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Stochastic stability

Let (X ,F ) be a measurable dynamical system.

Idea: study the long-term behavior of F (the invariant measures) assuming a
small amount of errors.
Denote by Fε a random perturbation of F by a noise of "size ε" andMε its
invariant measures.

Problematic
Understand what happen when ε→ 0.

Definition
Set of zero-noise limit measures:

M
`
0 = Acc

ε→0
(Mε) = ⋂

n
⋃

0<ε< 1
n

Mε
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Stochastic stability

Definition
µ ∈ M

`
0 ⇐⇒ ∃(πεn)n∈N such that πεn ∈ Mεn and εn Ð→

n→∞
0 and πεn Ð→n→∞

µ

µ stable ⇐⇒ ∃(πε)ε>0 such that πε ∈ Mε and πε Ð→
ε→0

µ

Proposition
If ε↦ Fε is continuous, thenM`

0 ⊂M(F ). It is a way to select invariant measures

Some questions:
It is possible to characterize for which dynamicsM`

0 is a singleton?
Which setM`

0 can be reached?
There exists system without stable measure?
M

`
0 can be uniformly approached?

Definition
M

`
0 is uniformly approached if for any choose of family (πε)ε>0, one has

M
`
0 = Acc(πε)
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Cellular Automata

Definition
A = {◻,∎} finite alphabet
A

Z set of configurations
f ∶ A[−r ,r]

Ð→ A local rules

F (x)i = f (xi+[−r ,r]) for all x ∈ AZ

fffF

F

F

Problematic Cellular Automata 5 / 18



Cellular Automata

Definition
A = {◻,∎} finite alphabet
A

Z set of configurations
f ∶ A[−r ,r]

Ð→ A local rules

F (x)i = f (xi+[−r ,r]) for all x ∈ AZ

f

ffF

F

F

Problematic Cellular Automata 5 / 18



Cellular Automata

Definition
A = {◻,∎} finite alphabet
A

Z set of configurations
f ∶ A[−r ,r]

Ð→ A local rules

F (x)i = f (xi+[−r ,r]) for all x ∈ AZ

f

f

fF

F

F

Problematic Cellular Automata 5 / 18



Cellular Automata

Definition
A = {◻,∎} finite alphabet
A

Z set of configurations
f ∶ A[−r ,r]

Ð→ A local rules

F (x)i = f (xi+[−r ,r]) for all x ∈ AZ

ff

f

F

F

F

Problematic Cellular Automata 5 / 18



Cellular Automata

Definition
A = {◻,∎} finite alphabet
A

Z set of configurations
f ∶ A[−r ,r]

Ð→ A local rules

F (x)i = f (xi+[−r ,r]) for all x ∈ AZ

fff

F

F

F

Problematic Cellular Automata 5 / 18



Cellular Automata

Definition
A = {◻,∎} finite alphabet
A

Z set of configurations
f ∶ A[−r ,r]

Ð→ A local rules

F (x)i = f (xi+[−r ,r]) for all x ∈ AZ

fff

F

F

F

Problematic Cellular Automata 5 / 18



Cellular Automata

Definition
A = {◻,∎} finite alphabet
A

Z set of configurations
f ∶ A[−r ,r]

Ð→ A local rules

F (x)i = f (xi+[−r ,r]) for all x ∈ AZ

Theorem (Hedlund-1969)

(A
Z,F ) is a CA iff F ∶ A

Z
Ð→ A

Z is
continuous and F ○ σ = σ ○ F .

σ ∶ A
Z

Ð→ A
Z

(xi)i∈Z z→ (xi+1)i∈Z.

fffF

F

F
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Iteration of measures by a cellular automaton
F ∶ Mσ(A

Z
) Ð→ Mσ(A

Z
)

µ z→ Fµ such that ∀B ∈B Fµ(B) = µ(F−1
(B)).
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Iteration of measures by a cellular automaton
F ∶ Mσ(A

Z
) Ð→ Mσ(A

Z
)

µ z→ Fµ such that ∀B ∈B Fµ(B) = µ(F−1
(B)).

Topology:
Mσ(A

Z
): set of σ-invariant probability measures with the weak∗ topology:

µn Ð→
n→∞

ν iff ∀u ∈ AU one has µn([u]) Ð→
n→∞

ν([u]).

Mσ(A
Z
) is convex, compact and metrizable.
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(B)).

Topology:
Mσ(A

Z
): set of σ-invariant probability measures with the weak∗ topology:

µn Ð→
n→∞

ν iff ∀u ∈ AU one has µn([u]) Ð→
n→∞

ν([u]).

Mσ(A
Z
) is convex, compact and metrizable.

Exemple of measures:

Bernoulli measure associated to (pa)a∈A ∈ [0;1]A such that ∑a∈A pa = 1:

λ(pa)a∈A([u]) = pu1 . . .pun for u = u1 . . .un ∈ A
∗.

δ̂w is the σ invariant supported by ∞w∞.
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Perturbations

Noisy cellular automata
Let F be a CA and ε ∈ [0,1], define the noisy CA Fε ∶ M(A

Z
) Ð→M(A

Z
):

apply the deterministic rule F ,
apply the transformation Rε: for each cell, independently with probability ε,
choose uniformly a symbol.

Fε = Rε ○ F

● Deterministic version ● Small perturbations
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Z
) Ð→M(A

Z
):

apply the deterministic rule F ,
apply the transformation Rε: for each cell, independently with probability ε,
choose uniformly a symbol.

Fε = Rε ○ F

Mε: set of shift invariant measures which are Fε invariant.

Most of Cellular Automata satisfies ∣Mε∣ = 1 but it is difficult to describe
this measure.

In dimension 1 there is one complex example such that ∣Mε∣ ≥ 2 (Gacs-01)

Two approaches to studyM`
0 = Acc(Mε) ⊂M(F )

ComputeM`
0 for some classes of CA

Given a set of measure K, construct a CA such thatM`
0 = K
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Study of some classes of cellular automata
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CA with spreading state

◻ is spreading if (xi = ◻ for i ∈ U Ô⇒ F (x)i = ◻).

● Deterministic version

Proposition

M(F ) = {δ̂◻} ∪MF ((A ∖ {◻})
Z
)

● Probabilistic version

Proposition (Marsan-23)

M
`
0 = {δ̂◻}
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Surjective CA

● Deterministic version

Proposition
If F is surjective, λ is F -invariant.

Question
Which additional constraints make λ
attractive?

● Probabilistic version

Theorem (Marcovici-Taati-S-19)

For all ε ∈]0,1] one has:

Mε = {λ}

So
M

`
0 = {λ}
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Which set can be realized asM`
0?
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Contraints forM`
0

Topological contraints:
M

`
0 is compact sinceMσ(A

Z
) is compact.

M
`
0 is connnected since Acc

ε→ε0
(Mε) ⊂Mε0

Combinatory contraints:
We need to find combinatory contraints: As there is a countable number of
cellular automata, there is a countable number of limit sets.

Definition
K ⊂Mσ is Πk -computable if ∃ f ∶ A∗ ×Q ×Nk

→ {0,1} computable such that:

K∩B(δ̂w , r) ≠ ∅ ⇐⇒ ∀y1,∃y2,∀y3, . . .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k alternating quantifiers

f (w , r , y1, . . . , yk) = 1

M
`
0 is Π3-computable.

M
`
0 is Π2-computable ifM`

0 is uniformly approached (i.e.M`
0 = Acc(πε) for

any choose of family (πε)ε>0)

Which set can be realized as M`
0? Contraints 12 / 18
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Realization theorem

Theorem (Marsan-S-24)

Let K ⊂Mσ(A
Z
) be a Π2-computable connected compact.

There exists F a CA on BZ with A ⊂ B such thatM`
0 = K .

Moreover,M`
0 is uniformly approached.

Keys of the construction:

Recursive sequence (wn)n∈N such that K = Acc(wn) and d(δ̂wn , δ̂wn+1) → 0.
B contains a special symbol ⋆
With high probability, the last initialization symbol appeared around 1√

ε
steps

before. The word wnε is produced and πε is close to Conv(δ̂wn−1 , δ̂wn , δ̂wn+1)

Which set can be realized as M`
0? Realization theorem 13 / 18
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Some applications
Strange behaviors when ε→ 0.

It is undecidable to know if ∣M`
0∣ = 1.

We can look probabilistic CA with a biais: Fαε = Rαε ○ F where Rαε is the
transformation such that for each cell, independently with probability ε,
choose a symbol with the bias α.

Theorem (Marsan-S-25)

There exists a CA on B ⊃ A such that for any bias α, for any connected compact
set K ⊂Mσ(A

Z
), for any δ > 0, there exists a bias α′ such that

∣α − α′∣ ≤ δ andM`
α′,0 = K × {λα′}

Which set can be realized as M`
0? Realization theorem 14 / 18
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choose a symbol with the bias α.

Theorem (Marsan-S-25)

There exists a CA on B ⊃ A such that for any bias α, for any connected compact
set K ⊂Mσ(A

Z
), for any δ > 0, there exists a bias α′ such that

∣α − α′∣ ≤ δ andM`
α′,0 = K × {λα′}

Which set can be realized as M`
0? Realization theorem 14 / 18
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Other ways to select invariant measures

Asymptotic measures
Given a measure λ, one considerMAsym

(F , λ) = Acc(F nµ).

Theorem (Hellouin-S-18)

Let K ⊂Mσ(A
Z
) be a Π2-computable connected compact. There exists F a CA

on BZ with A ⊂ B such thatMAsym
(F , λ) = K.

Thermodynamic Formalism
Given ϕ ∶ AZ

→ R

M
Therm

(βϕ) = {µ which maximises ν ↦ hF (ν) − β ∫ ϕdν}

Mores definition in "Thermodynamic Formalism for a family of cellular automata
and duality with the shift" (Lopes-Oliveira-Sobottka-24).

Open question
Which measures set can be obtain as Acc

β→∞
(M

Therm
(βϕ)) and how does it

interact withM`
0 andMAsym

(F , λ)?
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Links with local potential

Let Ω = A
Z2

and ϕ ∶ Ω→ R, define

G(β) = {µ which maximises ν z→ hσ(ν) − β ∫ ϕdν} and G(∞) = Acc
β→∞

(G(β))

Theorem (Gayral-Taati-S-23)

Let K ⊂M(A
N
) be a Π2-computable connected compact. There exists a local

potential ϕ ∶ BZ
2
→ R such that G(∞) is affine isomorphic to K.

Moreover G(∞) is uniformly approached.

"From PCA’s to Equilibrium Systems and Back" (Goldstein-Lebowitz-Maes-89):
Let F be a CA on AZ of neighboor U. There is a correspondance betweennMε

and G(ϕε) where

ϕε ∶ A
Z2

Ð→ R
x z→ − log P (Fε([x]U×{0}) = x(0,1))

SoM`
0 is in correspondance with Acc

ε→0
(G(ϕε)).
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Phase transition

Open question
Characterize Uni(F ) = {ε ∶ ∣Mε∣ = 1}

Hight level noise: any CA are ergodic
(Marcovici-Taati-S-19)

Low level noise:
▸ almost all CA are ergodic
▸ there exists a CA not ergodic for small noise

(Gacs-01)

Theorem (Ilkka-Marsan-S-25)

There exists a CA, 0 < ε1 < ε2 < ε3 such that:

]0, ε1] ∪ [ε3,1] ⊂ Uni(F ) and ε2 ∉ Uni(F )

Some perspective 18 / 18
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