Characterization of zero-noise limit measures for cellular automata

Webinar THERMOGAMAS

Mathieu Sablik

20 may 2025

Problematic

Let (X, F) be a measurable dynamical system.

- Idea: study the long-term behavior of F (the invariant measures) assuming a small amount of errors.
- Denote by F_{ϵ} a random perturbation of F by a noise of "size ϵ " and \mathcal{M}_{ϵ} its invariant measures.

Let (X, F) be a measurable dynamical system.

- Idea: study the long-term behavior of F (the invariant measures) assuming a small amount of errors.
- Denote by F_{ϵ} a random perturbation of F by a noise of "size ϵ " and \mathcal{M}_{ϵ} its invariant measures.

Problematic

Understand what happen when $\epsilon \rightarrow 0$.

Let (X, F) be a measurable dynamical system.

- Idea: study the long-term behavior of F (the invariant measures) assuming a small amount of errors.
- Denote by F_{ϵ} a random perturbation of F by a noise of "size ϵ " and \mathcal{M}_{ϵ} its invariant measures.

Problematic

Understand what happen when $\epsilon \rightarrow 0$.

Definition

Set of zero-noise limit measures:

$$\mathcal{M}_0^{\ell} = \operatorname{Acc}_{\epsilon \to 0}(\mathcal{M}_{\epsilon}) = \bigcap_n \overline{\bigcup_{0 < \epsilon < \frac{1}{n}} \mathcal{M}_{\epsilon}}$$

Definition

$$\mu \in \mathcal{M}_{0}^{\ell} \iff \exists (\pi_{\epsilon_{n}})_{n \in \mathbb{N}} \text{ such that } \pi_{\epsilon_{n}} \in \mathcal{M}_{\epsilon_{n}} \text{ and } \epsilon_{n} \xrightarrow[n \to \infty]{} 0 \text{ and } \pi_{\epsilon_{n}} \xrightarrow[n \to \infty]{} \mu$$
$$\mu \text{ stable } \iff \exists (\pi_{\epsilon})_{\epsilon > 0} \text{ such that } \pi_{\epsilon} \in \mathcal{M}_{\epsilon} \text{ and } \pi_{\epsilon} \xrightarrow[\epsilon \to 0]{} \mu$$

Definition

$$\mu \in \mathcal{M}_{0}^{\ell} \iff \exists (\pi_{\epsilon_{n}})_{n \in \mathbb{N}} \text{ such that } \pi_{\epsilon_{n}} \in \mathcal{M}_{\epsilon_{n}} \text{ and } \epsilon_{n} \xrightarrow[n \to \infty]{} 0 \text{ and } \pi_{\epsilon_{n}} \xrightarrow[n \to \infty]{} \mu$$
$$\mu \text{ stable } \iff \exists (\pi_{\epsilon})_{\epsilon > 0} \text{ such that } \pi_{\epsilon} \in \mathcal{M}_{\epsilon} \text{ and } \pi_{\epsilon} \xrightarrow[n \to \infty]{} \mu$$

Proposition

If $\epsilon \mapsto F_{\epsilon}$ is continuous, then $\mathcal{M}_0^{\ell} \subset \mathcal{M}(F)$. It is a way to select invariant measures

Definition

$$\mu \in \mathcal{M}_{0}^{\ell} \longleftrightarrow \exists (\pi_{\epsilon_{n}})_{n \in \mathbb{N}} \text{ such that } \pi_{\epsilon_{n}} \in \mathcal{M}_{\epsilon_{n}} \text{ and } \epsilon_{n} \underset{n \to \infty}{\longrightarrow} 0 \text{ and } \pi_{\epsilon_{n}} \underset{n \to \infty}{\longrightarrow} \mu$$

$$\mu \text{ stable } \iff \exists (\pi_{\epsilon})_{\epsilon>0} \text{ such that } \pi_{\epsilon} \in \mathcal{M}_{\epsilon} \text{ and } \pi_{\epsilon} \xrightarrow{} \mu$$

Proposition

If $\epsilon \mapsto F_{\epsilon}$ is continuous, then $\mathcal{M}_0^{\ell} \subset \mathcal{M}(F)$. It is a way to select invariant measures

Some questions:

- It is possible to characterize for which dynamics \mathcal{M}_0^ℓ is a singleton?
- Which set \mathcal{M}_0^ℓ can be reached?
- There exists system without stable measure?
- \mathcal{M}_0^ℓ can be uniformly approached?

Definition

 \mathcal{M}_0^ℓ is *uniformly approached* if for any choose of family $(\pi_\epsilon)_{\epsilon>0}$, one has

$$\mathcal{M}_0^\ell = \operatorname{Acc}(\pi_\epsilon)$$

Problematic

Stochastic Stability

4 / 18

Definition

A = {□, ■} finite alphabet
A^ℤ set of configurations
f : A^[-r,r] → A local rules
F(x)_i = f(x_{i+[-r,r]}) for all x ∈ A^ℤ

Problematic

Definition

A = {□, ■} finite alphabet
A^ℤ set of configurations
f : A^[-r,r] → A local rules
F(x)_i = f(x_{i+[-r,r]}) for all x ∈ A^ℤ

Definition

A = {□, ■} finite alphabet
A^ℤ set of configurations
f : A^[-r,r] → A local rules
F(x)_i = f(x_{i+[-r,r]}) for all x ∈ A^ℤ

Definition

A = {□, ■} finite alphabet
A^ℤ set of configurations
f : A^[-r,r] → A local rules
F(x)_i = f(x_{i+[-r,r]}) for all x ∈ A^ℤ

Definition

A = {□, ■} finite alphabet
A^ℤ set of configurations
f : A^[-r,r] → A local rules
F(x)_i = f(x_{i+[-r,r]}) for all x ∈ A^ℤ

Definition

A = {□, ■} finite alphabet
A^ℤ set of configurations
f : A^[-r,r] → A local rules
F(x)_i = f(x_{i+[-r,r]}) for all x ∈ A^ℤ

Definition

- $\mathcal{A} = \{\Box, \blacksquare\}$ finite *alphabet*
- $\mathcal{A}^{\mathbb{Z}}$ set of *configurations*
- $f: \mathcal{A}^{[-r,r]} \longrightarrow \mathcal{A}$ local rules

$$F(x)_{\mathbf{i}} = f(x_{\mathbf{i} + [-r, r]}) \text{ for all } x \in \mathcal{A}^{\mathbb{Z}}$$

Theorem (Hedlund-1969)

 $(\mathcal{A}^{\mathbb{Z}}, F)$ is a CA iff $F : \mathcal{A}^{\mathbb{Z}} \longrightarrow \mathcal{A}^{\mathbb{Z}}$ is continuous and $F \circ \sigma = \sigma \circ F$.

$$\sigma: \begin{array}{ccc} \mathcal{A}^{\mathbb{Z}} & \longrightarrow & \mathcal{A}^{\mathbb{Z}} \\ (x_i)_{i\in\mathbb{Z}} & \longmapsto & (x_{i+1})_{i\in\mathbb{Z}}. \end{array}$$

5 / 18

Iteration of measures by a cellular automaton

 $\begin{array}{cccc} F: & \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}}) & \longrightarrow & \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}}) \\ & \mu & \longmapsto & F\mu & such that \ \forall B \in \mathfrak{B} \quad F\mu(B) = \mu(F^{-1}(B)). \end{array}$

Iteration of measures by a cellular automaton

 $F: \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}}) \longrightarrow \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ $\mu \longmapsto F\mu \qquad such that \forall B \in \mathfrak{B} \quad F\mu(B) = \mu(F^{-1}(B)).$ Topology:

 $\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$: set of σ -invariant probability measures with the weak^{*} topology:

$$\mu_n \underset{n \to \infty}{\longrightarrow} \nu$$
 iff $\forall u \in \mathcal{A}^{\mathbb{U}}$ one has $\mu_n([u]) \underset{n \to \infty}{\longrightarrow} \nu([u])$.

 $\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ is convex, compact and metrizable.

Iteration of measures by a cellular automaton

 $F: \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}}) \longrightarrow \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ $\mu \longmapsto F\mu \qquad such that \forall B \in \mathfrak{B} \quad F\mu(B) = \mu(F^{-1}(B)).$ Topology:

 $\overline{\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})}$: set of σ -invariant probability measures with the weak^{*} topology:

$$\mu_n \underset{n \to \infty}{\longrightarrow} \nu$$
 iff $\forall u \in \mathcal{A}^{\mathbb{U}}$ one has $\mu_n([u]) \underset{n \to \infty}{\longrightarrow} \nu([u])$.

 $\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ is convex, compact and metrizable.

Exemple of measures:

• Bernoulli measure associated to $(p_a)_{a \in \mathcal{A}} \in [0; 1]^{\mathcal{A}}$ such that $\sum_{a \in \mathcal{A}} p_a = 1$:

$$\lambda_{(p_a)_{a\in\mathcal{A}}}([u])=p_{u_1}\cdots p_{u_n} \text{ for } u=u_1\cdots u_n\in\mathcal{A}^*.$$

• $\widehat{\delta_w}$ is the σ invariant supported by ${}^{\infty}w^{\infty}$.

Noisy cellular automata

Let F be a CA and $\epsilon \in [0,1]$, define the noisy CA $F_{\epsilon} : \mathcal{M}(\mathcal{A}^{\mathbb{Z}}) \longrightarrow \mathcal{M}(\mathcal{A}^{\mathbb{Z}})$:

- apply the deterministic rule F,
- apply the transformation R_{ϵ} : for each cell, independently with probability ϵ , choose uniformly a symbol.

$$F_{\epsilon} = R_{\epsilon} \circ F$$

Deterministic version

Small perturbations

Noisy cellular automata

Let F be a CA and $\epsilon \in [0,1]$, define the noisy CA $F_{\epsilon} : \mathcal{M}(\mathcal{A}^{\mathbb{Z}}) \longrightarrow \mathcal{M}(\mathcal{A}^{\mathbb{Z}})$:

- apply the deterministic rule F,
- apply the transformation R_{ϵ} : for each cell, independently with probability ϵ , choose uniformly a symbol.

$$F_{\epsilon} = R_{\epsilon} \circ F$$

Noisy cellular automata

Let F be a CA and $\epsilon \in [0,1]$, define the noisy CA $F_{\epsilon} : \mathcal{M}(\mathcal{A}^{\mathbb{Z}}) \longrightarrow \mathcal{M}(\mathcal{A}^{\mathbb{Z}})$:

- apply the deterministic rule F,
- apply the transformation R_{ϵ} : for each cell, independently with probability ϵ , choose uniformly a symbol.

$$F_{\epsilon} = R_{\epsilon} \circ F$$

 \mathcal{M}_{ϵ} : set of shift invariant measures which are F_{ϵ} invariant.

• Most of Cellular Automata satisfies $|\mathcal{M}_{\epsilon}| = 1$ but it is difficult to describe this measure.

Noisy cellular automata

Let F be a CA and $\epsilon \in [0,1]$, define the noisy CA $F_{\epsilon} : \mathcal{M}(\mathcal{A}^{\mathbb{Z}}) \longrightarrow \mathcal{M}(\mathcal{A}^{\mathbb{Z}})$:

- apply the deterministic rule F,
- apply the transformation R_{ϵ} : for each cell, independently with probability ϵ , choose uniformly a symbol.

$$F_{\epsilon} = R_{\epsilon} \circ F$$

 \mathcal{M}_{ϵ} : set of shift invariant measures which are F_{ϵ} invariant.

- Most of Cellular Automata satisfies $|\mathcal{M}_{\epsilon}| = 1$ but it is difficult to describe this measure.
- In dimension 1 there is one complex example such that $|\mathcal{M}_{\epsilon}| \geq 2$ (Gacs-01)

Noisy cellular automata

Let F be a CA and $\epsilon \in [0,1]$, define the noisy CA $F_{\epsilon} : \mathcal{M}(\mathcal{A}^{\mathbb{Z}}) \longrightarrow \mathcal{M}(\mathcal{A}^{\mathbb{Z}})$:

- apply the deterministic rule F,
- apply the transformation R_{ϵ} : for each cell, independently with probability ϵ , choose uniformly a symbol.

$$F_{\epsilon} = R_{\epsilon} \circ F$$

 \mathcal{M}_{ϵ} : set of shift invariant measures which are F_{ϵ} invariant.

- Most of Cellular Automata satisfies $|\mathcal{M}_{\epsilon}| = 1$ but it is difficult to describe this measure.
- In dimension 1 there is one complex example such that $|\mathcal{M}_{\epsilon}| \geq 2$ (Gacs-01)

Two approaches to study $\mathcal{M}_0^{\ell} = \operatorname{Acc}(\mathcal{M}_{\epsilon}) \subset \mathcal{M}(F)$

- Compute \mathcal{M}_0^ℓ for some classes of CA
- Given a set of measure $\mathcal{K},$ construct a CA such that \mathcal{M}_0^ℓ = \mathcal{K}

Study of some classes of cellular automata

CA with spreading state

 \Box is *spreading* if $(x_i = \Box \text{ for } i \in \mathbb{U} \implies F(x)_i = \Box)$.

• Deterministic version

• Probabilistic version

CA with spreading state

 \Box is *spreading* if $(x_i = \Box \text{ for } i \in \mathbb{U} \implies F(x)_i = \Box)$.

• Deterministic version

Proposition

$$\mathcal{M}(F) = \left\{ \widehat{\delta_{\Box}} \right\} \cup \mathcal{M}_{F} \left(\left(\mathcal{A} \setminus \{\Box\} \right)^{\mathbb{Z}} \right)$$

• Probabilistic version

CA with spreading state

 \Box is *spreading* if $(x_i = \Box \text{ for } i \in \mathbb{U} \implies F(x)_i = \Box)$.

• Deterministic version

Proposition

$$\mathcal{M}(F) = \left\{\widehat{\delta_{\Box}}\right\} \cup \mathcal{M}_{F}\left(\left(\mathcal{A} \setminus \{\Box\}\right)^{\mathbb{Z}}\right)$$

Study of some classes of cellular automata

Probabilistic version

Proposition (Marsan-23) $\mathcal{M}_{0}^{\ell} = \{\widehat{\delta_{\Box}}\}$

Surjective CA

• Deterministic version

• Probabilistic version

Surjective CA

• Deterministic version

Proposition

If F is surjective, λ is F-invariant.

Question

Which additional constraints make λ attractive?

Study of some classes of cellular automata

• Probabilistic version

Surjective CA

• Deterministic version

• Probabilistic version

Proposition

If F is surjective, λ is F-invariant.

Question

Which additional constraints make λ attractive?

Study of some classes of cellular automata

Theorem (Marcovici-Taati-S-19)

For all $\epsilon \in]0,1]$ one has:

So

 $\mathcal{M}_{\epsilon} = \{\lambda\}$

 $\mathcal{M}_0^\ell = \{\lambda\}$

Which set can be realized as \mathcal{M}_0^{ℓ} ?

Topological contraints:

• \mathcal{M}_0^{ℓ} is compact since $\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ is compact.

Topological contraints:

- \mathcal{M}_0^ℓ is compact since $\mathcal{M}_\sigma(\mathcal{A}^\mathbb{Z})$ is compact.
- \mathcal{M}_0^{ℓ} is connected since $\operatorname{Acc}_{\epsilon \to \epsilon_0}(\mathcal{M}_{\epsilon}) \subset \mathcal{M}_{\epsilon_0}$

Topological contraints:

- \mathcal{M}_0^ℓ is compact since $\mathcal{M}_\sigma(\mathcal{A}^\mathbb{Z})$ is compact.
- $\mathcal{M}_{0}^{\check{\ell}}$ is connected since $\underset{\epsilon \to \epsilon_{0}}{\operatorname{Acc}}(\mathcal{M}_{\epsilon}) \subset \mathcal{M}_{\epsilon_{0}}$

Combinatory contraints:

We need to find combinatory contraints: As there is a countable number of cellular automata, there is a countable number of limit sets.

Topological contraints:

- \mathcal{M}_0^ℓ is compact since $\mathcal{M}_\sigma(\mathcal{A}^\mathbb{Z})$ is compact.
- $\mathcal{M}_{0}^{\check{\ell}}$ is connected since $\underset{\epsilon \to \epsilon_{0}}{\operatorname{Acc}}(\mathcal{M}_{\epsilon}) \subset \mathcal{M}_{\epsilon_{0}}$

Combinatory contraints:

We need to find combinatory contraints: As there is a countable number of cellular automata, there is a countable number of limit sets.

Definition

 $\mathcal{K} \subset \mathcal{M}_{\sigma} \text{ is } \Pi_k\text{-}computable \text{ if } \exists \ f : \mathcal{A}^* \times \mathbb{Q} \times \mathbb{N}^k \to \{0,1\} \text{ computable such that:}$

$$\mathcal{K} \cap \overline{B(\widehat{\delta_w}, r)} \neq \emptyset \iff \underbrace{\forall y_1, \exists y_2, \forall y_3, \dots, f(w, r, y_1, \dots, y_k) = 1}_{k \text{ alternating quantifiers}}$$

Topological contraints:

- \mathcal{M}_0^ℓ is compact since $\mathcal{M}_\sigma(\mathcal{A}^\mathbb{Z})$ is compact.
- $\mathcal{M}_{0}^{\check{\ell}}$ is connected since $\underset{\epsilon \to \epsilon_{0}}{\operatorname{Acc}}(\mathcal{M}_{\epsilon}) \subset \mathcal{M}_{\epsilon_{0}}$

Combinatory contraints:

We need to find combinatory contraints: As there is a countable number of cellular automata, there is a countable number of limit sets.

Definition

 $\mathcal{K} \subset \mathcal{M}_{\sigma} \text{ is } \Pi_k \text{-computable if } \exists \ f : \mathcal{A}^* \times \mathbb{Q} \times \mathbb{N}^k \to \{0,1\} \text{ computable such that:}$

$$\mathcal{K} \cap \overline{B(\widehat{\delta_w}, r)} \neq \emptyset \iff \underbrace{\forall y_1, \exists y_2, \forall y_3, \dots}_{f(w, r, y_1, \dots, y_k)} = 1$$

k alternating quantifiers

• \mathcal{M}_0^ℓ is Π_3 -computable.

Topological contraints:

- \mathcal{M}_0^ℓ is compact since $\mathcal{M}_\sigma(\mathcal{A}^\mathbb{Z})$ is compact.
- $\mathcal{M}_{0}^{\check{\ell}}$ is connected since $\underset{\epsilon \to \epsilon_{0}}{\operatorname{Acc}}(\mathcal{M}_{\epsilon}) \subset \mathcal{M}_{\epsilon_{0}}$

Combinatory contraints:

We need to find combinatory contraints: As there is a countable number of cellular automata, there is a countable number of limit sets.

Definition

K

 $\mathcal{K} \subset \mathcal{M}_{\sigma} \text{ is } \Pi_k\text{-}computable \text{ if } \exists \ f : \mathcal{A}^* \times \mathbb{Q} \times \mathbb{N}^k \to \{0,1\} \text{ computable such that:}$

$$\mathcal{K} \cap \overline{B(\widehat{\delta_w}, r)} \neq \emptyset \iff \underbrace{\forall y_1, \exists y_2, \forall y_3, \dots, f(w, r, y_1, \dots, y_k) = 1}_{k \text{ alternating quantifiers}}$$

• \mathcal{M}_0^ℓ is Π_3 -computable.

• \mathcal{M}_0^{ℓ} is Π_2 -computable if \mathcal{M}_0^{ℓ} is uniformly approached (i.e. $\mathcal{M}_0^{\ell} = \operatorname{Acc}(\pi_{\epsilon})$ for any choose of family $(\pi_{\epsilon})_{\epsilon>0}$)

Theorem (Marsan-S-24)

Let $\mathcal{K} \subset \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ be a Π_2 -computable connected compact. There exists F a CA on $\mathcal{B}^{\mathbb{Z}}$ with $\mathcal{A} \subset \mathcal{B}$ such that $\mathcal{M}_0^{\ell} = \mathcal{K}$. Moreover, \mathcal{M}_0^{ℓ} is uniformly approached.

Keys of the construction:

Theorem (Marsan-S-24)

Let $\mathcal{K} \subset \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ be a Π_2 -computable connected compact. There exists F a CA on $\mathcal{B}^{\mathbb{Z}}$ with $\mathcal{A} \subset \mathcal{B}$ such that $\mathcal{M}_0^{\ell} = \mathcal{K}$. Moreover, \mathcal{M}_0^{ℓ} is uniformly approached.

Keys of the construction:

• Recursive sequence $(w_n)_{n \in \mathbb{N}}$ such that $\mathcal{K} = \operatorname{Acc}(w_n)$ and $d(\widehat{\delta_{w_n}}, \widehat{\delta_{w_{n+1}}}) \to 0$.

Theorem (Marsan-S-24)

Let $\mathcal{K} \subset \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ be a Π_2 -computable connected compact. There exists F a CA on $\mathcal{B}^{\mathbb{Z}}$ with $\mathcal{A} \subset \mathcal{B}$ such that $\mathcal{M}_0^{\ell} = \mathcal{K}$. Moreover, \mathcal{M}_0^{ℓ} is uniformly approached.

Keys of the construction:

- Recursive sequence $(w_n)_{n \in \mathbb{N}}$ such that $\mathcal{K} = \operatorname{Acc}(w_n)$ and $d(\widehat{\delta_{w_n}}, \widehat{\delta_{w_{n+1}}}) \to 0$.
- $\mathcal B$ contains a special symbol \star which generates the following things:

Theorem (Marsan-S-24)

Let $\mathcal{K} \subset \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ be a Π_2 -computable connected compact. There exists F a CA on $\mathcal{B}^{\mathbb{Z}}$ with $\mathcal{A} \subset \mathcal{B}$ such that $\mathcal{M}_0^{\ell} = \mathcal{K}$. Moreover, \mathcal{M}_0^{ℓ} is uniformly approached.

Keys of the construction:

- Recursive sequence $(w_n)_{n \in \mathbb{N}}$ such that $\mathcal{K} = \operatorname{Acc}(w_n)$ and $d(\widehat{\delta_{w_n}}, \widehat{\delta_{w_{n+1}}}) \to 0$.
- ${\mathcal B}$ contains a special symbol \star
- With high probability, the last initialization symbol appeared around $\frac{1}{\sqrt{\epsilon}}$ steps before. The word $w_{n_{\epsilon}}$ is produced and π_{ϵ} is close to $\operatorname{Conv}(\widehat{\delta_{w_{n-1}}}, \widehat{\delta_{w_n}}, \widehat{\delta_{w_{n+1}}})$

Figure:
$$\epsilon = 10^{-3}$$
, 10^{-5} and 10^{-6}

• Strange behaviors when $\epsilon \rightarrow 0$.

• It is undecidable to know if $|\mathcal{M}_0^\ell| = 1$.

- It is undecidable to know if $|\mathcal{M}_0^\ell| = 1$.
- We can look probabilistic CA with a biais: $F_{\epsilon}^{\alpha} = R_{\epsilon}^{\alpha} \circ F$ where R_{ϵ}^{α} is the transformation such that for each cell, independently with probability ϵ , choose a symbol with the bias α .

- Strange behaviors when $\epsilon \to 0$. $\delta_{1\infty} \longrightarrow \delta_{0\infty}$
- It is undecidable to know if $|\mathcal{M}_0^\ell| = 1$.
- We can look probabilistic CA with a biais: $F_{\epsilon}^{\alpha} = R_{\epsilon}^{\alpha} \circ F$ where R_{ϵ}^{α} is the transformation such that for each cell, independently with probability ϵ , choose a symbol with the bias α .

Theorem (Marsan-S-25)

There exists a CA on $\mathcal{B} \supset \mathcal{A}$ such that for any bias α , for any connected compact set $\mathcal{K} \subset \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$, for any $\delta > 0$, there exists a bias α' such that

$$|\alpha - \alpha'| \leq \delta$$
 and $\mathcal{M}^{\ell}_{\alpha',0} = \mathcal{K} \times \{\lambda_{\alpha'}\}$

Some perspectives

Asymptotic measures

Given a measure λ , one consider $\mathcal{M}^{\text{Asym}}(F,\lambda) = \text{Acc}(F^n\mu)$.

Theorem (Hellouin-S-18)

Let $\mathcal{K} \subset \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ be a Π_2 -computable connected compact. There exists F a CA on $\mathcal{B}^{\mathbb{Z}}$ with $\mathcal{A} \subset \mathcal{B}$ such that $\mathcal{M}^{\operatorname{Asym}}(F, \lambda) = \mathcal{K}$.

Asymptotic measures

Given a measure λ , one consider $\mathcal{M}^{\text{Asym}}(F,\lambda) = \text{Acc}(F^n\mu)$.

Theorem (PhD-Marsan-25)

Let $\mathcal{K}, \mathcal{K}' \subset \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ be two Π_2 -computable connected compact. There exists F a CA on $\mathcal{B}^{\mathbb{Z}}$ with $\mathcal{A} \subset \mathcal{B}$ such that $\mathcal{M}^{\operatorname{Asym}}(F, \lambda) = \mathcal{K}$ and $\mathcal{M}_0^{\ell} = \mathcal{K}'$.

Asymptotic measures

Given a measure λ , one consider $\mathcal{M}^{\operatorname{Asym}}(F, \lambda) = \operatorname{Acc}(F^n \mu)$.

Theorem (PhD-Marsan-25)

Let $\mathcal{K}, \mathcal{K}' \subset \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ be two Π_2 -computable connected compact. There exists F a CA on $\mathcal{B}^{\mathbb{Z}}$ with $\mathcal{A} \subset \mathcal{B}$ such that $\mathcal{M}^{\operatorname{Asym}}(F, \lambda) = \mathcal{K}$ and $\mathcal{M}_0^{\ell} = \mathcal{K}'$.

Thermodynamic Formalism

Given $\varphi: \mathcal{A}^Z \to \mathbb{R}$

$$\mathcal{M}^{\mathrm{Therm}}(\beta\varphi) = \left\{ \mu \text{ which maximises } \nu \mapsto h_{\mathsf{F}}(\nu) - \beta \int \varphi \mathrm{d}\nu \right\}$$

Mores definition in "Thermodynamic Formalism for a family of cellular automata and duality with the shift" (Lopes-Oliveira-Sobottka-24).

Asymptotic measures

Given a measure λ , one consider $\mathcal{M}^{\operatorname{Asym}}(F,\lambda) = \operatorname{Acc}(F^n\mu)$.

Theorem (PhD-Marsan-25)

Let $\mathcal{K}, \mathcal{K}' \subset \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ be two Π_2 -computable connected compact. There exists F a CA on $\mathcal{B}^{\mathbb{Z}}$ with $\mathcal{A} \subset \mathcal{B}$ such that $\mathcal{M}^{\operatorname{Asym}}(F, \lambda) = \mathcal{K}$ and $\mathcal{M}_0^{\ell} = \mathcal{K}'$.

Thermodynamic Formalism

Given $\varphi: \mathcal{A}^Z \to \mathbb{R}$

$$\mathcal{M}^{\mathrm{Therm}}(\beta\varphi) = \left\{ \mu \text{ which maximises } \nu \mapsto h_{\mathsf{F}}(\nu) - \beta \int \varphi \mathrm{d}\nu \right\}$$

Mores definition in "Thermodynamic Formalism for a family of cellular automata and duality with the shift" (Lopes-Oliveira-Sobottka-24).

Open question

Which measures set can be obtain as $\underset{\beta \to \infty}{Acc} \left(\mathcal{M}^{\mathrm{Therm}}(\beta \varphi) \right)$ and how does it interact with \mathcal{M}_0^{ℓ} and $\mathcal{M}^{\mathrm{Asym}}(F, \lambda)$?

Links with local potential

Let $\Omega = \mathcal{A}^{\mathbb{Z}^2}$ and $\varphi : \Omega \to \mathbb{R}$, define

$$\mathcal{G}(\beta) = \left\{ \mu \text{ which maximises } \nu \longmapsto h_{\sigma}(\nu) - \beta \int \varphi d\nu \right\} \text{ and } \mathcal{G}(\infty) = \underset{\beta \to \infty}{\operatorname{Acc}}(\mathcal{G}(\beta))$$

Theorem (Gayral-Taati-S-23)

Let $\mathcal{K} \subset \mathcal{M}(\mathcal{A}^{\mathbb{N}})$ be a Π_2 -computable connected compact. There exists a local potential $\varphi : \mathcal{B}^{\mathbb{Z}^2} \to \mathbb{R}$ such that $\mathcal{G}(\infty)$ is affine isomorphic to \mathcal{K} . Moreover $\mathcal{G}(\infty)$ is uniformly approached.

"From PCA's to Equilibrium Systems and Back" (Goldstein-Lebowitz-Maes-89): Let F be a CA on $\mathcal{A}^{\mathbb{Z}}$ of neighboor \mathbb{U} . There is a correspondance betweenn \mathcal{M}_{ϵ} and $\mathcal{G}(\varphi_{\epsilon})$ where

$$\begin{array}{ccc} \varphi_{\epsilon} : & \mathcal{A}^{\mathbb{Z}^2} & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & -\log \mathbf{P} \left(F_{\epsilon}([x]_{\mathbb{U} \times \{0\}}) = x_{(0,1)} \right) \end{array}$$

So \mathcal{M}_0^{ℓ} is in correspondance with $\operatorname{Acc}_{\epsilon \to 0}(\mathcal{G}(\varphi_{\epsilon})).$

Phase transition

Open question

Characterize **Uni**(F) = { $\epsilon : |\mathcal{M}_{\epsilon}| = 1$ }

- Hight level noise: any CA are ergodic (Marcovici-Taati-S-19)
- Low level noise:
 - almost all CA are ergodic
 - there exists a CA not ergodic for small noise (Gacs-01)

There exists a CA, $0 < \epsilon_1 < \epsilon_2 < \epsilon_3$ such that:

 $]0,\epsilon_1] \cup [\epsilon_3,1] \subset \mathsf{Uni}(F) \text{ and } \epsilon_2 \notin \mathsf{Uni}(F)$

 \leftarrow ??? \rightarrow

 \mathcal{M}_{ϵ}