Nonexpansive subspaces and Nivat's conjecture

Cleber Fernando Colle

CMCC - Universidade Federal do ABC

August 22, 2025

Introduction

- Periodic decomposition (Szabados's conjecture)
- Nonexpansiveness
- One-sided nonexpansiveness
- Nivat's conjecture

Let R denote \mathbb{Z} or some finite field and let $A \subset R$ be a finite alphabet with at least two elements.

We represent any configuration $\eta = (\eta_{\mathbf{g}})_{\mathbf{g} \in \mathbb{Z}^d}$ as a formal power series over d variables x_1, \ldots, x_d with coefficients in \mathcal{A} , that is, as an element of

$$R[[X^{\pm 1}]] = \left\{ \sum_{\mathbf{g} \in \mathbb{Z}^d} a_{\mathbf{g}} X^{\mathbf{g}} : a_{\mathbf{g}} \in R \right\},$$

where $\mathbf{g} = (g_1, \dots, g_d)$ and $X^{\mathbf{g}}$ is a shorthand for $x_1^{g_1} \cdots x_d^{g_d}$. Let $R[X^{\pm 1}] \subset R[[X^{\pm 1}]]$ denote the set of Laurent polynomials with coefficients in R.

3/23

Given a Laurent polynomial

$$\varphi(X)=a_1X^{\boldsymbol{u}_1}+\cdots+a_nX^{\boldsymbol{u}_n},$$

with $a_i \in R$ and $u_i \in \mathbb{Z}^d$, and a configuration $\eta \in R[[X^{\pm 1}]]$, we may consider a new configuration $\varphi \eta \in R[[X^{\pm 1}]]$, where

$$(\varphi \eta)_{\mathbf{g}} = a_1 \eta_{\mathbf{g} - \mathbf{u}_1} + \dots + a_n \eta_{\mathbf{g} - \mathbf{u}_n} \quad \forall \mathbf{g} \in \mathbb{Z}^d.$$

- A Laurent polynomial $\varphi(X) \in R[X^{\pm 1}]$ annihilates a configuration $\eta \in R[[X^{\pm 1}]]$ if $\varphi \eta = \mathbf{0}$.
- In this algebraic setting, $\eta \in R[[X^{\pm 1}]]$ is periodic of period $\boldsymbol{h} \in \mathbb{Z}^d$ if and only if $(X^{\boldsymbol{h}} 1)\eta = \boldsymbol{0}$.
- If η has d periods linearly independents over \mathbb{R}^d , we say that η is fully periodic.

We say that a configuration $\eta \in \mathcal{A}^{\mathbb{Z}^d}$ has low pattern complexity if

$$|\{(X^{\boldsymbol{u}}\eta)|_{\mathcal{S}}: \boldsymbol{u}\in\mathbb{Z}^d\}|\leq |\mathcal{S}|$$

holds for some non-empty, finite set $S \subset \mathbb{Z}^d$. If in addition S is *convex*, we say that η has *low convex pattern complexity*.

Theorem (Kari and Szabados [14])

Let $\eta \in \mathcal{A}^{\mathbb{Z}^d}$, with $\mathcal{A} \subset \mathbb{Z}$, be a configuration.

- **1** If η has low pattern complexity, then η has a non-trivial annihilator.
- ② If η has a non-trivial annihilator, then there exist periodic configurations $\eta_1, \ldots, \eta_m \in \mathbb{Z}[[X^{\pm 1}]]$ such that $\eta = \eta_1 + \cdots + \eta_m$.
 - Some configurations can not be expressed as a finite sum of periodic configurations defined on finite alphabets.

Let $\eta \in \mathcal{A}^{\mathbb{Z}^d}$, with $\mathcal{A} \subset R$, and suppose $\eta_1, \dots, \eta_m \in R[[X^{\pm 1}]]$ are periodic configurations such that $\eta = \eta_1 + \dots + \eta_m$.

- We call $\eta = \eta_1 + \cdots + \eta_m$ an *R-periodic decomposition*.
- An *R-periodic decomposition* $\eta = \eta_1 + \cdots + \eta_m$ where *m* is the smallest possible is called an *R-minimal periodic decomposition* and the number *m* is called the *R-order of* η .

We are interested in R-periodic decompositions for $R = \mathbb{Z}_p$ because:

- $(\mathbb{Z}_p)^{\mathbb{Z}^d}$ is a metrizable compact space (with the product topology);
- \bullet \mathbb{Z}_p -periodic decompositions arise naturally from \mathbb{Z} -periodic decompositions.

Let $\eta \in \mathcal{A}^{\mathbb{Z}^d}$, with $\mathcal{A} \subset \mathbb{Z}_+$, and suppose $\eta = \eta_1 + \cdots + \eta_m$ is a \mathbb{Z} -minimal periodic decomposition. For $p \in \mathbb{N}$ prime, we may consider the \mathbb{Z}_p -periodic decomposition

$$\overline{\eta} = \overline{\eta}_1 + \cdots + \overline{\eta}_m,$$

where the bar denotes the congruence modulo p. In general, the \mathbb{Z}_p -order of $\overline{\eta}$ is lower or equal than the \mathbb{Z} -order of η . However, we have the following result:

Theorem (Colle 2022)

Let $\eta \in \mathcal{A}^{\mathbb{Z}^2}$, with $\mathcal{A} \subset \mathbb{Z}_+$, be a configuration and suppose $\eta = \eta_1 + \cdots + \eta_m$ is a \mathbb{Z} -minimal periodic decomposition. Then, there exists $k \in \mathbb{N}$, with $\mathcal{A} \subset \{0,1,\ldots,k-1\}$, such that $\overline{\eta} = \overline{\eta}_1 + \cdots + \overline{\eta}_m$ is a \mathbb{Z}_p -minimal periodic decomposition for all prime number $p \geq k$.

Definition

Let $\eta \in \mathcal{A}^{\mathbb{Z}^2}$ be a configuration and let $\ell \subset \mathbb{R}^2$ be a line through the origin. Given t > 0, the t-neighbourhood of ℓ is defined as

$$\ell^t = \{ \boldsymbol{g} \in \mathbb{Z}^2 : \mathsf{dist}(\boldsymbol{g}, \ell) \leq t \},$$

where dist denotes the Euclidean distance between a point and a set. We say that ℓ is an expansive line on $\overline{Orb(\eta)}$ if there exists t>0 such that

$$\forall x, y \in \overline{Orb(\eta)}, \quad x|\ell^t = y|\ell^t \implies x = y.$$

Otherwise, ℓ is called a nonexpansive line on $\overline{Orb(\eta)}$. The set formed by the nonexpansive lines on $\overline{Orb(\eta)}$ is denoted $\mathsf{NEL}(\eta)$.

• If $\overline{Orb(\eta)}$ is infinite, then NEL(η) has at least one element (Boyle-Lind Theorem [1]).

Why are we interested in nonexpansiveness?

- It is a multifaceted dynamical condition which, in particular, plays an important role in the exploitation of dynamical systems;
- It is at the heart of recent advances on an open problem called Nivat's conjecture.

Why are we interested in nonexpansiveness?

- It is a multifaceted dynamical condition which, in particular, plays an important role in the exploitation of dynamical systems;
- It is at the heart of recent advances on an open problem called Nivat's conjecture.

Let $\eta=\eta_1+\cdots+\eta_m$ be a \mathbb{Z} -minimal periodic decomposition and suppose $\pmb{h}_i\in\mathbb{Z}^2$ is a period for η_i , with $1\leq i\leq m$. Since

$$\varphi(X) = (X^{h_1} - 1) \cdots (X^{h_m} - 1) \in \mathsf{Ann}_{\mathbb{Z}}(\eta),$$

then every nonexpansive line on $\overline{Orb(\eta)}$ contains a period of some η_i , with $1 \leq i \leq m$.

In his Ph.D. thesis [21], Michal Szabados conjectured that the converse also holds:

Conjecture (Szabados)

Let $\eta \in \mathcal{A}^{\mathbb{Z}^2}$, with $\mathcal{A} \subset \mathbb{Z}$, be a not fully periodic configuration and suppose $\eta = \eta_1 + \cdots + \eta_m$ is a \mathbb{Z} -minimal periodic decomposition. If $\ell \subset \mathbb{R}^2$ is a line through the origin and there exists $1 \leq i \leq m$ such that ℓ contains a period for η_i , then $\ell \in \mathsf{NEL}(\eta)$.

What is known?

Theorem (Colle 2022)

Let $\eta \in \mathcal{A}^{\mathbb{Z}^2}$, with $\mathcal{A} \subset \mathbb{Z}$, be a not fully periodic configuration with low convex pattern complexity and suppose $\eta = \eta_1 + \cdots + \eta_m$ is a \mathbb{Z} -minimal periodic decomposition. If $\ell \subset \mathbb{R}^2$ is a line through the origin and there exists $1 \leq i \leq m$ such that ℓ contains a period for η_i , then $\ell \in \mathsf{NEL}(\eta)$.

What is known?

Theorem (Colle 2022)

Let $\eta \in \mathcal{A}^{\mathbb{Z}^2}$, with $\mathcal{A} \subset \mathbb{Z}$, be a not fully periodic configuration with low convex pattern complexity and suppose $\eta = \eta_1 + \cdots + \eta_m$ is a \mathbb{Z} -minimal periodic decomposition. If $\ell \subset \mathbb{R}^2$ is a line through the origin and there exists $1 \leq i \leq m$ such that ℓ contains a period for η_i , then $\ell \in \mathsf{NEL}(\eta)$.

What next?

 Szabados's conjecture in the general case (it remains open even for configurations with Z-order 3).

Since the notion of expansiveness can be naturally extended to the multidimensional case, we have the following question:

Question

Let $\eta \in A^{\mathbb{Z}^d}$, with $\mathcal{A} \subset \mathbb{Z}$, be a not fully periodic configuration and suppose $\eta = \eta_1 + \dots + \eta_m$ is a \mathbb{Z} -minimal periodic decomposition. If F is a nonexpansive (d-1)-dimensional subspace on $\overline{Orb(\eta)}$, then does F the span of d-1 periods of η_1, \dots, η_m ?

• it remains open even when η has low convex pattern complexity.

One-sided expansiveness

Given a line $\ell \subset \mathbb{R}^2$, we use ℓ to denote the line ℓ endowed with a given orientation.

Let $\eta \in \mathcal{A}^{\mathbb{Z}^2}$ be a configuration. An oriented line $\boldsymbol{\ell} \subset \mathbb{R}^2$ through the origin is called a *one-sided expansive direction on* $\overline{Orb\left(\eta\right)}$ if

$$\forall x, y \in \overline{Orb(\eta)}, \quad x|\mathcal{H}(\ell) = y|\mathcal{H}(\ell) \implies x = y.$$

Otherwise, ℓ is called a *one-sided nonexpansive direction on* $\overline{Orb(\eta)}$. We use $\mathsf{ONED}(\eta)$ to denote the set formed by the one-sided nonexpansive directions on $\overline{Orb(\eta)}$.

• By the compactness of $\overline{Orb(\eta)}$, a line $\ell \in \mathsf{NEL}(\eta)$ if and only if, for some orientation, $\ell \in \mathsf{ONED}(\eta)$.

Question

Let $\eta \in \mathcal{A}^{\mathbb{Z}^2}$, with $\mathcal{A} \subset \mathbb{Z}$, be a not fully periodic configuration with a non trivial annihilator. Then $\ell \in \mathsf{NEL}(\eta)$ if and only if $-\ell, \ell \in \mathsf{ONED}(\eta)$?

What is known?

• It fails for algebraic configurations (Ledrappie 3-dot system configuration).

Following the same lines in Colle 2022, we have:

Theorem

Let $\eta \in \mathcal{A}^{\mathbb{Z}^2}$ be a not fully periodic configuration with low convex pattern complexity. Then $\ell \in \mathsf{NEL}(\eta)$ if and only if $-\boldsymbol{\ell}, \boldsymbol{\ell} \in \mathsf{ONED}(\eta)$.

• If η has low convex pattern complexity and there exists $\ell \in \mathsf{NEL}(\eta)$ such that $-\ell, \ell \in \mathsf{ONED}(\eta)$, then $\overline{\mathit{Orb}\,(\eta)}$ has a periodic configuration.

This question is related to advances on a problem known as Nivat's conjecture:

Conjecture (Nivat)

If there exist $n, k \in \mathbb{N}$ such that $|\{(X^{\mathbf{u}}\eta)|_{R_{n,k}} : \mathbf{u} \in \mathbb{Z}^2\}| \leq nk$, then $\eta \in \mathcal{A}^{\mathbb{Z}^2}$ is periodic.

- There has been significant progress towards a proof of Nivat's conjecture.
- It fails in the multidimensional case (Cassaigne 2006)!

What next?

Since the notion of one-sided expansiveness can be naturally extended to the multidimensional case, we have the following question:

Question

What conditions must $\eta \subset A^{\mathbb{Z}^d}$ satisfy to ensure that a (d-1)-dimension subspace F is nonexpansive on $\overline{Orb(\eta)}$ if and only if both half-spaces F_+ and F_- are one-sided nonexpansive on $\overline{Orb(\eta)}$? Is low convex pattern complexity enough?

Question (Jarkko's question)

Let $D \subset \mathbb{Z}^d$ be a non-empty finite set. If $\mathcal{P} \subset \mathcal{A}^D$ is a finite set of patterns such that $|\mathcal{P}| \leq |D|$, does there exist a \mathcal{P} -consistent periodic configuration?

- For d = 2, the case of non-convex shapes remains open.
- For d > 2, nothing is known (even for convex shapes).

In a work in progress (joint with Eduardo Garibaldi), we have the following result:

Theorem

Let $\eta \in \mathcal{A}^{\mathbb{Z}^2}$, with $\mathcal{A} \subset \mathbb{Z}_+$, be a non-periodic configuration with low convex pattern complexity. Then there exist a \mathbb{Z} -minimal periodic decomposition $\vartheta = \vartheta_1 + \dots + \vartheta_m$, with $\vartheta \in \overline{Orb}(\eta)$ non-periodic, a prime $p \in \mathbb{N}$, with $\mathcal{A} \subset \{0,1,\dots,p-1\}$, half planes $U_1,\dots,U_m \subset \mathbb{Z}^2$ and half planes $V_1,\dots,V_m \subset \mathbb{Z}^2$, with $U_i \cap V_i = \emptyset$, such that, for each $1 \leq i \leq m$, $\overline{\vartheta}_i|_{U_i}$ and $\overline{\vartheta}_i|_{V_i}$ are fully periodic, where the bar denotes the congruence modulo p.

• In particular, it means that ϑ is fully periodic, except on a finite union of strips.

- Boyle, M., Lind, D.: Expansive Subdynamics. Trans. Amer. Math. Soc. **349**(1), 55-102 (1997).
- Cassaigne, J.: Subword Complexity and Periodicity in Two or More Dimensions. Developments in Language Theory. Foundations, Applications and perspectives (DLT'99), Aachen, Germany, World Scientific, Singapore, 14-21 (2000).
- Cassaigne, J.: A Counter-example to a Conjecture of Lagarias and Pleasants (2006).
- Colle, C. F., Garibaldi, E.: An Alphabetical Approach to Nivat's Conjecture. Nonlinearity **33**, 3620-3652 (2020).
- Cyr, V., Kra, B.: Complexity of Short Rectangles and Periodicity. European J. of Combin. **52**, 146-173 (2016).
- \square Cyr, V., Kra, B.: Nonexpansive \mathbb{Z}^2 -Subdynamics and Nivat's Conjecture. Trans. Amer. Math. Soc. 367, 6487-6537 (2015).
- Durand, F., Rigo, M.: Multidimensional Extension of the MorseHedlund Theorem. European J. of Combin. 34, 391-409 (2013),

- Epifanio, C., Koskas, M., Mignosi, F.: On a Conjecture on Bidimensional Words. Theor. Comput. Sci. **299**, 123-150 (2003).
- Franks, J, Kra, B.: Polygonal Z²-subshifts. Proc. Lond. Math. Soc. **121**, 252-286 (2020).
- Kari, J., Moutot, E.: Nivat's Conjecture and Pattern Complexity in Algebraic Subshifts. Theor. Comput. Sci. 777, 379-386 (2019).
- Kari, J., Moutot, E.: Decidability and Periodicity of Low Complexity Tilings. 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020) **154**, 14:1–14:12 (2020).
- Kari, J., Moutot, E.: Decidability and Periodicity of Low Complexity Tilings. Theory of Computing Systems, https://doi.org/10.1007/s00224-021-10063-8 (2021).
- Kari, J., Szabados, M.: An Algebraic Geometric Approach to Nivat's Conjecture. In Automata, Languages, and Programming 42nd International Colloquium, ICALP 2015, Kyoto, Japan, Proceedings, Part II, 273?285 (2015).

22 / 23

- Kari, J., Szabados, M.: An Algebraic Geometric Approach to Nivat's Conjecture. Information and Computation **271**, 104-481 (2020).
- Morse, M., Hedlund, G. A.: Symbolic Dynamics. Amer. J. Math. **60**, 815-866 (1938).
- Nivat, M.: Invited Talk at ICALP. Bologna (1997).
- Quas, A., Zamboni, L.: Periodicity and Local Complexity. Theor. Comput. Sci. **319**, 229-240 (2004).
- Sander, J., Tijdeman, R.: The Rectangle Complexity of Functions on TwoDimensional Lattices. Theor. Comp. Sci. **270**, 857-863 (2002).
- Sander, J., Tijdeman, R.: The Complexity Function on Lattices. Theor. Comput. Sci. **246**, 195-225 (2000).
- Szabados, M.: Nivat's Conjecture holds for Sums of two Periodic Configurations. SOFSEM 2018: Theory and Practice of Computer Science, 539-551 (2018).

- Szabados, M.:. An algebraic approach to Nivat's Conjecture. Ph.D. thesis, University of Turku (2018).
- Boyle, M., Lind, D.: Expansive Subdynamics. Trans. Amer. Math. Soc. **349**(1), 55-102 (1997).
- Cassaigne, J.: Subword Complexity and Periodicity in Two or More Dimensions. Developments in Language Theory. Foundations, Applications and perspectives (*DLT'*99), Aachen, Germany, World Scientific, Singapore, 14-21 (2000).
- Cassaigne, J.: A Counter-example to a Conjecture of Lagarias and Pleasants (2006).
- Colle, C. F., Garibaldi, E.: An Alphabetical Approach to Nivat's Conjecture. Nonlinearity **33**, 3620-3652 (2020).
- Colle, C. F.: "On periodic decompositions and nonexpansive lines", Mathematische Zeitschrift (2023) 303:80.
- Cyr, V., Kra, B.: Complexity of Short Rectangles and Periodicity. European J. of Combin. **52**, 146-173 (2016).

- \square Cyr, V., Kra, B.: Nonexpansive \mathbb{Z}^2 -Subdynamics and Nivat's Conjecture. Trans. Amer. Math. Soc. 367, 6487-6537 (2015).
- Durand, F., Rigo, M.: Multidimensional Extension of the MorseHedlund Theorem. European J. of Combin. 34, 391-409 (2013).
- Epifanio, C., Koskas, M., Mignosi, F.: On a Conjecture on Bidimensional Words. Theor. Comput. Sci. 299, 123-150 (2003).
- Franks, J, Kra, B.: Polygonal Z^2 -subshifts. Proc. Lond. Math. Soc. **121**, 252-286 (2020).
- Kari, J., Moutot, E.: Nivat's Conjecture and Pattern Complexity in Algebraic Subshifts. Theor. Comput. Sci. 777, 379-386 (2019).
- Kari, J., Moutot, E.: Decidability and Periodicity of Low Complexity Tilings. 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020) **154**, 14:1–14:12 (2020).
- Kari, J., Moutot, E.: Decidability and Periodicity of Low Complexity Tilings. Theory of Computing Systems, https://doi.org/10.1007/s00224-021-1006378 (2021)

Nonexpansive subspaces and Nivat's conject

22 / 23

- Kari, J., Szabados, M.: An Algebraic Geometric Approach to Nivat's Conjecture. In Automata, Languages, and Programming 42nd International Colloquium, ICALP 2015, Kyoto, Japan, Proceedings, Part II, 273?285 (2015).
- Kari, J., Szabados, M.: An Algebraic Geometric Approach to Nivat's Conjecture. Information and Computation **271**, 104-481 (2020).
- Morse, M., Hedlund, G. A.: Symbolic Dynamics. Amer. J. Math. **60**, 815-866 (1938).
- Nivat, M.: Invited Talk at ICALP. Bologna (1997).
- Quas, A., Zamboni, L.: Periodicity and Local Complexity. Theor. Comput. Sci. **319**, 229-240 (2004).
- Sander, J., Tijdeman, R.: The Rectangle Complexity of Functions on TwoDimensional Lattices. Theor. Comp. Sci. **270**, 857-863 (2002).
- Sander, J., Tijdeman, R.: The Complexity Function on Lattices. Theor. Comput. Sci. **246**, 195-225 (2000).

Obrigado Pela Atenção!