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I. Different notions of hyperbolicity

• Hyperbolicity in the sense of Sacker-Sell

• Hyperbolicity in the sense of domination

• Hyperbolidity in the sense of singular value
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Abstract framework

• We consider a nonautonomous linear differential equations

v̇ = L(t)v, ∀t ∈ R

where v(t) ∈ X, Banach space, L(t) ∈ B(X) bounded linear
operator continuous in t ∈ R for the norm topology

• the fundamental solution A(s, t) ∈ B(X) solves{
∂
∂tA(s, t) = L(s+ t)A(s, t), ∀t ≥ 0
A(s, 0) = Id

• A(s, t) is written as a cocycle

A(s, t+ t′) = A(s+ t, t′)A(s, t), ∀s ∈ R, ∀t, t′ ≥ 0

Question

• How can we extend Floquet theory for non periodic L(t)?

• Is it possible to define a notion of spectrum?
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Hyperbolicity in the sense of Sacker-Sell

Assumption the resolvant is assumed to be invertible. The cocycle
property is extended for all time by

A(s,−t) := A(s− t, t)−1, ∀t ≥ 0

First definition We say that λ ∈ R belongs to the Sacker-Sell resolvant
if there exist an equivariant family of projectors (Ps)s∈R and constants
K ≥ 1 and ε > 0 such that for every t ≥ 0

• A(s, t)Ps = Ps+tA(s, t)

• ‖A(s, t)Ps‖ ≤ Ke(λ−ε)t

• ‖A(s,−t)(Id− Ps)‖ ≤ Ke−(λ+ε)t
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Second definition Let be

Fs := Im(P (s)), Es := ker(P (s))

We say that λ ∈ R belongs to the Sacker-Sell resolvant if there exist a
uniform equivariant splitting X = Es ⊕ Fs, ∀s ∈ R, and constants
K ≥ 1, ε > 0 such that for every t ≥ 0

• A(s, t)Es = Es+t, A(s, t)Fs ⊂ Fs+t
• ∠(Es, Fs) ≥ K−1

• ∀v ∈ Fs, ‖A(s, t)v‖ ≤ Ke(λ−ε)t‖v‖
• ∀v ∈ Es, ‖A(s, t)v‖ ≥ K−1e(λ+ε)t‖v‖

Remark

• We don’t assume any more A(s, t) is invertible

• Es is called the fast space, A(s, t) : Es → Es+t is invertible

• Fs is called the slow space, ker(A(s, t)) ⊂ Fs
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Hyperbolicity in the sense of domination

It is a weaker notion

Remark 1 Hyperbolicity in the sense of Sacker-Sell implies four results

• The existence of an equivariant splitting X = Es ⊕ Fs
• The splitting is uniform ∠(Es, Fs) ≥ K−1

• Es dominates Fs (solutions grow faster in Es than in Fs)

• The existence an exponent λ of dichotomy for the growth of vectors

In the domination case, we just keep the first three properties
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Remark 2 Cone equivariance implies readily domination and is easier to
prove than splitting equivariance

• Assume there exists a (non equivariant) splitting X = Ẽs ⊕ F̃s
• Assume (Id− P̃s+t)A(s, t) : Ẽs → Ẽs+t is invertible ∀t ≥ 0

• Define the fast cone Cs(a) := {u+ v ∈ Ẽs ⊕ F̃s : ‖v‖ ≤ a‖u‖}
• Assume there exists T > 0 s.t. A(s, T )Cs(1) ⊂ Cs+T ( 1

2 )

• Define Es := {v ∈ X : ∀n ≥ 0, A(s, nT )v ∈ Cs+nT (a)}
• Define Fs := {v ∈ X : ∀n ≥ 0, A(s, nT )v 6∈ Cs+nT (a)}

Then

• X = Es ⊕ Fs is equivariant (Es and Fs are closed vector spaces)

• ∠(Es, Fs) ≥ K−1

• Es dominates Fs in the sense

sup{‖A(s, T )v‖ : v ∈ Fs}
inf{‖A(s, T )v‖ : v ∈ Es}

=
‖A(s, T )|Fs‖

‖(A(s, T )|Es)−1‖−1
≤ 1

2
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Definition We say that the cocycle A(s, t) is uniformly dominated if
there exist a uniform equivariant splitting X = Es ⊕ Fs and constants
K ≥ 1 and T > 0 such that

• A(s, t)Es = Es+t, A(s, t)Fs ⊂ Fs+t
• ∠(Es, Fs) ≥ K−1

•
‖A(s, T )|Fs‖

‖(A(s, T )|Es)−1‖−1
≤ 1

2

Remark

There is no reason to obtain an exponent λ of dichotomy, we just obtain
a gap in the spectrum[

lim inf
t→+∞

1

t
log ‖(A(s, t)|Es)−1‖−1

]
−
[

lim sup
t→+∞

1

t
log ‖A(s, t)|Fs‖

]
≥ log 2

T
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Hyperbolicity in the sense of singular value

It is weaker than uniform domination

Remark In the two previous notions of hyperbolicity, the existence of a
uniform equivariant splitting is required

• X = Es ⊕ Fs
• A(s, t)Es = Es+t, A(s, t)Fs ⊂ Fs+t
• ∠(Es, Fs) ≥ K−1

This is a very strong assumption! If A(s, t) = etB then Es = E and
Fs = F are independent of s and correspond to eigenspaces.

Main goal Replace the domination property

‖A(s, T )|Fs‖
‖(A(s, T )|Es)−1‖−1

≤ 1

2

(which requires the existence of a splitting) by another notion of spectral
gap, using for instance, the singular values
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Singular values Let A be a bounded operator on an Hilbert space X.
We call singular values at index r ≥ 1

σr(A) := sup
dim(E)=r

inf{‖Av‖ : v ∈ E, ‖v‖ = 1}

= inf
codim(F )=r−1

sup{‖Av‖ : v ∈ F, ‖v‖ = 1}

Remarks

• σ1(A) = ‖A‖,
• If A is compact, σ1(A) ≥ σ2(A) ≥ · · · are the eigenvalues of

√
A∗A

• If X is a Banach space, we choose the first definition

• If X = E ⊕ F and dim(E) = r then

σr+1(A)

σr(A)
≤ ‖A|F‖
‖(A|E)−1‖−1

Notation

σr(s, t) = the singular value of A(s, t) at index r
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Definition We say that the cocycle A(s, t) admits a gap at index r ≥ 1
in the singular-value spectrum, if there exist constants D ≥ 1 and τ > 0
such that for every s ∈ R

σr+1(s, t)

σr(s, t)
≤ De−τt, ∀t ≥ 0

Conclusion

• Sacker-Sell hyperbolicity =⇒ domination

0 λ2 λ1λ3

EF

λ3=0 λ2 λ1λ4

EFSacker-Sell domination

• Domination =⇒ gap in the singular value spectrum

• But there is no reason that

gap in the singular value spectrum
?

=⇒ existence of a splitting
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II. Main results

- I. Different notions of hyperbolicity

- II. Main results

- III. Some elements of proof

- IV. Conclusion
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Problem We consider a simplified problem where time is discrete.
Consider a nonautonomous (or switched) linear difference equation

vk+1 = Akvk, vk ∈ X, ∀k ∈ Z

where Ak : X → X is a bounded linear operator on a Banach space X.
Define the cocycle

A(k, n) := Ak+n−1 · · ·Ak+1Ak

Does the gap in the singular-value spectrum imply the existence of a
uniform dominated equivariant splitting?:

• X = Ek ⊕ Fk (splitting)

• dim(Ek) = r, Ak|Ek is injective (invertibility in the fast direction)

• AkEk = Ek+1, AkFk ⊂ Fk+1 (equivariance)

• ∠(Ek, Fk) ≥ K−1 (uniform “minimal angle”)

•
‖A(k, n)|Fk‖

‖(A(k, n)|Ek)−1‖−1
≤ Ke−nτ , ∀n ≥ 0 (domination property)
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Bochi-Gourmelon result (2009) X = Rd. Let be r ≥ 1, τ > 0,
D ≥ 1. Assume

• (SVG)weak

σr+1(k, n)

σr(k, n)
≤ De−nτ , ∀k ∈ Z, ∀n ≥ 0

• The closure of {Ak : k ∈ Z} is a compact set of GL(d,R)

Then there exits a uniform dominated equivariant splitting

• Rd = Ek ⊕ Fk, dim(Ek) = r,

• AkEk = Ek+1, AkFk = Fk+1

• ∠(Ek, Fk) ≥ K−1

•
‖A(k, n)|Fk‖

‖(A(k, n)|Ek)−1‖−1
≤ Ke−nτ
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Remarks on Bochi-Gourmelon

• The proof is done using ergodic theory, by introducing a topological
dynamical system (M,T ) and a continuous map A : M → GL(d,R)

• A new cocycle is introduced

A(x, n) := A(Tn−1(x)) · · ·A(T (x))A(x)

• Invertiblity of A(x) is a fundamental assumption of the proof

• Compactness of M , continuity of T , are fundamental assumptions

• ⇒ existence of a continuous dominated equivariant splitting

– Rd = E(x)⊕ F (x)
– A(x)E(x) = E(T (x)), A(x)F (x) = F (T (x))

• The main difficult part is to prove E(x) ∩ F (x) = {0}
• The proof uses strongly Oseledets theorem for each ergodic measure

and some techniques of ergodic optimization

Can we avoid the use of ergodic theory?
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Blumenthal-Morris result (preprint) X is a Banach space. Let be
r ≥ 1, τ > 0, D ≥ 1. Assume

• (SVG)strong


σr+1(k, n)‖Ak+n‖

σr(k, n+ 1)
≤ De−nτ

‖Ak−n−1‖σr+1(k − n, n)

σr(k − n− 1, n+ 1)
≤ De−nτ

• The closure for the norm topology of {Ak : k ∈ Z} is a compact set
made of injective operators

Then there exists a uniform dominated equivariant splitting:

• X = Ek ⊕ Fk, dim(Ek) = r

• AkEk = Ek+1, AkFk ⊂ Fk+1

• domination

Remark

• The crucial part is to show Ek ∩ Fk = {0}
• injectivity and compactness are again fundamental assumptions for

the proof
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Questions In both theorems,

• Can we get rid off the invertibility assumption? Can we prove
Bochi-Gourmelon result for endomorphisms in finite dimension?

• Can we get rid off the compactness of (Ak)k∈Z? Compactness for
the norm topology is certainly a too strong condition, can we only
assume compactness for the SOT?

• Can we avoid the use of ergodic theory and Oseledets theorem?

The central technical problem

Can we obtain an effective estimate of a bound from below of the angle
between the fast and slow spaces obtained solely from the constants
which characterize the sequence (Ak)k∈Z?
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An easy counter example

• define a sequence (Ak)k∈Z ∈ GL(2,R),

Ak =

[
1 0
0 e−τ

]
, ∀k ≥ 0, Ak =

[
1
|k| 1

0 e−τ

|k|

]
, ∀k < 0

• {Ak : k ∈ Z} is compact in End(2,R),

• (SVG)strong is satisfied

• but there is no uniform equivariant splitting: R2 = Ek ⊕ Fk with
minimal angle uniformly bounded from below

F
−
n

A(0,n) F
n

F
0

A(−n ,n)

E−n EnE0

=⇒

 {Ak : k ∈ Z} is not compact in GL(2,R

A notion of partial invertibility is needed
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Notations

• X is an Banach space

• (Ak)k∈Z is a two-sided sequence of bounded operators Ak ∈ B(X),
which may have a kernel

• we call abstract cocycle: A(k, n) := Ak+n−1 · · ·Ak+1Ak

A(k,m+ n) = A(k +m,n)A(k,m)

• We call singular values σ1(k, n) ≥ σ2(k, n) ≥ · · ·

σr(k, n) := sup
dim(E)=r

inf{‖A(k, n)u‖ : u ∈ E, ‖u‖ = 1}

• We call minimal angle of a splitting X = E ⊕ F

γ(E,F ) := inf{dist(u, F ) : u ∈ E, ‖u‖ = 1}

γ(E,F ) = 1⇔ E ⊥ F (Hilbert case),

γ(E,F ) is called minimal gap (Kato, Gohberg-Krein, ...)
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Assumptions Let be r ≥ 1, D ≥ 1, τ > 0, µ > 0. Assume ∀k ∈ Z

• (SVG)strong ∀n ≥ 1,


‖Ak‖σr+1(k + 1, n)

σr(k, n+ 1)
≤ De−nτ

σr+1(k, n)‖Ak+n‖
σr(k, n+ 1)

≤ De−nτ

• (FI) ∀n ≥ 0,

r∏
i=1

σi(k, n+ 1)

σi(k, 1)σi(k + 1, n)
≥ e−µ

Remark 1

• The (FI) condition is necessary and sufficient to obtain a uniform
dominated equivariant splitting

• For r = 1 the (FI) means

∀k ∈ Z, ∀n ≥ 0,
‖A(k, n+ 1)‖

‖Ak‖‖A(k + 1, n)‖
≥ e−µ

the norm of A(k, n) is almost multiplicative

• 4 constants characterize the cocycle: (r,D, τ, µ)
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Remark 2

• For uniformly invertible cocycles, the (FI) condition is automatically
satisfied. If

M∗ := sup
k∈Z
‖Ak‖, M∗ := inf

k∈Z
‖A−1k ‖

−1

then 
(SVG)strong ⇔ (SVG)weak

(FI) is always true with µ = r log
(
M∗

M∗

)
• The (FI) is equivalent to a (stronger) form

∀k ∈ Z, ∀m,n ≥ 0,

r∏
i=1

σi(k, n+m)

σi(k,m)σi(k +m,n)
≥ K−1e−mµ

for some constant K ≥ 1
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Theorem (QTZ) Assume X is Hilbert or Banach and (Ak)k∈Z satisfies
(SVG)strong and (FI) for the constants (r,D, τ, µ). Then then cocyle
admits a uniform dominated equivariant splitting

• X = Ek ⊕ Fk, dim(Ek) = r

• AkEk = Ek+1, AkFk ⊂ Fk+1

• γ(Ek, Fk) ≥ 1

5Kr

[ 1

2Kr(3r + 7)2

(1− e−τ

Deτ

)]µ(µ+4τ)/(2τ2)

• ∀n ≥ 1,
‖A(k, n)|Fk‖

‖(A(k, n)|Ek)−1‖−1
≤ 5Kd

infk γ(Ek, Fk)

σd+1(k, n)

σd(k, n)

• Kr(X) = 1 in the Hilbert case

• (Kr(l
p(R)) = r|

1
2−

1
p | → 1 as p→ 2)
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III. Some elements of proof

- I. Different notions of hyperbolicity

- II. Main results

- III. Some elements of proof

- IV. Conclusion
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III.a. Sequences of 2× 2 matrices

Ũ (k+n+1,n+1)

V
(k
,n

)

Ṽ
(k

+
n
,n

)

Ũ (k+n ,n)

Ṽ
( k

+
n+
1,
n
+
1
)

A(k ,n) Ak+n

U (k , n)

V (k , n+1)

U (k , n+1)

P (k ,n)

Raghunathan estimates for the slow space If P (k, n) is the
orthogonal projector onto V (k, n)

‖P (k, n)− P (k, n+ 1)‖ ≤ σ2(k, n)‖Ak+n‖
σ1(k, n+ 1)

Corollary V (k, n)→ Fk exponentially fast
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Ũ (k , n)V
(k

−
n−
1,
n
+
1
)

V
( k

−
n
, n

)

U (k−n ,n)

Ṽ
(k
,n

)

Ak−n−1 A(k−n ,n)

Ṽ (k , n+1)

U (k−n−1,n+1) Ũ (k , n+1)

Raghunathan estimates for the fast space If Q(k, n) is the orthogonal
projector onto Ũ(k, n)

‖Q(k, n)−Q(k, n+ 1)‖ ≤ ‖Ak−n−1‖σ2(k − n, n)

σ1(k − n− 1, n+ 1)

Corollary Ũ(k, n)→ Ek exponentially fast

Remark So far only (SVG)strong has been used. There is no reason that
Ek ∩ Fk = {0}. Previous proofs use ergodic theory to conclude that Ek
and Fk are complemented.
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The role of (FI)

(FI) Σm,n :=
σ1(k −m,m+ n)

σ1(k −m)σ1(k, n)
, inf

n≥1
Σm,n ≥ e−mµ, ∀m ≥ 1

V
(k

−
m
,m

)

U (k−m ,m+n)

Ṽ
( k
, m

)

V (
k ,
n)

Ũ (k+n ,n)

A(k−m ,m)

U
(k , n)

A(k ,n)

U (k−m ,m) Ũ (k , m)

Ũ (k+n ,
m+n)γα

Σm,n ≥ γ(Ũ(k,m), V (k, n)) ≥
[(
α2
m,nΣ2

m,n −
σ2(k, n)2

σ1(k, n)2

)+]1/2
αm,n := γ(U(k −m,m), V (k −m,m+ n))

Corollary

inf
n≥1

Σm,n ≥ γ(Ũ(k,m), Fk) ≥ γ(U(k −m,m), Fk−m) inf
n≥1

Σm,n
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A reduced problem

U 0
∗

F 0
∗

Ξn

U−1
∗

F−1
∗

U−2
∗

F−2
∗

U−n−1
∗

F−n−1
∗

U−n
∗

F−n
∗

L−n

A−n−1
∗ A−2

∗ A−1
∗ Ξn+1A−n

∗

• Choose N∗ large enough, set k

• A∗−n := A(k − nN∗, N∗)
• F ∗−n := Fk−nN∗ (the equivariant slow space)

• U∗−n := U(k − nN∗, nN∗) (the approximated fast space)

• An∗−n := A∗−1A
∗
−2 · · ·A∗−n

• An∗−nU
∗
−n = Graph(Ξn) for some Ξn : U∗0 → F ∗0

• A∗−n−1U
∗
−n−1 = Graph(L−n) for some L−n : U∗−n → F ∗−n

Bootstrapping argument (FI) =⇒ L−n is uniformly bounded
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Bound from below of the angle

A−n−1
∗ A−n

n∗ Ξn+1
∗

Ξn
∗

U 0
∗U−n

∗U−n−1
∗

F−n−1
∗ F−n

∗ F 0
∗

L−n
∗

• An∗−n =

[
an
n

0
cn−n dn−n

]
• A∗−n−1U

∗
−n−1 = Graph(L∗−n), L∗−n = c−n−1(a−n−1)−1

• Ξ∗n+1 = Ξ∗n + dn−nL
∗
−n(an−n)−1

• ‖d−n‖ ≤ δ−n σ1(k − nN∗, nN∗), δ−n → 0 exponentially (SVG)
• ‖(an−n)−1‖−1 ≥ σ1(k − nN∗, nN∗)/‖Id⊕ Ξ∗n‖

‖Id⊕ Ξ∗n+1‖ ≤ ‖Id⊕ Ξ∗n‖
[
1 + δ−n‖L∗−n‖

]
γ(E∗0 , F

∗
0 ) ≥ 1

4

( 1

10

1− e−τ

D∗eτ

)µ(µ+4τ)/(2τ2)
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III.b. Extension to Banach spaces

General strategy

• Extend the case of 2× 2 matrices to the codimension 1 setting

(SVG)weak

σ2(k, n)

σ1(k, n)
≤ De−nτ , (FI)

σ1(k, n+ 1)

σ1(k, 1)σ1(k + 1, n)
≥ e−µ

• In the general case, use the exterior product ∧rX and notice that

σ1(∧rA) =

r∏
i=1

σi(A), σ2(∧rA) =
[ r−1∏
i=1

σi(A)
]
σr+1(A)

• Use (SVG)strong instead of (SVG)weak and the new

(FI)
σ1(∧rA(k, n+ 1))

σ1(∧rAk)σ1(∧rA(k, n))
=

r∏
i=1

σi(k, n+ 1)

σi(k, 1)σi(k + 1, n)
≥ e−µ
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How far from an Hlibert space is a Banach space?

• C ≥ 1, a basis of vectors (e1, . . . , er) is C-Auerbach if

‖ei‖ ≤ C, dist(ei, span(ej : j 6= i)) ≥ C−1

(1-Auerbach basis exists)

• volumic distortion

∆r(X) = sup
{ ‖∑r

i=1 λiei‖[∑r
i=1 |λi|2

]1/2 : (λi) 6= 0, (ei) 1-Auerbach
}

• example X = lp(Z,R), ∆r(X) = r|
1
p−

1
2 |,

(Hilbert norm ∆d(X) = 1, sup-norm ∆r(X) =
√
r : worst case)

• the constant Kr in the main result is a polynomial function of
∆r(X),∆r(X

∗),∆r(X
∗∗)
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Approximated singular value decomposition X is Hilbert or Banach,
A ∈ B(X), ε > 0, r ≥ 1. Assume σr(A) > 0. Then

• X = U ⊕ V = Ũ ⊕ Ṽ , dim(U) = dim(Ũ) = d

• AU = Ũ , AV ⊂ Ṽ , A∗Ṽ ⊥ = V ⊥, A∗Ũ⊥ ⊂ U⊥

• there exist (1 + ε)Kr-Auerbases (e1, . . . , er), (ẽ1, . . . , ẽr) and dual
(1 + ε)Kr-Auerbases (φ1, . . . , φr), (φ̃1, . . . , φ̃r), 〈φi|ej〉 = δi,j

U = span(ei), Ũ = span(ẽi), V = span(φi)
⊥, Ṽ = span(φ̃i)

⊥

• Aei = σi(A)ẽi, A
∗φ̃i = σi(A)φi

• K−1r (1 + ε)−1σi(A) ≤ σi(A|U) ≤ σi(A) (idem for A∗|Ṽ ⊥)

• K−1r (1 + ε)−1σr+1(A) ≤ ‖A|V ‖ ≤ σr+1(A) (idem for A∗|Ũ⊥)

• γ(U, V ) ≥ K−1r (1 + ε)−1 , γ(Ũ , Ṽ ) ≥ K−1r (1 + ε)−1

V
=
sp
an

(ϕ
i)

⊥

U=span(ei)

A

Ṽ
=
sp
an

( ϕ̃
i)

⊥

Ũ=span( ẽi)

source target

Kr := ∆̄r(X)6r
2+15r+4∆̄2(X)3r

2+4r+4
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Summary

• We have introduced a weak form of hyperbolicity

• It still implies the existence of a uniform equivariant splitting

• The stability of the splitting is controlled in an effective way. The
bound from below of the angle is explicitly given by 4 constants

What is missing?

• Concrete examples which are hyperbolic in the sense of domination
but not hyperbolic in the sense of Sacker-Sell. Such examples could
be founded as a perturbation of an hyperbolic system with a neutral
direction of dimension 1 coming from the vector field

• A “truly effective criteria” that is a criteria checkable in finite time.
Both (SVG)strong and (FI) are obtained as a limit as n→ +∞

• The possibility to apply this theory for some dissipative systems:

– for reaction-diffusion systems which admit a compact attractor,
– for transfer operators which are positive operators and are used to

find the density of stationary measures
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