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Objective:

1. Establish existence and uniqueness of relative equilibrium states for random diffeomorphism; and

2. establish (quenched) limit laws for these relative equilibrium states.

For the talk a random dynamical system is a triple (Θ;σ,P) with

Θ : Ω×M → Ω×M

(ω, x) 7→ (σ(ω),Tω(x))

a skew product, and P a σ-invariant probability on Ω.
Standing assumptions during this talk:

· M is a smooth surface without boundary;

· Tω : M → M is C1+α for some α > 0;

· σ : Ω → Ω is a homeomorphism, Ω is a compact metric space and (σ,P) is ergodic.
· We also consider the projection π(ω, x) = ω.
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A simple example

Example: Consider

Θ : Ω× T2 → Ω× T2

(ω, x) 7→ (σ(ω),Ax + ω0)

· Ω = (Bδ(0))
Z, Bδ(0) = closed ball of radius

δ > 0 centred at 0;

· ω = (ωi )i∈Z, (σω)i = ωi+1;

· A(x , y) = (2x + y , x + y) (mod Z2).

Question: a natural definition of topological entropy
in the random dynamical system context?

Recall that π(ω, x) = ω and (Θ;σ,P) is a random
dynamical system.

· Problem: htop(σ) = ∞ and
htop(σ) ≤ htop(Θ) since σ is the full shift on
an uncountable alphabet.

· First attempt: fix a σ-invariant P and consider

sup{ hµ(Θ) : π∗µ = P } ≥ hP(σ).

· Issue: for natural choices (e.g. P = Leb⊗Z

where Leb is the normalized Lebesgue measure
on Bδ(0)), one still has hP(σ) = ∞.

· Solution: apply a random Brin–Katok theorem
to obtain finite local (quenched) entropy.
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Relative entropy (Brin–Katok) and P-relative equilibrium

Random Brin–Katok:

· (Θ;σ,P) RDS, Θ : Ω×M → Ω×M, Θ(ω, x) = (σω,Tω).

· µ is Θ-invariant, π∗µ = P and µ = µω(dx)P(dω).

Random Bowen Ball: Bω
n (x , ε) := {y : dist(T k

ω(y),T
k
ω(x)) < ε, 0 ≤ k < n}, T k

ω = Tσk−1ω ◦ · · · ◦Tω.

P-relative entropy: hµ(Θ | P) := −
x

lim
ε→0

lim
n→∞

1

n
logµω

(
Bω

n (x , ε)
)
dµω(x)dP(ω).

Definition (P-relative equilibrium state)

Let MP(Θ) := {µ : µ is Θ-invariant and π∗µ = P}. For measurable ϕ : Ω × M → R ∪ {−∞}, we
define the P-relative topological pressure of ϕ as

Ptop(ϕ | P) = sup
ν∈MP(Θ)

{
hν(Θ | P) +

∫
ϕdν

}
.

A maximizer µ ∈ MP(Θ) is a P-relative equilibrium state of ϕ; If ϕ ≡ 0 we call µ a measure of maximal
P-relative entropy.

Recall: π(ω, x) = ω. Ch. 5 of B. Hasselblatt and A. Katok, eds. Handbook of dynamical systems. Vol. 1B. Elsevier B. V., Amsterdam, 2006,

pp. xii+1222.
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Previous results

Random subshifts of finite type:

· Bogenschütz and Gundlach (1995)

· Mauldin and Urbański (2001)

Random countable topological Markov shifts:

Denker, Kifer, and Stadlbauer (2008)

Stadlbauer (2010,2017)

Random uniformly expanding maps:

· Kifer (1992)

· Baladi (1997)

Random non-uniformly expanding
(without critical points):

· Arbieto, Matheus, and Oliveira (2004)

· Stadlbauer, Suzuki, and Varandas (2021)

Random non-uniformly hyperbolic interval maps
(closed/open; discontinuities):

· Atnip,Froyland, González-Tokman, and Vaienti
(2021,2023,2024,2025)

Small perturbations of Axiom A diffeos:

· P.-D. Liu (1998)

· Chapter 5 of the book “Handbook of
Dynamics” Hasselblatt and Katok (2006),
written by Kifer and P.-D. Liu.
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Hypothesis (H) and (H’)

Θ : Ω×M → Ω×M

(ω, x) 7→ (σω,Tω(x))

Ω: compact metric space
M: surface

Tω : M → M
C1+α diffeomorphism

(H1) (Hyperbolicity)

There exist family of deterministic cones C =
(
C−(x), C+(x)

)
x∈M

⊂ TM s.t. for
each x ∈ M and P-a.e. ω ∈ Ω,

DT−1
ω (x) C+(x) ⊂ C̊+(T−1

ω x
)
, DTω(x) C−(x) ⊂ C̊−(Tωx

)
.

(H2) (Fibrewise mixing)

Let δ > 0, and {Bδ(xi )}ki=1 an open cover of M. Define

Tδ,mix(ω) = Tmix(ω) := min {n ∈ N;T n
ω(Bδ(xi )) ∩ Bδ(xj) ̸= ∅, ∀1 ≤ i , j ≤ k} .

For every δ > 0 there exists a constant A = A(δ) ≥ 1, satisfying

P[ω ∈ Ω; Tmix(ω) ≤ A] > 0.

(H2’) (Rapid fibrewise mixing)

For each δ > 0, there exist K = K(δ), κ = κ(δ) > 0 s.t.

P[ω ∈ Ω; Tmix(ω) > n] ≤ Ke−κn for every n ∈ N.

(H) = (H1) + (H2) and (H’) = (H1) + (H2’)
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Examples

The two examples below satisfy Hypothesis (H’)

(1) Let A1, . . . ,Ak ∈ SL(2,N) and Tr(Ai ) > 2 for i ∈ {1, . . . , k}.

Θ : {1, . . . , k}Z × T2 → {1, . . . , k}Z × T2

(ω, x) 7→ (σω,Aω0(x))

where σ is the left shift and P is a Gibbs state of σ.

(2) Let T1, . . . ,Tk are Anosov diffeomorphisms in T2 preserving the same deterministic family of cones
in TT2

Θ : {1, . . . , k}Z × T2 → {1, . . . , k}Z × T2

(ω, x) 7→ (σω,Tω0(x))

where σ is the left shift and P is Bernoulli.
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Results

Theorem 1 (Amorim-C.-Sassoul-Vaienti, 2025+)

Let (Θ;σ,P) be a random dynamical system satisfying (H) and ϕ : Ω×M → R be a random potential
such that

ess sup
ω∈Ω

∥ϕ(ω, ·)∥Cα <∞

for some α > 0. Then, there exists a unique P-relative equilibrium state ν ∈ MP(Θ) of ϕ.

Theorem 2 (Amorim-C.-Saussol-Vaienti, 2025+)

Let (Θ;σ,P) be a random dynamical system satisfying (H’), and ϕ : Ω×M → R as in Theorem 1. Then
ν(dω, dx) = νω(dx)P(dω) exhibits quenched exponential decay of correlations for Hölder observables:
For every p ∈ [1,∞), ∃Cp ∈ Lp(Ω,P), α > 0 such that for any f , g ∈ Cα, ∀n ∈ N∣∣∣∣∫

M

f ◦ T n
ω · g dνω −

∫
M

f dνσnω

∫
M

g dνω

∣∣∣∣ ≤ Cp(ω)e
−α0n∥f ∥Cα∥g∥Cα ,

for P-a.e. ω ∈ Ω
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Results

Theorem 3 (Quenched CLT)

Let (Θ;σ,P) satisfy (H’), let ϕ : Ω × M → R be as in Theorem 1, and let ν = νω P(dω) be the
P-relative equilibrium state. Then ν satisfies the quenched CLT for any observable f : Ω × M → R
such that

ess sup
ω∈Ω

∥f (ω, ·)∥Cα <∞.

Set

f̃ (ω, x) := f (ω, x)−
∫
M

f (ω, ·)dνω, Sω
n f̃ (x) :=

n−1∑
k=0

f̃
(
σkω,T k

ω(x)
)
.

There exists Σ2 ≥ 0, independent of ω, such that for P-a.e. ω,

1√
n
Sω
n f̃

n→∞
====⇒ N (0,Σ2),

Moreover, f̃ is not a quenched coboundary, i.e.,

it does not exist ψ ∈ L2(P⊗ ν) such that f̃ = g ◦Θ− g for P-a.e. ω, νω-a.e. x .

then Σ > 0.
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General strategy
For RDS, equilibrium states and their quenched statistical properties are obtained via Birkhoff cone
contraction arguments; however, such arguments have not been established for diffeomorphisms yet.

(i) Random Banach spaces: One finds an appropriate family of Banach spaces (Bω)ω∈Ω such that Cα is
dense in Bω and

Lω : Bω → Bσω, Lω(f ) := (eϕω f ) ◦ T−1
ω (∀f ∈ Cα),

is bounded, where ϕω(·) := ϕ(ω, ·). We also ask ∥ · ∥Bω ≤ ∥ · ∥Cα

(ii) Random cones: For P-a.e. ω ∈ Ω, one finds an appropriate family of cones Cω ⊂ Bω, i.e.

Cω ∩ (−Cω) = {0}; f ∈ Cω, α > 0 ⇒ αf ∈ Cω; f , g ∈ Cω ⇒ f + g ∈ Cω,

such that Lω(Cω) ⊂ Cσω and span{Cω} = Bω.

(iii) Cone contraction: For P-a.e. ω ∈ Ω there exist random variables

{τi : Ω → N}i∈N with τ1 ≤ τ2 ≤ τ3 ≤ . . .

and constants ∆ > 0 and χ ∈ (0, 1) (independent of ω) such that, for all k ≥ 1,

sup
f ,g∈C

σ−τk ω

HilCω

(
L(τk )

σ−τk ω
f , L(τk )

σ−τk ω
g
)
≤ ∆χk−1;

(
recall that L(τk )

σ−τk ω
Cσ−τk ω ⊂ Cω

)
,

where HilCξ is the projective Hilbert metric on Cξ and L(n)
ξ := Lσn−1ξ ◦ · · · ◦ Lξ.

For a cone C with order ≤C , set α(f , g) := sup{λ > 0 : λg ≤C f }, β(f , g) := inf{µ > 0 : f ≤C µg}, and HilC(f , g) := log
β(f ,g)
α(f ,g)

.
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Right and left eigenvectors, and spectral gap
Assume cones Cω ⊂ Bω and dual cones C∗

ω ⊂ B∗
ω and that (i)–(iii) from the previous slide hold. Then via

standard arguments, for P-a.e. ω we have that:

Right random eigenvector: recall that Lω : Cω → Cσω, there exists µω ∈ Cω and λω > 0 satisfying

µω := lim
n→∞

Ln
σ−nω 1

∥L(n)

σ−nω
1∥Bω

∈ Cω, Lωµω = λωµσω.

Left random eigenfunction: recall that L∗
ω : C∗

σω → C∗
ω, there exists ℓω ∈ C∗

ω satisfying

ℓω(µω) = 1, (Lω)
∗ℓσω = λωℓω.

Spectral gap:

L(n)
ω g = λ(n)

ω ℓω(g)µσnω + λ(n)
ω Q(n)

ω (g), ∥Q(n)
ω ∥Bω→Bσnω

≤ C χNτ (ω,n),

where

λ(n)
ω :=

n−1∏
j=0

λσjω and Nτ (ω, n) = #({τi (σnω)}i∈N ∩ [1, n])

Adaptation of the Birkhoff cones arguments to the Liverani, Saussol, and Vaienti (1998) to the random context
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Natural candidates
For each f ∈ Cα(M), define νω(f ) = ℓω(f · µω). Observe that νω is equivariant:

νω(f ◦ Tω)= ℓω(f ◦ Tω · µω) =
1

λω
(L∗

ω) ℓσω(f ◦ Tω · µω) =
1

λω
ℓω(f · Lωµω) = νσω(f ).

Also, choosing f , g ∈ Cα(M) we have

νω(f ◦ T n
ω · g)= ℓω(f ◦ T n

ω · g · µω) =
1

λ
(n)
ω

(L∗
ω)

(n)ℓσnω(f ◦ T n
ω · g · µω) =

1

λ
(n)
ω

ℓσnω

(
f · L(n)

ω (g · µσnω)
)

= ℓσnω

(
f · ℓω(g · µω)µω + f · Q(n)

ω (gµω)
)
= νσnω(f ) νω(g) +O

(∥∥Q(n)
ω

∥∥
Bω→Bσnω

)
.

Recall that ∥Q(n)
ω ∥Bω→Bσnω

≤ C χNτ (ω,n). In particular∣∣∣∣∫
M

f ◦ T n
ω · g dνω −

∫
M

f dνσnω

∫
M

g dνω

∣∣∣∣ ≤ CχNτ (ω,x)∥f ∥Cα∥g∥Cα .

where Nτ (ω, x) = #({τi (σnω)}i∈N ∩ [1, n]).

If one manages to do such a construction:

· ν = νω(dx)P(dω) is a candidate for P-relative equilibrium state for the potential

ϕ+ log
∣∣∣det(DTω|E s (ω,x)

)∣∣∣ .
·
∫
log λωP(dω) is a candidate for its P-relative topological pressure.
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Challenges of the proof and Random Cones
Main challenge: There is no thermodynamic formalism for diffeomorphisms based on Birkhoff cones. Existing
results (Baladi–Tsujii, 2007; Gouëzel–Liverani, 2008) rely on spectral methods (anisotropic Banach spaces) instead.

Cone construction based on:

· Viana (1997; Arnold solenoid)

· X. Liu (2024; Random Anosov w/ strong mixing)

Parameters: a, b, c, κ, η > 0.

Stable leaves: Γsδ(ω) = local stable manifolds in M
of size δ > 0 for the fibre at ω. For (ω, x) ∈ Ω×M,

γ(ω,x) ⊂
{
y ∈ M : dist(T n

ωx ,T
n
ωy) → 0 as n → ∞

}
Densities on leaves: for γω ∈ Γsδ(ω),

Dω(γω) :=
{
ρω ∈ Cκ

+(γω) :
ρω(x)

ρω(y)
≤ e

a
2

distγω (x,y)κ
}

Projective distance on Dω(γω): HilDω(γω)(·, ·)

Cone Cω(b, c, η): A bounded measurable φ lies in
Cω(b, c, η) if (C1)–(C3) hold for every ρω , ςω ∈ Dω(γω)
with unit integral.

(C1) Positivity along leaves:∫
γω

φ(x) ρω(x)dmγω (x) > 0.

(C2) Log–Hölder in the density:∫
γω

φρω dmγω∫
γω

φ ςω dmγω

≤ ebHilDω (γω )(ρω,ςω)

(C3) Hölder across leaves (holonomy): for
holonomy-related (γ̃ω , γω), if ρ̃ω is the trans-
port/normalisation of ρω ,∫

γ̃ω
φ ρ̃ω dmγ̃ω∫

γω
φρω dmγω

≤ ec
(
du(γ̃ω,γω)

)η
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Cone construction based on:

· Viana (1997; Arnold solenoid)

· X. Liu (2024; Random Anosov w/ strong mixing)

Parameters: a, b, c, κ, η > 0.

Stable leaves: Γsδ(ω) = local stable manifolds in M
of size δ > 0 for the fibre at ω. For (ω, x) ∈ Ω×M,

γ(ω,x) ⊂
{
y ∈ M : dist(T n

ωx ,T
n
ωy) → 0 as n → ∞

}
Densities on leaves: for γω ∈ Γsδ(ω),

Dω(γω) :=
{
ρω ∈ Cκ

+(γω) :
ρω(x)

ρω(y)
≤ e

a
2

distγω (x,y)κ
}

Projective distance on Dω(γω): HilDω(γω)(·, ·)

Cone Cω(b, c, η): A bounded measurable φ lies in
Cω(b, c, η) if (C1)–(C3) hold for every ρω , ςω ∈ Dω(γω)
with unit integral.

(C1) Positivity along leaves:∫
γω

φ(x) ρω(x)dmγω (x) > 0.

(C2) Log–Hölder in the density:∫
γω

φρω dmγω∫
γω

φ ςω dmγω

≤ ebHilDω (γω )(ρω,ςω)

(C3) Hölder across leaves (holonomy): for
holonomy-related (γ̃ω , γω), if ρ̃ω is the trans-
port/normalisation of ρω ,∫

γ̃ω
φ ρ̃ω dmγ̃ω∫

γω
φρω dmγω

≤ ec
(
du(γ̃ω,γω)

)η
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(C3) Hölder across leaves (holonomy): for
holonomy-related (γ̃ω , γω), if ρ̃ω is the trans-
port/normalisation of ρω ,∫

γ̃ω
φ ρ̃ω dmγ̃ω∫

γω
φρω dmγω

≤ ec
(
du(γ̃ω,γω)

)η

Matheus Manzatto de Castro | Thermodynamic formalism for hyperbolic random dynamical systems 12/17



Cone definition

We define Cω as the closure of Cω ⊂ {φ : M → R; φ bounded and measurable} with respect to the norm

∥f ∥ω := ∥f ∥supsω,a,κ +
1

b
∥f ∥Θs

ω,a,κ +
1

c
∥f ∥duω,η,

where

∥f ∥supsω,a,κ := sup
γω∈Γs

δ
(ω)

sup
ρω∈Dω(γω)∫
γω

ρω dmγω=1

∣∣∣∣∫
γω

f ρ dmγω

∣∣∣∣ ,

∥f ∥Θs
ω,a,κ := sup

γ∈Γs
δ
(ω)

sup
ρ1ω,ρ2ω∈Dω(γω)∫
γω

ρ1ω dmγω=1∫
γω

ρ2ω dmγω=1

∣∣∣∫γω
f ρ1ω dmγω −

∫
γω

f ρ2ω dmγω

∣∣∣
HilDω(γω )

(ρ1ω, ρ2ω)
,

∥f ∥duω,ν,a,κ1
:= sup

(γω,γ̃ω)∈Γsδ(ω)×Γsδ(ω)
nearby pair

sup
ρ∈Dω(γω)

∣∣∣∫γω
f ρω dmγω −

∫
γ̃ω

f ρ̃ω dmγ̃ω

∣∣∣
du(γω, γ̃ω)η

.

And consider Bω := span(Cω).
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The general strategy required us to

(i) Construct random Banach spaces Bω, (ii) Construct random cones Cω

(iii) Construct stopping times that generate cone contractions, i.e. existence of random variables

τ1 ≤ τ2 ≤ . . . : Ω → N, satisfying diamHilCω

(
L(τm)

θ−τmω
Cθ−τmω

)
≤ ∆χm−1.

Using (H1) (hyperbolicity), we have established (i)+(ii). We now use (H2) (fibrewise mixing) to obtain
(iii).

Lemma 4

Recall (from the mixing condition H2) that

Tmix(ω) := min
{
n ∈ N;T n

ω(Bδ/2(xi )) ∩ Bδ/2(xj) ̸= ∅, ∀1 ≤ i , j ≤ k
}
.

Then there exists D1,D2 > 1 independent of ω such that for any n ≥ Tmix(ω)

sup
f ,g∈C

HilCω

(
L(n)

ω f ,L(n)
ω g

)
≤ D1 + D

Tmix(ω)
2 .

In particular if Tmix(ω) ≤ A, then supf ,g∈Cω
HilCω

(
L(n)

ω f ,L(n)
ω g

)
≤ D1 + DA

2 := ∆.

See Liverani (1995) or X. Liu (2024) (see also Atnip–Froyland–Gonzalez-Tokman–Vaienti (2021) and
Buzzi (1999)).

Matheus Manzatto de Castro | Thermodynamic formalism for hyperbolic random dynamical systems 14/17



The general strategy required us to

(i) Construct random Banach spaces Bω, (ii) Construct random cones Cω

(iii) Construct stopping times that generate cone contractions, i.e. existence of random variables

τ1 ≤ τ2 ≤ . . . : Ω → N, satisfying diamHilCω

(
L(τm)

θ−τmω
Cθ−τmω

)
≤ ∆χm−1.

Using (H1) (hyperbolicity), we have established (i)+(ii). We now use (H2) (fibrewise mixing) to obtain
(iii).

Lemma 4

Recall (from the mixing condition H2) that

Tmix(ω) := min
{
n ∈ N;T n

ω(Bδ/2(xi )) ∩ Bδ/2(xj) ̸= ∅, ∀1 ≤ i , j ≤ k
}
.

Then there exists D1,D2 > 1 independent of ω such that for any n ≥ Tmix(ω)

sup
f ,g∈C

HilCω

(
L(n)

ω f ,L(n)
ω g

)
≤ D1 + D

Tmix(ω)
2 .

In particular if Tmix(ω) ≤ A, then supf ,g∈Cω
HilCω

(
L(n)

ω f ,L(n)
ω g

)
≤ D1 + DA

2 := ∆.

See Liverani (1995) or X. Liu (2024) (see also Atnip–Froyland–Gonzalez-Tokman–Vaienti (2021) and
Buzzi (1999)).

Matheus Manzatto de Castro | Thermodynamic formalism for hyperbolic random dynamical systems 14/17



(iii) Construction of stopping times that generate cone contractions
By (H2) there exists A such that P[Tmix(ω) ≤ A] > 0.

Therefore, there exist stopping times

τ0 = 0 < τ1 < τ2 < · · · with N(σ−τmω) ≤ A and τm − τm−1 ≥ A for every m ∈ N.

Let ∆ as before and χ := tanh(∆/4) ∈ (0, 1). Then for any m ∈ N,

sup
f ,g∈C

σ−τmω

HilC
σ−τmω

(
L(τm)

σ−τmω
f , L(τm)

σ−τmω
g
)
≤ χm−1 ∆.

Consequence of the previous lemma and

L(τm)

σ−τmω
Cσ−τmω = L(τ1)

σ−τ1ω
◦ L(τ2−τ1)

σ−τ2ω
◦ · · · ◦ L(τm−τm−1)

σ−τmω
Cσ−τmω ⊂ Cω ,

From the discussion in the previous slides, we can construct

· νω(f ) := ℓω(f µω), with Lωµω = λω µσω and (Lω)
∗ℓσω = λω ℓω;

·
∣∣ ∫

M
f ◦ T n

ω g dνω −
∫
f dνσnω

∫
M
g dνω

∣∣ ≤ χNτ (ω,n)∥f ∥Cα∥g∥Cα , with

Nτ (ω, n) := #({τi (σnω)}i∈N ∩ [1, n]).

In particular, if (H2′) is satisfied (P[Tmix(ω) > n] ≤ C0e
−κn), then the decay is exponentially fast

(depending on ω).
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From the discussion in the previous slides, we can construct

· νω(f ) := ℓω(f µω), with Lωµω = λω µσω and (Lω)
∗ℓσω = λω ℓω;

·
∣∣ ∫

M
f ◦ T n

ω g dνω −
∫
f dνσnω

∫
M
g dνω

∣∣ ≤ χNτ (ω,n)∥f ∥Cα∥g∥Cα , with

Nτ (ω, n) := #({τi (σnω)}i∈N ∩ [1, n]).

In particular, if (H2′) is satisfied (P[Tmix(ω) > n] ≤ C0e
−κn), then the decay is exponentially fast

(depending on ω).
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Showing that ν is the unique P-relative equilibrium state

Assume that the RDS (Θ;σ,P) satisfies Hypothesis (H). Let ν = νω(·)P(dω), with νω(f ) = ℓω(f · µω).

· We show that ∫
log λω dP(ω) = Ptop

(
ϕ+ log

∣∣ det(DTω|E s (ω,x)

)∣∣ ∣∣ P) ,
by adapting the argument method provided in Parmenter and Pollicott (2021).

· We establish that ∫
log λω dP(ω) = Pν

(
ϕ+ log

∣∣ det(DTω|E s (ω,x)

)∣∣ ∣∣ P) ,
proving a weak Gibbs property. Borrowing ideas from Stadlbauer, Suzuki, and Varandas (2021)

· We show uniqueness of equilibrium states by noting that ℓω and µω are Margulis measures and
following the method described in Section 4 of Carrasco and Rodŕıguez-Hertz (2023).

· We prove quenched CLT by the standard Nagaev-Guivarc’h perturbation method for complex cones,
Chapter 7 of Hafouta, and Kifer (2018).
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Key takeaways

Results

· We have established existence and uniqueness of relative equilibrium states for hyperbolic random
dynamical systems on surfaces, under the uniform Hölder bound

ess sup
ω

∥ϕ(ω, ·)∥Cα <∞.

· We have obtained quenched exponential decay of correlations and a quenched CLT via the basis large
deviation estimates, i.e.

P[N ≤ n] ≤ K e−κn.

· We have found suitable Birkhoff cones enabling a thermodynamic formalism for random
diffeomorphisms.

Thank you for your attention!
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Topological pressure via the random eigenvalues

Let ν = νω(dx)P(dω) and assume (H) = (H1) + (H2) (Hyperbolicity + Fibrewise mixing).

· We show that ∫
log λω dP(ω) = Ptop

(
Θ, ϕ(ω, x) + log

∣∣ det(DTω|E s (ω,x)

)∣∣ ∣∣ P) ,
by adapting an argument of Parmenter–Pollicott (2021) which reads

Theorem 5 (Parmenter–Pollicott (2021))

T : M → M is a mixing Anosov map (or has an Axiom A attractor) and ϕ : M → R is continuous,
then for any piece of stable manifold γ ⊂ M,

P
(
ϕ+ log

∣∣ det(DT |E s )
∣∣, T)

= lim
n→∞

1

n
log

∫
γ

exp
( n−1∑

i=0

ϕ◦ T−i (y)
)
dmγ(y),

where mγ is the induced Riemannian measure on γ.
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The measure ν is a P-relative equilibrium state

Let ν = νω(dx)P(dω) and assume (H) = (H1) + (H2) (Hyperbolicity + Fibrewise mixing).

· We show that ∫
log λω dP(ω) = Pν

(
Θ, ϕ(ω, x) + log

∣∣ det(DTω|E s (ω,x)

)∣∣ ∣∣ P) ,
By establishing a weak Gibbs property:

Proposition 1 (Weak Gibbs property)

Let ε > 0 be small enough. Then, there exist functions Kε ∈ L1(Ω,P) and measurable functions
cε,Cε : Ω → (0,∞), such that for P-a.e. ω ∈ Ω there exists a strictly increasing sequence
{nk(ω)}k∈N such that for every k ∈ N and and x ∈ M:

cε(ω)e
−Kε(σ

−nk (ω)ω) ≤ νω(B
nk (ω)
ω (x , ε))

[λ
(nk (ω))

σ−nk (ω)ω
]−1 exp

(
Snϕ̄σ−nk (ω)ω

(
(T n

σ−nk (ω)ω
)−1x

)) ≤ Cε(ω)e
Kε(σ

−nk (ω)ω),

where Bn
ω(x , ε) = {y ∈ M : ∀0 ≤ i ≤ n− 1, d(T−i

ω x ,T−i
ω y) ≤ ε} is the backward dynamical ball.

The proof of the above proposition borrows some ideas from Stadlbauer–Suzuki–Varandas (2021).
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Uniqueness of P-relative equilibrium states

Let ν = νω(dx)P(dω) and assume (H) = (H1) + (H2) (hyperbolicity + fibrewise mixing).

· Deterministic result (Carrasco–Rodŕıguez-Hertz, 2023). If T : M → M is a centre isometry (i.e.
TM = E s ⊕ E c ⊕ E u with E c having special properties) and ϕ is a suitable potential (in our context
E c = ∅ and ϕ is Hölder), and if there exist measures µu, µs such that

(i) the (Rokhlin) disintegration of µu along unstable leaves {µu
x} is absolutely continuous with

respect to the leafwise Lebesgue measure;
(ii) the disintegration of µs along stable leaves {µs

x} is absolutely continuous with respect to the
leafwise Lebesgue measure;

(iii) Margulis property: for every x ∈ M,

T∗µ
u
x = e−Ptop(ϕ)+ϕ µu

T (x), T∗µ
s
x = ePtop(ϕ)−ϕ µs

T (x);

(iv) T is topologically mixing,

then T admits a unique equilibrium state for ϕ.

· Random adaptation. We adapt the above result by observing that ℓω and µω are Margulis measures
for the potential

ϕ(ω, x) := ϕ(ω, x) + log
∣∣ det(DTω|E s (ω,x))

∣∣
and that both µω and ℓω have full support.
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Quenched CLT
Let ν = νω(dx)P(dω) and assume (H′) = (H1) + (H′

2) (hyperbolicity + fibrewise rapid mixing). Take

fω ∈ L∞(Ω,Cα(M)) with νω(fω) = 0 and Snf (ω, x) :=
n−1∑
k=0

fσkω

(
T k

ωx
)
.

Normalise, without loss of generality, to λω ≡ 1 by ϕ̄ω := ϕω − log λω.
Nagaev–Guivarc’h on complex cones. Consider the twist operator

Lω,tg := Lω

(
e itfωg

)
, |t| ≤ t0.

Cone contraction (complex Hilbert metric) gives a uniform spectral gap for small |t|:

L(n)
ω,t = λω(t)

(n)Πσnω(t) + Q
(n)
ω,t , ∥Q(n)

ω,t∥ ≤ Ce−χn,

with t 7→ λω(t) analytic at 0, λ′
ω(0) = 0, λ′′

ω(0) = Σ2. Hence log νω
(
e itSnf

)
= 1

2
σ2t2n + o(nt2), and

Lévy’s theorem completes the proof.

· Chapter 7 of Y. Hafouta and Y. Kifer. Nonconventional limit theorems and random dynamics. World
Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2018, pp. xiii+284

· J. Atnip, G. Froyland, C. González-Tokman, and S. Vaienti. “Thermodynamic Formalism and
Perturbation Formulae for Quenched Random Open Dynamical Systems”. In: Dissertationes
Mathematicae (2024). to appear; see arXiv:2307.00774. arXiv: 2307.00774 [math.DS]

· Sequencial Billiards: M. F. Demers and C. Liverani. Central Limit Theorem for Sequential Dynamical
Systems. 2025. arXiv: 2502.07765 [math.DS]
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The log
∣∣ det dT |E s

∣∣ correction
We focus on the deterministic case. Take ϕ = − log | det dT |, we know for this choice of potential the
eigenvectors of Lϕf = (eϕf ) ◦ T−1 should give rise to the SRB measure.
From Pesin’s formula

Ptop

(
− log

∣∣ det dT |Eu

∣∣) = hµSRB −
∫

log
∣∣ det dT |Eu

∣∣ dµSRB = 0.

we observe that a correction is needed.
Angle identity:

| det dTx | =
α(Tx)

α(x)

∣∣ det dTx |E s

∣∣ ∣∣ det dTx |Eu

∣∣, α(x) = sin∠(E s
x ,E

u
x ).

Coboundary:

− log | det dTx |+ log
∣∣ det dTx |E s

∣∣ = − log
∣∣ det dTx |Eu

∣∣+ logα(Tx)− logα(x).

Leafwise change of variables (stable leaf γ):∫
γ

Lϕf dmγ =

∫
γ

(eϕf )◦T−1 dmγ =

∫
T−1γ

eϕ f
∣∣ det dT |E s

∣∣ dmT−1γ =

∫
T−1γ

eϕ+log

∣∣ det dT |Es

∣∣
f dmT−1γ .
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