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Symbolic dynamics

Usual shift spaces with countable alphabets:

Sofic shift spaces

Weakly sofic shift spaces

Variable length shift spaces

Relationship between shift spaces and labeled graphs
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Symbolic dynamics

Blur shift spaces:

An alternative topology for shift spaces with infinite
alphabets on the lattice N;

Allow to make any shift space compact (or locally compact);

Applications in C∗ problems and ergodic optimization.
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Introduction

A an alphabet (any cardinality).

AN := {(xi)i∈N : xi ∈ A ∀i ∈ N}.
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Finite Words

For x = (xi)i∈N ∈ AN and `, k ∈ N, the finite word
(x` . . . xk ) ∈ Ak−`+1 is denoted as x[`,k ].
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Topology of AN

Consider in A the discrete topology, and in AN the associated
prodiscrete topology. A basis for this topology consists of
cylinders:

[a0a1 . . . an−1] := {(xi)i∈N : xj = aj ∀j = 0, . . . ,n − 1}.

Marcelo Sobottka Blur shifts



Blur shifts
Definition of Blur shifts
Topology of blur shifts

Applications of blur shifts
Open problems

References

Compactness

AN is compact if and only if A is finite. If A is infinite, then AN is
not locally compact. The topology is metrizable, and cylinders
are clopen sets.
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Shift Map

The shift map σ : AN → AN is defined by:

σ
(
(xi)i∈N

)
= (xi+1)i∈N.

Marcelo Sobottka Blur shifts



Blur shifts
Definition of Blur shifts
Topology of blur shifts

Applications of blur shifts
Open problems

References

Shift Spaces

Given a set of forbidden words F ⊂
⋃

n≥1An, the shift space
XF is defined as:

XF := {x ∈ AN : x[`,k ] /∈ F, ∀`, k ∈ N}.
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Characterization of Shift Spaces

A set Λ ⊂ AN is a shift space if and only if it is closed in the
topology of AN and σ-invariant, i.e., σ(Λ) ⊂ Λ.
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Language of a Shift Space

For a shift space Λ, the set of words of length n ≥ 1 that
appear in Λ is denoted by:

Bn(Λ) := {x[0,n−1] ∈ An : x ∈ Λ}.

The language of Λ is:

B(Λ) :=
⋃
n≥0

Bn(Λ),

where B0(Λ) := {ε} with ε being the empty word.
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Follower and Predecessor Sets

For w ∈ B(AN), the follower set in Λ is:

FΛ(w) := {a ∈ A : wa ∈ B(Λ)}.

The predecessor set is:

PΛ(w) := {a ∈ A : aw ∈ B(Λ)}.
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Properties of Follower and Predecessor Sets

For a set A ⊂ B(AN):

FΛ(A) =
⋃

w∈A

FΛ(w), PΛ(A) =
⋃

w∈A

PΛ(w).
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Constructing Blur shifts

Let A be an alphabet.

Step 1: Let V ⊂ 2A be any family of subsets of A such that

H ∈ V ⇒ |H| =∞

and

G,H ∈ V and G 6= H ⇒ |G ∩ H| <∞.

The sets in V will be said to be the blurred sets of A.
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Constructing Blur shifts

Label each H ∈ V with a symbol H̃, and denote by Ṽ the set of
all symbols used to label blurred sets.

Step 2: Let Ā := A ∪ Ṽ;

We remark that, although there is a bijection between V
and Ṽ, an element in V is a subset of A while an element
in Ṽ is a symbol of Ā
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Constructing Blur shifts

Step 3: Define the full shift ĀN and consider the equivalence
relation ∼ in ĀN given by

(xi)i∈N ∼ (yi)i∈N ∈ ĀN

m

min{j : xj ∈ Ṽ} = min{j : yj ∈ Ṽ} =: k , and xi = yi , ∀ i ≤ k .
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Definition

The space ΣVAN := ĀN
/∼ is the full blur shift space of AN with

resolution V.
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Recall that H̃ /∈ H for any H ∈ V.

Given H ∈ V we will denote

H̄ := H ∪ {H̃}

which is a subset of Ā but not of A, and H̃ ∈ H̄.Define

V̄ := {H̄ : H ∈ V}.

Note that V̄ is a family of subsets of Ā which also satisfies the
properties imposed in Step 1 on the family V.

Marcelo Sobottka Blur shifts



Blur shifts
Definition of Blur shifts
Topology of blur shifts

Applications of blur shifts
Open problems

References

If x ∈ AN ⊂ ĀN, then [x], the equivalence class of x in ΣVAN

contains only x.

In such a case we shall identify [x] with the point x itself.

If x ∈ ĀN \ AN, then [x] contains infinitely many points and
to represent it we will pick (yi)i∈N ∈ [x] such that yi = xi for
all i < n := min{i : xi ∈ Ṽ} and yi = xn = H̃ for i ≥ n.
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Thus, we are going to identify

ΣVAN ≡ {(xi)i∈N ∈ ĀN : xi = H̃ ∈ Ṽ ⇒ xi+1 = H̃}

= AN ∪ {(x0...xn−1H̃H̃H̃...) : x0...xn−1 ∈ B(AN), H̃ ∈ Ṽ}.

Hence, we can define on it the shift map σ : ΣVAN → ΣVAN in the
usual way.
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Definition

We say that Λ′ ⊂ ΣVAN is a blur shift space with resolution V if
and only if there exists a shift space Λ ⊂ AN such that

1 Λ = {(xn)n∈N ∈ Λ′ : xn ∈ A ∀n ∈ N};
2 (a0 . . . an−1H̃H̃ . . .) ∈ Λ′ for some

H̃ ∈ Ṽ ⇐⇒ a0 . . . an−1 ∈ B(Λ) and
|FΛ(a0 . . . an−1) ∩ H| =∞.

(Λ′ verifies the infinite-extension property)
Under the above notations, we have that Λ′ is the blur shift
space of Λ with resolution V, and denote Λ′ = ΣVΛ .
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If V = ∅ corresponds to the maximum resolution for a blur shift,
and ΣVΛ = Λ.

On the other hand, V = {A} corresponds to the minimum
resolution (Ott-Tomforde-Willis shift spaces).
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Given a blur shift space ΣVΛ , denote:

VΛ := {H ∈ V : |B1(Λ) ∩ H| =∞}

ṼΛ := {H̃ : H ∈ VΛ}

V̄Λ := {H̄ : H ∈ VΛ}.

LV∞(Λ) := Λ

LVn (Λ) := {(xi)i∈N ∈ ΣVΛ : xn ∈ ṼΛ and xn−1 /∈ ṼΛ}, for n ∈ N

∂VΛ :=
⋃

n∈N LVn (Λ)
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ΣVΛ =
⋃

n∈N∪{∞}

LVn (Λ) = Λ ∪ ∂VΛ

B1(ΣVΛ ) = B1(Λ) ∪ ṼΛ

Marcelo Sobottka Blur shifts



Blur shifts
Definition of Blur shifts
Topology of blur shifts

Applications of blur shifts
Open problems

References

Proposition

Let ΣVΛ ⊂ ΣVAN be a blur shift space. Then

1 σ(ΣVΛ ) ⊂ Σσ(Λ) ⊂ ΣVΛ ;

2 σ(LVn ) = LVn−1, ∀n ≥ 1 and σ(LV0 ) = LV0 .
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In general Σσ(Λ) 6⊂ σ(ΣΛ) even when σ(Λ) = Λ.
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Defining a topology

1 Consider on A the discrete topology;

2 Consider on Ā we consider the same open sets of A plus
the sets U ⊂ Ā that have the property that if H̃ ∈ U then
H \ F ⊂ U for some finite F ⊂ H;

3 On the full shift ĀN we consider the product topology τĀN ;

4 On ΣVAN we define the quotient topology denoted as τΣV
AN

;

5 On ΣVΛ we define induced topology τΣV
Λ

.
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Generalized cylinders

For any w0 . . .wn−1 ∈ B(AN), H̄ ∈ V̄, and F ⊂ H a finite set
define:

Z (w0 . . .wn−1) := {x ∈ ΣAN : xi = wi ,0 ≤ i ≤ n − 1}

and

Z (w0 . . .wn−1H̄,F ) := {x ∈ ΣAN : xi = wi ,0 ≤ i ≤ n−1, xn ∈ H̄\F}.
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Proposition
The family of all generalized cylinders is a clopen basis for
τΣV

AN
.
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Topological properties

ΣVAN is a Hausdorff space;

ΣVAN is a regular space;

ΣVΛ is always a Fréchet-Urysohn space

ΣVΛ is separable⇐⇒ B1(Λ) is countable;

ΣVΛ is second countable⇐⇒ B1(Λ) and VΛ are countable;

ΣVΛ is first countable⇐⇒ ∀H ∈ VΛ, H ∩ B1(Λ) is countable.
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Metrizability

Theorem

Suppose ΣVΛ is a blur shift which is first countable and such that
at least one of the following conditions holds:

1 VΛ is countable;

2 Each H ∈ VΛ has just a finite number of elements that
appear in some other set of VΛ (but it is possible that some
element appears in infinitely many sets of VΛ).

Then ΣVΛ is metrizable.
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Metrizability

Corollary

If a blur shift is second countable, then it is metrizable.
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Metrizability

Corollary

Let ΣVΛ be a compact blur shift. The following statements are
equivalent:

1 B1(Λ) is countable;

2 ΣVΛ is first countable;

3 ΣVΛ is second countable;

4 ΣVΛ is separable;

5 ΣVΛ is metrizable.
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Compactness

Theorem

A blur shift ΣVΛ is compact if and only if VΛ is a finite family of
sets which covers all except a finite number of elements of
B1(Λ).
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Local compactness

Corollary

If for any nonempty letter a ∈ B1(Λ) and u ∈ B(Λ) there are a
finite number of sets in VΛ that cover all except a finite number
of elements of FΛ(au), then ΣΛ is locally compact. If the
previous property also holds for the empty word ε, then ΣΛ is
compact.
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Ergodic optimization

Theorem (Gomes-Garibaldi-Sobottka 2025)
Let Λ be a topological transitive column-finite countable Markov
shift. For every subordinate bounded above upper
semi-continuous function A : Λ→ R ∪ {−∞}, there exists a
maximizing probability σ-invariant measure λ on Λ, that is,

∫
Λ

A dλ = sup

{∫
Λ

A dµ : µ is σ-invariant probability
}
.
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Graph algebras and countable Markovian edge shifts

Theorem (Ott-Tomforde-Willis 2014)
Let E and F be countable graphs with no sinks and no sources.
If ΛE and ΛF are conjugated via a length-preserving conjugacy,
then C∗(E) and C∗(F ) are isomorphic.

(Ott-Tomforde-Willis shifts use resolution ν = {A})
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Graph algebras and countable Markovian shifts

Theorem (Gonçalves-Royer 2015)

Let E and F be two ultragraphs with no sinks that satisfy
Condition (RFUM). If ΛE and ΛF are conjugated via a
length-preserving conjugacy, then C∗(E) and C∗(F ) are
isomorphic.

(Gonçalves-Royer ultragraph shifts use resolution ν adequately
chosen for each given ultragraph.)
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Open problems

1 To find a complete set of sufficient and necessary
conditions for a blur shift to be metrizable.

2 To construct metrics for non-second countable blur shift
spaces.

3 To study the chaotic behaviour of blur shifts for distinct
resolutions.

4 Given a classical shift space, is there some ‘natural’
resolution compatible with the dynamical and algebraic
structures?
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Conjecture

Let Λ ⊂ AN and Γ ⊂ BN be two weakly sofic shifts whose
associated labeled graphs are left-resolving and such that there
are only finitely many vertexes that are source of each fixed
label. Let ΣΛ and ΣΓ be the respective blur shifts for the ‘natural’
resolutions. Suppose that ΣΛ and ΣΓ hold the condition RFUM.
If ΣΛ and ΣΓ are topologically conjugate via a lenght-preserving
generalized sliding block code, then the C∗-algebras associated
to the labeled graphs of Λ and Γ are isomorphic.
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