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I. Mañé conjecture

Notations
Consider a Tonelli Lagrangian L : Td × Rd → R which satisfies

1 v 7→ ∂2L
∂v2 (x, v) is strictly convex

2 v 7→ L(x, v) is super linear

lim
R→+∞

inf
x∈Td,∥v∥≥R

L(x, v)

∥v∥+ 1
= +∞

The Euler -Lagrange flow is given by the solutions of the ODE

d

dt

(∂L
∂v

)
=

∂L

∂x

Instead of working with an invariant measure with respect to the flow,
a weaker notion is introduced : a probability measure µ on Td × Rd is
said to be holonomic if

∀ϕ : Td → R,
∫

Dϕ(x) · v µ(dx, dv) = 0.
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I. Mañé conjecture

Theorem [Mañé, 1996].
There exists a residual set of potentials ϕ : Td → R such that L+ ϕ
admits a unique minimizing measure µmin : an holonomic probability
measure that satisfies∫ (

L(x, v) + ϕ(x)
)
µmin(dx, dv)

min
{∫ (

L(x, v) + ϕ(x)
)
µ(dx, dv) : µ holonomic

}
Actually minimizing measures are invariant by the Euler-Lagrange
flow.

Moreover for generic ϕ supp(µmin) is uniquely ergodic.

Mañé conjecture : Is it true that for generic Lagrangian L, the set
of minimizing measures is a periodic orbit ?
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I. Contreras approach

Notations
Consider an expanding map T : X → X, for instance X ⊆ {1, . . . , r}N
is a subshift of finite type and T is the left shift. Consider a Lipschitz
function ϕ : X → R. A maximizing measure µmax is a probability
measure, invariant by T and satisfying

ϕ̄ :=

∫
ϕdµmax = max

{∫
ϕdµ : µ invariant by T

}
.

Theorem [Contreras, 2016].
For generic (open and dense) ϕ there is a unique maximizing measure
µmax and µmax is supported on a periodic orbit.

Main tool The existence of subactions u : X → R, a Lipschitz
function satisfying

ϕ ≥ u ◦ T − u+ ϕ̄.
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I. A different approach

Theorem [Wen Huang, Zeng Lian, Xiao Ma, Leiye Xu, and
Yiwei Zhang, 2019].
The authors extend Contreras theorem for bilateral dynamical
systems T : X → X satisfying the shadowing property and the
existence of subactions (called in their paper
Mañé-Conze-Guivarc’h-Bousch property).

In a second paper they also proved Mañé conjecture for Axiom A
flows.
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II. Matrix cocycle

Notations
We consider a one-sided dynamical system T : X → X and a matrix
cocycle A : X × N → Mat(d,R), that is a Lipschitz continuous map
satisfying

A(x,m+ n) = A(Tm(x), n)A(x,m).

Example : one-step cocycles

1 X = {1, . . . , r}N is the full shift,

2 A = {M1, . . . ,Mr} ⊂ Mat(d,R) is a finite subset of matrices,

3 the cocycle is defiend by

A(x, n) = Mxn−1 · · ·Mx1Mx0 , x = (x0, x1, · · · ).

We would like to understand the set of trajectories that realize the
largest Lyapunov exponent.
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II. Lyapunov exponent

Definition

1 The maximizing Lyapunov exponent

ϕn(x) := ln ∥A(x, n)∥2, ϕm+n(x) ≤ ϕm(x) + ϕn ◦ Tm,

β(A) := lim
n→+∞

max
x∈X

1

n
ln ∥A(x, n)∥2).

For one-step cocycles, β(A) is the log of the joint spectral radius

β(A) = lim
n→+∞

max
i,...,in∈J1,rK

1

n
ln ∥Min · · ·Mi1∥2.

2 The integrated Lyapunov exponent of an invariant measure µ

λ1(µ) := lim
n→+∞

1

n

∫
∥A(x, n)∥2 dµ(x).
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Proposition [Morris, 2013].
The maximizing Lyapunov exponent admits several equivalent
definitions

β(A) = lim
n→+∞

sup
x∈X

1

n
ln ∥A(x, n)∥2

= inf
n≥1

sup
x∈X

1

n
ln ∥A(x, n)∥2

= sup
µ∈M(X,T )

inf
n≥1

1

n

∫
ln ∥A(x, n)∥2 dµ(x)

= sup
µ∈M(X,T )

λ1(µ).

A maximizing measure is an invariant probability measure that
realizes the supremum in the last equality. Morris also proved that for
generic A there exists a unique maximizing measure.
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II. Restrictive models

Remark

If we want to say more about the set of maximizing measure or the
set of optimal trajectories we need to choose a more restrictive class
of cocycles.
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II. Mather set

Definition
The Mather set is the closed set

Mather(A) =
⋃{

supp(µ) : µ is maximizing
}
.

Notice that the Mather set does not necessarily satisfies the
subordination principle

Definition
The Mather set satisfies the subordination principle if

µ ∈ M(X,T ) and supp(µ) ⊆ Mather(A) ⇒ µ is maximizing.
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II. Entropy zero

Theorem [Bochi, Rams, 2016].
Let A = {M1, . . . ,Mr} be a one-step cocycle in SL(2,R) over the full
shift. If A admits a forward non-overlapping multicone, then the
Mather set satisfies the subordination principle and has zero entropy.

forward non-overlapping multicone The condition means there
exist disjoint cones C1, . . . , Ck such that, if C =

⋃k
i=1 Ci, then

1 ∀ j ∈ J1, rK, Mj(Ci) ⊂ int(C),

2 ∀ j, j′ ∈ J1, rK, j ̸= j′ ⇒ Mj(C)
⋂
Aj′(C) = ∅.
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II. Non defective

Definition
A cocycle A(x, n) is said to be non-defective if there exists a constant
C ≥ 1 such that

∀x ∈ X, ∀n ≥ 0, ∥A(x, n)∥2 ≤ Cenβ(A).

Obvious example For instance, for the one-step example A = {M1}
the cocycle is non defective if and only if M1 has no Jordan bloc.
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II. Extremal norm

Definition
Assume A is non defective.

1 A vectorial norm ∥ · ∥ is said to be extremal if

∀x ∈ X, ∥A(x)∥ ≤ eβ(A).

2 In the case of the full shift over {1, . . . , r} and one-step cocycles
A = {M1, . . . ,Mr}, a Barabanov norm ∥ · ∥ is a vectorial norm
satisfying

∀ v ∈ Rd, ∃ i ∈ J1, rK, ∥Miv∥ = eβ(A)∥v∥.

A Barabanov norm is obviously an extremal norm.
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II. Extremal norm

Proposition [Jungers, 2009].
In the case of the full shift and one-step cocycles A = {M1, . . . ,Mr},

1 A is non defective if and only if A admits an extremal norm,

2 if A is irreducible (no strict vector space invariant by each Mi)
then A admits a Barabanov norm.
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II. Extremal norm

Theorem [Bochi, Garibaldi, 2019].
If (X,T ) is a transitive “Axiom A” and A : X × N → GL(d,R) is a
strongly bunched cocycle : the condition number

sup
x∈X

∥A(x)∥ ∥A(x)−1∥

is sufficiently small,

1 if the cocycle is irreducible (no continuous invariant sub-bundle),
then A is spannable (the u− s holonomies span Rd),

2 if the cocycle is spannable, then it admits an extremal norm.
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II. Mañé conjecture

What about Mañé conjecture ?

The conjecture has another name : finiteness conjecture
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II. Finiteness conjecture

Definition In the case of the full shift and one-step cocycles, the
finiteness property says (using the vocabulary of ergodic optimization)

the Mather set contains a periodic orbit {x, T (x), · · · , T τ−1(x)}.

The maximizing Lyapunov exponent is computed explicitely by

β(A) =
1

τ
ln ρ(A(x, τ)).

(ρ(A) is the spectral radius of A).
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II. Counter example

[Bousch, Mairesse, 2002]. There are counter example of one-step
cocycles for the finiteness conjecture. For instance if the cocycle is

A =
{[

eκh0 + 1 0
eκ 1

]
,

[
1 eκ

0 eκh1 + 1

]}
, κ > 0, h0, h1 > 0, h0 + h1 < 2,

then there exists uncountably many parameters κ, h0, h1 for which the
Mather set is uniquely ergodic and conjugated to the subshift
generated by a Sturmian sequence.
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II. Counter example

Theorem [Jenkinson, Pollicott, 2018]. Another set of counter
examples to the finiteness conjecture. If

A =
{
A0 =

[
1 b
c 1

]
, A1 =

[
1 c
b 1

]}
, bc < 1, b, c ≥ 0,

then there are uncountably many parameters t ∈ R such that
At = {A0, tA1} admits a uniquely ergodic Mather set conjugated to
the subshift generated by a Sturmian sequence.

Ph. Thieullen Genericity 21/22



Summary The additive problem The multiplicative problem

II. Genericity

A preliminary result :

Proposition [Mohammadpour, T].
Assume A = {M1, . . . ,Mr} ⊂ SL(2,R) is irreducible, none of the
matrices Mi is a rotation, and β(A) > 0. Let A : X → SL(2,R) be the
associated one-step cocycle.

Then for every ϵ > 0 there exists a cocycle (a priori not one-step)
Bϵ : X → SL(2,R) such that

1 supx∈X ∥A(x)−Bϵ(x)∥ < ϵ,

2 Mather(Bϵ) is a periodic orbit.
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