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Ergodic Optimization

Framework.

• Let Σ be any one-sided shift space defined over a (countable) alphabet A ;
• Any potential A : Σ → R which is bounded from above;
• We study the ergodic maximizing constant

β(A) = sup

{∫
Σ

Adµ : µ is a σ-invariant probability measure
}
.

and the maximizing measures whose
∫
Adµ = β(A).

Main Objective

Provide sufficient conditions for the existence of maximizing probabilities measures.

Our approach is based on compactification method for countable alphabet shifts.
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Ergodic Optimization
Non-compact Scenario

Assuming

Coercive hypothesis: lim
i→∞

supA|[i] = −∞,

the existence of maximizing measure was proved by:
• [2006 - Jenkinson, Mauldin and Urbański] for primitive countable alphabet

subshifts of finite type;
• [2010 - Bissacot and Garibaldi] for primitive countable alphabet Markov shifts;
• [2014 - Bissacot and Freire] for transitive countable alphabet Markov shifts.

• [2014 - Ott, Tomforde and Willis] OTW compactification;
• [2021 - Almeida and Sobottka] Blur shift compactification.
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Existence Theorem
Let Σ be a shift over a countable alphabet that satisfies both
• finite cyclic predecessor assumption: P(a) ∩ Fm(a) is finite for every
a ∈ A and for all m ≥ 1;

• denseness of periodic measures: the set of ergodic probabilities supported on
periodic orbits of Σ is (weak∗) dense among the σ-invariant measures.

Then, every upper semi-continuous potential A fulfilling

lim sup
i→∞

supA|[i] < β(A)

has a maximizing probability.

Remark. We define the predecessor and follower sets as

P(w) = {a ∈ L1 : aw ∈ L } and
Fm (w) = {b ∈ L1 : wvb ∈ L for some v ∈ Lm−1}.
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Blur Shift Space

• Let Σ be a shift space over a countable alphabet.
• A set V = {B1, . . . , Bs} ⊂ 2A be a finite resolution of blurred sets if:

• Br is infinite for each 1 ≤ r ≤ s;
• Bi ∩Bj is finite for all 1 ≤ i ̸= j ≤ s; and L1 \

⋃s
r=1Br is finite.

We define the Blur Shift space Σ̂ with resolution V associated with Σ as

Blur Shifts

Σ̂ ⊂ (A ⊔ V )N

Original Shift Σ

(x0, x1, x2, . . .) ∈ Σ

“Blurred part” ∂Σ = Σ̂ \ Σ
(w,Br, Br, . . .) ∈ ∂BrΣ
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The convergence on the Blur shift Σ̂ can be described as follows.

Lemma

1 The sequence {xn} ⊂ Σ̂ converges to x ∈ Σ if, and only if, for every positive
integer M , there exists an integer N > 0 such that n > N implies xn

i = xi

for all 1 ≤ i ≤ M ;
2 The sequence {xn} ⊂ Σ̂ converges to (w,Br, Br, . . .) ∈ ∂Σ if, and only if, for

every finite subset S ⊂ Br, there exists an integer N > 0 such that n > N
implies xn

i = wi for all 0 ≤ i < ℓ(w) and xn
ℓ(w) = Br or xn

ℓ(w) ∈ Br \ S.

Example. (w, k, xn, xn+1, . . .) −→ (w,Br, Br, . . .) as k ∈ Br tends to ∞.

From this topological structure, we obtain

Lemma

1 Σ̂ is compact metrizable space;
2 M

(
Σ̂
)

is a weak∗ compact metrizable space.
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Blur Shift Map

We now introduce the (blur) shift map σ̂ : Σ̂ −→ Σ̂ as the usual left shift map.

Example. The fixed points

(Br, Br, . . .) = σ̂ (Br, Br, . . .)

will absorbs all points of ∂Σ, i.e., σ̂ℓ(w) (w,Br, Br, . . .) = (Br, Br, . . .).

The shift map σ̂ is continuous only on Σ̂ \ L̂0.

Example. The discontinuity of σ̂ can be observed from the convergences of the
following sequences, as k ∈ Br tends to ∞,

(k, 0, 0, . . .) → (Br, Br, . . .) and
σ̂ (k, 0, 0, . . .) → (0, 0, . . .) ̸= σ̂ (Br, Br, . . .) .
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Invariant Measures

Let us introduce

Blur Invariant Measures

M
(
Σ̂, σ̂

)
=

{
µ̂ ∈ M

(
Σ̂
)
:

µ̂ is σ̂-invariant probability, i.e.,
σ̂∗µ̂( · ) = µ̂

(
σ̂−1( · )

)
= µ̂( · )

}
⋃

M (Σ, σ) =

{
µ ∈ M (Σ) :

µ is σ-invariant probability, i.e.,
σ∗µ( · ) = µ

(
σ−1( · )

)
= µ( · )

}
Original Invariant Measures
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Invariant Measures
Convexity

Proposition

M
(
Σ̂, σ̂

)
= Conv

(
M (Σ, σ) ⊔

{
δ(Br,Br,...) : 1 ≤ r ≤ s

} )
.

Sketch of the Proof.

1 If µ̂ ∈ M
(
Σ̂, σ̂

)
and µ̂(Σ) = 1, then µ̂ ∈ M (Σ, σ);

2 If ν̂ ∈ M
(
Σ̂, σ̂

)
, then ν̂

( ⊔
k≥1 L̂k

)
= 0. In particular,

ν̂
(
L̂0

)
= ν̂ (∂Σ) and ν̂

({
(Br, Br, . . .)

})
= ν̂ (∂BrΣ) ;

3 If ν̂ ∈ M
(
Σ̂, σ̂

)
and ν̂(∂Σ) = 1, then ν̂ ∈ Conv

( {
δ(Br,Br,...) : 1 ≤ r ≤ s

} )
.
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M (Σ, σ)

δ(B1,B1,...)

µ

µ̂

M (Σ, σ)

δ(B1,B1,...)

δ(B2,B2,...)

δ(B3,B3,...)

ν̂

µ

µ̂

Remark.

The phenomenon of escape of mass described on [Iommi and Velozo 21] can be
translated as a transference of mass from Σ to points of ∂Σ.



Invariant Measures
Compactness

Example. Note that

1

2
δ(k,0,k,0,...) +

1

2
δ(0,k,0,k,...)

∗
⇀

1

2
δ(Br,Br,...) +

1

2
δ(0,Br,Br,...),

as k ∈ Br tends to ∞. This limit probability is not invariant.

First, we provide general equivalent formulations for the compactness.

Proposition

1 M
(
Σ̂, σ̂

)
is (weak∗) compact.
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Lemma

Let Σ be a shift over a countable alphabet verifying the finite cyclic predecessor
assumption and the denseness of periodic measures. Then,

µ̄
({

(a,Br, Br, . . .)
})

= 0 for every µ̄ ∈ M (Σ, σ).

Sketch of the Proof.

1 Considers a sequence of periodic measures µ̇l that converge to µ̄;

2 We analyze three cases based on the unboundedness of symbols or of periods
associated to the (periodic) points on the support of µ̇l;

3 In all cases, we construct an appropriate neighborhood Z of (a,Br, Br, . . .)
and by finite cyclic predecessor assumption, it is shown that:

• Either µ̇l (Z) = 0 for large l;
• Or µ̇l (Z) is bounded by an arbitrarily small;

4 By the Portmanteau Theorem, µ̄
({

(a,Br, Br, . . .)
})

= 0.
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Potentials

Recall that a potential is

any Borel function A : Σ → R ∪ {−∞} which is bounded from above.

Upper semi-continuity gives us a lot of freedom to obtain extension function on Σ̂.

Proposition

Let A : Σ → R ∪ {−∞} be an upper semi-continuous potential. Then, the
potential Â : Σ̂ −→ R ∪ {−∞} given as

x ∈ Σ 7−→ Â(x) = A(x) and

(v,Br, Br, . . .) ∈ ∂Σ 7−→ Â (v,Br, Br, . . .) = lim sup
Br∋i→∞

supA|[vi]

is the minimal upper semi-continuous extension of A to Σ̂.
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x ∈ Σ 7−→ Â(x) = A(x) and

(v,Br, Br, . . .) ∈ ∂Σ 7−→ Â (v,Br, Br, . . .) = lim sup
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We cannot expect continuous function on Σ to admit a continuous extension on Σ̂.

Example. Let consider
• (u,Br, Br, . . .) be a point of ∂Σ
• countable partition of Br =

⊔
k≥1Ck into infinite subsets.

• {qk}k≥1 be an enumeration of rational numbers of (0, 1].
We introduce A : [u] → [0, 1] defined on the cylinder set [u] ∈ Σ as

A (uax) = A (ua) =

{
0, if a ∈ A \Br

qk, if a ∈ Ck
,

where a ∈ A , x ∈ Σ, and uax ∈ Σ.
Due to Tietze extension Theorem, there is a bounded continuous A : Σ → [0, 1]
which extends this locally constant function to Σ.
However, for any open neighborhood Z of (u,Br, Br, . . .), the oscillation of A is
always equal to 1.
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Ergodic Optimization

Note the following convenient behavior on the class of coercive potentials.

Example. Assume that
• A is a coercive upper semi-continuous potential, limi→∞ supA|[i] = −∞;
• Â is the minimal upper semi-continuous extension of A.

We have the following integrals∫
Â dµ̂ =

∫
Adµ̂, if µ̂(Σ) = 1, and∫

Â dδ(Br,Br,...) = Â (Br, Br, . . .) = lim sup
Br∋i→∞

supA|[i] = lim
i→∞

supA|[i] = −∞.

In particular, the coercive assumption prevents the invariant probabilities giving mass to
∂Σ from being maximizing measures.
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Ergodic Optimization
Ergodic Maximizing Constants

We introduce

β̂
(
Ā
)
= sup

µ̂∈M(Σ̂,σ̂)

∫
Σ̂

Ā dµ̂

β (A) = sup
µ∈M(Σ,σ)

∫
Σ

Adµ max Ā|L̂0
= max

1≤r≤s

∫
Ā dδ(Br,Br,...)

The ergodic maximizing constants are associated by

Lemma

β̂
(
Ā
)
= β (A) ∨ max Ā|L̂0

.
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Ergodic Optimization
Maximizing set

M̂max

(
Ā
)
=

{
µ̂ ∈ M

(
Σ̂, σ̂

)
:

∫
Σ̂

Ā dµ̂ = β̂
(
Ā
)}

Mmax (A) =

{
µ ∈ M (Σ, σ) :

∫
Σ

Adµ = β(A)

}

D̂max

(
Ā
)
=

{
δ(Br,Br,...) : Ā (Br, Br, . . .) = max Ā|L̂0

}
The maximizing sets are associated according to

Proposition

1 If max Ā|L̂0
> β (A), then M̂max

(
Ā
)
= Conv

(
D̂max

(
Ā
) )

.
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Ā dµ̂ = β̂
(
Ā
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Ā
)
=

{
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Ergodic Optimization

Proposition

1 If max Ā|L̂0
= β (A), then M̂max

(
Ā
)
= Conv

(
Mmax (A) ⊔ D̂max

(
Ā
) )

;

2 If max Ā|L̂0
< β (A), then M̂max

(
Ā
)
= Mmax (A).

Sketch of the Proof of Existence Theorem.

1 The set of blur measures M
(
Σ̂, σ̂

)
is compact;

2 The upper semi-continuous extension potential Â induces an upper
semi-continuous application µ 7−→

∫
Âd µ;

3 The set of maximizing measures M̂max

(
Â
)

is non-empty;

4 Since max Â|L̂0
= lim supi→∞ supA|[i] < β(A), we conclude that Mmax (A)

is equal to M̂max

(
Â
)
.
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= β (A), then M̂max

(
Ā
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semi-continuous application µ 7−→

∫
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is compact;

2 The upper semi-continuous extension potential Â induces an upper
semi-continuous application µ 7−→

∫
Âd µ;

3 The set of maximizing measures M̂max

(
Â
)

is non-empty;

4 Since max Â|L̂0
= lim supi→∞ supA|[i] < β(A), we conclude that Mmax (A)

is equal to M̂max

(
Â
)
.
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