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INTRODUCTION

o Fundamental problem in Statistical Physics : understand phase
transitions between “disorder” and “order”.

o Toy models : lattice models on Z7.

o Fundamental example : the 2D Ising model exhibits a ferromagnetic
order below a critical temperature T, > 0.

o In this talk : motivated by quasicrystals, we look for phase
transitions between disorder and aperiodic long-range order as the
inverse temperature § = 1/T varies.

o Quasicrystals exhibit long-range order while simultaneously lacking
periodicity.

In this talk : quasicrystal & aperiodic subshift.



LATTICE MODELS ON Z¢

m A finite set S, for instance :
o S={—,4} (“spins”);
o §={0,1} (“empty/occupied” site);
. { X b4 X }
T XXENMEK

m Configurations : Q = SZ¢ = {w = (wi)jegd, wi € S}.
m Shift : (Tjw)i = Wj4j.
» (2, T) d-dimensional full shift on “alphabet” S.

m Interaction (statisical physics) : ® = (Pp)pczd, Where Pp 1 Q — R
is continuous.

m Potential (dynamical systems): ¢ : 2 — R continuous.



® AND ®, GIBBS STATES AND EQUILIBIRUM STATES

o Interactions used to define Gibbs states, potentials used to define
equilibrium states.

o From®to p:
Pa
o= 2 N
AeZd, 0ez4
o From ¢ to @ : easy for finite-range interactions/locally constant
potentials, but messy in general.

o Today : | will not speak at all about Gibbs states.

o If Z/\@Zd,()el\ [PAlloc < 400 then
{ shift-invariant Gibbs states } = { equilibrium states}.

o Statistical physics versus dynamical systems :

Z [PAlloe < 400 " =" Z n® ar,p < oo
NEZ 0eN n>1



EQUILIBRIUM STATES

Given ¢ : 2 — R continuous and an inverse temperature (3, a shift-
invariant probability measure that maximize

1/»—)/’1(1/)+5/<,0du

is called an equilibrium state of (.

Two special cases :

o [ =0.Then 3! eq. state which is the measure of maximal entropy
on  (maximal disorder).

o 8 — +o00 (temperature going to 0). Intuitively, only ¢ matters, and
configurations should be somewhat ordered.

Remark : Today, | will not say a lot of things about zero-temperature limits of equilibrium states.



THE PRESSURE FUNCTION AND MAXIMIZING MEASURES

If pig, is an equilibrium state of ¢, then

pelB) 1= iluz,) + 8 [ ¢ dus,
is the topological pressure of 5, and

/BHPSO(B% ﬁ € ]R7

defines a continuous convex function (the pressure function).



SOME BASIC FACTS

The pressure function has a slant asymptote when § — +00, with slope
SUPy shift-invariant [ ¥ dv.

A p attaining this maximum is called a maximizing measure for ¢.

Denote by ES(B¢) the set of equilibrium states of Sep.
Folklore :

{,u: 3B, — 00, wn € ES(Bnp) with i, ~~ ,u}

C {maximizing measures for ¢}

where ~~ denotes convergence in the vague topology.



FREEZING PHASE TRANSITIONS

Po(B)

ﬁtop(Q) \/

B k-

where i, = sup { A(n) : n is maximizing for go} and the slope of the

blue part is SUPy, shift-invariant f 2 dv.



POTENTIALS WITH A FREEZING PHASE TRANSITION

(ES(B¢) is the set of equilibrium states of S¢.) We focus on 5 > 0.

Definition :

A freezing phase transition occurs for ¢ at 3, if
o ES(By) = ES(8'p) for all 5, 8" > f,
o ES(By) #ES(S'p) forall 5 < . < .

Theorem
A freezing phase transition occurs for ¢ at 3. if and only if p, (/) is as in
the previous picture.



FREEZING ON A SUBSHIFT

Let us reverse the perspective : we are given a subshift €y of 2 and we look
for a ¢ that exhibits a freezing phase transition.

Definition :

Let £y be a proper subshift of 2. A continuous potential ¢: Q — R is said
to exhibit freezing on Q) if it has a freezing phase transition at some 3. and
Qo is the smallest subshift which contains the supports of all measures in

{N: 3By — o0, pa € ES(ﬁn@) with fi, ~ M}’

Theorem (J.-R. C., Tamara Kucherenko, Anthony Quas, arXiv 2025)

For any proper subshift € of €2, one can construct a continuous potential
© that exhibits freezing on Q for some 3. > 0.

Moreover, forall 3 > ., ES(5¢) is the set of measures of maximal entropy
on .



PREVIOUS RESULTS

o All previous results were only in dimension 1 (d = 1).

o The first result is Hofbauer’s example with a ¢ freezing on 0°° at
Be=1(Q= {07 1}]N)'

o For instance, in an ongoing work, Bédaride, Cassaigne, Hubert and
Leplaideur construct a ¢ which freezes on the Thue-Morse subshift.
Their method relies on the properties of that subshift and uses
Ruelle’s Perron-Frobenius operator.

o There is a non-constructive result by Buzzi et al. where 2y can be
any subshift with zero topological entropy.



A CLASS OF POTENTIALS THAT CANNOT FREEZE

Theorem (J.-R. C., Tamara Kucherenko, Anthony Quas, arXiv 2025)
Let ¢ : Q — R be a continuous potential.

If > n?""var, ¢ < oo then ¢ cannot exhibit a freezing phase transition.

(Where var, () = sup{|p(w) — p(w')] : x,y € X, dist(w,w') < 27"})



AN EXAMPLE OF “QUASI-CRYSTAL” (d = 2):
KARI-CULIK TILING

Take

Place a copy of any of one of these 1 x 1squares centered at (i,j) € Z?,
without rotating them.

ZZ
Thus Q = {m.m.u.m.i...n} is a two-dimensional full shift on 13 “sym-

bols”.

What happens if we select only the configurations such that the colors
of the adjacent edges match?
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A portion of a Kari-Culik tiling.

(The spaces are only there to improve visualization.)




FacTs ABouT KARI-CULIK TILINGS

o Using the Kari-Culik tiles and following the color-matching rules,
one can tile the plane and there are no periodic configurations.

o The set of all Kari-Culik tilings is a subshift of finite type of

7,2
{M.m.ﬂ.m.i.l.ﬂ} (closed and invariant under the shift action).

This defines an aperiodic subshift of finite type (which has positive topo-
logical entropy).

Our theorem applies : there is a continuous ¢ freezing on the Kari-
Culik subshift of finite type at some 5. > 0.

Remark : There are other examples of aperiodic tilings, constructed using other methods (Ammann,

Jeandel-Rao, Labbé, etc.), which are also Wang tilings (dominoes), and have zero topological entropy.



SOME OPEN PROBLEMS

o Is there a version of Conze-Guivarc’h theorem for d > 27?

o Support stability of maximzing measures : striking
difference between d = 1and d > 2 for “penalty” potentials
and subshifts of finite type. (See Gonschorowski, Anthony
Quas and Siefken.)

Open question : find a stable quasicrytal in dimension
d>2.

o Genericity questions in dimension d > 2 for
Lipschitz/Holder potentials.
For instance, is there an appropriate version of Conteras
result in higher dimension?
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