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- Let (0,3¢) be a (one-sided) subshift of finite type

Yq:={(xo,x1,...) € SN oag LA g1 V k >0}
G is an irreducible directed graph on a finite alphabet S
- 0:YXqg — X¢ is the left shift

- H :¥c — R is a Holder continuous interaction energy
- [ is a parameter (inverse of temperature) — +oo

Gibbs measure at temperature 57!
- pg is o-invariant probability on X and minimizes the free energy:

Hg = —%Pres(—ﬁH) = min { /H dyp — %Ent(u) : p oo-inv. }

- Ent(u) is the entropy of u:

Ent(p) := lim 1 Z —u[Cr] In u[Ch]

n—4oco n
C,,: cylinder
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- Then, as 8 — +oo,  (since Ent(u) is bounded)

ﬁgﬁﬁ::min{/]{du : pis o-inv. }:/Hdumm

H: the minimizing ergodic value, fi;nin: Minimizing measure
- Because the variational problem

min {Z (ann + %pn lnpn) }

p: probability vector
admits a unique minimizer

pn=e P Z(B), Z(8) =P =3 enPi

- the Gibbs measure is unique:
n—1
a[Ca(@)) = exp (= B[S H o 0" (w) —nHy) )
k=0
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Some realistic questions: By freezing the system as 0 — +oo
- Describe the set of minimizing measures, their support
- Describe the possible limits of the Gibbs measure 13

- Describe the speed of convergence or the existence of a large
deviation principle
More difficult questions:

- Extends the theory to countable subshifts of finite type (as in
Bissacot and dos Santos Freire Jr.)

- Extends to higher dimensional lattices and finite-range interactions

- Construct a thermodynamic formalism for the Frenkel-Kontorova
model:  pg(dz) = ¢y (z)p_(z)dz, ¢+(x) C° 1-periodic,

/ [ emsmev ] g, )y = e 056, ()

kEZ

/ 6 ( ZefﬁE(x ky)}dx_efﬁEﬁ(ﬁ ()

keZ
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For finite-range interaction H(x) = H(x, 1)
- There exists a subshift Qgs C Xa, Qag = Xags is a SFT,

x %o Yy = = A y belongs to a minimizing cycle of G

- Ggs = G1 U...UG, is a semi-irreducible subgraph of G

S=5USU...Uus,, G;CS;x5;
Qas =N U...UQ,, Qi:ZGi

- pis minimizing <= supp(u) C Qgs
- 1 = foo €Xists,  sUPpP(fieo) C Qas, Ent(pee) = Ent(Qes)
- Moo is @ barycenter of finitely many pl

Ent(p;) = Ent(€;) = Ent(Qgs)
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e PHs — Age P 4 Aje™P 4 gy <a;<...— 40

Ay = eEnt(ch)7 ap=H
- In particular, unless H is constant modulo a coboundary,
B(Hs — H) + Ent(Qgs) ~ Cre Pt for some C; <0
- for the Gibbs measure pg: Markov chain (ug, Qg)

palz] = Bo(x)e Po® 4 By (z)e™ 1@ 4 vzes;

In particular

_ mplr]  Bo(z) _ mi(x)
Ty €5 = palyl  Boly)  mi(y)

where (7, Q;) is the Markov chain of maximal entropy of §2;
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Two examples:

a

Séo Paulo, 25 October 2011

Two symbols:

H(1,1)=1, H(2,2)=b
H(1,2)=H(2,1)=a

Possible minimizing ergodic values
He{l,a,b}

Three symbols:
assume a,a’, b, b, ¢,/ >0

Possible minimizing ergodic values
H=0, cycles of order 1

A e {fa+a),40+V),Le+))
cycles of order 2

He{i(a+b +c),5(d +b+c)}
cycles of order 3

By assumption H =0
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S a Markov chain given by (73, @3)
- Mg(z,y) = exp[—FH(z,y)] the transfer matrix
- Lg(x), Ra(x) the left, right eigenvector
- mg(x) = Lg(x)Ra(x) plus normalization
- Qp(z,y) = Rg(x) " *Ms(z,y)Rs(y)/ s the transition matrix
- A\g = exp(—BHp) the maximal eigenvalue

Main lemma: All the quantities A3, Rg(z)/Rg(y), Lg(x)/Ls(y) are
equivalent to an expression of the form

Aexp(—fa), A>0, a€R

We prove actually with E. Garibaldi that all the quantities Ag = Ag,
Ls(z), Rg(x) admit a Puiseux series expansion. Let e = ¢~”, then

Ac = Age™ + Are™ + ..+ Ape® + Ay et
ag < ap <...<dap, AZ;AO
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Case of 2 symbols:

’ =@

Imprc

- Each phase is a
convex polygon

- On 2D-phase
oo IS @ periodic
orbit

- lso May have
positive entropy

- oo May be a

barycenter of two
periodic orbits

>

a

zero-temperature phase diagram for 2x2 matrix

Séo Paulo, 25 October 2011
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Case of 3 symbols:

I P P AL 1 e ¢
: H_r1 11 ] u”:[o o
Mm_[;JE;; v © 12 a’ c
& M, = |e 1 e
_ (c+c)2 Vi" 7 b/ C,
h=1+pe +... 5 no= 1t ez, € € 1
H 5
w=[1,p,1]/(2+p) H_
© w=[1,1+%,1+x]/(3+2x) 711
a,b,c,a’,b ¢, >0

<|

A =1+Kke +...
w=[1+1%,1+x,1]/(3+2k)

- For each phase

A =l1+et.. § 777777 (cte)2<b .
w=[tiol| & by ; oo IS @
14
= D= ly2 ey barycenter of
= TTpet S W=y periodic orbits
H L H
w.=[p.1,1)(2+p) ¥ ‘ . .
: - The coefficients
,,,,,,,,, _ b
s/ g iR of the barycenter
: w=[1+1%,1,1+%])/(3+2x) a
‘ ‘ ‘ - may not be
7% < (cte)2 <€ o ti |
© A=14+V2€+ .., A=l+e+.. rationa
wo=[2 Lt uz=[t0.4] P2 —p—1=0
zero-temperature phase diagram for 3x3 matrix -k —k—-1=0
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— The Holder case: known facts —

A counter example

Theorem[Chazottes-Hochman 2010] There exists a compact invariant
set () C Xyo,1y such that, for the specific interaction energy

H(z) = d(z, ) (which is Holder), 113 admits at least 2 accumulation
points, as  — 400
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Easy facts: We consider here (X, 0) an irreducible SFT anf
H : ¥¢ — R a Holder continuous function. We recall the g is the
unique o-inv. measure minimizing

_ 1
Hp = /Hd/w - BEnt(/w)

Proposition: All limit points of ;15 are minimizing measure
Definition: fi,,,;, is minimizing if

/H dpmin, = min { /H TR T U—invariant}
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H : ¥¢ — R a Holder continuous function. We recall the g is the
unique o-inv. measure minimizing

_ 1
Hp = /Hd/w - BEnt(/w)

Proposition: All limit points of ;15 are minimizing measure
Definition: fi,,,;, is minimizing if

/H dpmin, = min { /H TR T U—invariant}
The minimizing ergodic value is

H .= min{/Hd,u TS a—invariant}

Question: Is it possible to characterize the set Qg containing the
support of all minimizing measures?
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Proposition: There exists a compact invariant set (g such that
1 is minimimizing <= supp(u) C Qgs
Definition: ;g is called the ground-state configuration set, defined by

QGS;:{xezg;ve>o, An>1,32ze% s t.

n—1

d(z,z) <€, d(z,0™(2)) < e and | Z[H oo®(z) — H]| < e}.
k=0
o—>0
/"(Z) n—1
o: ZHoak(z):n}_I
* o k=0
.\.
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1 is minimimizing <= supp(u) C Qgs

Definition: ;g is called the ground-state configuration set, defined by

QGS;:{xezg;ve>o, An>1,32ze% s t.

d(z,z) <€, d(z,0™(2)) < e and | z_:[Hook(z) - H]| < e}.

k=0

o—>o

SN

o: ZHoak(z):n}_I
.<\.

Question: Why do we call Q¢gg, the set of ground-state configurations?
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Definition: An effective potential (sub-action), V : ¥¢ — R
H(z)—Voo(z)+V(z)—H>0, VzeXg

Proposition: Q)¢ is the set of ground-state configurations in the sense

{ roHook(z)=nH+ Voo (z)-V(z), YVzecQgs, Yn>1,

Z;éHon(y)znﬁ—l—Voa”(y)—V(y), VyeXg, Vn>1.
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Definition: An effective potential (sub-action), V : ¥¢ — R
H(z)—Voo(z)+V(z)—H>0, VzeXg

Proposition: Q)¢ is the set of ground-state configurations in the sense

Z;éHOUk(ff):”?‘FVOUR(»T)—V(@» VaeQgs, Vn>1,
roHoo"(y)>nH+Voo™(y)-V(y), VYyelg, Vn>L

Proposition: [Mafié-Conze-Guivarc’h lemma] If H is Holder, an
effective potential does exist. The existence of a stronger version, called

calibrated potential, may be proved

Viy)+ H = min [V(x) + H(x)]

z€Xg:o(x)=y
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Proposition: Q)¢ is the set of ground-state configurations in the sense

Z;éHOUk(ff):”?‘FVOUR(»T)—V(@» VaeQgs, Vn>1,
roHoo"(y)>nH+Voo™(y)-V(y), VYyelg, Vn>L

Proposition: [Mafié-Conze-Guivarc’h lemma] If H is Holder, an
effective potential does exist. The existence of a stronger version, called
calibrated potential, may be proved

Viy)+ H = min [V(z) + H(z)]

z€Xg:o(x)=y

Theorem:[Morris 2009] Extension to weakly expanding map
f: 81 — St of the form f(z) =z + 2!t + ..., for a €]0,1[. For H
~v-Holder, with o < 7, there exists a calibrated potential V,
(v — a)-Holder. For some a-Hdlder H, no continuous effective potential
exists
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- Hp = —4Pres(—fH) — H  (the limit exists)
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Theorem:[Morris 2009] If Q¢ s has zero topological entropy, then for
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Proposition: A better characterization of pi. Let pio be a weak limit
of some subsequence of g then

- Recall p is minimizing iff supp(u) C Qgs

- supp(foo) C Nas, Ent(us) = Ent(Qgs)

- Hy = —4Pres(—BH) — H  (the limit exists)

- B(Hg — H) + Ent(Qgs) — 0 (existence of a speed)

- Ent(pg) — Ent(Qqg) exists
Theorem:[Morris 2009] If Q¢ s has zero topological entropy, then for
some constants C,c > 0

Cy exp(—fcy) < Hg —H<O0

recall that in the finite-range case

Crexp(—pec1) < B(Hs — H) + Ent(Qgs) <0
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Proposition: A better characterization of pi. Let pio be a weak limit
of some subsequence of g then

- Recall p is minimizing iff supp(u) C Qgs

- supp(foo) C Nas, Ent(us) = Ent(Qgs)

- Hp = —4Pres(—fH) — H  (the limit exists)

- B(Hg — H)+ Ent(Qgs) — 0  (existence of a speed)
- Ent(pg) — Ent(Qqg) exists

Theorem:[Morris 2009] If Q¢ s has zero topological entropy, then for
some constants C,c > 0

Cy exp(—fcy) < Hg —H<O0
recall that in the finite-range case
Crexp(—pec1) < B(Hs — H) + Ent(Qgs) <0

Corollary: If Qgg has a unique measure fi,,,;, of maximal entropy, then
18 — Lmin €Xists
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1. The general setting 2. The finite-rage case 3. The Hdlder case 4. Imprc

Proposition Another case where pg — tmin:

- For generic H in the sense of Baire category for Holder functions,
there is a unique minimizing measure i, and therefore 113 — fmin

- (Conjecture: Contreras) For generic H, [tin is a periodic orbit
J g H

Proposition[Baraviera-Lopes-Thieullen 2006] If fi,,:y, is unique, then pg
satisfies a large deviation principle
1

3 In pug(C) — 7ilcl'fI

- C'is any cylinder
- I(x) =3 5o —Voo+V - H]oo*(z) isls.c.
- V is any calibrated effective potential
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- hp = Pprp
- @3, vg are the right and left eigenvectors of Lg
= Lg@lg = )\(135 , L%I/ﬁ = )\l/g
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— Some improvements in the Holder case —

Theorem:[Ruelle-Perron-Frobenius Theory]

- kg = Dpvp
- @3, vg are the right and left eigenvectors of Lg
= Lg@lg = )\(135 , LEV[; = )\l/g

Question: What is the limite behavior of ®3?

Normalization: ®5 = exp(—3Vj3), Ag = exp(—[Hp)
The transfert operator becomes

Z exp—B[H(z) — Hg — Vgo (z) + Va(x)] =1, Vye ¢
z:o(z)=y

Let Vo any limit point of V3, then V is calibrated

min [H(z) — H — Vi oo(z) + Ve(z)] =0, Vye€Sg

z:o(z)=y
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How to characterize V.7 We have seen that any such a V. is
calibrated:

Voo(y) + H = min (Voo (z) + H()]

z€Xg:o(x)=y
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How to characterize V,,? We have seen that any such a V. is
calibrated:

Voly) + H= _ min _ [Veo(z) + H(z)]

Definition: [Mather-Peierls barrier] Let x,y € Y

h(z,y) := lim liminf S} (z,y),

e—0 n—-+4oo

where

i
L

SE(z,y) == inf{ (H—H)oo*(2) : d(z,2) < e and d(o"(2),y) < e}.
0

b
Il
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How to characterize V,,? We have seen that any such a V. is
calibrated:

Voo(y) + H = min (Voo (z) + H()]

z€Xg:o(x)=y
Definition: [Mather-Peierls barrier] Let x,y € Y

h(z,y) := lim liminf S} (z,y),

e—0 n—-+4oo

where

i
L

SE(z,y) == inf{ (H—H)oo*(2) : d(z,2) < e and d(o"(2),y) < e}.
0

b
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Proposition For any = € Qgg, h(x,.) is calibrated
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Theorem:[Contreras,Lopes-Garibaldi] If V' is calibrated then
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V(z) = min {V(p) + h(p, x)}
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Theorem:[Contreras,Lopes-Garibaldi] If V' is calibrated then
- For any z € ¥¢g

V(z) = min {V(p)+ h(p,z)}

pEQas

(V is uniquely determined by V|Qas)
- If ¢ : Qs — R satisfies ¢(y) — ¢(x) < h(z,y), then

Vix) := HllIl {gb + h(p, )}

is a calibrated potential V' is parametrized by these ¢)
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Theorem:[Contreras,Lopes-Garibaldi] If V' is calibrated then
- For any z € ¥¢g

V(z) = min {V(p) + h(p, x)}

pEQas

(V is uniquely determined by V|Qas)
- If ¢ : Qs — R satisfies ¢(y) — ¢(x) < h(z,y), then

V(z):= min {¢(p)+ h(p, )}

pEQas

is a calibrated potential V' is parametrized by these ¢)

Question Can we find a minimizer py independent of z7? Is there a
unique calibrated V' up to the value V(pg) for some fixed py € Qgs?
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Definition Equivalence relation on Qgg
- Letz,y € Qgs, z~y < h(z,y)+h(y,z) =0
- equivalent classes are called irreducible components

Proposition If Qg is irreducible and V' is calibrated, then V' is unique
in a projective sense

V(IL’) = V(p) + h(p7 ZL’), Ve EGa v pE QGS

(2¢s may have many minimizing measures with maximal topological
entropy)
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Definition Equivalence relation on Qgg
- Letz,y € Qgs, z~y < h(z,y)+h(y,z) =0
- equivalent classes are called irreducible components

Proposition If Qg is irreducible and V' is calibrated, then V' is unique
in a projective sense
V(IL’) = V(p) + h(p7 ZL’), Ve EGa v pE QGS

(2¢s may have many minimizing measures with maximal topological
entropy)

New result[Garibaldi-Thieullen] If Qgs = Qo UQ; U...UQ, is a finite
disjoint union of irreducible components so that €2y has the largest
topological entropy and all other €2; has a lower topological entropy, then
for any fixed p € Qg

Va(z) — Va(p) — h(p,x) uniformly in z

Séo Paulo, 25 October 2011 Zero-temperature Gibbs measures  21/21



	The general setting
	The finite-range case
	The Hölder case: known facts
	-- Some improvements in the Hölder case --

