Blur shifts

MARCELO SOBOTTKA Federal University of Santa Catarina (UFSC)-Brazil

THERMOGAMAS May 20, 2025

イロン 不得 とくほ とくほとう

3

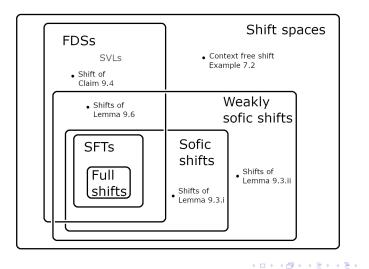
Marcelo Sobottka Blur shifts

Symbolic dynamics

• Usual shift spaces with countable alphabets:

- Sofic shift spaces
- Weakly sofic shift spaces
- Variable length shift spaces
- Relationship between shift spaces and labeled graphs

イロト イポト イヨト イヨト



Symbolic dynamics

- Blur shift spaces:
 - An alternative topology for shift spaces with infinite alphabets on the lattice N;
 - Allow to make any shift space compact (or locally compact);

イロト イポト イヨト イヨト

• Applications in *C*^{*} problems and ergodic optimization.

 \mathcal{A} an alphabet (any cardinality).

$$\mathcal{A}^{\mathbb{N}} := \{ (x_i)_{i \in \mathbb{N}} : x_i \in \mathcal{A} \ \forall i \in \mathbb{N} \}.$$

<ロト <回 > < 注 > < 注 > 、

Finite Words

For $\mathbf{x} = (x_i)_{i \in \mathbb{N}} \in \mathcal{A}^{\mathbb{N}}$ and $\ell, k \in \mathbb{N}$, the finite word $(x_{\ell} \dots x_k) \in \mathcal{A}^{k-\ell+1}$ is denoted as $\mathbf{x}_{[\ell,k]}$.

イロト 不得 とくほと くほとう

= 990

Consider in \mathcal{A} the discrete topology, and in $\mathcal{A}^{\mathbb{N}}$ the associated prodiscrete topology. A basis for this topology consists of cylinders:

$$[a_0a_1...a_{n-1}] := \{(x_i)_{i\in\mathbb{N}} : x_j = a_j \ \forall j = 0,..., n-1\}.$$

くロト (過) (目) (日)

ъ

 $\mathcal{A}^{\mathbb{N}}$ is compact if and only if \mathcal{A} is finite. If \mathcal{A} is infinite, then $\mathcal{A}^{\mathbb{N}}$ is not locally compact. The topology is metrizable, and cylinders are clopen sets.

イロト イポト イヨト イヨト

æ

Shift Map

The **shift map** $\sigma : \mathcal{A}^{\mathbb{N}} \to \mathcal{A}^{\mathbb{N}}$ is defined by:

$$\sigma((\mathbf{x}_i)_{i\in\mathbb{N}})=(\mathbf{x}_{i+1})_{i\in\mathbb{N}}.$$

Marcelo Sobottka Blur shifts

・ロト ・聞ト ・ヨト ・ヨト

₹ 990

Given a set of forbidden words $F \subset \bigcup_{n \ge 1} A^n$, the **shift space** X_F is defined as:

$$X_{\mathrm{F}} := \{ \mathbf{X} \in \mathcal{A}^{\mathbb{N}} : \mathbf{X}_{[\ell, k]} \notin \mathrm{F}, \ \forall \ell, k \in \mathbb{N} \}.$$

ヘロト 人間 とくほとくほとう

■ のへで

Characterization of Shift Spaces

A set $\Lambda \subset \mathcal{A}^{\mathbb{N}}$ is a shift space if and only if it is closed in the topology of $\mathcal{A}^{\mathbb{N}}$ and σ -invariant, i.e., $\sigma(\Lambda) \subset \Lambda$.

イロン 不得 とくほ とくほとう

æ

Language of a Shift Space

For a shift space Λ , the set of **words of length** $n \ge 1$ that appear in Λ is denoted by:

$$B_n(\Lambda) := \{\mathbf{x}_{[0,n-1]} \in \mathcal{A}^n : \mathbf{x} \in \Lambda\}.$$

The **language** of Λ is:

$$B(\Lambda) := \bigcup_{n\geq 0} B_n(\Lambda),$$

where $B_0(\Lambda) := \{\epsilon\}$ with ϵ being the empty word.

<ロト <回 > < 注 > < 注 > 、

Follower and Predecessor Sets

For $\mathbf{w} \in B(\mathcal{A}^{\mathbb{N}})$, the **follower set** in Λ is:

$$\mathcal{F}_{\Lambda}(\mathbf{w}) := \{ a \in \mathcal{A} : \mathbf{w}a \in B(\Lambda) \}.$$

The predecessor set is:

$$\mathcal{P}_{\Lambda}(\mathbf{w}) := \{ \mathbf{a} \in \mathcal{A} : \mathbf{a}\mathbf{w} \in \mathbf{B}(\Lambda) \}.$$

イロト イポト イヨト イヨト

Properties of Follower and Predecessor Sets

For a set $A \subset B(\mathcal{A}^{\mathbb{N}})$:

$$\mathcal{F}_{\Lambda}(\mathcal{A}) = \bigcup_{\mathbf{w}\in\mathcal{A}} \mathcal{F}_{\Lambda}(\mathbf{w}), \quad \mathcal{P}_{\Lambda}(\mathcal{A}) = \bigcup_{\mathbf{w}\in\mathcal{A}} \mathcal{P}_{\Lambda}(\mathbf{w}).$$

イロト イポト イヨト イヨト

Constructing Blur shifts

Let ${\mathcal A}$ be an alphabet.

Step 1: Let $\mathcal{V} \subset 2^{\mathcal{A}}$ be any family of subsets of \mathcal{A} such that

$$H \in \mathcal{V} \qquad \Rightarrow \qquad |H| = \infty$$

and

$$G, H \in \mathcal{V} \text{ and } G \neq H \qquad \Rightarrow \qquad |G \cap H| < \infty.$$

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

æ

The sets in \mathcal{V} will be said to be the **blurred sets** of \mathcal{A} .

Label each $H \in \mathcal{V}$ with a symbol \tilde{H} , and denote by $\tilde{\mathcal{V}}$ the set of all symbols used to label blurred sets.

Step 2: Let
$$\overline{\mathcal{A}} := \mathcal{A} \cup \widetilde{\mathcal{V}}$$
;

We remark that, although there is a bijection between $\mathcal V$ and $\tilde \mathcal V,$ an element in $\mathcal V$ is a subset of $\mathcal A$ while an element in $\tilde \mathcal V$ is a symbol of $\bar \mathcal A$

Constructing Blur shifts

<u>Step 3</u>: Define the full shift $\bar{\mathcal{A}}^{\mathbb{N}}$ and consider the equivalence relation \sim in $\bar{\mathcal{A}}^{\mathbb{N}}$ given by

()

()

イロト イポト イヨト イヨト

Definition

The space $\Sigma_{\mathcal{A}^{\mathbb{N}}}^{\mathcal{V}} := \overline{\mathcal{A}}_{/\sim}^{\mathbb{N}}$ is the full blur shift space of $\mathcal{A}^{\mathbb{N}}$ with resolution \mathcal{V} .

イロト 不同 とくほ とくほ とう

= 990

Recall that $\tilde{H} \notin H$ for any $H \in \mathcal{V}$.

Given $H \in \mathcal{V}$ we will denote

 $\bar{H} := H \cup \{\tilde{H}\}$

which is a subset of $\bar{\mathcal{A}}$ but not of \mathcal{A} , and $\tilde{\mathcal{H}} \in \bar{\mathcal{H}}.$ Define

$$\bar{\mathcal{V}}:=\{\bar{H}:\ H\in\mathcal{V}\}.$$

Note that $\overline{\mathcal{V}}$ is a family of subsets of $\overline{\mathcal{A}}$ which also satisfies the properties imposed in *Step 1* on the family \mathcal{V} .

・ロト ・ 日本・ ・ 日本・

• If $x \in \mathcal{A}^{\mathbb{N}} \subset \overline{\mathcal{A}}^{\mathbb{N}}$, then [x], the equivalence class of x in $\Sigma_{\mathcal{A}^{\mathbb{N}}}^{\mathcal{V}}$ contains only x.

In such a case we shall identify [x] with the point x itself.

• If $x \in \overline{\mathcal{A}}^{\mathbb{N}} \setminus \mathcal{A}^{\mathbb{N}}$, then [x] contains infinitely many points and to represent it we will pick $(y_i)_{i \in \mathbb{N}} \in [x]$ such that $y_i = x_i$ for all $i < n := \min\{i : x_i \in \widetilde{\mathcal{V}}\}$ and $y_i = x_n = \widetilde{H}$ for $i \ge n$.

ヘロト ヘアト ヘヨト

Thus, we are going to identify

$$\begin{split} \Sigma_{\mathcal{A}^{\mathbb{N}}}^{\mathcal{V}} &\equiv \{(x_i)_{i\in\mathbb{N}}\in\bar{\mathcal{A}}^{\mathbb{N}}: x_i=\tilde{H}\in\tilde{\mathcal{V}}\Rightarrow x_{i+1}=\tilde{H}\}\\ &= \mathcal{A}^{\mathbb{N}}\cup\{(x_0...x_{n-1}\tilde{H}\tilde{H}\tilde{H}...): x_0...x_{n-1}\in B(\mathcal{A}^{\mathbb{N}}), \tilde{H}\in\tilde{\mathcal{V}}\}. \end{split}$$

Hence, we can define on it the shift map $\sigma: \Sigma^{\mathcal{V}}_{\mathcal{A}^{\mathbb{N}}} \to \Sigma^{\mathcal{V}}_{\mathcal{A}^{\mathbb{N}}}$ in the usual way.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Definition

We say that $\Lambda' \subset \Sigma_{\mathcal{A}^{\mathbb{N}}}^{\mathcal{V}}$ is a **blur shift space** with resolution \mathcal{V} if and only if there exists a shift space $\Lambda \subset \mathcal{A}^{\mathbb{N}}$ such that

イロン 不得 とくほ とくほとう

э

If $\mathcal{V}=\emptyset$ corresponds to the maximum resolution for a blur shift, and $\Sigma^{\mathcal{V}}_{\Lambda}=\Lambda.$

On the other hand, $\mathcal{V} = \{\mathcal{A}\}$ corresponds to the minimum resolution (Ott-Tomforde-Willis shift spaces).

ヘロト ヘ戸ト ヘヨト ヘヨト

Given a blur shift space $\Sigma^{\mathcal{V}}_{\Lambda}$, denote:

•
$$\mathcal{V}_{\Lambda} := \{ H \in \mathcal{V} : |B_1(\Lambda) \cap H| = \infty \}$$

•
$$\tilde{\mathcal{V}}_{\Lambda} := \{\tilde{H}: H \in \mathcal{V}_{\Lambda}\}$$

•
$$\overline{\mathcal{V}}_{\Lambda} := \{\overline{H} : H \in \mathcal{V}_{\Lambda}\}.$$

•
$$\mathcal{L}^{\mathcal{V}}_{\infty}(\Lambda) := \Lambda$$

•
$$\mathcal{L}_n^{\mathcal{V}}(\Lambda) := \{(x_i)_{i \in \mathbb{N}} \in \Sigma_{\Lambda}^{\mathcal{V}} : x_n \in \tilde{\mathcal{V}}_{\Lambda} \text{ and } x_{n-1} \notin \tilde{\mathcal{V}}_{\Lambda}\}, \text{ for } n \in \mathbb{N}$$

• $\partial^{\mathcal{V}}\Lambda := \bigcup_{n \in \mathbb{N}} \mathcal{L}_n^{\mathcal{V}}(\Lambda)$

$$\Sigma^{\mathcal{V}}_{\Lambda} = \bigcup_{n \in \mathbb{N} \cup \{\infty\}} \mathcal{L}^{\mathcal{V}}_{n}(\Lambda) = \Lambda \cup \partial^{\mathcal{V}} \Lambda$$

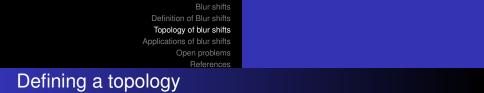
$$B_1(\Sigma^{\mathcal{V}}_{\Lambda}) = B_1(\Lambda) \cup \tilde{\mathcal{V}}_{\Lambda}$$

Proposition

Let $\Sigma^{\mathcal V}_\Lambda\subset \Sigma^{\mathcal V}_{\mathcal A^\mathbb N}$ be a blur shift space. Then

$$\ \, \bullet \ \, \sigma(\Sigma^{\mathcal{V}}_{\Lambda}) \subset \Sigma_{\sigma(\Lambda)} \subset \Sigma^{\mathcal{V}}_{\Lambda};$$

In general $\Sigma_{\sigma(\Lambda)} \not\subset \sigma(\Sigma_{\Lambda})$ even when $\sigma(\Lambda) = \Lambda$.



- Consider on \mathcal{A} the discrete topology;
- Consider on *Ā* we consider the same open sets of *A* plus the sets *U* ⊂ *Ā* that have the property that if *H* ∈ *U* then *H* \ *F* ⊂ *U* for some finite *F* ⊂ *H*;
- If $\bar{\mathcal{A}}^{\mathbb{N}}$ on the full shift $\bar{\mathcal{A}}^{\mathbb{N}}$ we consider the product topology $\tau_{\bar{\mathcal{A}}^{\mathbb{N}}}$;
- On $\Sigma_{\mathcal{A}^{\mathbb{N}}}^{\mathcal{V}}$ we define the **quotient topology** denoted as $\tau_{\Sigma_{\mathcal{A}^{\mathbb{N}}}^{\mathcal{V}}}$;

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

5 On $\Sigma^{\mathcal{V}}_{\Lambda}$ we define induced topology $\tau_{\Sigma^{\mathcal{V}}_{\Lambda}}$.

Generalized cylinders

For any $w_0 \dots w_{n-1} \in B(\mathcal{A}^{\mathbb{N}})$, $\overline{H} \in \overline{\mathcal{V}}$, and $F \subset H$ a finite set define:

$$Z(w_0 \dots w_{n-1}) := \{ \mathbf{x} \in \Sigma_{\mathcal{A}^{\mathbb{N}}} : x_i = w_i, 0 \le i \le n-1 \}$$

and

$$Z(w_0 \dots w_{n-1}\bar{H}, F) := \{ x \in \Sigma_{\mathcal{A}^{\mathbb{N}}} : x_i = w_i, 0 \le i \le n-1, x_n \in \bar{H} \setminus F \}.$$

イロト イポト イヨト イヨト

Proposition

The family of all generalized cylinders is a clopen basis for

 $\tau_{\Sigma^{\mathcal{V}}_{\mathcal{A}^{\mathbb{N}}}}.$

ヘロト 人間 とくほとくほとう

= 990

Topological properties

- $\Sigma_{\mathcal{A}^{\mathbb{N}}}^{\mathcal{V}}$ is a Hausdorff space;
- $\Sigma_{\mathcal{A}^{\mathbb{N}}}^{\mathcal{V}}$ is a regular space;
- $\Sigma^{\mathcal{V}}_{\Lambda}$ is always a Fréchet-Urysohn space
- $\Sigma^{\mathcal{V}}_{\Lambda}$ is separable $\iff B_1(\Lambda)$ is countable;
- $\Sigma^{\mathcal{V}}_{\Lambda}$ is second countable $\iff B_1(\Lambda)$ and \mathcal{V}_{Λ} are countable;
- $\Sigma_{\Lambda}^{\mathcal{V}}$ is first countable $\iff \forall H \in \mathcal{V}_{\Lambda}, H \cap B_1(\Lambda)$ is countable.

イロト イポト イヨト イヨト 三日

Metrizability

Theorem

Suppose $\Sigma^{\mathcal{V}}_{\Lambda}$ is a blur shift which is first countable and such that at least one of the following conditions holds:

• \mathcal{V}_{Λ} is countable;

② Each $H \in V_{\Lambda}$ has just a finite number of elements that appear in some other set of V_{Λ} (but it is possible that some element appears in infinitely many sets of V_{Λ}).

< = >

Then $\Sigma^{\mathcal{V}}_{\Lambda}$ is metrizable.

Metrizability

Corollary

If a blur shift is second countable, then it is metrizable.

Marcelo Sobottka Blur shifts

ヘロト 人間 とくほとくほとう

Metrizability

Corollary

Let $\Sigma^{\mathcal{V}}_{\Lambda}$ be a compact blur shift. The following statements are equivalent:

- $B_1(\Lambda)$ is countable;
- **2** $\Sigma^{\mathcal{V}}_{\Lambda}$ is first countable;
- **3** $\Sigma^{\mathcal{V}}_{\Lambda}$ is second countable;
- $\Sigma^{\mathcal{V}}_{\Lambda}$ is separable;
- **5** $\Sigma^{\mathcal{V}}_{\Lambda}$ is metrizable.

Compactness

Theorem

A blur shift $\Sigma_{\Lambda}^{\mathcal{V}}$ is compact if and only if \mathcal{V}_{Λ} is a finite family of sets which covers all except a finite number of elements of $B_1(\Lambda)$.

Marcelo Sobottka Blur shifts

イロト イポト イヨト イヨト

ъ

Local compactness

Corollary

If for any nonempty letter $a \in B_1(\Lambda)$ and $u \in B(\Lambda)$ there are a finite number of sets in \mathcal{V}_{Λ} that cover all except a finite number of elements of $\mathcal{F}_{\Lambda}(au)$, then Σ_{Λ} is locally compact. If the previous property also holds for the empty word ϵ , then Σ_{Λ} is compact.

くロト (過) (目) (日)

Ergodic optimization

Theorem (Gomes-Garibaldi-Sobottka 2025)

Let Λ be a topological transitive column-finite countable Markov shift. For every subordinate bounded above upper semi-continuous function $A : \Lambda \to \mathbb{R} \cup \{-\infty\}$, there exists a maximizing probability σ -invariant measure λ on Λ , that is,

$$\int_{\Lambda} A d\lambda = \sup \left\{ \int_{\Lambda} A d\mu : \mu \text{ is } \sigma \text{-invariant probability} \right\}$$

Graph algebras and countable Markovian edge shifts

Theorem (Ott-Tomforde-Willis 2014)

Let *E* and *F* be countable graphs with no sinks and no sources. If Λ_E and Λ_F are conjugated via a length-preserving conjugacy, then $C^*(E)$ and $C^*(F)$ are isomorphic.

(Ott-Tomforde-Willis shifts use resolution $\nu = \{A\}$)

イロト イポト イヨト イヨト

Graph algebras and countable Markovian shifts

Theorem (Gonçalves-Royer 2015)

Let E and F be two ultragraphs with no sinks that satisfy Condition (RFUM). If Λ_E and Λ_F are conjugated via a length-preserving conjugacy, then $C^*(E)$ and $C^*(F)$ are isomorphic.

(Gonçalves-Royer ultragraph shifts use resolution ν adequately chosen for each given ultragraph.)

ヘロト 人間 ト ヘヨト ヘヨト

Open problems

- To find a complete set of sufficient and necessary conditions for a blur shift to be metrizable.
- To construct metrics for non-second countable blur shift spaces.
- To study the chaotic behaviour of blur shifts for distinct resolutions.
- Given a classical shift space, is there some 'natural' resolution compatible with the dynamical and algebraic structures?

イロト イポト イヨト イヨト

Conjecture

Let $\Lambda \subset \mathcal{A}^{\mathbb{N}}$ and $\Gamma \subset \mathcal{B}^{\mathbb{N}}$ be two weakly sofic shifts whose associated labeled graphs are left-resolving and such that there are only finitely many vertexes that are source of each fixed label. Let Σ_{Λ} and Σ_{Γ} be the respective blur shifts for the 'natural' resolutions. Suppose that Σ_{Λ} and Σ_{Γ} hold the condition RFUM. If Σ_{Λ} and Σ_{Γ} are topologically conjugate via a lenght-preserving generalized sliding block code, then the C*-algebras associated to the labeled graphs of Λ and Γ are isomorphic.

イロト イポト イヨト イヨト

T. Z. de Almeida and M. Sobottka. Blur shift spaces, Bulletin des Sciences Mathématiques (2021), 173, 103069.

W. Ott, M. Tomforde and P. N. Willis, One-sided shift spaces over infinite alphabets, New York Journal of Mathematics. NYJM Monographs 5 (2014).

D. Gonçalves and D. Royer.
Infinite alphabet edge shift spaces via ultragraphs and their C*-algebras,
Int. Math. Res. Not., 2019, 2177-2203.

J. T. A. Gomes, E. Garibaldi and M. Sobottka. Maximizing measures for countable alphabet shifts via Blur shift spaces,

To appear in arXiv (2025).

 D. Gonçalves, M. Sobottka and C. Starling. Two-sided shift spaces over infinite alphabets, J. Aust. Math. Soc., 103 (3), 357-386, 2017.

D. Gonçalves and M. Sobottka. Continuous shift commuting maps between ultragraph shift spaces,

Discrete Contin. Dyn. Syst., 39 (2), 1033-1048, 2019.

<<p>(日)

D. Gonçalves, M. Sobottka, and C. Starling. Sliding block codes between shift spaces over infinite alphabets,

Math. Nachr., 289 (17-18), 2178-2191, 2016.

M. Sobottka.

Some notes on the classification of shift spaces: Shifts of Finite Type; Sofic Shifts; and Finitely Defined Shifts, Bulletin of the Brazilian Mathematical Society, New Series, **53**,

981-1031, 2022.

< ロ > < 同 > < 三 >

THANK YOU

<ロト <回 > < 注 > < 注 > 、