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Heterogeneous Coupled Maps

./ '\ .\\\]7 '\ o/'/;.°

:" Atedlt

[
AN e e
iy

./.

5/ \.\. ®

Heterogeneous Network

Homogeneous Network

P(R)




Heterogeneous Coupled Maps

.“ '.
‘P‘\ '.6" .' J .i '. 5N
-
J A gy Y .-._.
sle - .,.... ...
T e ® e L
- % l.'.. - l. . [ ..I
. . L] ‘_o
'...'. LI " ‘e, p
5 L :. .c.'.



xi(t+1) = fika(1) mod 1






Globally Coupled Maps

- Kunihiko Kaneko Period-Doubling of Kink-Antikink Patterns,
Quasiperiodicity in Antiferro-Like Structures and Spatial
Intermittency in Coupled Logistic Lattice. [1984, Progress of
Theoretical Physics]

- P. Balint, G. Keller, F. M. Selley and P. Toth Synchronization versus
stability of the invariant distribution for a class of GCM. [2018,
Nonlinearity]

- Stefano Galatolo Self-Consistent Transfer Operators: Invariant
Measures, Convergence to Equilibrium, Linear Response and
Control of the Statistical Properties. [ 2022, Communications in
Mathematical Physics]

- F. M. Sélley and M. Tanzi Synchronization for networks of
Globally Coupled Maps in the thermodynamic limit. [2022,
Journal of Statistical Physics]



Coupled map Networks

- Koiller and Lai-Sang Young Coupled map networks. [2010,
Nonlinearity]

- Tiago Pereira, Sebastian van Strien and Matteo Tanzi
Heterogeneously coupled maps: hub dynamics and emergence
across connectivity layers. [2020, J. Eur. Math. Soc.]
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To study the thermodynamic limit of heterogeneous coupled maps



Mean Field Approximation

- Consider

xi(t+1) = f(xi()+— ZA,,h xi(t),x(t)) mod1, for i=1,2,...,N

Let F: TN — TV,

xi(t+1) = Fi(x(t), ..., xn(2)).




Mean Field Approximation

- Consider

xi(t+1) = f(xi()+— ZA,,h xi(t),x(t)) mod1, for i=1,2,...,N

Let F: TN — TV,

xi(t+1) = Fi(x(t), ..., xn(2)).

- Definef,;:T—T
N
Fu,i(xi) = filxi) + % ; /Aijh(Xia)/j)dll'(y)

Fu: TV = TV,

Fu() = (Fu1(x1), Fu2(x2), - - Fun (X))




Evolution of the state of the system

Fp = (F/A)*I-‘ = ((F/AJ)*H% (Fu,Z)*ﬂzv ) (FM,N)*#N)
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Homogeneous vs Heterogeneous

fN/"’ = (Fll')*iu' = ((FIJ'J)*;U'M (FM,Z)*:U’L sy (F,U-,N)*:U’N)

Homogeneous: p =y = -+ =
Fpi= (Fu)att = ((Fu)seir, (Fu)sins -5 (Fu)apin, - )
Heterogeneous: juq # py # -+ #

Fp= (Fu)ett = ((Fup)stir, (Fu2)stias - -+ (Fup)sbttes - - +)
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Challenges

- How can we define the thermodynamic limit?

- Is the empirical distribution in the finite system well
approximated by the thermodynamic limit?

- Does a fixed point exist in the thermodynamic limit?
- Is this fixed point stable?
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Ajj in terms of Wy

We divide the interval [0,1] in N
sub intervals, for i =2,...,N

L (i=1
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Coupled maps in terms of W)

So, forz € |

j
1 i
NAU _ N dZ/W(N)(Z,Z/)

=1
N

For u € M(T)®" the mean field map is

i) = NZ/ (. y))du(y)



Coupled maps in terms of W)

So, forz € |
J
1 i
i = /N dzW(z,2')
N

/

For u € M(T)®" the mean field map is

Fui06) =) + @'Y, [ ARGy duty)
j=1



Coupled maps in terms of W)

So, forz € |

j
1 i
NAU _ N dZ/W(N)(Z,Z/)

=1
N

For u € M(T)®" the mean field map is

Fusi (%) ﬁxmaZ ;dZW @2) [ )

N



Coupled maps in terms of W)

{z} xT
Vz
0 o =il i N1 1 0 = 8 4 ;
N N N N N N
Y Y W_J
Leb 0 11 ® Lebri_q i1 ® Lebiii 11 ®
[’N} [N’N} [N7N}
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Coupled maps in terms of W)

Then
uZ(N) = piwhen z e

So,F,,:T—Tforzinl:

A
FM(x) == fx) + a /O /T dZ dv"(y) WV (z,2) h(x,y)



SCTO in the thermodynamic limit

- F,:[0,1] x T — [0,1] x T, F.(2,X) = (z,F,2(X))

Where
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SCTO in the thermodynamic limit

- F,:[0,1] x T — [0,1] x T, F.(2,X) = (z,F,2(X))
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FoaX) = f(X) + o / / A7 dv (Y)W(z,7) h(x,)

© Fw s M([0,7] x T) = M([0,1] x T)

16



SCTO in the thermodynamic limit

- F,:[0,1] x T — [0,1] x T, F.(2,X) = (z,F,2(X))

Where

FoaX) = f(X) + o / / A7 dv (Y)W(z,7) h(x,)

© Fw s M([0,7] x T) = M([0,1] x T)

Fwv = (F,).v
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Local Contracting Dynamics
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Contraction on the fiber
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Contraction on the fiber
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Existence and uniqueness of fixed point for STO

letf: T — T be a A-contractionin /. Leth: Tx T — R be
Lipschitz in the both variables. Let W € L>°([0,1]; L'([0,1]))

Fo.(x) = +a//sz)hxy dvy(y)dZ,

There exists & > 0 such that for all @ < & the maps F,, are
uniform contractions. Then for almost every z € [0, 1]

Fuv' =v*

where v} = dq(,) for some g : [0,1] — T measurable function.




Consider

G :={g:[0,1 — | C T,measurable and bounded}, d.-metric
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Consider

G :={g:[0,1 — | C T,measurable and bounded}, d.-metric

Define 7:G — G by
T(9)(2) == F..2(9(2)).
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Consider

G :={g:[0,1 — | C T,measurable and bounded}, d.-metric

Define T :G — G by
T(9)(2) := F..2(9(2))-

Then the map 7 is a contraction on (G, d).

T(g")=g"
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Consider

G :={g:[0,1 — | C T,measurable and bounded}, d.-metric

Define T :G — G by
T(9)(2) := F..2(9(2))-

Then the map 7 is a contraction on (G, d).
7(9°) =9
then

and

19



Local Contracting Dynamics

T /FV.Z\* T /FV-Z\\ T
59 f 6g§)(z k) B o
M S50 Og
[0,1] 0,1 [0,1]
V4 z z
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Expanding maps




Definition 1 (Self Consistent Transfer Operator)

Consider f € C3(T, T), h € C3(T x T,R), and
W e L°([0,1],L'([0, 1], R)), for any v € M. Lev([0,1] x T) and
almost any z € [0,1] we define

.
Foa(X) = f(X) + a / dz'./T dus () Wz Z)h(xy) ()

and
Fv=(F,).v

21



Spaces we consider

Wasserstein distance
Consider the notion of distance between measures given by

o= g [foafou] @

HQHOO<1

We define
llun = W'(0, p).

Disintegrations with Lebesgue Marginal
Consider M;([0,1] x T) is the set of probability measures

MiLe = {v € My([0,1] x T) : v(A x T) = Leb(A) VA C [0,1] meas.}

22



Spaces we consider

BV Seminorms of Densities on T

Consider
By :={¢ € L'(T) : [|9]lgy < o0}
with
[¥llav = |¥lgv + Il
and

|¥gyi == sup /Q()

geC/(T,R)
HQIIOO<W

Fiberwise Regularity and Variation Control
Fori=1,2.

Beyim = {p € L'([0,1] x T,R) : ¢, € By for ae. z € [0,1]}

23



Spaces we consider

Weak space
By :={¢:[0,1] xT — R : |jp||« < oo}

where

el = [ lleelnez
[0,1]
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Space we consider

BV'-oscillation of ¢:

0SCayi(p,w, ) := ess sup |z — @zl (3)
z,2€B(w,r)
and ]
varp gy () = sup = 05Cpy(p,w, r) dw. (4)
r>0 " Jjo,]

Stronger space
Bs :={p:[0,1] xT —R: |¢]s < oo}

where
lells := vary gn(p) + ol -

25



Spaces we consider

Admissible Set of Regular Densities

To construct a suitable domain for the application of Schauder's
fixed-point theorem

Am 1= Bsm N [;’B\/',m N [;’B\/Z,Mz N M Leb (5)

where M = (My, My, M).

26



Main Results and Proofs




Convergence to the finite-dimensional system to the STO

- Forevery N € N con5|der {x N)}N 1j=1 Where x ) is distributed
according to H ) defined as

M) =N / v, (A)dz.

N

- Define the random variables

N N N
(yg ),...,y(N)) = F(xs ),...,x,(v )

and call ™ the distribution of y

27



Convergence of the finite-dimensional system to the STO

Theorem 1
Assume that for a given z, € [0,1]:
D) WM (z,, ) — W(z.,-) in L'([0,1]) for N = oc;
ii) z+ W(z,-) is Lipschitz near z.,;
iii) v € MqLe([0,1] x T) has a disintegration {v;},c(0.q) that
Is Lipschitz near z,.

Then,
((QI*)NW = (Fv),, weaRly.

lim n
N— o0

28



Proof: Convergence of the finite-dimensional system to the STO

To give estimates for the integral Z,

g (f(x,-) + ;"IZA,,-h(x,-,xj)) ~g (f(x,-) + / 5 D Ajhlx, ) Hdu}w)(x;))
J=1 j=1 j=1

then
T, ~ T + O(N~'/3)

29



Existence of the fixed point for the STO on a graphon

Theorem 2 (Existence of the fixed point)

Let fe C3(T,T), h € C3(T x T,R), W € L>([0,1],L"([0,1],R)) be
a graphon with var ;«(W) < oo for some p € (0,1], and F the
associated STO. Consider the admissible set of reqular
densities Aw. Then there exist ag > 0 and Mg, My, M, > 0 such
that for all |a| < g, F has a fixed point ¢* in the closure of
.AM in BW.

Corollary 1 . ' .
For every fixed point v, of F with absolutely continuous

disintegration, @3 € C*(T,R) for a.e. z € [0,1].

30



Proof: Theorem 2

Lemma 1 (Uniform Expansion and Distortion Bounds for Fiber
Maps)

Consider v € My ey and F,, , the restriction of the dynamics to
the fiber {z} x T. If

_infi [f () =1

o] Wl o.noqonmy < & = ==

then for any v € M e and a.e. z € [0,1], the map F,, ; is
uniformly expanding, and

Frz(0)

(F{,Z)Z(X)‘ < K.

|Fuzlle: < K, and sup
xeT

31



Proof: Theorem 2

Proposition 1 (Lipschitzness of Fiber maps for C* norms)
For k>0, let h € C*(T x T,R), f € CK(T, T), v € M Lep and
W e L*([0,1],L'([0, 1], R)) then, for z,Z € Aw we have that

IFvz = Fuzller < ecf[hller WAz, ) = W(Z, )l

32



Proof: Theorem 2

Proposition 2 (Invariance)
Under the assumptions of Lemma 1 and for |a| < &, there are
My, M, > 0 such that

F(Boy i, 0 By, 0 M Leb) € Bayim, N Bayau, N M Leb

Proof. ) o
The following Lasota-Yorke inequalities hold

[Felan < Mlolan + Ralloll
IFeelare < Xalelpre + Ralwl + R3lleo|ir

with A\, A, € [0,1) and Ry, Ry, R3 > 0

33



Proof: Theorem 2

Proposition 3 (Lipschitzness of Fiber maps for BV norm)
For any My, M, > 0 there is a constant Kz > 0 such that for any

Y€ MjLenN BB\ﬂ,Mq N BB\/Z,MZr
|(Fo.2)s7 — (Foz)spzlan < Kg||W(z,-) — W(Z, )|l

forallz,z € Ay C [0,1] and Z in the full measure set for which

0z € Bayim, N Beye w,-

Proof.
Fix ¢ € Bgyz, and let g € C" with ||g]|c < 1.

goF, gofs; ' gof; " QOFZ 7
Fz* - ‘ :
< Kgl|W(z,-) — W(Z, )|l

] 34



Proof: Theorem 2

Lemma 2 (Invariance of admissible set)
Assume that var, 1(W) < oo. Under the hypotheses of Lemma
1, consider the set

Ap = Bs,/\/l n lfj’B\ﬂMW n BBW,Mz N MW,Leb

with My, My > 0 as in Proposition 2. Then, there is ag > 0
sufficiently small, M > 0, and n € N such that provided |«| < ag

]:n(.Am)CAM Yn > n.

35



Proof: Theorem 2

Pick p € Am

[(F"'0)z — (F @)zl = |(Fg )« 2 — (G, 2)pzlmvn
< |(Fg 2 )x0z = (F )wpzlav + [(FQ ) sz — (F 2)x0zla1
< 7_|99Z - 99§|B\ﬂ + O(O‘)HW(L ) - W(Z ')”U

SO,
var, gy (J:HSD) < T varppy (‘P) + O(O‘) Var'p,U(W)

then
IF"olls < 7 llolls + B

So for M > My the set Ay is invariant where My = B(1— 7).

36



Proof: Theorem 2

Lemma 3

The set Am := Bsu N Bayiw, N Bayew, N M e IS cONVex.

Proof.

s var,py(te + (1= 7)) <7 var, gn(p) + (1—7) var, gn(v).
e+ (=7l <7 llpllr + (1= 7) ]
- Forae. z€[0,1], ¥z, ¢; € Bgyi y, then

Tz + (1 = 7)dzllgyi < M;.

37



Proof: Theorem 2

Lemma 4

The set A is relatively compact in By,

Proof.

* Bppy = {e:[0,1]xT—>R: H(,DHD.B\/ < oo} with
lellp-av = [lol|= + var, wi(@), then Bygym is relatively compact
in By

“ - llp-sv < I - s and Bsu C Bp-gv,m.

« By is compact in B,,. Since Am C B, . S0 Ay is a closed subset
of a compact space then Ay is relatively compact in B,,.

O

38



Proof: Theorem 2

Lemma 5
The SCTO is Lipschitz continuous

F o (Bsu 0O MaLeb, || - [l41) = (Bsy N M e, || - || 1)

Proof.

[Fp = Fopll«r < (k4 2a[[hllc [Wlleo) [l — |1

39



Proof: Existence of the fixed point for the STO

Proof of theorem 2.
- Lemma 2: Ay is invariant under the action of the STO.
- Lemma5: F: Ay — An is Lipschitz continuous.
- Lemma 4: Ay is relatively compact in By,.
- Lemma 3: Ay is convex.

- The map F|.4, uniformly continuous then there exists a unique
continuous extension F : Ay — By, satisfying F| 4, = F.
Moreover, since F"(Am) C Awm, continuity ensures that
fn(ZM) C Ay. Therefore, Schauder's Fixed Point Theorem
guarantees the existence of a fixed point p* € Apy.

40



Exponential Stability of the Fixed Point

Theorem 3 (Exponential Stability of the Fixed Point)

Let o* € Am be a fixed point of the SCTO. The fixed point is
unique and locally exponentially stable meaning that there is
0 > 0 and constants K > 0, p > 0 such that for every

© € M Leb With ||, — @3]l < € for a.e. z € [0,1], the following
holds

sup [(F')2(x) — @5 (x)] < Ke™*".
XeT

41



Proof: Theorem 3

Consider 1/( )
X
C(T,R ajx— V}
{w SUER YY) =€
define
Vo i= {u € Myep([0,7] x T) : dc[ b€ V, for a.e. z}

For v, v/ € V,, define the distance

= dv dv!
Oa(v, V') :=esssup O | = —r, = | -
a(r,v) ST a(dLeb’dLeb)

42



Proof: Theorem 3

Proposition 4

If o is sufficiently small, there is a > 0 such that F sends V,
into f)na for some n € [0,1). Furthermore, suppose that

©, Y € My.Lep N Vg and for almost every z € [0,1], 4, € C*(T)
With ess sup,c(o 1) [[¢z]lc2 < oc. Then there is v € [0, 1) such that

0o(Fop, Fb) < 7 a(ip, ).

0a((F©)z, (F)z) = Oa((Fp,2)x 02, (Fy 2)b2)
< 0a((Fp,2)xp2: (Fo.2)wthz) 4 0a((Fo,2)5 2, (Fy2)«42)

< Ma(pz, ¥7) + Cpaess [su]p 0a(0zr ).
77€[0,1

43



Proof: Exponential Stability of the Fixed Point

.A/V] Va
Flolp~
' N
v ‘\ o*
~
AN \Qf*"* [
v 1
.‘ ~ @ Flyp* . .quo*
n—1y % ! °
F PN ‘
~--@-"
o
* *
QD* = -anﬂ* @* = ]:50

Note that ess sup,¢jo 4 [|(F 0 )sllcz < oo foro<i<n-—1
9 (99 ng ( n * ]_-nH *)<Aﬂga(¢ .F(p)
which implies 04 (¢*, Fp*) = 0, then

= F*
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Proof: Exponential Stability of the Fixed Point

q
1/(7{6

Oare(F, ") = ess sup Oare ((Fp)z, (F*)z) < 7 €58 sup bt (102,93 -
z€[0,1] z€[0,1]

By iterating this process

Oate(F 0, 0*) < 4" Baye (0, )

for uniqueness

eﬂ(ﬁvy*)zéa(‘/—:ﬁvj:y*)Svéﬂ(ﬁvy*) 45



Thank you!
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