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Framework.

e Let ¥ be any one-sided shift space defined over a (countable) alphabet <7;
e Any potential A : ¥ — R which is bounded from above;
e We study the ergodic maximizing constant

B(A) = sup {/ Adu : pis a o-invariant probability measure} .
)

and the maximizing measures whose [ Adu = S(A).

Main Objective

Provide sufficient conditions for the existence of maximizing probabilities measures.

Our approach is based on compactification method for countable alphabet shifts.
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Assuming

Coercive hypothesis:  lim sup A|;; = —oo,
1—00

the existence of maximizing measure was proved by:

® [2006 - Jenkinson, Mauldin and Urbanski] for primitive countable alphabet
subshifts of finite type;

® [2010 - Bissacot and Garibaldi] for primitive countable alphabet Markov shifts;
® [2014 - Bissacot and Freire| for transitive countable alphabet Markov shifts.
® [2014 - Ott, Tomforde and Willis] OTW compactification;

e [2021 - Almeida and Sobottka] Blur shift compactification.
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Existence Theorem

Let X be a shift over a countable alphabet that satisfies both

® finite cyclic predecessor assumption: &(a) N %,,(a) is finite for every
a € & and for all m > 1;

® denseness of periodic measures: the set of ergodic probabilities supported on
periodic orbits of ¥ is (weak*) dense among the o-invariant measures.

Then, every upper semi-continuous potential A fulfilling

lim sup sup A|; < B(A)

1—00

has a maximizing probability.
.

Remark. We define the predecessor and follower sets as

Pw)={ace s : awe L} and
Fm (W) ={be LA : wvbe £ for somev € %, 1}



Blur Shift Space

e Let ¥ be a shift space over a countable alphabet.



Blur Shift Space

e Let X be a shift space over a countable alphabet.
® Aset ¥ ={By,...,B,} C 27 be a finite resolution of blurred sets if:
® B, is infinite for each 1 <r < s;



Blur Shift Space

e Let ¥ be a shift space over a countable alphabet.
® Aset ¥ ={By,...,B,} C 27 be a finite resolution of blurred sets if:

® B, is infinite for each 1 <r < s;
® B;N Bjis finite for all 1 <i# j <s;and 21 \ J,_; B, is finite.



Blur Shift Space

e Let ¥ be a shift space over a countable alphabet.
® Aset ¥ ={By,...,B,} C 27 be a finite resolution of blurred sets if:

® B, is infinite for each 1 <r < s;
® B;N Bjis finite for all 1 <i# j <s;and 21 \ J,_; B, is finite.

We define the Blur Shift space 3 with resolution ¥ associated with ¥ as

Blur Shifts

S (o uy)t




Blur Shift Space

e Let X be a shift space over a countable alphabet.

® Aset ¥ ={By,...,B,} C 27 be a finite resolution of blurred sets if:
® B, is infinite for each 1 <r < s;
® B;N Bjis finite for all 1 <i# j <s;and 21 \ J,_; B, is finite.

We define the Blur Shift space 3 with resolution ¥ associated with X as

Blur Shifts

> c(Zuy)t

Original Shift
(.’1707371,.'1?2, .. ) ex




Blur Shift Space

e Let X be a shift space over a countable alphabet.

® Aset ¥ ={By,...,B,} C 27 be a finite resolution of blurred sets if:
® B, is infinite for each 1 <r < s;
® B;N Bjis finite for all 1 <i# j <s;and 21 \ J,_; B, is finite.

We define the Blur Shift space 3 with resolution ¥ associated with X as

Blur Shifts

> c(Zuy)t

Original Shift
(.’1707371,.'1?2, .. ) ex

“Blurred part’ 0% = & \ 2
(w,B,, B,,...) € 05,3
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The convergence on the Blur shift 3 can be described as follows.

® The sequence {z"} C 3> converges to z € X if, and only if, for every positive
integer M, there exists an integer N > 0 such that n > N implies 2} = z;
forall 1 <i< M;

@ The sequence {z"} C 3 converges to (w, B, B,,...) € 0% if, and only if, for
every finite subset S C B,, there exists an integer N > 0 such that n > N
implies 27" = w; for all 0 < ¢ < {(w) and zj,,) = B, or zj,, € B, \ S.

Example. (w, k,xp, xpi1,...) — (w,B,,B,,...) ask &€ B, tends to cc.

From this topological structure, we obtain

® 3 is compact metrizable space;

® M(3) is a weak® compact metrizable space.
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Blur Shift Map

We now introduce the (blur) shift map & : 3 — 3 as the usual left shift map.
Example.  The fixed points
(B,,B,,...) =6 (B, B,,...)

will absorbs all points of 0%, i.e., 6™ (w, B,, B,,...) = (B,, B,,...).

The shift map & is continuous only on % \ Lo.

Example.  The discontinuity of 6 can be observed from the convergences of the
following sequences, as k € B, tends to oo,

(k,0,0,...) — (B, B,,...) and
o (k,0,0,...) — (0,0,...)#6(B,,B,,...).
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Invariant Measures

Convexity

Proposition

M(2,6) = Conv (M (Z,0) U {5, 5,

Sketch of the Proof.

© If i € M(2,5) and () = 1, then i € M (3, 0);
@ If v € M(2,6), th 19( Llis1 L) = 0. In particular,

\.

0(Lo) =0 (0%) and v ({ (B, Bs...)}) =0(95Y);

elfve M(fl,&) and 7(0%) = 1, then © € Conv ( {5(]3“3””) :

lgrgs}).




0(B,,Bi,...)

Remark.

The phenomenon of escape of mass described on [lommi and Velozo 21] can be
translated as a transference of mass from ¥ to points of 9X.
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Compactness

Example. Note that

1 1 « 1 1
) -0 ) )
5 Ok 0k0,..) + 5 QO k0k,..) 5 O(BrBy...) + 5 00.Br.Br ...

as k € B, tends to co. This limit probability is not invariant.

First, we provide general equivalent formulations for the compactness.

O ({ (u, By, By, ...) }) =0, for
all p e M(X%,0);
(1) ﬂ({ (a, B, B,,...) }) =0, for

every i € M (3, 0).

A

® M(X,06) is (weak®) compact.
0 M(Z,0) C M(2,6);
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Lemma

\

Let X be a shift over a countable alphabet verifying the finite cyclic predecessor
assumption and the denseness of periodic measures. Then,

i({(a,B:,B,,...)}) =0 forevery e M(Z,0).

Sketch of the Proof.

® Considers a sequence of periodic measures fi; that converge to [i;

® We analyze three cases based on the unboundedness of symbols or of periods
associated to the (periodic) points on the support of fu;
® In all cases, we construct an appropriate neighborhood Z of (a, B, B,,..".)
and by finite cyclic predecessor assumption, it is shown that:
® Either 1y (Z) = 0 for large [;
® Or [y (Z) is bounded by an arbitrarily small;

© By the Portmanteau Theorem, 1 ({ (a, B,, B,,...) }) = 0.
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Upper semi-continuity gives us a lot of freedom to obtain extension function on 3.

Let A : ¥ — RU{—oo} be an upper semi-continuous potential. Then, the
potential A : 3 — RU {—o0} given as

reX— Alz) = Az) and
(v,B,,B,,...) € 9% — A (v, B,, B,,...) = limsup sup Ay

Br>i—o0

is the minimal upper semi-continuous extension of A to Y.
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We cannot expect continuous function on X to admit a continuous extension on X.

Example. Let consider
® (u,B,,B,,...) be a point of 0%
® countable partition of B, = | |, C) into infinite subsets.
® {gr},>, be an enumeration of rational numbers of (0,1].
We introduce A [u] — [0, 1] defined on the cylinder set [u] € 3 as

0, ifaeo/\B,
qr, if a € Cy ’

A(uaz) = A(ua) = {

where a € &7, z € ¥, and uaz € X.
Due to Tietze extension Theorem, there is a bounded continuous A : ¥ — [0, 1]
which extends this locally constant function to X.

However, for any open neighborhood Z of (u, B,, B,,...), the oscillation of A is
always equal to 1.
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Note the following convenient behavior on the class of coercive potentials.

Example. Assume that
e A is a coercive upper semi-continuous potential, lim;_,., sup A|[Z~] = —0o0;
e A is the minimal upper semi-continuous extension of A.

We have the following integrals

/Adﬂ:/Adﬂ, if 4(2)=1,  and

//Ald(S(BT,BTW) — A (By, By, ...) = limsup sup Al = Zliglo sup Al = —oo0.

Br3i—o0

In particular, the coercive assumption prevents the invariant probabilities giving mass to
0% from being maximizing measures.



Ergodic Optimization

Ergodic Maximizing Constants

We introduce

sup / Adf
pEM(S,6) /X




Ergodic Optimization

Ergodic Maximizing Constants

We introduce
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Ergodic Maximizing Constants

We introduce

sup / Adf
PEM(S,6) I 5

B(A)= sup /EAdu

max Al; = max [ Add
HEM(E,0) 2 / (By,Br,...)

1<r<s
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Mulax(fi) — {ﬂ S M(i.(}) 5 /:4’/

»
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Maximizing set

The maximizing sets are associated according to

Proposition

® If max A|£O > 3 (A), then /\/lmax( 4) = Conv(f) ax(A) ).
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Ergodic Optimization

Proposition

© If max A|; = B(A), then Mypax(A) = Conv( Miypax (A) U Diax (4) );
® If max Al;, < B(A), then Myax(A) = Mypax (A).

Sketch of the Proof of Existence Theorem.

® The set of blur measures M(i), &) is compact;

® The upper semi-continuous extension potential A induces an upper
semi-continuous application p— [ Ad y;

® The set of maximizing measures Mmax (fl) is non-empty;

O Since max 121|£A0 = limsup;_, ., sup A|j; < B(A), we conclude that M,,ax (A4)
is equal to Mmax(A).
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