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The general setting
Notations

- Consider (σ,ΣG) a (one-sided) subshift of finite type

- G is an irreducible directed graph on a finite alphabet

- σ : ΣG → ΣG is the left shift

- H : ΣG → R is a Hölder continuous intercation energy

- β a parameter (inverse of temperature) → +∞

Gibbs measure at temperature β−1

- µβ : σ-invariant probability on ΣG

µβ [Cn(x)] � exp
(
− β

[ n−1∑
k=0

H ◦ σk(x)− nH̄β

])
∀ x ∈ Σ+

G, ∀ n ≥ 1.

- H̄β a normalizing constant H̄β = − 1
βPres(−βH)
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Questions: By freezing the system as β → +∞

- Do µβ converge to some µ∞?

- If not, how to characterize the set of accumulation points?
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The locally finite case

Theorem
[Brémont 2003, Leplaideur 2005, Chazottes-Gambaudo-Ugalde 2009]

For locally finite H(x) = H(x0, x1) (to simplify, depends on two
coordinates)

- µβ → µ∞ exists

- µ∞ is a barycenter of finitely many µi∞ ergodic

- supp(µi∞) = SFT on a subgraph of G

- µi∞ has maximal topological entropy on this SFT
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Two example:
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- Two symbols: H(1, 1) = 1,
H(1, 2) = a

- The minimizing possible cycles gives
H̄ ∈ {1, a, b}

- Three symbols: assume
a, a′, b, b′, c, c′ > 0

- The minimizing possible cycles gives
H̄ ∈ {0, 1

2 (a+a′), . . . , 1
3 (a+b+c), . . .}

- With the above assumption, H̄ = 0
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Reduced problem: in the locally finite case

- µβ is a Markov chain given by (π∞, Q∞)
- Mβ(i, j) = exp[−βH(i, j)] (transfer matrix)

- Lβ(i), Rβ(j) left, right eigenvector

- πβ(i) = Lβ(i)Rβ(i) (plus normalization)

- Qβ(i, j) = Rβ(i)−1Mβ(i, j)Rβ(j)/λβ
- λβ = exp(−βH̄β) (eigenvalue)

Exercice Show that λβ , Rβ(i)/Rβ(j), Lβ(i)/Lβ(j) are equivalent to
some C exp(−cβ) for some constants C, c

Solution A possible proof is to show that all quantities λβ , Lβ(i),
. . . admit a Puiseux series expansion. Let ε = e−β

λε = λ0ε
a0 + λ1ε

a1 + . . .

a0 < a1 < . . . < an < an + 1 < . . .
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The general setting The locally finite case The Hölder case: known facts Some improvements in the Hölder case

Reduced problem: in the locally finite case

- µβ is a Markov chain given by (π∞, Q∞)
- Mβ(i, j) = exp[−βH(i, j)] (transfer matrix)

- Lβ(i), Rβ(j) left, right eigenvector

- πβ(i) = Lβ(i)Rβ(i) (plus normalization)

- Qβ(i, j) = Rβ(i)−1Mβ(i, j)Rβ(j)/λβ
- λβ = exp(−βH̄β) (eigenvalue)

Exercice Show that λβ , Rβ(i)/Rβ(j), Lβ(i)/Lβ(j) are equivalent to
some C exp(−cβ) for some constants C, c

Solution A possible proof is to show that all quantities λβ , Lβ(i),
. . . admit a Puiseux series expansion. Let ε = e−β

λε = λ0ε
a0 + λ1ε

a1 + . . .

a0 < a1 < . . . < an < an + 1 < . . .

Warwick, 11–15 July 2011 Zero-temperature Gibbs measures 7/20
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a

b

1

1

b > a

2 >

1>>
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1 2

>

>

1 2 >

>

>1 2>

1 2> >1
2

1
2

>
>1 2> >

>

>1 2 >>

a
a b1

zero-temperature phase diagram for 2×2 matrix

Mε =
[
ε εa

εa εb

]
- Each phase is a

convex polygon

- On 2D-phase
µ∞ is a periodic
orbit

- µ∞ may have
positive entropy

- µ∞ may be a
barycenter of two
periodic orbits
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b >
 a

a

b

c'

c'(c+c')/2

λ ϵ=1+ϵ(c+c ' )/2+...
μ∞
H=[0 , 1

2
, 1

2
]

(c+c')/2 < (a+b+c)/3

a <
 (a

+b
+c

)/3

b < (a+b+c)/3

λ ϵ=1+ϵb+...
μ∞
H=[1

2
,0 , 1

2
]

 (c
+c

')/
2 

< 
a

(c+c')/2 < bλ ϵ=1+ϵa+...
μ∞
H=[ 1

2
, 1

2
,0 ]

λϵ=1+κϵ(c+c ')/2+...
μ∞
H=[1,1+κ ,1+κ]/(3+2 κ)

λ ϵ=1+√2 ϵ(c+c ' )/2+...
μ∞
H=[ 1

4
, 1

2
, 1

4
]
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μ∞
H=[ 1

4
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λ ϵ=1+√2 ϵa+...
μ∞
H=[ 1

2
, 1

4
, 1

4
]

λϵ=1+κϵa+...
μ∞
H=[1+κ,1+κ ,1]/(3+2κ)

λϵ=1+κϵb+...
μ∞
H=[1+κ,1 ,1+κ]/(3+2κ)

λ ϵ=1+ϵ(a+b+c )/ 3+...
μ∞
H=[ 1

3
, 1

3
, 1

3
]

c

λϵ=1+ρϵa+...
μ∞
H=[ρ ,1 ,1 ]/(2+ρ)

λ ϵ=1+ρϵ(c+c ')/2+...
μ∞
H=[1 ,ρ ,1]/(2+ρ)

λ ϵ=1+ρϵ(c+c ')/2+...
μ∞
H=[1 , 1 ,ρ]/(2+ρ)

c

zero-temperature phase diagram for 3×3 matrix

Mε =

 1 εa εb

εa
′

1 εc

εb
′

εc
′

1


a, b, c, a′, b,′ c,′> 0

- For each phase
µ∞ is a
barycenter of
periodic orbits

- The coefficients
of the barycenter
may not be
rational
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Extensions:

Theorem[T. Kempton 2007] The limite does exist and has maximal
topological entropy in the case of a countable Markov chain with BIG
propery and a uniformly locally finite intercation energy H with finite
pressure
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The Hölder case: known facts

A counter example

Theorem[Chazottes-Hochman 2010] There exists a compact invariant
set Ω ⊂ Σ{0,1} such that, for the specific interaction energy
H(x) = d(x,Ω) (which is Hölder), µβ admits at least 2 accumulation
points, as β → +∞
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Easy facts:

Proposition All accumlation measures are minimizing

Definition µmin is minimizing if∫
H dµmin = min

{∫
H dµ : µ : σ-invariant

}
The minimizing ergodic value is

H̄ := min
{∫

H dµ : µ : σ-invariant
}

Question How to characterize minimizing measures?
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Proposition The support of a minimizing measure belongs to the set of
ground-state configurations ΩGS

Definition The ground-state configuration is

ΩGS :=
{
x ∈ ΣG : ∀ ε > 0, ∃ n ≥ 1, ∃ z ∈ ΣG s. t.

d(x, z) < ε, d(x, σn(z)) < ε and
∣∣ n−1∑
k=0

[H ◦ σk(z)− H̄]
∣∣ < ε

}
.

Question Why is ΩGS called the set of ground-state configurations?
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Definition An effective potential (sub-coboundary), V : ΣG → R

H(x)− V ◦ σ(x) + V (x)− H̄ ≥ 0, ∀ x ∈ ΣG

Proposition ΩGS is the set of ground-state configurations in the sense{ ∑n−1
k=0 H ◦ σk(x) = nH̄ + V ◦ σn(x)− V (x), ∀ x ∈ ΩGS , ∀ n ≥ 1,∑n−1
k=0 H ◦ σk(y) ≥ nH̄ + V ◦ σn(y)− V (y), ∀ y ∈ ΣG, ∀ n ≥ 1.

Proposition [Mañé-Conze-Guivarc’h lemma] If H is Hölder, an effective
potential does exist: a stronger version, called calibrated potential, may
be proved

V (y) + H̄ = min
x∈ΣG:σ(x)=y

[
V (y) +H(y)

]
Theorem[Morris 2009] Extension to weakly expanding map f : S1 → S1

of the form f(x) = x+ x1+α + . . ., for α ∈]0, 1[. For H γ-Hölder, with
α < γ, there exists a calibrated potential V , (γ − α)-Hölder. For some
α-Hölder H, no continuous effective potential exists
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Definition An effective potential (sub-coboundary), V : ΣG → R

H(x)− V ◦ σ(x) + V (x)− H̄ ≥ 0, ∀ x ∈ ΣG

Proposition ΩGS is the set of ground-state configurations in the sense{ ∑n−1
k=0 H ◦ σk(x) = nH̄ + V ◦ σn(x)− V (x), ∀ x ∈ ΩGS , ∀ n ≥ 1,∑n−1
k=0 H ◦ σk(y) ≥ nH̄ + V ◦ σn(y)− V (y), ∀ y ∈ ΣG, ∀ n ≥ 1.
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α < γ, there exists a calibrated potential V , (γ − α)-Hölder. For some
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Proposition A better characterization of µ∞. Let µ∞ be a weak limit of
some subsequence of µβ then

- µ is minimizing iff supp(µ) ⊂ ΩGS
- supp(µ∞) ⊂ ΩGS , Ent(µ∞) = Ent(ΩGS)
- H̄β = − 1

βPress(−βH), H̄β → H̄ exists

- β(H̄ − H̄β)→ Ent(ΩGS) with a speed

- Ent(µβ)→ Ent(ΩGS) exists

Theorem[Morris 2009] If ΩGS has zero topological entropy, then for
some constants C, c > 0

0 ≤ H̄ − H̄β ≤ C exp(−cβ)

Corollary If ΩGS has a unique measure µmin of maximal entropy, then
µβ → µmin exists
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Proposition Another case where µβ → µmin:

- For generic H in the sense of Baire category for Hölder functions,
there is a unique minimizing measure µmin and therefore µβ → µmin

- (Conjecture: Contreras) For generic H, µmin is a periodic orbit

Proposition[Baraviera-Lopes-Thieullen 2006] If µmin is unique, then µβ
satisfies a large deviation principle

1
β

lnµβ(C)→ − inf
C
I

- C is any cylinder

- I(x) =
∑
k≥0[H − V ◦ σ + V − H̄] ◦ σk(x) is l.s.c.

- V is any calibrated effective potential
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Some improvements in the Hölder case

Theorem[Ruelle-Perron-Frobenius Theory]

- µβ = Φβνβ
- Φβ , νβ are the right and left eigenvectors of Lβ

- LβΦβ = λΦβ , L∗βνβ = λνβ

Question: What is the limite behavior of Φβ?

Normalization Φβ = exp(−βVβ), λβ = exp(−βH̄β)

- The transfert operator equation∑
x:σ(x)=y

exp−β
[
H(x)− H̄β − Vβ ◦ (x) + Vβ(x)

]
= 1, ∀y ∈ ΣG

- Let V∞ any limite point of Vβ , then V∞ is calibrated

min
x:σ(x)=y

[
H(x)− H̄ − V ◦ σ(x) + V∞(x)

]
= 0, ∀ y ∈ ΣG
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Theorem[Ruelle-Perron-Frobenius Theory]

- µβ = Φβνβ

- Φβ , νβ are the right and left eigenvectors of Lβ

- LβΦβ = λΦβ , L∗βνβ = λνβ

Question: What is the limite behavior of Φβ?

Normalization Φβ = exp(−βVβ), λβ = exp(−βH̄β)

- The transfert operator equation∑
x:σ(x)=y

exp−β
[
H(x)− H̄β − Vβ ◦ (x) + Vβ(x)

]
= 1, ∀y ∈ ΣG

- Let V∞ any limite point of Vβ , then V∞ is calibrated

min
x:σ(x)=y

[
H(x)− H̄ − V ◦ σ(x) + V∞(x)

]
= 0, ∀ y ∈ ΣG

Warwick, 11–15 July 2011 Zero-temperature Gibbs measures 17/20
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How to characterize V∞? We have seen that any such a V∞ is
calibrated

Definition [Mather-Peierls barrier] Let x, y ∈ ΣG

h(x, y) := lim
ε→0

lim inf
n→+∞

Sεn(x, y),
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The general setting The locally finite case The Hölder case: known facts Some improvements in the Hölder case

Theorem[Contreras,Lopes-Garibaldi] If V is calibrated then

- For any x ∈ ΣG

V (x) = min
p∈ΩGS

{
V (p) + h(p, x)

}
(V is uniquely determined by V |ΩGS)

- If φ : ΩGS → R satisfies φ(y)− φ(x) ≤ h(x, y), then

V (x) := min
p∈ΩGS

{
φ(p) + h(p, x)

}
is a calibrated potential

Question Can we find p which minimizes above for all x? Is there a
unique calibrated V up to the value V (p0) for some fixed p0 ∈ ΩGS?
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The general setting The locally finite case The Hölder case: known facts Some improvements in the Hölder case

Definition Equivalence relation on ΩGS

- Let x, y ∈ ΩGS , x ∼ y ⇐⇒ h(x, y) + h(y, x) = 0
- equivalent classes are called irreducible components

Proposition If ΩGS is irreducible and V is calibrated, then V is unique
in a projective sense

V (x) = V (p) + h(p, x), ∀ x ∈ ΣG, ∀ p ∈ ΩGS

(ΩGSmay have many minimizing measures with maximal topological
entropy)

New result[Garibaldi-Thieullen] If ΩGS = Ω0 ∪ Ω1 ∪ . . . ∪ Ωr is a finite
disjoint union of irreducible components so that Ω0 has the largest
topological entropy and all other Ωi has a lower topological entropy, then
for any fixed p ∈ Ω0

Vβ − Vβ(p)→ h(p, .), uniformly
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Definition Equivalence relation on ΩGS
- Let x, y ∈ ΩGS , x ∼ y ⇐⇒ h(x, y) + h(y, x) = 0

- equivalent classes are called irreducible components

Proposition If ΩGS is irreducible and V is calibrated, then V is unique
in a projective sense

V (x) = V (p) + h(p, x), ∀ x ∈ ΣG, ∀ p ∈ ΩGS

(ΩGSmay have many minimizing measures with maximal topological
entropy)

New result[Garibaldi-Thieullen] If ΩGS = Ω0 ∪ Ω1 ∪ . . . ∪ Ωr is a finite
disjoint union of irreducible components so that Ω0 has the largest
topological entropy and all other Ωi has a lower topological entropy, then
for any fixed p ∈ Ω0

Vβ − Vβ(p)→ h(p, .), uniformly

Warwick, 11–15 July 2011 Zero-temperature Gibbs measures 20/20
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