Zero-temperature Gibbs measures for some subshifts of finite type

Philippe Thieullen

Université Bordeaux 1, Institut de Mathématiques

Warwick, 11-15 July 2011

Warwick, 11–15 July 2011 Zero-temperature Gibbs measures 1/20

The general setting The locally finite case The Hölder case: known facts S

Outline

・ロット 4回ッ 4回ッ 4回ッ 4日マ

Warwick, 11–15 July 2011 Zero-temperature Gibbs measures 2/20

The general setting The locally finite case The Hölder case: known facts S

Outline

◆ロト ◆昂 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

- The general setting
- The locally finite case
- The Hölder case: known facts
- Some improvements in the Hölder case

◆ロト ◆昂 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Notations

Warwick, 11–15 July 2011 Zero-temperature Gibbs measures 3/20

イロト イヨト イヨト イヨト シック

Notations

- Consider (σ, Σ_G) a (one-sided) subshift of finite type

イロト イヨト イヨト イヨト シック

- Consider (σ, Σ_G) a (one-sided) subshift of finite type
- ${\boldsymbol{G}}$ is an irreducible directed graph on a finite alphabet

イロト イヨト イヨト イヨト シック

- Consider (σ, Σ_G) a (one-sided) subshift of finite type
- ${\boldsymbol{G}}$ is an irreducible directed graph on a finite alphabet
- $\sigma: \Sigma_G \to \Sigma_G$ is the left shift

イロト イヨト イヨト イヨト シック

- Consider (σ, Σ_G) a (one-sided) subshift of finite type
- ${\it G}$ is an irreducible directed graph on a finite alphabet
- $\sigma: \Sigma_G \to \Sigma_G$ is the left shift
- $H: \Sigma_G \to \mathbb{R}$ is a Hölder continuous intercation energy

イロト イヨト イヨト イヨト シック

- Consider (σ, Σ_G) a (one-sided) subshift of finite type
- ${\boldsymbol{G}}$ is an irreducible directed graph on a finite alphabet
- $\sigma: \Sigma_G \to \Sigma_G$ is the left shift
- $H: \Sigma_G \to \mathbb{R}$ is a Hölder continuous intercation energy
- eta a parameter (inverse of temperature) $ightarrow +\infty$

Notations

- Consider (σ, Σ_G) a (one-sided) subshift of finite type
- ${\boldsymbol{G}}$ is an irreducible directed graph on a finite alphabet
- $\sigma: \Sigma_G \to \Sigma_G$ is the left shift
- $H: \Sigma_G \to \mathbb{R}$ is a Hölder continuous intercation energy
- eta a parameter (inverse of temperature) $ightarrow +\infty$

Gibbs measure at temperature β^{-1}

Notations

- Consider (σ, Σ_G) a (one-sided) subshift of finite type
- ${\boldsymbol{G}}$ is an irreducible directed graph on a finite alphabet
- $\sigma: \Sigma_G \to \Sigma_G$ is the left shift
- $H: \Sigma_G \to \mathbb{R}$ is a Hölder continuous intercation energy
- eta a parameter (inverse of temperature) $ightarrow +\infty$

Gibbs measure at temperature β^{-1}

- μ_β : $\sigma\text{-invariant}$ probability on Σ_G

$$\mu_{\beta}[C_n(x)] \asymp \exp\left(-\beta \left[\sum_{k=0}^{n-1} H \circ \sigma^k(x) - n\bar{H}_{\beta}\right]\right)$$
$$\forall x \in \Sigma_G^+, \quad \forall n \ge 1.$$

Warwick, 11–15 July 2011 Zero-temperature Gibbs measures 3/20

Notations

- Consider (σ, Σ_G) a (one-sided) subshift of finite type
- ${\boldsymbol{G}}$ is an irreducible directed graph on a finite alphabet
- $\sigma: \Sigma_G \to \Sigma_G$ is the left shift
- $H: \Sigma_G \to \mathbb{R}$ is a Hölder continuous intercation energy
- eta a parameter (inverse of temperature) $ightarrow +\infty$

Gibbs measure at temperature β^{-1}

- μ_{eta} : σ -invariant probability on Σ_G

$$\mu_{\beta}[C_n(x)] \asymp \exp\left(-\beta \left[\sum_{k=0}^{n-1} H \circ \sigma^k(x) - n\bar{H}_{\beta}\right]\right)$$
$$\forall x \in \Sigma_G^+, \quad \forall n \ge 1.$$

- \bar{H}_{β} a normalizing constant $\bar{H}_{\beta} = -\frac{1}{\beta} \mathrm{Pres}(-\beta H)$

Questions: By freezing the system as $\beta \to +\infty$

◆ロト ◆昂 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Questions: By freezing the system as $\beta \to +\infty$

- Do μ_{eta} converge to some μ_{∞} ?

Questions: By freezing the system as $\beta \to +\infty$

- Do μ_{eta} converge to some μ_{∞} ?
- If not, how to characterize the set of accumulation points?

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ クへぐ

Theorem

[Brémont 2003, Leplaideur 2005, Chazottes-Gambaudo-Ugalde 2009]

For locally finite $H(\boldsymbol{x})=H(\boldsymbol{x}_0,\boldsymbol{x}_1)$ (to simplify, depends on two coordinates)

Warwick, 11–15 July 2011 Zero-temperature Gibbs measures 5/20

Theorem

[Brémont 2003, Leplaideur 2005, Chazottes-Gambaudo-Ugalde 2009]

For locally finite $H(x) = H(x_0, x_1)$ (to simplify, depends on two coordinates)

- $\mu_{\beta} \rightarrow \mu_{\infty}$ exists

イロト イヨト イヨト イヨト シック

Theorem

[Brémont 2003, Leplaideur 2005, Chazottes-Gambaudo-Ugalde 2009]

For locally finite $H(x) = H(x_0, x_1)$ (to simplify, depends on two coordinates)

- $\mu_{eta}
 ightarrow \mu_{\infty}$ exists
- μ_∞ is a barycenter of finitely many μ^i_∞ ergodic

Theorem

[Brémont 2003, Leplaideur 2005, Chazottes-Gambaudo-Ugalde 2009]

For locally finite $H(x) = H(x_0, x_1)$ (to simplify, depends on two coordinates)

- $\mu_{eta}
 ightarrow \mu_{\infty}$ exists
- μ_∞ is a barycenter of finitely many μ^i_∞ ergodic
- $\operatorname{supp}(\mu^i_\infty)=\mathsf{SFT}$ on a subgraph of G

Theorem

[Brémont 2003, Leplaideur 2005, Chazottes-Gambaudo-Ugalde 2009]

For locally finite $H(x) = H(x_0, x_1)$ (to simplify, depends on two coordinates)

- $\mu_{eta}
 ightarrow \mu_{\infty}$ exists
- μ_∞ is a barycenter of finitely many μ^i_∞ ergodic
- $\operatorname{supp}(\mu^i_\infty)=\mathsf{SFT}$ on a subgraph of G
- μ^i_∞ has maximal topological entropy on this SFT

Two example:

Warwick, 11–15 July 2011 Zero-temperature Gibbs measures 6/20

<ロト <回ト < 巨ト < 巨ト = 巨 = のへで

Two example:

- Two symbols: H(1,1) = 1, H(1,2) = a
- The minimizing possible cycles gives $\bar{H} \in \{1,a,b\}$

- Three symbols: assume a, a', b, b', c, c' > 0
- The minimizing possible cycles gives $\bar{H} \in \{0, \frac{1}{2}(a+a'), \dots, \frac{1}{3}(a+b+c), \dots\}$

DQ P

- With the above assumption, $\bar{H}=0$

Warwick, 11–15 July 2011 Zero-temperature Gibbs measures 7/20

◆ロト ◆昂 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

- μ_{eta} is a Markov chain given by $(\pi_{\infty}, Q_{\infty})$

- μ_{eta} is a Markov chain given by $(\pi_{\infty}, Q_{\infty})$
- $M_{\beta}(i,j) = \exp[-\beta H(i,j)]$ (transfer matrix)

- μ_{eta} is a Markov chain given by $(\pi_{\infty}, Q_{\infty})$
- $M_{\beta}(i,j) = \exp[-\beta H(i,j)]$ (transfer matrix)
- $L_{eta}(i)$, $R_{eta}(j)$ left, right eigenvector

- μ_{eta} is a Markov chain given by $(\pi_{\infty},Q_{\infty})$
- $M_{\beta}(i,j) = \exp[-\beta H(i,j)]$ (transfer matrix)
- $L_{eta}(i)$, $R_{eta}(j)$ left, right eigenvector
- $\pi_{\beta}(i) = L_{\beta}(i)R_{\beta}(i)$ (plus normalization)

- μ_{eta} is a Markov chain given by $(\pi_{\infty},Q_{\infty})$
- $M_{eta}(i,j) = \exp[-eta H(i,j)]$ (transfer matrix)
- $L_{eta}(i)$, $R_{eta}(j)$ left, right eigenvector
- $\pi_{\beta}(i) = L_{\beta}(i)R_{\beta}(i)$ (plus normalization)
- $Q_{\beta}(i,j) = R_{\beta}(i)^{-1}M_{\beta}(i,j)R_{\beta}(j)/\lambda_{\beta}$

- μ_{eta} is a Markov chain given by $(\pi_{\infty}, Q_{\infty})$
- $M_{eta}(i,j) = \exp[-eta H(i,j)]$ (transfer matrix)
- $L_{eta}(i)$, $R_{eta}(j)$ left, right eigenvector
- $\pi_{\beta}(i) = L_{\beta}(i)R_{\beta}(i)$ (plus normalization)
- $Q_{\beta}(i,j) = R_{\beta}(i)^{-1}M_{\beta}(i,j)R_{\beta}(j)/\lambda_{\beta}$
- $\lambda_{\beta} = \exp(-\beta \bar{H}_{\beta})$ (eigenvalue)

- μ_{eta} is a Markov chain given by $(\pi_{\infty}, Q_{\infty})$
- $M_{\beta}(i,j) = \exp[-\beta H(i,j)]$ (transfer matrix)
- $L_{eta}(i)$, $R_{eta}(j)$ left, right eigenvector
- $\pi_{\beta}(i) = L_{\beta}(i)R_{\beta}(i)$ (plus normalization)
- $Q_{\beta}(i,j) = R_{\beta}(i)^{-1}M_{\beta}(i,j)R_{\beta}(j)/\lambda_{\beta}$
- $\lambda_{\beta} = \exp(-\beta \bar{H}_{\beta})$ (eigenvalue)

Exercice Show that λ_{β} , $R_{\beta}(i)/R_{\beta}(j)$, $L_{\beta}(i)/L_{\beta}(j)$ are equivalent to some $C \exp(-c\beta)$ for some constants C, c

- μ_{eta} is a Markov chain given by $(\pi_{\infty},Q_{\infty})$
- $M_{eta}(i,j) = \exp[-eta H(i,j)]$ (transfer matrix)
- $L_{eta}(i)$, $R_{eta}(j)$ left, right eigenvector
- $\pi_{\beta}(i) = L_{\beta}(i)R_{\beta}(i)$ (plus normalization)
- $Q_{\beta}(i,j) = R_{\beta}(i)^{-1}M_{\beta}(i,j)R_{\beta}(j)/\lambda_{\beta}$
- $\lambda_{\beta} = \exp(-\beta \bar{H}_{\beta})$ (eigenvalue)

Exercice Show that λ_{β} , $R_{\beta}(i)/R_{\beta}(j)$, $L_{\beta}(i)/L_{\beta}(j)$ are equivalent to some $C \exp(-c\beta)$ for some constants C, c

Solution A possible proof is to show that all quantities λ_{β} , $L_{\beta}(i)$, ... admit a Puiseux series expansion. Let $\epsilon = e^{-\beta}$

$$\lambda_{\epsilon} = \lambda_0 \epsilon^{a_0} + \lambda_1 \epsilon^{a_1} + \dots$$
$$a_0 < a_1 < \dots < a_n < a_n + 1 < \dots$$

$$M_{\epsilon} = \begin{bmatrix} \epsilon & \epsilon^a \\ \epsilon^a & \epsilon^b \end{bmatrix}$$

- Each phase is a convex polygon
- On 2D-phase μ_{∞} is a periodic orbit
- μ_{∞} may have positive entropy
- μ_{∞} may be a barycenter of two periodic orbits

→ Ξ →

zero-temperature phase diagram for 2×2 matrix

Warwick, 11–15 July 2011

Zero-temperature Gibbs measures 8/20

< A >

$$M_{\epsilon} = \begin{bmatrix} 1 & \epsilon^{a} & \epsilon^{b} \\ \epsilon^{a'} & 1 & \epsilon^{c} \\ \epsilon^{b'} & \epsilon^{c'} & 1 \end{bmatrix}$$
$$a, b, c, a', b, c, c' > 0$$

- For each phase μ_{∞} is a barycenter of periodic orbits
- The coefficients of the barycenter may not be rational

5900

zero-temperature phase diagram for 3×3 matrix

Extensions:

Theorem[T. Kempton 2007] The limite does exist and has maximal topological entropy in the case of a countable Markov chain with BIG propery and a uniformly locally finite intercation energy H with finite pressure

The Hölder case: known facts

A counter example

◆ロト ◆昂 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

The Hölder case: known facts

A counter example

Theorem[Chazottes-Hochman 2010] There exists a compact invariant set $\Omega \subset \Sigma_{\{0,1\}}$ such that, for the specific interaction energy $H(x) = d(x, \Omega)$ (which is Hölder), μ_{β} admits at least 2 accumulation points, as $\beta \to +\infty$
Warwick, 11–15 July 2011 Zero-temperature Gibbs measures 12/20

・ロット 4回ッ 4回ッ 4回ッ 4日マ

Proposition All accumlation measures are minimizing

◆ロト ◆昂 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Proposition All accumlation measures are minimizing

Definition μ_{min} is minimizing if

$$\int H \, d\mu_{min} = \min \left\{ \int H \, d\mu \, : \, \mu : \, \sigma \text{-invariant} \right\}$$

The minimizing ergodic value is

$$\bar{H} := \min\left\{\int H \, d\mu \, : \, \mu : \, \sigma \text{-invariant}
ight\}$$

Proposition All accumlation measures are minimizing

Definition μ_{min} is minimizing if

$$\int H \, d\mu_{min} = \min \left\{ \int H \, d\mu \, : \, \mu : \, \sigma \text{-invariant} \right\}$$

The minimizing ergodic value is

$$\bar{H} := \min\left\{\int H \, d\mu \, : \, \mu : \, \sigma \text{-invariant}
ight\}$$

Question How to characterize minimizing measures?

${\rm Proposition}$ The support of a minimizing measure belongs to the set of ground-state configurations Ω_{GS}

Proposition The support of a minimizing measure belongs to the set of ground-state configurations Ω_{GS}

Definition The ground-state configuration is

$$\begin{split} \Omega_{GS} &:= \Big\{ x \in \Sigma_G : \forall \ \epsilon > 0, \ \exists \ n \ge 1, \ \exists \ z \in \Sigma_G \ \text{ s. t.} \\ d(x,z) < \epsilon, \ d(x,\sigma^n(z)) < \epsilon \text{ and } \big| \sum_{k=0}^{n-1} [H \circ \sigma^k(z) - \bar{H}] \big| < \epsilon \Big\}. \end{split}$$

Proposition The support of a minimizing measure belongs to the set of ground-state configurations Ω_{GS}

Definition The ground-state configuration is

$$\begin{split} \Omega_{GS} &:= \Big\{ x \in \Sigma_G : \forall \ \epsilon > 0, \ \exists \ n \geq 1, \ \exists \ z \in \Sigma_G \ \text{ s. t.} \\ d(x,z) < \epsilon, \ d(x,\sigma^n(z)) < \epsilon \text{ and } \big| \sum_{k=0}^{n-1} [H \circ \sigma^k(z) - \bar{H}] \big| < \epsilon \Big\}. \end{split}$$

Question Why is Ω_{GS} called the set of ground-state configurations?

$$H(x) - V \circ \sigma(x) + V(x) - \bar{H} \ge 0, \quad \forall \ x \in \Sigma_G$$

Warwick, 11–15 July 2011 Zero-temperature Gibbs measures 14/20

$$H(x) - V \circ \sigma(x) + V(x) - \bar{H} \ge 0, \quad \forall \ x \in \Sigma_G$$

Proposition Ω_{GS} is the set of ground-state configurations in the sense

$$\begin{cases} \sum_{k=0}^{n-1} H \circ \sigma^k(x) = n\bar{H} + V \circ \sigma^n(x) - V(x), & \forall x \in \Omega_{GS}, \quad \forall n \ge 1, \\ \sum_{k=0}^{n-1} H \circ \sigma^k(y) \ge n\bar{H} + V \circ \sigma^n(y) - V(y), & \forall y \in \Sigma_G, \quad \forall n \ge 1. \end{cases}$$

$$H(x) - V \circ \sigma(x) + V(x) - \bar{H} \ge 0, \quad \forall \ x \in \Sigma_G$$

Proposition Ω_{GS} is the set of ground-state configurations in the sense

$$\begin{cases} \sum_{k=0}^{n-1} H \circ \sigma^k(x) = n\bar{H} + V \circ \sigma^n(x) - V(x), & \forall x \in \Omega_{GS}, \quad \forall n \ge 1, \\ \sum_{k=0}^{n-1} H \circ \sigma^k(y) \ge n\bar{H} + V \circ \sigma^n(y) - V(y), & \forall y \in \Sigma_G, \quad \forall n \ge 1. \end{cases}$$

Proposition [Mañé-Conze-Guivarc'h lemma] If H is Hölder, an effective potential does exist: a stronger version, called calibrated potential, may be proved

$$V(y) + \bar{H} = \min_{x \in \Sigma_G: \sigma(x) = y} \left[V(y) + H(y) \right]$$

・ロット (雪) (日) (日) (日)

SOR

$$H(x) - V \circ \sigma(x) + V(x) - \bar{H} \ge 0, \quad \forall \ x \in \Sigma_G$$

Proposition Ω_{GS} is the set of ground-state configurations in the sense

$$\begin{cases} \sum_{k=0}^{n-1} H \circ \sigma^k(x) = n\bar{H} + V \circ \sigma^n(x) - V(x), & \forall x \in \Omega_{GS}, \quad \forall n \ge 1, \\ \sum_{k=0}^{n-1} H \circ \sigma^k(y) \ge n\bar{H} + V \circ \sigma^n(y) - V(y), & \forall y \in \Sigma_G, \quad \forall n \ge 1. \end{cases}$$

Proposition [Mañé-Conze-Guivarc'h lemma] If H is Hölder, an effective potential does exist: a stronger version, called calibrated potential, may be proved

$$V(y) + \bar{H} = \min_{x \in \Sigma_G: \sigma(x) = y} \left[V(y) + H(y) \right]$$

Theorem[Morris 2009] Extension to weakly expanding map $f: S^1 \to S^1$ of the form $f(x) = x + x^{1+\alpha} + \ldots$, for $\alpha \in]0, 1[$. For $H \gamma$ -Hölder, with $\alpha < \gamma$, there exists a calibrated potential V, $(\gamma - \alpha)$ -Hölder. For some α -Hölder H, no continuous effective potential exists

- μ is minimizing iff $\operatorname{supp}(\mu) \subset \Omega_{GS}$

- μ is minimizing iff $\mathrm{supp}(\mu)\subset\Omega_{GS}$
- $\operatorname{supp}(\mu_{\infty}) \subset \Omega_{GS}$, $\operatorname{Ent}(\mu_{\infty}) = \operatorname{Ent}(\Omega_{GS})$

- μ is minimizing iff $\mathrm{supp}(\mu)\subset\Omega_{GS}$
- $\operatorname{supp}(\mu_{\infty}) \subset \Omega_{GS}$, $\operatorname{Ent}(\mu_{\infty}) = \operatorname{Ent}(\Omega_{GS})$
- $\bar{H}_{\beta} = -\frac{1}{\beta} \operatorname{Press}(-\beta H), \quad \bar{H}_{\beta} \to \bar{H} \text{ exists}$

- μ is minimizing iff $\mathrm{supp}(\mu)\subset\Omega_{GS}$
- $\operatorname{supp}(\mu_{\infty}) \subset \Omega_{GS}$, $\operatorname{Ent}(\mu_{\infty}) = \operatorname{Ent}(\Omega_{GS})$
- $\bar{H}_{\beta} = -\frac{1}{\beta} \text{Press}(-\beta H), \quad \bar{H}_{\beta} \to \bar{H} \text{ exists}$
- $\beta(\bar{H} \bar{H}_{\beta}) \rightarrow \operatorname{Ent}(\Omega_{GS})$ with a speed

- μ is minimizing iff $\mathrm{supp}(\mu)\subset\Omega_{GS}$
- $\operatorname{supp}(\mu_{\infty}) \subset \Omega_{GS}$, $\operatorname{Ent}(\mu_{\infty}) = \operatorname{Ent}(\Omega_{GS})$
- $\bar{H}_{\beta} = -\frac{1}{\beta} \text{Press}(-\beta H), \quad \bar{H}_{\beta} \to \bar{H} \text{ exists}$
- $\beta(\bar{H} \bar{H}_{\beta}) \rightarrow \operatorname{Ent}(\Omega_{GS})$ with a speed
- $\operatorname{Ent}(\mu_{\beta}) \to \operatorname{Ent}(\Omega_{GS})$ exists

- μ is minimizing iff $\mathrm{supp}(\mu)\subset\Omega_{GS}$
- $\operatorname{supp}(\mu_{\infty}) \subset \Omega_{GS}$, $\operatorname{Ent}(\mu_{\infty}) = \operatorname{Ent}(\Omega_{GS})$

-
$$\bar{H}_{\beta} = -\frac{1}{\beta} \operatorname{Press}(-\beta H), \quad \bar{H}_{\beta} \to \bar{H} \text{ exists}$$

- $\beta(\bar{H} \bar{H}_{\beta}) \rightarrow \operatorname{Ent}(\Omega_{GS})$ with a speed
- $\operatorname{Ent}(\mu_{\beta}) \to \operatorname{Ent}(\Omega_{GS})$ exists

 ${\rm Theorem}[{\rm Morris}\ 2009]$ If Ω_{GS} has zero topological entropy, then for some constants C,c>0

$$0 \le \bar{H} - \bar{H}_{\beta} \le C \exp(-c\beta)$$

- μ is minimizing iff $\mathrm{supp}(\mu)\subset\Omega_{GS}$
- $\operatorname{supp}(\mu_{\infty}) \subset \Omega_{GS}$, $\operatorname{Ent}(\mu_{\infty}) = \operatorname{Ent}(\Omega_{GS})$

-
$$\bar{H}_{\beta} = -\frac{1}{\beta} \operatorname{Press}(-\beta H), \quad \bar{H}_{\beta} \to \bar{H} \text{ exists}$$

- $\beta(\bar{H} \bar{H}_{\beta}) \rightarrow \operatorname{Ent}(\Omega_{GS})$ with a speed
- $\operatorname{Ent}(\mu_{\beta}) \to \operatorname{Ent}(\Omega_{GS})$ exists

 ${\rm Theorem}[{\rm Morris}\ 2009]$ If Ω_{GS} has zero topological entropy, then for some constants C,c>0

$$0 \le \bar{H} - \bar{H}_{\beta} \le C \exp(-c\beta)$$

Corollary If Ω_{GS} has a unique measure μ_{min} of maximal entropy, then $\mu_\beta \to \mu_{min}$ exists

Warwick, 11–15 July 2011 Zero-temperature Gibbs measures 16/20

◆ロ > ◆ □ > ◆ 目 > ◆ 目 > ● 目 ● の < ⊙

- For generic H in the sense of Baire category for Hölder functions, there is a unique minimizing measure μ_{min} and therefore $\mu_{\beta} \rightarrow \mu_{min}$

- For generic H in the sense of Baire category for Hölder functions, there is a unique minimizing measure μ_{min} and therefore $\mu_{\beta} \rightarrow \mu_{min}$
- (Conjecture: Contreras) For generic H, μ_{min} is a periodic orbit

Sac

- For generic H in the sense of Baire category for Hölder functions, there is a unique minimizing measure μ_{min} and therefore $\mu_{\beta} \rightarrow \mu_{min}$
- (Conjecture: Contreras) For generic H, μ_{min} is a periodic orbit

Proposition[Baraviera-Lopes-Thieullen 2006] If μ_{min} is unique, then μ_{β} satisfies a large deviation principle

$$\frac{1}{\beta} \ln \mu_{\beta}(C) \to -\inf_{C} I$$

- C is any cylinder
- $I(x) = \sum_{k \ge 0} [H V \circ \sigma + V \bar{H}] \circ \sigma^k(x)$ is l.s.c.
- \boldsymbol{V} is any calibrated effective potential

Theorem[Ruelle-Perron-Frobenius Theory]

Theorem[Ruelle-Perron-Frobenius Theory]

- $\mu_{\beta} = \Phi_{\beta} \nu_{\beta}$

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ クへぐ

Theorem[Ruelle-Perron-Frobenius Theory]

- $\mu_{\beta} = \Phi_{\beta} \nu_{\beta}$
- Φ_{eta} , u_{eta} are the right and left eigenvectors of \mathcal{L}_{eta}

Theorem[Ruelle-Perron-Frobenius Theory]

-
$$\mu_{\beta} = \Phi_{\beta} \nu_{\beta}$$

- Φ_{eta} , u_{eta} are the right and left eigenvectors of \mathcal{L}_{eta}
- $\mathcal{L}_eta \Phi_eta = \lambda \Phi_eta$, $\mathcal{L}^*_eta
 u_eta = \lambda
 u_eta$

Theorem[Ruelle-Perron-Frobenius Theory]

-
$$\mu_{\beta} = \Phi_{\beta} \nu_{\beta}$$

- Φ_{β} , ν_{β} are the right and left eigenvectors of \mathcal{L}_{β}

-
$$\mathcal{L}_eta \Phi_eta = \lambda \Phi_eta$$
 , $\mathcal{L}_eta^*
u_eta = \lambda
u_eta$

Question: What is the limite behavior of Φ_{β} ?

Theorem[Ruelle-Perron-Frobenius Theory]

-
$$\mu_{\beta} = \Phi_{\beta} \nu_{\beta}$$

- Φ_{β} , ν_{β} are the right and left eigenvectors of \mathcal{L}_{β}

-
$$\mathcal{L}_eta \Phi_eta = \lambda \Phi_eta$$
 , $\mathcal{L}_eta^*
u_eta = \lambda
u_eta$

Question: What is the limite behavior of Φ_{β} ?

Normalization $\Phi_{\beta} = \exp(-\beta V_{\beta}), \quad \lambda_{\beta} = \exp(-\beta \bar{H}_{\beta})$

Theorem[Ruelle-Perron-Frobenius Theory]

-
$$\mu_{\beta} = \Phi_{\beta} \nu_{\beta}$$

- Φ_{β} , ν_{β} are the right and left eigenvectors of \mathcal{L}_{β}

-
$$\mathcal{L}_eta \Phi_eta = \lambda \Phi_eta$$
 , $\mathcal{L}^*_eta
u_eta = \lambda
u_eta$

Question: What is the limite behavior of Φ_{β} ?

Normalization $\Phi_{\beta} = \exp(-\beta V_{\beta}), \quad \lambda_{\beta} = \exp(-\beta \bar{H}_{\beta})$

- The transfert operator equation

$$\sum_{x:\sigma(x)=y} \exp -\beta \left[H(x) - \bar{H}_{\beta} - V_{\beta} \circ (x) + V_{\beta}(x) \right] = 1, \quad \forall y \in \Sigma_G$$

- Let V_∞ any limite point of V_β , then V_∞ is calibrated

$$\min_{x:\sigma(x)=y} \left[H(x) - \bar{H} - V \circ \sigma(x) + V_{\infty}(x) \right] = 0, \quad \forall \ y \in \Sigma_G$$

How to characterize $V_\infty \ref{scalar}$ We have seen that any such a V_∞ is calibrated

◆ロト ◆昂 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

How to characterize $V_\infty \ref{scalar}$ We have seen that any such a V_∞ is calibrated

Definition [Mather-Peierls barrier] Let $x, y \in \Sigma_G$

$$h(x,y) := \lim_{\epsilon \to 0} \liminf_{n \to +\infty} S_n^{\epsilon}(x,y),$$

where

$$S^\epsilon_n(x,y):=\inf\Big\{\sum_{k=0}^{n-1}(H-\bar{H})\circ\sigma^k(z)\ :\ d(z,x)<\epsilon\ \text{ and }\ d(\sigma^n(z),y)<\epsilon\Big\}.$$

How to characterize $V_\infty \ref{scalar}$ We have seen that any such a V_∞ is calibrated

Definition [Mather-Peierls barrier] Let $x, y \in \Sigma_G$

$$h(x,y) := \lim_{\epsilon \to 0} \liminf_{n \to +\infty} S_n^{\epsilon}(x,y),$$

where

$$S^\epsilon_n(x,y):=\inf\Big\{\sum_{k=0}^{n-1}(H-\bar{H})\circ\sigma^k(z)\ :\ d(z,x)<\epsilon\ \text{ and }\ d(\sigma^n(z),y)<\epsilon\Big\}.$$

Proposition For any $x \in \Omega_{GS}$, h(x, .) is calibrated

Warwick, 11–15 July 2011 Zero-temperature Gibbs measures 18/20

Theorem[Contreras,Lopes-Garibaldi] If V is calibrated then

◆ロト ◆昂 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Theorem[Contreras,Lopes-Garibaldi] If V is calibrated then - For any $x \in \Sigma_G$

$$V(x) = \min_{p \in \Omega_{GS}} \left\{ V(p) + h(p, x) \right\}$$

(V is uniquely determined by $V|\Omega_{GS}$)

Theorem[Contreras,Lopes-Garibaldi] If V is calibrated then - For any $x \in \Sigma_G$

$$V(x) = \min_{p \in \Omega_{GS}} \left\{ V(p) + h(p, x) \right\}$$

(V is uniquely determined by $V|\Omega_{GS}$)

- If $\phi:\Omega_{GS}\rightarrow \mathbb{R}$ satisfies $\phi(y)-\phi(x)\leq h(x,y),$ then

$$V(x) := \min_{p \in \Omega_{GS}} \left\{ \phi(p) + h(p, x) \right\}$$

is a calibrated potential
Theorem[Contreras,Lopes-Garibaldi] If V is calibrated then - For any $x \in \Sigma_G$

$$V(x) = \min_{p \in \Omega_{GS}} \left\{ V(p) + h(p, x) \right\}$$

(V is uniquely determined by
$$V|\Omega_{GS}$$
)

- If $\phi:\Omega_{GS}\to\mathbb{R}$ satisfies $\phi(y)-\phi(x)\leq h(x,y)$, then

$$V(x) := \min_{p \in \Omega_{GS}} \left\{ \phi(p) + h(p, x) \right\}$$

is a calibrated potential

Question Can we find p which minimizes above for all x? Is there a unique calibrated V up to the value $V(p_0)$ for some fixed $p_0 \in \Omega_{GS}$?

<ロ> <用> <用> < => < => < => < => <000</p>

◆ロト ◆昂 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

- Let
$$x, y \in \Omega_{GS}$$
, $x \sim y \iff h(x, y) + h(y, x) = 0$

Warwick, 11–15 July 2011 Zero-temperature Gibbs measures 20/20

990

- Let $x, y \in \Omega_{GS}$, $x \sim y \iff h(x, y) + h(y, x) = 0$
- equivalent classes are called irreducible components

イロト イヨト イヨト イヨト シック

- Let $x, y \in \Omega_{GS}$, $x \sim y \iff h(x, y) + h(y, x) = 0$
- equivalent classes are called irreducible components

Proposition If Ω_{GS} is irreducible and V is calibrated, then V is unique in a projective sense

$$V(x) = V(p) + h(p, x), \quad \forall \ x \in \Sigma_G, \ \forall \ p \in \Omega_{GS}$$

 $(\Omega_{GS}$ may have many minimizing measures with maximal topological entropy)

イロト イヨト イヨト イヨト シック

- Let $x, y \in \Omega_{GS}$, $x \sim y \iff h(x, y) + h(y, x) = 0$
- equivalent classes are called irreducible components

Proposition If Ω_{GS} is irreducible and V is calibrated, then V is unique in a projective sense

$$V(x) = V(p) + h(p, x), \quad \forall \ x \in \Sigma_G, \ \forall \ p \in \Omega_{GS}$$

 $(\Omega_{GS}$ may have many minimizing measures with maximal topological entropy)

New result[Garibaldi-Thieullen] If $\Omega_{GS} = \Omega_0 \cup \Omega_1 \cup \ldots \cup \Omega_r$ is a finite disjoint union of irreducible components so that Ω_0 has the largest topological entropy and all other Ω_i has a lower topological entropy, then for any fixed $p \in \Omega_0$

$$V_{\beta} - V_{\beta}(p) \to h(p, .),$$
 uniformly

<ロ> <用> <用> < => < => < => < => <000</p>