Robustness to Perturbations of the Gibbs Potential

A Brief Overview

Léo Gayral 06/05/2025, Thermogamas ANR Seminar

INRIA Researcher, MOCQUA Team, Loria

Loria Inría

Thermodynamic Formalism

Genericity

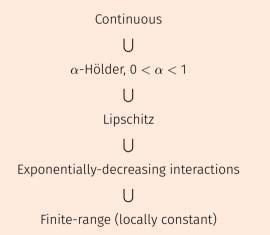
Examples of Robustness

Thermodynamic Formalism

Potentials & Gibbs Measures

- + $\Omega_\mathcal{A} := \mathcal{A}^{\mathbb{Z}^d}$ the configuration space on a finite alphabet \mathcal{A}
- $\cdot \ \varphi : \Omega_{\mathcal{A}} \to \mathbb{R}$ a potential
- + $p_{eta}: \mu \mapsto h(\mu) \beta \int arphi \mathrm{d} \mu$ the pressure function at inverse temperature eta
- $\cdot \ \mathcal{G}(eta)$ the set of Gibbs measures, that maximise the pressure p_eta

Classes of Potentials



Low-Temperature Limit Behaviours

Let $\mathcal{G}(\infty) := \operatorname{Acc}_{\beta \to \infty} \mathcal{G}(\beta)$ the set of all zero-temperature accumulation points.

Lemma

Assume
$$\varphi \geq 0$$
 and $X := \{ \omega \in \Omega_{\mathcal{A}}, \forall x \in \mathbb{Z}^d, \varphi(\sigma_x(\omega)) = 0 \} \neq \emptyset.$

Then $\mathcal{G}(\infty) \subset \mathcal{M}_{\sigma}(X)$ and these measures have maximal entropy h in $\mathcal{M}_{\sigma}(X)$.

A model is stable if $\mathcal{G}(\infty)$ is a singleton.

A property of φ is *robust* (in some class) if there is a neighbourhood U_{φ} , such that the property holds for all the potentials in U_{φ} .

Genericity

Ergodic Optimisation

Let $\mathcal{M}_{\sigma}(\varphi)$ the invariant measures that minimise $\mu \mapsto \int \varphi d\mu$.

We have the inclusion $\mathcal{G}(\infty) \subset \mathcal{M}_{\sigma}(\varphi)$.

Generic Properties for Continuous Potentials

- Jenkinson, 2006: Ergodic Optimization
- Brémont, 2008: Entropy and Maximizing Measures of Generic Continuous Functions
- Morris, 2010: Ergodic Optimization for Generic Continuous Functions

Uniqueness of $\mu \in \mathcal{M}_{\sigma}(\varphi)$ (\Rightarrow Gibbs stability), and μ is non-mixing, has full support and zero entropy.

• van Enter & Miękisz, 2020: Typical Ground States for Large Sets of Interactions

The measure μ is weakly mixing, has a singular diffraction spectrum, and does *not* maximise the pressure for any other continuous potential (*i.e.* it is not a Gibbs measure).

Other Typicality Results

• Contreras, 2015: Ground States are Generically a Periodic Orbit

If $T : X \to X$ is expanding (*e.g.* for $\sigma : \mathcal{A}^{\mathbb{N}} \to \mathcal{A}^{\mathbb{N}}$, but *not* for $\Omega_{\mathcal{A}}$), then having a periodic support is generic for Lipschitz potentials.

• Shinoda, 2018: Uncountably Many Maximizing Measures for a Dense Subset of Continuous Functions

This holds for a dense but *not generic* set of continuous potentials.

Examples of Robustness

Robinson Tiling

• Gonschorowski, Quas & Siefken, 2019:

Support Stability of Maximizing Measures for Shifts of Finite Type

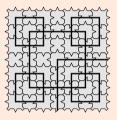


Figure 1: Robinson 3-macro-tile

Finite-range potential, minimal measure supported by the Robinson tiling.

With finite-range perturbations, we can eliminate the quasi-periodicity, beyond a finite scale of macro-tiles.

Decaying One-Dimensional Interactions

• Głodkowski & Miękisz, 2024:

On Non-Stability of One-Dimensional Non-Periodic Ground States

Without the strict boundary condition, if the interaction decay is of order $\frac{1}{r^{\alpha}}$ with $\alpha > 2$, then the support is not robust to finite-range perturbations.

+ Oguri & Shinoda, 2025: On the Stability of the Penalty Function for the $\mathbb{Z}^2\text{-Hard}$ Square Shift

Figure 2: Forbidden patterns for the hard square shift

Finite-range potential, support of the minimal measures robust to Lipschitz perturbations.

Class of Non-Robust Zero-Temperature Limits

• Gayral & Sablik, 2025: Non-Robustness of the Zero-Temperature-Limit Gibbs Measures to Perturbations of the Potential.

Theorem

Let X a connected Π_2 -computable compact set.

There is a "universal" potential φ_X s.t. $G(\infty) = X$ and, for any likewise Π_2 set Y, there is ψ_Y s.t. any perturbation $\varphi_X + \varepsilon \psi_Y$ ($\varepsilon > 0$) induces Y as the accumulation set.

Notably, the potentials φ_X are not robust to finite-range perturbations.

Open Questions

- Existence of stable/chaotic models robust to finite-range perturbations?
- What about genericity?
- Study other well-known tilings (Kari...).

THE END OF PRESENTATION **ONE MORE SLIDE:**

Thank you.