Self Consistent Transfer Operators for Heterogeneous Networks

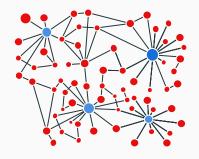
THERMOGAMAS

Herbert Milton Ccalle Maquera

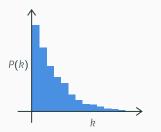
30-09-2025

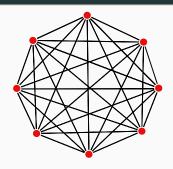
ICMC-USP

Heterogeneous Coupled Maps

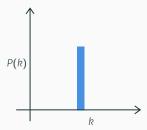


Heterogeneous Network

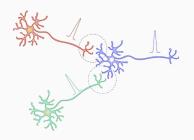




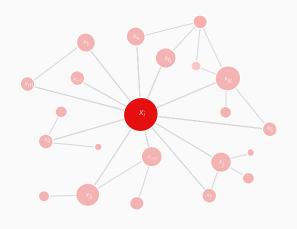
Homogeneous Network



Heterogeneous Coupled Maps



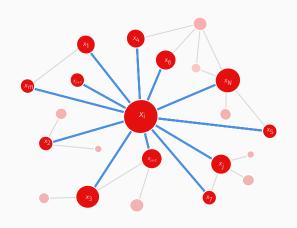
Setting



$$x_i(t+1) = f_i(x_i(t))$$
 mod 1

3

Setting



$$x_i(t+1) = f_i(x_i(t)) + \frac{\alpha}{N} \sum_{j=1}^{N} A_{ij} h(x_i(t), x_j(t)) \mod 1$$

3

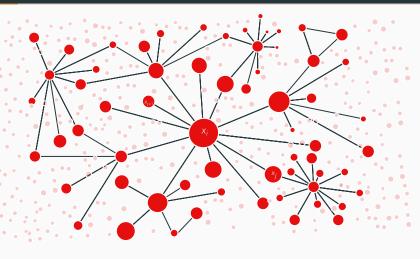
Globally Coupled Maps

- Kunihiko Kaneko Period-Doubling of Kink-Antikink Patterns, Quasiperiodicity in Antiferro-Like Structures and Spatial Intermittency in Coupled Logistic Lattice. [1984, Progress of Theoretical Physics]
- P. Bálint, G. Keller, F. M. Selley and P. Toth Synchronization versus stability of the invariant distribution for a class of GCM. [2018, Nonlinearity]
- Stefano Galatolo Self-Consistent Transfer Operators: Invariant Measures, Convergence to Equilibrium, Linear Response and Control of the Statistical Properties. [2022, Communications in Mathematical Physics]
- F. M. Sélley and M. Tanzi Synchronization for networks of Globally Coupled Maps in the thermodynamic limit. [2022, Journal of Statistical Physics]

Coupled map Networks

- Koiller and Lai-Sang Young Coupled map networks. [2010, Nonlinearity]
- Tiago Pereira, Sebastian van Strien and Matteo Tanzi Heterogeneously coupled maps: hub dynamics and emergence across connectivity layers. [2020, J. Eur. Math. Soc.]

Thermodynamic Limit



To study the thermodynamic limit of heterogeneous coupled maps

Mean Field Approximation

Consider

$$x_i(t+1) = f(x_i(t)) + \frac{\alpha}{N} \sum_{j=1}^{N} A_{ij} h(x_i(t), x_j(t)) \mod 1$$
, for $i = 1, 2, ..., N$

Let
$$F: \mathbb{T}^N \to \mathbb{T}^N$$
,

$$x_i(t+1) = F_i(x_1(t), ..., x_N(t)).$$

Mean Field Approximation

Consider

$$x_i(t+1) = f(x_i(t)) + \frac{\alpha}{N} \sum_{j=1}^{N} A_{ij} h(x_i(t), x_j(t)) \mod 1$$
, for $i = 1, 2, ..., N$

Let $F: \mathbb{T}^N \to \mathbb{T}^N$,

$$x_i(t+1) = F_i(x_1(t), ..., x_N(t)).$$

• Define $F_{\mu,j}: \mathbb{T} \to \mathbb{T}$

$$F_{\boldsymbol{\mu},i}(x_i) = f_i(x_i) + \frac{\alpha}{N} \sum_{i=1}^{N} \int A_{ij} h(x_i, y_j) d\boldsymbol{\mu}(\boldsymbol{y})$$

$$F_{\boldsymbol{\mu}}:\mathbb{T}^N\to\mathbb{T}^N$$
,

$$F_{\mu}(\mathbf{x}) = (F_{\mu,1}(x_1), F_{\mu,2}(x_2), \dots, F_{\mu,N}(x_N))$$

Dynamics

Evolution of the state of the system

$$\mathcal{F}_{N}\boldsymbol{\mu} := (F_{\boldsymbol{\mu}})_* \boldsymbol{\mu} = ((F_{\boldsymbol{\mu},1})_* \mu_1, (F_{\boldsymbol{\mu},2})_* \mu_2, \dots, (F_{\boldsymbol{\mu},N})_* \mu_N)$$

$$\mathcal{F}_{N}\boldsymbol{\mu} := (F_{\boldsymbol{\mu}})_* \boldsymbol{\mu} = ((F_{\boldsymbol{\mu},1})_* \mu_1, (F_{\boldsymbol{\mu},2})_* \mu_2, \dots, (F_{\boldsymbol{\mu},N})_* \mu_N)$$

$$\mathcal{F}_{N}\boldsymbol{\mu} := (F_{\boldsymbol{\mu}})_* \boldsymbol{\mu} = ((F_{\boldsymbol{\mu},1})_* \mu_1, (F_{\boldsymbol{\mu},2})_* \mu_2, \dots, (F_{\boldsymbol{\mu},N})_* \mu_N)$$

$$\mathcal{F}_{N}\boldsymbol{\mu} := (F_{\boldsymbol{\mu}})_* \boldsymbol{\mu} = ((F_{\boldsymbol{\mu},1})_* \mu_1, (F_{\boldsymbol{\mu},2})_* \mu_2, \dots, (F_{\boldsymbol{\mu},N})_* \mu_N)$$

$$N o \infty$$

Homogeneous: $\mu_1 = \mu_2 = \cdots = \mu_N$

$$\mathcal{F}_{N}\boldsymbol{\mu} := (F_{\boldsymbol{\mu}})_{*}\boldsymbol{\mu} = ((F_{\boldsymbol{\mu},1})_{*}\mu_{1}, (F_{\boldsymbol{\mu},2})_{*}\mu_{2}, \dots, (F_{\boldsymbol{\mu},N})_{*}\mu_{N})$$

$$N o \infty$$

Homogeneous:
$$\mu_1 = \mu_2 = \cdots = \mu_N$$

$$\mathcal{F}\boldsymbol{\mu} := (F_{\boldsymbol{\mu}})_* \boldsymbol{\mu} = ((F_{\boldsymbol{\mu},1})_* \mu_1, (F_{\boldsymbol{\mu},1})_* \mu_1, \dots, (F_{\boldsymbol{\mu},1})_* \mu_1, \dots)$$

$$\mathcal{F}_{N}\boldsymbol{\mu} := (F_{\boldsymbol{\mu}})_{*}\boldsymbol{\mu} = ((F_{\boldsymbol{\mu},1})_{*}\mu_{1}, (F_{\boldsymbol{\mu},2})_{*}\mu_{2}, \dots, (F_{\boldsymbol{\mu},N})_{*}\mu_{N})$$

$$N \to \infty$$

Homogeneous: $\mu_1 = \mu_2 = \cdots = \mu_N$

$$\mathcal{F} \mu := (F_{\mu})_* \mu = ((F_{\mu,1})_* \mu_1, (F_{\mu,1})_* \mu_1, \dots, (F_{\mu,1})_* \mu_1, \dots)$$

Heterogeneous: $\mu_1 \neq \mu_2 \neq \cdots \neq \mu_N$

$$\mathcal{F}_{N}\boldsymbol{\mu} := (F_{\boldsymbol{\mu}})_{*}\boldsymbol{\mu} = ((F_{\boldsymbol{\mu},1})_{*}\mu_{1}, (F_{\boldsymbol{\mu},2})_{*}\mu_{2}, \dots, (F_{\boldsymbol{\mu},N})_{*}\mu_{N})$$

$$N \to \infty$$

Homogeneous: $\mu_1 = \mu_2 = \cdots = \mu_N$

$$\mathcal{F}\boldsymbol{\mu} := (F_{\boldsymbol{\mu}})_* \boldsymbol{\mu} = ((F_{\boldsymbol{\mu},1})_* \mu_1, (F_{\boldsymbol{\mu},1})_* \mu_1, \dots, (F_{\boldsymbol{\mu},1})_* \mu_1, \dots)$$

Heterogeneous: $\mu_1 \neq \mu_2 \neq \cdots \neq \mu_N$

$$\mathcal{F}_{\mu} := (F_{\mu})_{*}\mu = ((F_{\mu,1})_{*}\mu_{1}, (F_{\mu,2})_{*}\mu_{2}, \dots, (F_{\mu,k})_{*}\mu_{k}, \dots)$$

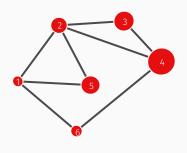
· How can we define the thermodynamic limit?

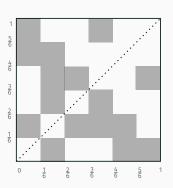
- · How can we define the thermodynamic limit?
- Is the empirical distribution in the finite system well approximated by the thermodynamic limit?

- · How can we define the thermodynamic limit?
- Is the empirical distribution in the finite system well approximated by the thermodynamic limit?
- Does a fixed point exist in the thermodynamic limit?

- · How can we define the thermodynamic limit?
- Is the empirical distribution in the finite system well approximated by the thermodynamic limit?
- · Does a fixed point exist in the thermodynamic limit?
- · Is this fixed point stable?

Graphons





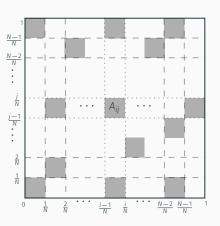
A_{ij} in terms of W_N

We divide the interval [0,1] in N sub intervals, for i = 2, ..., N

$$I_1 := [0, 1/N], \quad I_i := \left(\frac{i-1}{N}, \frac{i}{N}\right]$$

define $W^{(N)}$ by

$$W^{(N)}\big|_{I_i\times I_j}(x,y):=A_{ij}$$



So, for
$$z \in I_i$$

$$\frac{1}{N}A_{ij} = \int_{\frac{j-1}{N}}^{\frac{j}{N}} dz' W^{(N)}(z,z')$$

For $\mu \in \mathcal{M}(\mathbb{T})^{\otimes N}$ the mean field map is

$$F_{\boldsymbol{\mu},i}(x_i) = f_i(x_i) + \frac{\alpha}{N} \sum_{j=1}^{N} \int A_{ij} h(x_i, y_j) d\boldsymbol{\mu}(\boldsymbol{y})$$

So, for
$$z \in I_i$$

$$\frac{1}{N}A_{ij} = \int_{\frac{j-1}{N}}^{\frac{j}{N}} dz' W^{(N)}(z,z')$$

For $\mu \in \mathcal{M}(\mathbb{T})^{\otimes N}$ the mean field map is

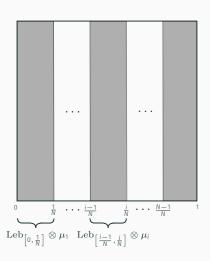
$$F_{\boldsymbol{\mu},i}(x_i) = f_i(x_i) + \alpha \sum_{j=1}^{N} \int \frac{1}{N} A_{ij} h(x_i, y_j) d\boldsymbol{\mu}(\boldsymbol{y})$$

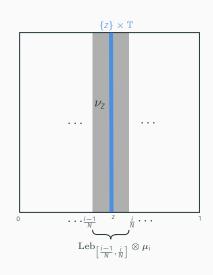
So, for
$$z \in I_i$$

$$\frac{1}{N}A_{ij} = \int_{\frac{j-1}{N}}^{\frac{j}{N}} dz' W^{(N)}(z,z')$$

For $\pmb{\mu} \in \mathcal{M}(\mathbb{T})^{\otimes N}$ the mean field map is

$$F_{\mu,i}(x_i) = f_i(x_i) + \alpha \sum_{j=1}^{N} \int_{\frac{j-1}{N}}^{\frac{j}{N}} dz' W^{(N)}(z,z') \int h(x_i,y) d\mu_j(y)$$





Then

$$\nu_{z}^{(N)} = \mu_{i} \text{ when } z \in I_{i}$$

So, $F_{\nu,z}: \mathbb{T} \to \mathbb{T}$ for z in I_i :

$$F_{\nu,z}^{(N)}(x) := f(x) + \alpha \int_0^1 \int_{\mathbb{T}} dz' d\nu_{z'}^{(N)}(y) \ W^{(N)}(z,z') \ h(x,y)$$

•
$$F_{\nu}: [0,1] \times \mathbb{T} \rightarrow [0,1] \times \mathbb{T}$$
, $F_{\nu}(z,x) = (z, F_{\nu,z}(x))$

•
$$F_{\nu}: [0,1] \times \mathbb{T} \rightarrow [0,1] \times \mathbb{T}$$
, $F_{\nu}(z,x) = (z, F_{\nu,z}(x))$

$$F_{\nu,z}(x) = f(x) + \alpha \int_0^1 \int_{\mathbb{T}} dz' \ d\nu_{z'}(y) W(z,z') \ h(x,y)$$

•
$$F_{\nu}$$
: $[0,1] \times \mathbb{T} \rightarrow [0,1] \times \mathbb{T}$, $F_{\nu}(z,x) = (z, F_{\nu,z}(x))$

$$F_{\nu,z}(x) = f(x) + \alpha \int_0^1 \int_{\mathbb{T}} dz' d\nu_{z'}(y) W(z,z') h(x,y)$$

·
$$\mathcal{F}_W: \mathcal{M}([0,1] \times \mathbb{T}) \to \mathcal{M}([0,1] \times \mathbb{T})$$

•
$$F_{\nu}: [0,1] \times \mathbb{T} \rightarrow [0,1] \times \mathbb{T}$$
, $F_{\nu}(z,x) = (z, F_{\nu,z}(x))$

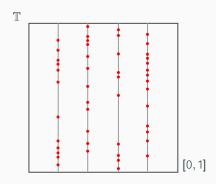
$$F_{\nu,z}(x) = f(x) + \alpha \int_0^1 \int_{\mathbb{T}} dz' \ d\nu_{z'}(y) W(z,z') \ h(x,y)$$

·
$$\mathcal{F}_W: \mathcal{M}([0,1] \times \mathbb{T}) \to \mathcal{M}([0,1] \times \mathbb{T})$$

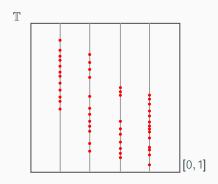
$$\mathcal{F}_{W}\nu=(\mathsf{F}_{\nu})_{*}\nu$$

Local Contracting Dynamics

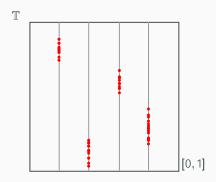
Contraction on the fiber



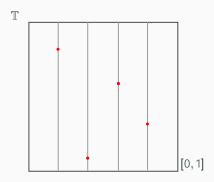
Contraction on the fiber



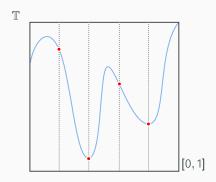
Contraction on the fiber



Contraction on the fiber



Contraction on the fiber



Existence and uniqueness of fixed point for STO

Let $f: \mathbb{T} \to \mathbb{T}$ be a Λ -contraction in I. Let $h: \mathbb{T} \times \mathbb{T} \to \mathbb{R}$ be Lipschitz in the both variables. Let $W \in L^{\infty}([0,1]; L^{1}([0,1]))$

$$F_{\nu,z}(x) = f(x) + \alpha \int_0^1 \int_{\mathbb{T}} W(z,z') h(x,y) d\nu_{z'}(y) dz',$$

There exists $\hat{\alpha} > 0$ such that for all $\alpha < \hat{\alpha}$ the maps $F_{\nu,z}$ are uniform contractions. Then for almost every $z \in [0,1]$

$$\mathcal{F}_W \nu^* = \nu^*$$

where $\nu_{\mathbf{Z}}^* = \delta_{g(\mathbf{Z})}$ for some $g: [0,1] \to \mathbb{T}$ measurable function.

Consider

 $\mathcal{G}:=\{g:[0,1]\to I\subset\mathbb{T}\,, \text{measurable and bounded}\},\; d_\infty\text{-metric}$

Consider

$$\mathcal{G}:=\{g:[0,1] \to I \subset \mathbb{T} \text{ , measurable and bounded}\}, \ d_{\infty}\text{-metric}$$

Define $\mathcal{T}:\mathcal{G}\rightarrow\mathcal{G}$ by

$$\mathcal{T}(g)(z) := F_{\nu,z}(g(z)).$$

Consider

$$\mathcal{G}:=\{g:[0,1]
ightarrow \mathit{I}\subset \mathbb{T}\,,$$
 measurable and bounded $\},\ d_{\infty}$ -metric

Define $\mathcal{T}:\mathcal{G}\to\mathcal{G}$ by

$$\mathcal{T}(g)(z) := F_{\nu,z}(g(z)).$$

Then the map \mathcal{T} is a contraction on $(\mathcal{G}, d_{\infty})$.

$$\mathcal{T}(g^*) = g^*$$

Consider

$$\mathcal{G}:=\{g:[0,1] \to I \subset \mathbb{T}, \text{measurable and bounded}\}, \ d_{\infty}\text{-metric}$$

Define $\mathcal{T}:\mathcal{G}\to\mathcal{G}$ by

$$\mathcal{T}(g)(z) := F_{\nu,z}(g(z)).$$

Then the map \mathcal{T} is a contraction on $(\mathcal{G}, d_{\infty})$.

$$\mathcal{T}(g^*) = g^*$$

then

$$\nu_{\rm Z}^* = \delta_{g^*({\rm Z})}$$

Consider

$$\mathcal{G}:=\{g:[0,1] \to I \subset \mathbb{T}, \text{measurable and bounded}\}, \ d_{\infty}\text{-metric}$$

Define $\mathcal{T}:\mathcal{G}\to\mathcal{G}$ by

$$\mathcal{T}(g)(z) := F_{\nu,z}(g(z)).$$

Then the map \mathcal{T} is a contraction on $(\mathcal{G}, d_{\infty})$.

$$\mathcal{T}(g^*) = g^*$$

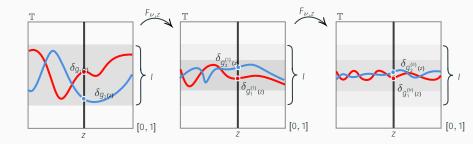
then

$$\nu_{\rm Z}^* = \delta_{g^*({\rm Z})}$$

and

$$(\mathcal{F}_W \nu^*)_Z = \nu_Z^*.$$

Local Contracting Dynamics



Expanding maps

Definitions

Definition 1 (Self Consistent Transfer Operator)

Consider $f \in \mathcal{C}^3(\mathbb{T},\mathbb{T})$, $h \in \mathcal{C}^3(\mathbb{T} \times \mathbb{T},\mathbb{R})$, and $W \in L^\infty([0,1],L^1([0,1],\mathbb{R}))$, for any $\nu \in \mathcal{M}_{1,Leb}([0,1] \times \mathbb{T})$ and almost any $z \in [0,1]$ we define

$$F_{\nu,z}(x) = f(x) + \alpha \int_0^1 dz' \int_{\mathbb{T}} d\nu_{z'}(y) W(z,z') h(x,y)$$
 (1)

and

$$\mathcal{F}\nu = (F_{\nu})_*\nu$$

Wasserstein distance

Consider the notion of distance between measures given by

$$W^{1}(\mu,\nu) = \sup_{\substack{\text{Lip}(g) \leq 1 \\ \|g\|_{\infty} \leq 1}} \left[\int g \cdot d\mu - \int g \cdot d\nu \right]$$
 (2)

We define

$$\|\mu\|_{W^1} := W^1(0,\mu).$$

Disintegrations with Lebesgue Marginal

Consider $\mathcal{M}_1([0,1]\times \mathbb{T})$ is the set of probability measures

$$\mathcal{M}_{1,\mathsf{Leb}} := \{ \nu \in \mathcal{M}_1([0,1] \times \mathbb{T}) : \, \nu(\mathsf{A} \times \mathbb{T}) = \mathsf{Leb}(\mathsf{A}) \ \, \forall \mathsf{A} \subset [0,1] \text{ meas.} \}$$

BV Seminorms of Densities on ${\mathbb T}$

Consider

$$\mathcal{B}_{BV^i} := \{ \psi \in L^1(\mathbb{T}) : \|\psi\|_{BV^i} < \infty \}$$

with

$$\|\psi\|_{\mathit{BV}^{i}} := |\psi|_{\mathit{BV}^{i}} + \|\psi\|_{\mathit{L}^{1}}$$

and

$$|\psi|_{\mathcal{BV}^i} := \sup_{\substack{g \in \mathcal{C}^i(\mathbb{T},\mathbb{R}) \\ \|g\|_{\infty} \leq 1}} \int_{\mathbb{T}} g^{(i)}(s)\psi(s)ds$$

Fiberwise Regularity and Variation Control

For i = 1, 2.

$$\tilde{\mathcal{B}}_{BV^i,M}:=\{\varphi\in L^1([0,1]\times\mathbb{T},\mathbb{R}):\,\varphi_Z\in\mathcal{B}_{BV^i,M}\text{ for a.e. }z\in[0,1]\}$$

Weak space

$$\mathcal{B}_{w}:=\{\varphi:[0,1]\times\mathbb{T}\rightarrow\mathbb{R}:\|\varphi\|_{\text{"1"}}<\infty\}$$

where

$$\|\varphi\|_{\text{"1"}} := \int_{[0,1]} \|\varphi_Z\|_{W^1} dZ$$

 BV^1 -oscillation of φ :

$$osc_{BV}(\varphi,\omega,r) := \underset{z,\overline{z} \in B(\omega,r)}{\operatorname{ess sup}} |\varphi_{\overline{z}} - \varphi_{z}|_{BV}$$
(3)

and

$$var_{p,BV^{1}}(\varphi) = \sup_{r>0} \frac{1}{r^{p}} \int_{[0,1]} osc_{BV^{1}}(\varphi,\omega,r) d\omega. \tag{4}$$

Stronger space

$$\mathcal{B}_{S} := \{ \varphi : [0,1] \times \mathbb{T} \to \mathbb{R} : \|\varphi\|_{S} < \infty \}$$

where

$$\|arphi\|_{ extsf{S}}:= extsf{Var}_{p, extsf{BV}^1}(arphi)+\|arphi\|_{ hilde{ extsf{"1"}}}$$

Admissible Set of Regular Densities

To construct a suitable domain for the application of Schauder's fixed-point theorem

$$\mathcal{A}_{\mathsf{M}} := \mathcal{B}_{\mathsf{S},\mathsf{M}} \cap \tilde{\mathcal{B}}_{\mathsf{BV}^1,\mathsf{M}_1} \cap \tilde{\mathcal{B}}_{\mathsf{BV}^2,\mathsf{M}_2} \cap \mathcal{M}_{\mathsf{1},\mathsf{Leb}} \tag{5}$$

where $M = (M_1, M_2, M)$.

Main Results and Proofs

Convergence to the finite-dimensional system to the STO

• For every $N \in \mathbb{N}$ consider $\{x_i^{(N)}\}_{N=1,i=1}^{\infty,N}$ where $x_i^{(N)}$ is distributed according to $\mu_i^{(N)}$ defined as

$$\mu_i^{(N)}(A) := N \int_{\frac{i-1}{N}}^{\frac{i}{N}} \nu_z(A) dz.$$

· Define the random variables

$$(y_1^{(N)},...,y_N^{(N)}) := F(x_1^{(N)},...,x_N^{(N)})$$

and call $\eta_i^{(N)}$ the distribution of $y_i^{(N)}$

Convergence of the finite-dimensional system to the STO

Theorem 1

Assume that for a given $z_* \in [0,1]$:

- i) $W^{(N)}(z_*,\cdot) \to W(z_*,\cdot)$ in $L^1([0,1])$ for $N \to \infty$;
- ii) $z \mapsto W(z, \cdot)$ is Lipschitz near z_* ;
- iii) $\nu \in \mathcal{M}_{1,\text{Leb}}([0,1] \times \mathbb{T})$ has a disintegration $\{\nu_z\}_{z \in [0,1]}$ that is Lipschitz near z_* .

Then,

$$\lim_{N\to\infty}\eta_{\lceil Z_*N\rceil}^{(N)}=(\mathcal{F}\nu)_{Z_*}\quad \textit{weakly}.$$

Proof: Convergence of the finite-dimensional system to the STO

$$\int_{\mathbb{T}} g(y) \left(d(\mathcal{F}\nu)_{Z_*}(y) - d\eta_i^{(N)}(y) \right) =$$

$$= \underbrace{\int_{\mathbb{T}} g(F_{\nu,Z_*}(y)) d\nu_{Z_*}(y)}_{\mathcal{I}_1} - \underbrace{\int_{\mathbb{T}^N} g\left(f(x_i) + \frac{\alpha}{N} \sum_{j=1}^N A_{ij} h(x_i, x_j) \right) \prod_{j=1}^N d\mu_j^{(N)}(x_j)}_{\mathcal{I}_2}$$

To give estimates for the integral \mathcal{I}_2

$$g\left(f(x_i) + \frac{\alpha}{N}\sum_{j=1}^N A_{ij}h(x_i, x_j)\right) \approx g\left(f(x_i) + \int \frac{\alpha}{N}\sum_{j=1}^N A_{ij}h(x_i, x_j')\prod_{j=1}^N d\mu_j^{(N)}(x_j')\right)$$

then

$$\mathcal{I}_2 \approx \mathcal{I}_1 + O(N^{-1/3})$$

Existence of the fixed point for the STO on a graphon

Theorem 2 (Existence of the fixed point)

Let $f \in \mathcal{C}^3(\mathbb{T},\mathbb{T})$, $h \in \mathcal{C}^3(\mathbb{T} \times \mathbb{T},\mathbb{R})$, $W \in L^\infty([0,1],L^1([0,1],\mathbb{R}))$ be a graphon with $\operatorname{\textit{var}}_{p,L^1}(W) < \infty$ for some $p \in (0,1]$, and \mathcal{F} the associated STO. Consider the admissible set of regular densities \mathcal{A}_M . Then there exist $\alpha_0 > 0$ and M_0 , M_1 , $M_2 > 0$ such that for all $|\alpha| < \alpha_0$, \mathcal{F} has a fixed point φ^* in the closure of \mathcal{A}_M in \mathcal{B}_W .

Corollary 1

For every fixed point φ_* of \mathcal{F} with absolutely continuous disintegration, $\varphi_7^* \in C^2(\mathbb{T}, \mathbb{R})$ for a.e. $z \in [0, 1]$.

Lemma 1 (Uniform Expansion and Distortion Bounds for Fiber Maps)

Consider $\nu \in \mathcal{M}_{1,Leb}$ and $F_{\nu,z}$ the restriction of the dynamics to the fiber $\{z\} \times \mathbb{T}$. If

$$|\alpha| \cdot ||W||_{L^{\infty}([0,1],L^{1}([0,1],\mathbb{R}))} < \hat{\alpha} := \frac{\inf_{x} |f'(x)| - 1}{||h||_{C^{1}}}$$

then for any $\nu \in \mathcal{M}_{1,Leb}$ and a.e. $z \in [0,1]$, the map $F_{\nu,z}$ is uniformly expanding, and

$$\|F_{\nu,z}\|_{\mathcal{C}^3} < K$$
, and $\sup_{x \in \mathbb{T}} \left| \frac{F_{\nu,z}''(x)}{(F_{\nu,z}')^2(x)} \right| < K'$.

Proposition 1 (Lipschitzness of Fiber maps for C^k norms)

For $k \geq 0$, let $h \in \mathcal{C}^k(\mathbb{T} \times \mathbb{T}, \mathbb{R})$, $f \in \mathcal{C}^k(\mathbb{T}, \mathbb{T})$, $\nu \in \mathcal{M}_{1, \mathsf{Leb}}$ and $W \in L^{\infty}([0, 1], L^1([0, 1], \mathbb{R}))$ then, for $z, \overline{z} \in A_W$ we have that

$$||F_{\nu,z} - F_{\nu,\bar{z}}||_{\mathcal{C}^k} \le \alpha ||h||_{\mathcal{C}^k} ||W(z,\cdot) - W(\bar{z},\cdot)||_{L^1}$$

Proposition 2 (Invariance)

Under the assumptions of Lemma 1 and for $|\alpha|<\hat{\alpha},$ there are $M_1,\,M_2>0$ such that

$$\mathcal{F}(\tilde{\mathcal{B}}_{\mathsf{BV}^1,\mathsf{M}_1}\cap\tilde{\mathcal{B}}_{\mathsf{BV}^2,\mathsf{M}_2}\cap\mathcal{M}_{\mathsf{1},\mathsf{Leb}})\subset\tilde{\mathcal{B}}_{\mathsf{BV}^1,\mathsf{M}_1}\cap\tilde{\mathcal{B}}_{\mathsf{BV}^2,\mathsf{M}_2}\cap\mathcal{M}_{\mathsf{1},\mathsf{Leb}}$$

Proof.

The following Lasota-Yorke inequalities hold

$$|F_*\varphi|_{BV^1} \le \lambda_1|\varphi|_{BV^1} + R_1||\varphi||_{L^1}$$

$$|F_*\varphi|_{BV^2} \le \lambda_2 |\varphi|_{BV^2} + R_2 |\varphi|_{BV^1} + R_3 ||\varphi||_{L^1}$$

with $\lambda_1, \lambda_2 \in [0,1)$ and $R_1, R_2, R_3 > 0$

Proposition 3 (Lipschitzness of Fiber maps for BV norm)

For any M_1 , $M_2>0$ there is a constant $K_\#>0$ such that for any $\varphi\in\mathcal{M}_{1,\text{Leb}}\cap\tilde{\mathcal{B}}_{BV^1,M_1}\cap\tilde{\mathcal{B}}_{BV^2,M_2}$,

$$|(F_{\varphi,z})_*\varphi_{\overline{z}} - (F_{\varphi,\overline{z}})_*\varphi_{\overline{z}}|_{BV^1} \leq K_\# ||W(z,\cdot) - W(\overline{z},\cdot)||_{L^1}$$

for all $\bar{z}, z \in A_W \subset [0,1]$ and \bar{z} in the full measure set for which $\varphi_{\bar{z}} \in \mathcal{B}_{BV^1,M_1} \cap \mathcal{B}_{BV^2,M_2}$.

Proof.

Fix $\psi \in \mathcal{B}_{BV^2}$, and let $g \in \mathcal{C}^1$ with $\|g\|_{\infty} \leq 1$.

$$\begin{split} \int_{\mathbb{T}} g'[(F_{Z} - F_{\overline{z}})_{*}\psi] &\leq \int_{\mathbb{T}} \left(\frac{g \circ F_{Z}}{F'_{Z}} - \frac{g \circ F_{\overline{z}}}{F'_{Z}}\right) \psi' + \int_{\mathbb{T}} \left(\frac{g \circ F_{Z}}{(F'_{Z})^{2}} F''_{Z} - \frac{g \circ F_{\overline{z}}}{(F'_{\overline{z}})^{2}} F''_{Z}\right) \psi \\ &\leq K_{\#} \|W(z, \cdot) - W(\overline{z}, \cdot)\|_{L^{1}} \end{split}$$

34

Lemma 2 (Invariance of admissible set)

Assume that $var_{p,L^1}(W)<\infty$. Under the hypotheses of Lemma 1, consider the set

$$\mathcal{A}_{M}:=\mathcal{B}_{s,M}\cap\tilde{\mathcal{B}}_{BV^{1},M_{1}}\cap\tilde{\mathcal{B}}_{BV^{2},M_{2}}\cap\mathcal{M}_{1,Leb}$$

with M₁, M₂ > 0 as in Proposition 2. Then, there is $\alpha_0 >$ 0 sufficiently small, M > 0, and $\bar{n} \in \mathbb{N}$ such that provided $|\alpha| < \alpha_0$

$$\mathcal{F}^n(\mathcal{A}_M)\subset \mathcal{A}_M \qquad \forall n\geq \bar{n}.$$

Pick $\varphi \in \mathcal{A}_{\mathsf{M}}$

$$\begin{split} |(\mathcal{F}^{n}\varphi)_{z} - (\mathcal{F}^{n}\varphi)_{\overline{z}}|_{BV^{1}} &= |(F_{\varphi,z}^{n})_{*}\varphi_{z} - (F_{\varphi,\overline{z}}^{n})_{*}\varphi_{\overline{z}}|_{BV^{1}} \\ &\leq |(F_{\varphi,z}^{n})_{*}\varphi_{z} - (F_{\varphi,z}^{n})_{*}\varphi_{\overline{z}}|_{BV^{1}} + |(F_{\varphi,z}^{n})_{*}\varphi_{\overline{z}} - (F_{\varphi,\overline{z}}^{n})_{*}\varphi_{\overline{z}}|_{BV^{1}} \\ &\leq \tau |\varphi_{z} - \varphi_{\overline{z}}|_{BV^{1}} + O(\alpha) ||W(z,\cdot) - W(\overline{z},\cdot)||_{L^{1}} \end{split}$$

S0,

$$var_{p,BV^1}(\mathcal{F}^n\varphi) \leq \tau \ var_{p,BV^1}(\varphi) + O(\alpha) \ var_{p,L^1}(W)$$

then

$$\|\mathcal{F}^n \varphi\|_{S} \le \tau \, \|\varphi\|_{S} + \bar{B}$$

So for $M \ge M_0$ the set \mathcal{A}_M is invariant where $M_0 = \bar{B}(1-\tau)^{-1}$.

Lemma 3

The set $\mathcal{A}_{\mathbf{M}} := \mathcal{B}_{\mathsf{s},\mathsf{M}} \cap \tilde{\mathcal{B}}_{\mathsf{BV}^1,\mathsf{M}_1} \cap \tilde{\mathcal{B}}_{\mathsf{BV}^2,\mathsf{M}_2} \cap \mathcal{M}_{\mathsf{1},\mathsf{Leb}}$ is convex.

Proof.

- · $var_{\rho,BV}(\tau\varphi+(1-\tau)\psi) \leq \tau \ var_{\rho,BV}(\varphi)+(1-\tau) \ var_{\rho,BV}(\psi).$
- · $\|\tau\varphi + (1-\tau)\psi\|_{\text{"1"}} \le \tau \|\varphi\|_{\text{"1"}} + (1-\tau) \|\psi\|_{\text{"1"}}$
- For a.e. $z \in [0,1]$, $\psi_z, \varphi_z \in \mathcal{B}_{\mathit{BV}^i,\mathsf{M}_i}$ then

$$\|\tau\varphi_{z}+(1-\tau)\psi_{z}\|_{BV^{i}}\leq M_{i}.$$

Lemma 4

The set A_M is relatively compact in \mathcal{B}_w .

Proof.

- $\mathcal{B}_{\text{p-BV}} = \{ \varphi : [0,1] \times \mathbb{T} \to \mathbb{R} : \|\varphi\|_{\text{p-BV}} < \infty \}$ with $\|\varphi\|_{\text{p-BV}} = \|\varphi\|_{\text{"1"}} + var_{p,W^{\text{I}}}(\varphi)$, then $\mathcal{B}_{\text{p-BV,M}}$ is relatively compact in \mathcal{B}_{W}
- $\|\cdot\|_{p\text{-BV}} \leq \|\cdot\|_{s} \text{ and } \mathcal{B}_{s,M} \subset \mathcal{B}_{p\text{-BV},M}.$
- $\bar{\mathcal{B}}_{s,M}$ is compact in \mathcal{B}_w . Since $\mathcal{A}_M \subset \mathcal{B}_{s,M}$. So $\bar{\mathcal{A}}_M$ is a closed subset of a compact space then \mathcal{A}_M is relatively compact in \mathcal{B}_w .

Lemma 5

The SCTO is Lipschitz continuous

$$\mathcal{F}: \left(\mathcal{B}_{S,M} \cap \mathcal{M}_{1,\mathsf{Leb}}, \|\cdot\|_{\text{``1''}}\right) \to \left(\mathcal{B}_{S,M} \cap \mathcal{M}_{1,\mathsf{Leb}}, \|\cdot\|_{\text{``1''}}\right)$$

Proof.

$$\|\mathcal{F}\varphi - \mathcal{F}\psi\|_{\text{"1"}} \leq (\kappa + 2\alpha \|h\|_{\mathcal{C}^1} \|W\|_{\infty}) \|\varphi - \psi\|_{\text{"1"}}.$$

Proof: Existence of the fixed point for the STO

Proof of theorem 2.

- Lemma 2: A_{M} is invariant under the action of the STO.
- Lemma 5: $\mathcal{F}:\mathcal{A}_M \to \mathcal{A}_M$ is Lipschitz continuous.
- · Lemma 4: $\overline{\mathcal{A}}_{M}$ is relatively compact in \mathcal{B}_{w} .
- Lemma 3: $\overline{\mathcal{A}}_{M}$ is convex.
- The map $\mathcal{F}|_{\mathcal{A}_M}$ uniformly continuous then there exists a unique continuous extension $\overline{\mathcal{F}}:\overline{\mathcal{A}}_M\to\mathcal{B}_W$ satisfying $\overline{\mathcal{F}}|_{\mathcal{A}_M}=\mathcal{F}.$ Moreover, since $\mathcal{F}^n(\mathcal{A}_M)\subset\mathcal{A}_M$, continuity ensures that $\overline{\mathcal{F}}^n(\overline{\mathcal{A}}_M)\subset\overline{\mathcal{A}}_M$. Therefore, Schauder's Fixed Point Theorem guarantees the existence of a fixed point $\varphi^*\in\overline{\mathcal{A}}_M$.

Exponential Stability of the Fixed Point

Theorem 3 (Exponential Stability of the Fixed Point)

Let $\varphi^* \in \mathcal{A}_M$ be a fixed point of the SCTO. The fixed point is unique and locally exponentially stable meaning that there is $\delta > 0$ and constants K > 0, $\rho > 0$ such that for every $\varphi \in \mathcal{M}_{1, \text{Leb}}$ with $\|\varphi_z - \varphi_z^*\|_{\mathcal{C}^1} \leq \epsilon$ for a.e. $z \in [0,1]$, the following holds

$$\sup_{\mathbf{x} \in \mathbb{T}} |(\mathcal{F}^t \varphi)_{\mathbf{Z}}(\mathbf{x}) - \varphi_{\mathbf{Z}}^*(\mathbf{x})| \le K e^{-\rho t}.$$

Consider

$$\mathcal{V}_a := \left\{ \psi \in \mathcal{C}(\mathbb{T}, \mathbb{R}) : \frac{\psi(\mathsf{X})}{\psi(\mathsf{Y})} \leq e^{a|\mathsf{X}-\mathsf{Y}|} \right\}$$

define

$$\tilde{\mathcal{V}}_a := \left\{ \nu \in \mathcal{M}_{\mathsf{Leb}}([0,1] \times \mathbb{T}) : \frac{d\nu_z}{d\mathsf{Leb}} \in \mathcal{V}_a \text{ for a.e. } z \right\}.$$

For $\nu, \, \nu' \in \tilde{\mathcal{V}}_a$, define the distance

$$\tilde{\theta}_{a}(\nu,\nu') := \underset{z \in [0,1]}{\operatorname{ess \ sup}} \ \theta_{a}\left(\frac{d\nu_{z}}{d Leb}, \frac{d\nu'_{z}}{d Leb}\right).$$

Proposition 4

If α is sufficiently small, there is a>0 such that $\mathcal F$ sends $\tilde{\mathcal V}_a$ into $\tilde{\mathcal V}_{\eta a}$ for some $\eta\in[0,1)$. Furthermore, suppose that $\varphi,\,\psi\in\mathcal M_{1,\mathsf{Leb}}\cap\tilde{\mathcal V}_a$ and for almost every $z\in[0,1],\,\psi_z\in\mathcal C^2(\mathbb T)$ with $\mathrm{ess}\,\sup_{z\in[0,1]}\|\psi_z\|_{\mathcal C^2}<\infty$. Then there is $\gamma\in[0,1)$ such that

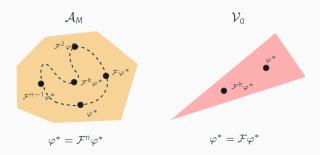
$$\tilde{\theta}_a(\mathcal{F}\varphi,\mathcal{F}\psi) \leq \gamma \,\tilde{\theta}_a(\varphi,\psi).$$

$$\theta_{a}((\mathcal{F}\varphi)_{z},(\mathcal{F}\psi)_{z}) = \theta_{a}((F_{\varphi,z})_{*}\varphi_{z},(F_{\psi,z})_{*}\psi_{z})$$

$$\leq \theta_{a}((F_{\varphi,z})_{*}\varphi_{z},(F_{\varphi,z})_{*}\psi_{z}) + \theta_{a}((F_{\varphi,z})_{*}\psi_{z},(F_{\psi,z})_{*}\psi_{z})$$

$$\leq \lambda\theta_{a}(\varphi_{z},\psi_{z}) + C_{\#}\alpha \underset{z' \in [0,1]}{\operatorname{ess sup}} \theta_{a}(\varphi_{z'},\psi_{z'}).$$

Proof: Exponential Stability of the Fixed Point



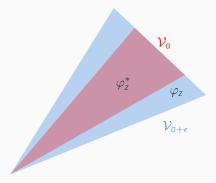
Note that $\operatorname{ess\ sup}_{z\in[0,1]}\|(\mathcal{F}^i\varphi^*)_z\|_{\mathcal{C}^2}<\infty$ for $0\leq i\leq n-1$

$$\tilde{\theta}_{a}\left(\varphi^{*},\mathcal{F}\varphi^{*}\right)=\tilde{\theta}_{a}\left(\mathcal{F}^{n}\varphi^{*},\mathcal{F}^{n+1}\varphi^{*}\right)\leq\lambda^{n}\tilde{\theta}_{a}\left(\varphi^{*},\mathcal{F}\varphi^{*}\right)$$

which implies $\theta_a\left(\varphi^*,\mathcal{F}\varphi^*\right)=0$, then

$$\varphi^* = \mathcal{F}\varphi^*$$

Proof: Exponential Stability of the Fixed Point



$$\tilde{\theta}_{a+\epsilon}(\mathcal{F}\varphi,\varphi^*) = \underset{z \in [0,1]}{\operatorname{ess \; sup}} \; \theta_{a+\epsilon} \left((\mathcal{F}\varphi)_z, (\mathcal{F}\varphi^*)_z \right) \leq \gamma \; \underset{z \in [0,1]}{\operatorname{ess \; sup}} \; \theta_{a+\epsilon} \left(\varphi_z, \varphi_z^* \right).$$

By iterating this process

$$\tilde{\theta}_{a+\varepsilon}(\mathcal{F}^n\varphi,\varphi^*) \leq \gamma^n \, \tilde{\theta}_{a+\varepsilon} \, (\varphi,\varphi^*)$$

for uniqueness

$$ilde{ heta}_{a}(\hat{
u},
u^{*}) = ilde{ heta}_{a}(\mathcal{F}\hat{
u},\mathcal{F}
u^{*}) \leq \gamma \, ilde{ heta}_{a}(\hat{
u},
u^{*})$$

Thank you!

References i

J.-B. Bardet, G. Keller, and R. Zweimüller.

Stochastically stable globally coupled maps with bistable thermodynamic limit.

Communications in Mathematical Physics 292, 1 (2009) 237-270, Dec. 2008.

M. L. Blank.

Self-consistent mappings and systems of interacting particles. 83:49–52, 2011.

P. Bálint, G. Keller, F. M. Sélley, and I. P. Tóth.

Synchronization versus stability of the invariant distribution for a class of globally coupled maps.

Nov. 2017.

References ii

S. V. Ershov and A. B. Potapov.

On mean field fluctuations in globally coupled maps.

86:523-558, 1995.

B. Fernandez.

Breaking of ergodicity in expanding systems of globally coupled piecewise affine circle maps.

154:999-1029, 2014.

S. Galatolo.

Self consistent transfer operators, invariant measures, convergence to equilibrium, linear response and control of the statistical properties.

May 2021.

References iii

S. Galatolo and P. Giulietti.

Linear response for dynamical systems with additive noise. Nov. 2017.

S. Galatolo and J. Sedro.

Quadratic response of random and deterministic dynamical systems.

Chaos 30, 023113 (2020);, July 2019.

W. Just.

Globally coupled maps: phase transitions and synchronization. 81:317-340, 1995.

K. Kaneko.

Collapse of tori and genesis of chaos in dissipative systems, 1986.

References iv

K. Kaneko.

Self-consistent perron-frobenius operator for spatiotemporal chaos.

139:47-52, 1989.

K. Kaneko.

Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements.

41:137-172, 1990.

K. Kaneko.

Globally coupled chaos violates the law of large numbers but not the central-limit theorem.

65:1391-1394, 1990.

References v

K. Kaneko.

Mean field fluctuation of a network of chaotic elements.

55:368-384, 1992.

K. Kaneko.

Remarks on the mean field dynamics of networks of chaotic elements.

July 1994.

🔒 G. Keller.

An ergodic theoretic approach to mean field coupled maps, 2000.

F. Sélley and P. Bálint.

Mean-field coupling of identical expanding circle maps.

Journal of Statistical Physics 164:(4) pp. 858-889 (2016), Dec. 2015.

References vi

F. M. Sélley and M. Tanzi.

Linear response for a family of self-consistent transfer operators.

Jan. 2020.

F. M. Sélley and M. Tanzi.

Synchronization for networks of globally coupled maps in the thermodynamic limit.

Oct. 2021.