
u_eta$

Question: What is the limite behavior of Φ_{β} ?

Normalization: $\Phi_{\beta} = \exp(-\beta V_{\beta}), \quad \lambda_{\beta} = \exp(-\beta \overline{H}_{\beta})$ The transfert operator becomes

$$\sum_{x:\sigma(x)=y} \exp -\beta \left[H(x) - \bar{H}_{\beta} - V_{\beta} \circ (x) + V_{\beta}(x) \right] = 1, \quad \forall y \in \Sigma_G$$

Let V_∞ any limit point of $V_\beta,$ then V_∞ is calibrated

$$\min_{x:\sigma(x)=y} \left[H(x) - \bar{H} - V_{\infty} \circ \sigma(x) + V_{\infty}(x) \right] = 0, \quad \forall \ y \in \Sigma_G$$

São Paulo, 25 October 2011 Zero-temperature Gibbs measures 18/21

How to characterize V_{∞} ? We have seen that any such a V_{∞} is calibrated:

$$V_{\infty}(y) + \bar{H} = \min_{x \in \Sigma_G: \sigma(x) = y} \left[V_{\infty}(x) + H(x) \right]$$

São Paulo, 25 October 2011 Zero-temperature Gibbs measures 19/21

How to characterize V_{∞} ? We have seen that any such a V_{∞} is calibrated:

$$V_{\infty}(y) + \bar{H} = \min_{x \in \Sigma_G: \sigma(x) = y} \left[V_{\infty}(x) + H(x) \right]$$

Definition: [Mather-Peierls barrier] Let $x, y \in \Sigma_G$

$$h(x,y) := \lim_{\epsilon \to 0} \liminf_{n \to +\infty} S_n^{\epsilon}(x,y),$$

where

$$S^\epsilon_n(x,y):=\inf\Big\{\sum_{k=0}^{n-1}(H-\bar{H})\circ\sigma^k(z)\ :\ d(z,x)<\epsilon\ \text{ and }\ d(\sigma^n(z),y)<\epsilon\Big\}.$$

 \equiv

nac

How to characterize V_{∞} ? We have seen that any such a V_{∞} is calibrated:

$$V_{\infty}(y) + \bar{H} = \min_{x \in \Sigma_G: \sigma(x) = y} \left[V_{\infty}(x) + H(x) \right]$$

Definition: [Mather-Peierls barrier] Let $x, y \in \Sigma_G$

$$h(x,y) := \lim_{\epsilon \to 0} \liminf_{n \to +\infty} S_n^{\epsilon}(x,y),$$

where

$$S^\epsilon_n(x,y):=\inf\Big\{\sum_{k=0}^{n-1}(H-\bar{H})\circ\sigma^k(z)\ :\ d(z,x)<\epsilon\ \text{ and }\ d(\sigma^n(z),y)<\epsilon\Big\}.$$

Proposition For any $x \in \Omega_{GS}$, h(x, .) is calibrated

Theorem: [Contreras,Lopes-Garibaldi] If V is calibrated then

São Paulo, 25 October 2011 Zero-temperature Gibbs measures 20/21

◆ロト ◆昂 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Theorem:[Contreras,Lopes-Garibaldi] If V is calibrated then - For any $x \in \Sigma_G$

$$V(x) = \min_{p \in \Omega_{GS}} \left\{ V(p) + h(p, x) \right\}$$

(V is uniquely determined by $V|\Omega_{GS}$)

Theorem:[Contreras,Lopes-Garibaldi] If V is calibrated then - For any $x \in \Sigma_G$

$$V(x) = \min_{p \in \Omega_{GS}} \left\{ V(p) + h(p, x) \right\}$$

(V is uniquely determined by $V|\Omega_{GS}$)

- If $\phi:\Omega_{GS}\rightarrow \mathbb{R}$ satisfies $\phi(y)-\phi(x)\leq h(x,y),$ then

$$V(x) := \min_{p \in \Omega_{GS}} \left\{ \phi(p) + h(p, x) \right\}$$

is a calibrated potential V is parametrized by these ϕ)

Theorem:[Contreras,Lopes-Garibaldi] If V is calibrated then - For any $x \in \Sigma_G$

$$V(x) = \min_{p \in \Omega_{GS}} \left\{ V(p) + h(p, x) \right\}$$

(V is uniquely determined by $V|\Omega_{GS}$)

- If $\phi:\Omega_{GS}\to\mathbb{R}$ satisfies $\phi(y)-\phi(x)\leq h(x,y)$, then

$$V(x) := \min_{p \in \Omega_{GS}} \left\{ \phi(p) + h(p, x) \right\}$$

is a calibrated potential V is parametrized by these ϕ)

Question Can we find a minimizer p_0 independent of x? Is there a unique calibrated V up to the value $V(p_0)$ for some fixed $p_0 \in \Omega_{GS}$?

<ロ> <用> <用> < => < => < => < => <000</p>

◆ロト ◆昂 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

- Let
$$x, y \in \Omega_{GS}$$
, $x \sim y \iff h(x, y) + h(y, x) = 0$

São Paulo, 25 October 2011 Zero-temperature Gibbs measures 21/21

- Let $x, y \in \Omega_{GS}$, $x \sim y \iff h(x, y) + h(y, x) = 0$
- equivalent classes are called irreducible components

- Let $x, y \in \Omega_{GS}$, $x \sim y \iff h(x, y) + h(y, x) = 0$
- equivalent classes are called irreducible components

Proposition If Ω_{GS} is irreducible and V is calibrated, then V is unique in a projective sense

$$V(x) = V(p) + h(p, x), \quad \forall \ x \in \Sigma_G, \ \forall \ p \in \Omega_{GS}$$

 $(\Omega_{GS} \text{ may have many minimizing measures with maximal topological entropy})$

- Let $x, y \in \Omega_{GS}$, $x \sim y \iff h(x, y) + h(y, x) = 0$
- equivalent classes are called irreducible components

Proposition If Ω_{GS} is irreducible and V is calibrated, then V is unique in a projective sense

$$V(x) = V(p) + h(p, x), \quad \forall \ x \in \Sigma_G, \ \forall \ p \in \Omega_{GS}$$

(Ω_{GS} may have many minimizing measures with maximal topological entropy)

New result[Garibaldi-Thieullen] If $\Omega_{GS} = \Omega_0 \cup \Omega_1 \cup \ldots \cup \Omega_r$ is a finite disjoint union of irreducible components so that Ω_0 has the largest topological entropy and all other Ω_i has a lower topological entropy, then for any fixed $p \in \Omega_0$

$$V_{\beta}(x) - V_{\beta}(p) \to h(p, x)$$
 uniformly in x