

Eduardo Garibaldi João Gomes Marcelo Sobottka

THERMOGAMAS Webinar

Maximizing measures for countable alphabet shifts via blur shift spaces

(arXiv:2507.18736)

Framework.

- Let Σ be any one-sided shift space defined over a (countable) alphabet \mathscr{A} ;
- Any potential $A: \Sigma \to \mathbb{R}$ which is bounded from above;
- We study the ergodic maximizing constant

$$\beta(A) = \sup \left\{ \int_{\Sigma} A \, d\mu \, : \, \mu \text{ is a σ-invariant probability measure} \right\}.$$

and the maximizing measures whose $\int A d\mu = \beta(A)$.

Main Objective

Provide sufficient conditions for the existence of maximizing probabilities measures

Framework.

- Let Σ be any one-sided shift space defined over a (countable) alphabet \mathscr{A} ;
- Any potential $A: \Sigma \to \mathbb{R}$ which is bounded from above;
- We study the ergodic maximizing constant

$$\beta(A) = \sup \left\{ \int_{\Sigma} A \, d\mu \, : \, \mu \text{ is a σ-invariant probability measure} \right\}.$$

and the maximizing measures whose $\int A d\mu = \beta(A)$.

Main Objective

Provide sufficient conditions for the existence of maximizing probabilities measures

Framework.

- Let Σ be any one-sided shift space defined over a (countable) alphabet \mathscr{A} ;
- Any potential $A: \Sigma \to \mathbb{R}$ which is bounded from above;
- We study the ergodic maximizing constant

$$\beta(A) = \sup \left\{ \int_{\Sigma} A \, d\mu \, : \, \mu \text{ is a σ-invariant probability measure} \right\}.$$

and the maximizing measures whose $\int A d\mu = \beta(A)$.

Main Objective

Provide sufficient conditions for the existence of maximizing probabilities measures

Framework.

- Let Σ be any one-sided shift space defined over a (countable) alphabet \mathscr{A} ;
- Any potential $A: \Sigma \to \mathbb{R}$ which is bounded from above;
- We study the ergodic maximizing constant

$$\beta(A) = \sup \left\{ \int_{\Sigma} \, A \, d\mu \, : \, \mu \text{ is a } \sigma\text{-invariant probability measure} \right\}.$$

and the maximizing measures whose $\int A d\mu = \beta(A)$.

Main Objective

Provide sufficient conditions for the existence of maximizing probabilities measures.

Framework.

- Let Σ be any one-sided shift space defined over a (countable) alphabet \mathscr{A} ;
- Any potential $A: \Sigma \to \mathbb{R}$ which is bounded from above;
- We study the ergodic maximizing constant

$$\beta(A) = \sup \left\{ \int_{\Sigma} A \, d\mu \, : \, \mu \text{ is a σ-invariant probability measure} \right\}.$$

and the maximizing measures whose $\int A d\mu = \beta(A)$.

Main Objective

Provide sufficient conditions for the existence of maximizing probabilities measures.

Our approach is based on compactification method for countable alphabet shifts.

Assuming

Coercive hypothesis:
$$\lim_{i \to \infty} \sup A|_{[i]} = -\infty$$
,

- [2006 Jenkinson, Mauldin and Urbański] for primitive countable alphabet subshifts of finite type;
- [2010 Bissacot and Garibaldi] for primitive countable alphabet Markov shifts;
- [2014 Bissacot and Freire] for transitive countable alphabet Markov shifts.

- [2014 Ott, Tomforde and Willis] OTW compactification;
- [2021 Almeida and Sobottka] Blur shift compactification

Assuming

Coercive hypothesis:
$$\lim_{i \to \infty} \sup A|_{[i]} = -\infty$$
,

- [2006 Jenkinson, Mauldin and Urbański] for primitive countable alphabet subshifts of finite type;
- [2010 Bissacot and Garibaldi] for primitive countable alphabet Markov shifts;
- [2014 Bissacot and Freire] for transitive countable alphabet Markov shifts.

- [2014 Ott, Tomforde and Willis] OTW compactification;
- [2021 Almeida and Sobottka] Blur shift compactification

Assuming

Coercive hypothesis:
$$\lim_{i \to \infty} \sup A|_{[i]} = -\infty$$
,

- [2006 Jenkinson, Mauldin and Urbański] for primitive countable alphabet subshifts of finite type;
- [2010 Bissacot and Garibaldi] for primitive countable alphabet Markov shifts;
- [2014 Bissacot and Freire] for transitive countable alphabet Markov shifts.

- [2014 Ott, Tomforde and Willis] OTW compactification;
- [2021 Almeida and Sobottka] Blur shift compactification

Assuming

Coercive hypothesis:
$$\lim_{i \to \infty} \sup A|_{[i]} = -\infty$$
,

- [2006 Jenkinson, Mauldin and Urbański] for primitive countable alphabet subshifts of finite type;
- [2010 Bissacot and Garibaldi] for primitive countable alphabet Markov shifts;
- [2014 Bissacot and Freire] for transitive countable alphabet Markov shifts.

- [2014 Ott, Tomforde and Willis] OTW compactification;
- [2021 Almeida and Sobottka] Blur shift compactification

Assuming

Coercive hypothesis:
$$\lim_{i \to \infty} \sup A|_{[i]} = -\infty$$
,

- [2006 Jenkinson, Mauldin and Urbański] for primitive countable alphabet subshifts of finite type;
- [2010 Bissacot and Garibaldi] for primitive countable alphabet Markov shifts;
- [2014 Bissacot and Freire] for transitive countable alphabet Markov shifts.

- [2014 Ott, Tomforde and Willis] OTW compactification;
- [2021 Almeida and Sobottka] Blur shift compactification.

Assuming

Coercive hypothesis:
$$\lim_{i \to \infty} \sup A|_{[i]} = -\infty$$
,

- [2006 Jenkinson, Mauldin and Urbański] for primitive countable alphabet subshifts of finite type;
- [2010 Bissacot and Garibaldi] for primitive countable alphabet Markov shifts;
- [2014 Bissacot and Freire] for transitive countable alphabet Markov shifts.

- [2014 Ott, Tomforde and Willis] OTW compactification;
- [2021 Almeida and Sobottka] Blur shift compactification.

Let Σ be a shift over a countable alphabet that satisfies both

- finite cyclic predecessor assumption: $\mathscr{P}(a) \cap \mathscr{F}_m(a)$ is finite for every $a \in \mathscr{A}$ and for all $m \geq 1$;
- denseness of periodic measures: the set of ergodic probabilities supported on periodic orbits of Σ is (weak*) dense among the σ -invariant measures.

Then, every upper semi-continuous potential \boldsymbol{A} fulfilling

$$\limsup_{i \to \infty} \sup A|_{[i]} < \beta(A)$$

has a maximizing probability.

Remark. We define the predecessor and follower sets as

$$\mathscr{P}(w)=\{a\in\mathscr{L}_1:aw\in\mathscr{L}\}$$
 and $\mathscr{F}_m(w)=\{b\in\mathscr{L}_1:wvb\in\mathscr{L}\text{ for some }v\in\mathscr{L}_{m-1}\}$

Let Σ be a shift over a countable alphabet that satisfies both

- finite cyclic predecessor assumption: $\mathscr{P}(a) \cap \mathscr{F}_m(a)$ is finite for every $a \in \mathscr{A}$ and for all m > 1:
- denseness of periodic measures: the set of ergodic probabilities supported or periodic orbits of Σ is (weak*) dense among the σ -invariant measures.
- $\limsup_{i \to \infty} \sup A|_{[i]} < \beta(A)$

Remark. We define the predecessor and follower sets as

$$\mathscr{P}(w) = \{a \in \mathscr{L}_1 : aw \in \mathscr{L}\} \text{ and }$$

$$\mathscr{F}_m(w) = \{b \in \mathscr{L}_1 : wvb \in \mathscr{L} \text{ for some } v \in \mathscr{L}_{m-1}\}.$$

Let Σ be a shift over a countable alphabet that satisfies both

- finite cyclic predecessor assumption: $\mathscr{P}(a) \cap \mathscr{F}_m(a)$ is finite for every $a \in \mathscr{A}$ and for all m > 1:
- denseness of periodic measures: the set of ergodic probabilities supported on periodic orbits of Σ is (weak*) dense among the σ -invariant measures.

$$\mathscr{P}(w) = \{a \in \mathscr{L}_1 : aw \in \mathscr{L}\} \text{ and }$$

$$\mathscr{F}_m(w) = \{b \in \mathscr{L}_1 : wvb \in \mathscr{L} \text{ for some } v \in \mathscr{L}_{m-1}\}.$$

Let Σ be a shift over a countable alphabet that satisfies both

- finite cyclic predecessor assumption: $\mathscr{P}(a) \cap \mathscr{F}_m(a)$ is finite for every $a \in \mathscr{A}$ and for all m > 1:
- denseness of periodic measures: the set of ergodic probabilities supported on periodic orbits of Σ is (weak*) dense among the σ -invariant measures.

Then, every upper semi-continuous potential \boldsymbol{A} fulfilling

$$\limsup_{i \to \infty} \sup A|_{[i]} < \beta(A)$$

has a maximizing probability.

Remark. We define the predecessor and follower sets as

$$\mathscr{P}(w) = \{a \in \mathscr{L}_1 : aw \in \mathscr{L}\} \text{ and }$$

$$\mathscr{F}_m(w) = \{b \in \mathscr{L}_1 : wvb \in \mathscr{L} \text{ for some } v \in \mathscr{L}_{m-1}\}.$$

- Let Σ be a shift space over a countable alphabet.
- A set $\mathcal{V} = \{B_1, \dots, B_s\} \subset 2^{\mathscr{A}}$ be a finite resolution of blurred sets if:
 - B_r is infinite for each $1 \le r \le s$;
 - $B_i \cap B_j$ is finite for all $1 \leq i \neq j \leq s$; and $\mathcal{L}_1 \setminus \bigcup_{r=1}^s B_r$ is finite

We define the Blur Shift space $\hat{\Sigma}$ with resolution $\mathscr V$ associated with Σ as

Blur Shifts $\hat{\Sigma} \subset (\mathscr{A} \sqcup \mathscr{V})^{\mathbb{N}}$

Original Shift
$$\Sigma$$

 $(x_0, x_1, x_2, \ldots) \in \Sigma$

- Let Σ be a shift space over a countable alphabet.
- A set $\mathscr{V} = \{B_1, \dots, B_s\} \subset 2^{\mathscr{A}}$ be a finite resolution of blurred sets if:
 - B_r is infinite for each $1 \le r \le s$;
 - $B_i \cap B_j$ is finite for all $1 \le i \ne j \le s$; and $\mathcal{L}_1 \setminus \bigcup_{r=1}^s B_r$ is finite.

We define the Blur Shift space $\hat{\Sigma}$ with resolution $\mathscr V$ associated with Σ as

Blur Shifts
$$\hat{\Sigma} \subset (\mathscr{A} \sqcup \mathscr{V})^{\mathbb{N}}$$

Original Shift Σ

- Let Σ be a shift space over a countable alphabet.
- A set $\mathscr{V} = \{B_1, \dots, B_s\} \subset 2^{\mathscr{A}}$ be a finite resolution of blurred sets if:
 - B_r is infinite for each $1 \le r \le s$;
 - $B_i \cap B_j$ is finite for all $1 \le i \ne j \le s$; and $\mathcal{L}_1 \setminus \bigcup_{r=1}^s B_r$ is finite.

We define the Blur Shift space $\hat{\Sigma}$ with resolution $\mathscr V$ associated with Σ as

Blur Shifts $\hat{\Sigma} \subset (\mathscr{A} \sqcup \mathscr{V})^{\mathbb{N}}$

Original Shift Σ

- Let Σ be a shift space over a countable alphabet.
- A set $\mathscr{V} = \{B_1, \dots, B_s\} \subset 2^{\mathscr{A}}$ be a finite resolution of blurred sets if:
 - B_r is infinite for each $1 \le r \le s$;
 - $B_i \cap B_j$ is finite for all $1 \le i \ne j \le s$; and $\mathcal{L}_1 \setminus \bigcup_{r=1}^s B_r$ is finite.

We define the Blur Shift space $\hat{\Sigma}$ with resolution $\mathscr V$ associated with Σ as

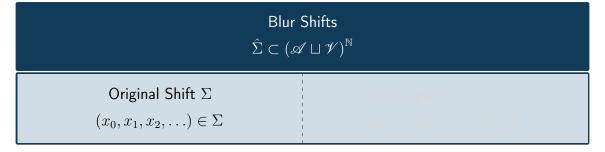
Blur Shifts $\hat{\Sigma} \subset (\mathscr{A} \sqcup \mathscr{V})^{\mathbb{N}}$

Original Shift
$$\Sigma$$

 $x_0, x_1, x_2, \ldots) \in$

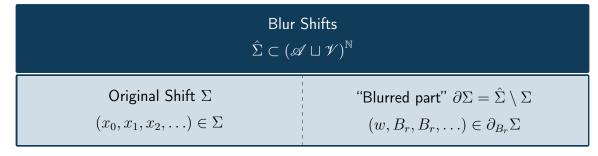
- Let Σ be a shift space over a countable alphabet.
- A set $\mathscr{V} = \{B_1, \dots, B_s\} \subset 2^{\mathscr{A}}$ be a finite resolution of blurred sets if:
 - B_r is infinite for each $1 \le r \le s$;
 - $B_i \cap B_j$ is finite for all $1 \le i \ne j \le s$; and $\mathcal{L}_1 \setminus \bigcup_{r=1}^s B_r$ is finite.

We define the Blur Shift space $\hat{\Sigma}$ with resolution $\mathscr V$ associated with Σ as



- Let Σ be a shift space over a countable alphabet.
- A set $\mathscr{V} = \{B_1, \dots, B_s\} \subset 2^{\mathscr{A}}$ be a finite resolution of blurred sets if:
 - B_r is infinite for each $1 \le r \le s$;
 - $B_i \cap B_j$ is finite for all $1 \le i \ne j \le s$; and $\mathcal{L}_1 \setminus \bigcup_{r=1}^s B_r$ is finite.

We define the Blur Shift space $\hat{\Sigma}$ with resolution $\mathscr V$ associated with Σ as



Lemma

- 1 The sequence $\{x^n\} \subset \hat{\Sigma}$ converges to $x \in \Sigma$ if, and only if, for every positive integer M, there exists an integer N > 0 such that n > N implies $x_i^n = x_i$ for all 1 < i < M;
- 2) The sequence $\{x^n\} \subset \hat{\Sigma}$ converges to $(w, B_r, B_r, \ldots) \in \partial \Sigma$ if, and only if, for every finite subset $S \subset B_r$, there exists an integer N > 0 such that n > N implies $x_i^n = w_i$ for all $0 \le i < \ell(w)$ and $x_{\ell(w)}^n = B_r$ or $x_{\ell(w)}^n \in B_r \setminus S$.

Example.
$$(w, k, x_n, x_{n+1}, \ldots) \longrightarrow (w, B_r, B_r, \ldots)$$
 as $k \in B_r$ tends to ∞

From this topological structure, we obtain

$$lue{}$$
 $lue{}$ is compact metrizable space;

Lemma

- The sequence $\{x^n\} \subset \hat{\Sigma}$ converges to $x \in \Sigma$ if, and only if, for every positive integer M, there exists an integer N>0 such that n>N implies $x_i^n=x_i$ for all 1 < i < M;
- 2 The sequence $\{x^n\}\subset \hat{\Sigma}$ converges to $(w,B_r,B_r,\ldots)\in \partial \Sigma$ if, and only if, for every finite subset $S\subset B_r$, there exists an integer N>0 such that n>N implies $x_i^n=w_i$ for all $0\leq i<\ell(w)$ and $x_{\ell(w)}^n=B_r$ or $x_{\ell(w)}^n\in B_r\setminus S$.

Example.
$$(w, k, x_n, x_{n+1}, \ldots) \longrightarrow (w, B_r, B_r, \ldots)$$
 as $k \in B_r$ tends to ∞ .

From this topological structure, we obtain

Lemma

 $lue{}$ Σ is compact metrizable space

Lemma

- The sequence $\{x^n\} \subset \hat{\Sigma}$ converges to $x \in \Sigma$ if, and only if, for every positive integer M, there exists an integer N>0 such that n>N implies $x_i^n=x_i$ for all 1 < i < M;
- 2 The sequence $\{x^n\}\subset \hat{\Sigma}$ converges to $(w,B_r,B_r,\ldots)\in \partial \Sigma$ if, and only if, for every finite subset $S\subset B_r$, there exists an integer N>0 such that n>N implies $x_i^n=w_i$ for all $0\leq i<\ell(w)$ and $x_{\ell(w)}^n=B_r$ or $x_{\ell(w)}^n\in B_r\setminus S$.

Example.
$$(w, k, x_n, x_{n+1}, \ldots) \longrightarrow (w, B_r, B_r, \ldots)$$
 as $k \in B_r$ tends to ∞ .

From this topological structure, we obtain

Lemma

- $\hat{\mathbf{0}}$ is compact metrizable space;
- (2) $\mathcal{M}(\hat{\Sigma})$ is a weak * compact metrizable space.

Lemma

- 1 The sequence $\{x^n\} \subset \hat{\Sigma}$ converges to $x \in \Sigma$ if, and only if, for every positive integer M, there exists an integer N > 0 such that n > N implies $x_i^n = x_i$ for all 1 < i < M:
- **2** The sequence $\{x^n\} \subset \hat{\Sigma}$ converges to $(w, B_r, B_r, \ldots) \in \partial \Sigma$ if, and only if, for every finite subset $S \subset B_r$, there exists an integer N > 0 such that n > N implies $x_i^n = w_i$ for all $0 \le i < \ell(w)$ and $x_{\ell(w)}^n = B_r$ or $x_{\ell(w)}^n \in B_r \setminus S$.

Example.
$$(w, k, x_n, x_{n+1}, \ldots) \longrightarrow (w, B_r, B_r, \ldots)$$
 as $k \in B_r$ tends to ∞ .

From this topological structure, we obtain

Lemma

- $\hat{\mathbf{0}}$ is compact metrizable space;
- ${f 2}$ ${\cal M}(\hat{\Sigma})$ is a weak* compact metrizable space.

Blur Shift Map

We now introduce the (blur) shift map $\hat{\sigma}: \hat{\Sigma} \longrightarrow \hat{\Sigma}$ as the usual left shift map.

Example. The fixed points

$$(B_r, B_r, \ldots) = \hat{\sigma}(B_r, B_r, \ldots)$$

will absorbs all points of $\partial \Sigma$, i.e., $\hat{\sigma}^{\ell(w)}(w, B_r, B_r, \ldots) = (B_r, B_r, \ldots)$.

The shift map $\hat{\sigma}$ is continuous only on $\hat{\Sigma}\setminus\hat{\mathcal{L}}_0$

Example. The discontinuity of $\hat{\sigma}$ can be observed from the convergences of the following sequences, as $k \in B_r$ tends to ∞ ,

$$(k,0,0,\ldots) \rightarrow (B_r,B_r,\ldots)$$
 and $(k,0,0,\ldots) \rightarrow (0,0,\ldots) \neq \hat{\sigma}(B_r,B_r,\ldots)$

Blur Shift Map

We now introduce the (blur) shift map $\hat{\sigma}: \hat{\Sigma} \longrightarrow \hat{\Sigma}$ as the usual left shift map.

Example. The fixed points

$$(B_r, B_r, \ldots) = \hat{\sigma}(B_r, B_r, \ldots)$$

will absorbs all points of $\partial \Sigma$, i.e., $\hat{\sigma}^{\ell(w)}(w, B_r, B_r, \ldots) = (B_r, B_r, \ldots)$.

The shift map $\hat{\sigma}$ is continuous only on $\hat{\Sigma} \setminus \hat{\mathcal{L}}_0$.

Example. The discontinuity of $\hat{\sigma}$ can be observed from the convergences of the following sequences, as $k \in B_r$ tends to ∞ ,

$$(k, 0, 0, \ldots) \rightarrow (B_r, B_r, \ldots)$$
 and $\hat{\sigma}(k, 0, 0, \ldots) \rightarrow (0, 0, \ldots) \neq \hat{\sigma}(B_r, B_r, \ldots)$.

Blur Shift Map

We now introduce the (blur) shift map $\hat{\sigma}: \hat{\Sigma} \longrightarrow \hat{\Sigma}$ as the usual left shift map.

Example. The fixed points

$$(B_r, B_r, \ldots) = \hat{\sigma}(B_r, B_r, \ldots)$$

will absorbs all points of $\partial \Sigma$, i.e., $\hat{\sigma}^{\ell(w)}(w, B_r, B_r, \ldots) = (B_r, B_r, \ldots)$.

The shift map $\hat{\sigma}$ is continuous only on $\hat{\Sigma} \setminus \hat{\mathcal{L}}_0$.

Example. The discontinuity of $\hat{\sigma}$ can be observed from the convergences of the following sequences, as $k \in B_r$ tends to ∞ ,

$$(k,0,0,\ldots) \rightarrow (B_r,B_r,\ldots)$$
 and $\hat{\sigma}(k,0,0,\ldots) \rightarrow (0,0,\ldots) \neq \hat{\sigma}(B_r,B_r,\ldots)$.

Invariant Measures

Let us introduce

Blur Invariant Measures

$$\mathcal{M}\big(\hat{\Sigma}, \hat{\sigma}\big) = \left\{ \hat{\mu} \in \mathcal{M}\big(\hat{\Sigma}\big) \ : \begin{array}{c} \hat{\mu} \text{ is } \hat{\sigma}\text{-invariant probability, i.e.,} \\ \hat{\sigma}_* \hat{\mu}(\,\cdot\,) = \hat{\mu}\big(\hat{\sigma}^{-1}(\,\cdot\,)\big) = \hat{\mu}(\,\cdot\,) \end{array} \right\}$$

U

$$\mathcal{M}\left(\Sigma,\sigma\right) = \left\{\mu \in \mathcal{M}\left(\Sigma\right) : \begin{array}{c} \mu \text{ is } \sigma\text{-invariant probability, i.e.,} \\ \sigma_*\mu(\,\cdot\,) = \mu\!\left(\sigma^{-1}(\,\cdot\,)\right) = \mu(\,\cdot\,) \end{array}\right\}$$

Original Invariant Measures

Invariant Measures

Let us introduce

$$\mathcal{M}(\hat{\Sigma}, \hat{\sigma}) = \left\{ \hat{\mu} \in \mathcal{M}(\hat{\Sigma}) : \begin{array}{c} \hat{\mu} \text{ is } \hat{\sigma}\text{-invariant probability, i.e.,} \\ \hat{\sigma}_* \hat{\mu}(\,\cdot\,) = \hat{\mu}\big(\hat{\sigma}^{-1}(\,\cdot\,)\big) = \hat{\mu}(\,\cdot\,) \end{array} \right\}$$

$$\mathcal{M}\left(\Sigma,\sigma\right) = \left\{ \mu \in \mathcal{M}\left(\Sigma\right) : \begin{array}{c} \mu \text{ is } \sigma\text{-invariant probability, i.e.,} \\ \sigma_*\mu(\,\cdot\,) = \mu\!\left(\sigma^{-1}(\,\cdot\,)\right) = \mu(\,\cdot\,) \end{array} \right\}$$

Original Invariant Measures

Invariant Measures

Let us introduce

Blur Invariant Measures

$$\mathcal{M}\big(\hat{\Sigma}, \hat{\sigma}\big) = \left\{ \hat{\mu} \in \mathcal{M}\big(\hat{\Sigma}\big) \ : \begin{array}{c} \hat{\mu} \text{ is } \hat{\sigma}\text{-invariant probability, i.e.,} \\ \hat{\sigma}_* \hat{\mu}(\,\cdot\,) = \hat{\mu}\big(\hat{\sigma}^{-1}(\,\cdot\,)\big) = \hat{\mu}(\,\cdot\,) \end{array} \right\}$$

U

$$\mathcal{M}\left(\Sigma,\sigma\right) = \left\{ \mu \in \mathcal{M}\left(\Sigma\right) : \begin{array}{c} \mu \text{ is } \sigma\text{-invariant probability, i.e.,} \\ \sigma_*\mu(\,\cdot\,) = \mu\!\left(\sigma^{-1}(\,\cdot\,)\right) = \mu(\,\cdot\,) \end{array} \right\}$$
 Original Invariant Measures

Proposition

$$\mathcal{M}(\hat{\Sigma}, \hat{\sigma}) = \operatorname{Conv}(\mathcal{M}(\Sigma, \sigma) \sqcup \{\delta_{(B_r, B_r, \dots)} : 1 \leq r \leq s\}).$$

Sketch of the Proof.

- If $\hat{\mu} \in \mathcal{M}(\hat{\Sigma}, \hat{\sigma})$ and $\hat{\mu}(\Sigma) = 1$, then $\hat{\mu} \in \mathcal{M}(\Sigma, \sigma)$
 - ullet If $\hat{
 u} \in \mathcal{M}(\hat{\Sigma}, \hat{\sigma})$, then $\hat{
 u}(\bigsqcup_{k \geq 1} \hat{\mathcal{L}}_k) = 0$. In particular,

$$\hat{\nu}\left(\hat{\mathcal{L}}_{0}\right) = \hat{\nu}\left(\partial\Sigma\right) \qquad \text{and} \qquad \hat{\nu}\left(\left\{\left(B_{r}, B_{r}, \ldots\right)\right\}\right) = \hat{\nu}\left(\partial_{B_{r}}\Sigma\right);$$

ullet If $\hat{
u} \in \mathcal{M}ig(\hat{\Sigma}, \hat{\sigma}ig)$ and $\hat{
u}(\partial \Sigma) = 1$, then $\hat{
u} \in \mathrm{Conv}\,ig(\left\{\delta_{(B_r, B_r, \ldots)} \,:\, 1 \leq r \leq s
ight\}ig)$.

Proposition

$$\mathcal{M}(\hat{\Sigma}, \hat{\sigma}) = \operatorname{Conv}(\mathcal{M}(\Sigma, \sigma) \sqcup \{\delta_{(B_r, B_r, \dots)} : 1 \leq r \leq s\}).$$

Sketch of the Proof.

- If $\hat{\mu} \in \mathcal{M}(\hat{\Sigma}, \hat{\sigma})$ and $\hat{\mu}(\Sigma) = 1$, then $\hat{\mu} \in \mathcal{M}(\Sigma, \sigma)$;
- ② If $\hat{\nu} \in \mathcal{M}(\hat{\Sigma}, \hat{\sigma})$, then $\hat{\nu}(\bigsqcup_{k \geq 1} \hat{\mathcal{L}}_k) = 0$. In particular,

$$\hat{\nu}(\hat{\mathcal{L}}_0) = \hat{\nu}(\partial \Sigma)$$
 and $\hat{\nu}(\{(B_r, B_r, \ldots)\}) = \hat{\nu}(\partial_{B_r}\Sigma)$

 $\text{ If } \hat{\nu} \in \mathcal{M}\left(\hat{\Sigma}, \hat{\sigma}\right) \text{ and } \hat{\nu}(\partial \Sigma) = 1, \text{ then } \hat{\nu} \in \operatorname{Conv}\left(\left\{\delta_{(B_r, B_r, \ldots)} \, : \, 1 \leq r \leq s\right\}\right).$

Proposition

$$\mathcal{M}(\hat{\Sigma}, \hat{\sigma}) = \operatorname{Conv}(\mathcal{M}(\Sigma, \sigma) \sqcup \{\delta_{(B_r, B_r, \dots)} : 1 \leq r \leq s\}).$$

Sketch of the Proof.

- **1** If $\hat{\mu} \in \mathcal{M}(\hat{\Sigma}, \hat{\sigma})$ and $\hat{\mu}(\Sigma) = 1$, then $\hat{\mu} \in \mathcal{M}(\Sigma, \sigma)$;
- 2 If $\hat{\nu} \in \mathcal{M}(\hat{\Sigma}, \hat{\sigma})$, then $\hat{\nu}(\bigsqcup_{k \geq 1} \hat{\mathcal{L}}_k) = 0$. In particular,

$$\hat{\nu}(\hat{\mathcal{L}}_0) = \hat{\nu}(\partial \Sigma)$$
 and $\hat{\nu}(\{(B_r, B_r, \ldots)\}) = \hat{\nu}(\partial_{B_r}\Sigma);$

 $\text{ 3 If } \hat{\nu} \in \mathcal{M}\big(\hat{\Sigma}, \hat{\sigma}\big) \text{ and } \hat{\nu}(\partial \Sigma) = 1, \text{ then } \hat{\nu} \in \operatorname{Conv}\big(\big\{\delta_{(B_r, B_r, \ldots)} \, : \, 1 \leq r \leq s\big\}\big).$

Proposition

$$\mathcal{M}(\hat{\Sigma}, \hat{\sigma}) = \operatorname{Conv}(\mathcal{M}(\Sigma, \sigma) \sqcup \{\delta_{(B_r, B_r, \dots)} : 1 \leq r \leq s\}).$$

Sketch of the Proof.

- **1** If $\hat{\mu} \in \mathcal{M}(\hat{\Sigma}, \hat{\sigma})$ and $\hat{\mu}(\Sigma) = 1$, then $\hat{\mu} \in \mathcal{M}(\Sigma, \sigma)$;
- 2 If $\hat{\nu} \in \mathcal{M}(\hat{\Sigma}, \hat{\sigma})$, then $\hat{\nu}(\bigsqcup_{k \geq 1} \hat{\mathcal{L}}_k) = 0$. In particular,

$$\hat{\nu}(\hat{\mathcal{L}}_0) = \hat{\nu}(\partial \Sigma)$$
 and $\hat{\nu}(\{(B_r, B_r, \ldots)\}) = \hat{\nu}(\partial_{B_r}\Sigma);$

 $\text{ 3 If } \hat{\nu} \in \mathcal{M}\big(\hat{\Sigma}, \hat{\sigma}\big) \text{ and } \hat{\nu}(\partial \Sigma) = 1, \text{ then } \hat{\nu} \in \operatorname{Conv}\big(\big\{\delta_{(B_r, B_r, \ldots)} \, : \, 1 \leq r \leq s\big\}\big).$

Invariant Measures Convexity

Proposition

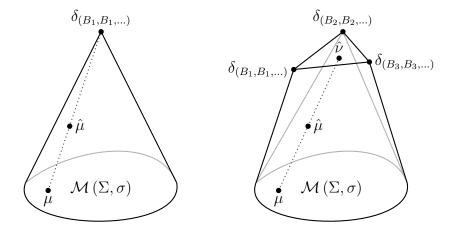
$$\mathcal{M}(\hat{\Sigma}, \hat{\sigma}) = \operatorname{Conv}(\mathcal{M}(\Sigma, \sigma) \sqcup \{\delta_{(B_r, B_r, ...)} : 1 \leq r \leq s\}).$$

Sketch of the Proof.

- **1** If $\hat{\mu} \in \mathcal{M}(\hat{\Sigma}, \hat{\sigma})$ and $\hat{\mu}(\Sigma) = 1$, then $\hat{\mu} \in \mathcal{M}(\Sigma, \sigma)$;
- 2 If $\hat{\nu} \in \mathcal{M}(\hat{\Sigma}, \hat{\sigma})$, then $\hat{\nu}(\bigsqcup_{k \geq 1} \hat{\mathcal{L}}_k) = 0$. In particular,

$$\hat{\nu}(\hat{\mathcal{L}}_0) = \hat{\nu}(\partial \Sigma)$$
 and $\hat{\nu}(\{(B_r, B_r, \ldots)\}) = \hat{\nu}(\partial_{B_r}\Sigma);$

3 If $\hat{\nu} \in \mathcal{M}(\hat{\Sigma}, \hat{\sigma})$ and $\hat{\nu}(\partial \Sigma) = 1$, then $\hat{\nu} \in \text{Conv}\left(\left\{\delta_{(B_r, B_r, \dots)} : 1 \leq r \leq s\right\}\right)$.



Remark.

The phenomenon of escape of mass described on [lommi and Velozo 21] can be translated as a transference of mass from Σ to points of $\partial \Sigma$.

Compactness

Example. Note that

$$\frac{1}{2}\,\delta_{(k,0,k,0,\ldots)} + \frac{1}{2}\,\delta_{(0,k,0,k,\ldots)} \;\stackrel{*}{\rightharpoonup}\; \frac{1}{2}\,\delta_{(B_r,B_r,\ldots)} + \frac{1}{2}\,\delta_{(0,B_r,B_r,\ldots)},$$

as $k \in B_r$ tends to ∞ . This limit probability is not invariant

First, we provide general equivalent formulations for the compactness.

- $\mathbb{O}(\hat{\Sigma},\hat{\sigma})$ is (weak*) compact
- $p(\{\{a,B_n,B_n,\ldots\}\}) = 0, \text{ for }$ $= p(\{\{a,B_n,B_n,\ldots\}\}) = 0, \text{ for }$ $= \text{very } p \in M(\nabla, a)$

Compactness

Example. Note that

$$\frac{1}{2}\,\delta_{(k,0,k,0,\ldots)} + \frac{1}{2}\,\delta_{(0,k,0,k,\ldots)} \;\;\stackrel{*}{\rightharpoonup}\;\; \frac{1}{2}\,\delta_{(B_r,B_r,\ldots)} + \frac{1}{2}\,\delta_{(0,B_r,B_r,\ldots)},$$

as $k \in B_r$ tends to ∞ . This limit probability is not invariant.

First, we provide general equivalent formulations for the compactness

- ① $\mathcal{M}(\hat{\Sigma}, \hat{\sigma})$ is (weak*) compact.
 - $M(\Sigma, \sigma) \subset M(\hat{\Sigma}, \hat{\sigma}); \qquad \Phi(\{(a, B_n, B_n, \dots)\}) = 0, \text{ for } every \ u \in M(\Sigma, \sigma).$

Compactness

Example. Note that

$$\frac{1}{2}\,\delta_{(k,0,k,0,\ldots)} + \frac{1}{2}\,\delta_{(0,k,0,k,\ldots)} \;\;\stackrel{*}{\rightharpoonup}\;\; \frac{1}{2}\,\delta_{(B_r,B_r,\ldots)} + \frac{1}{2}\,\delta_{(0,B_r,B_r,\ldots)},$$

as $k \in B_r$ tends to ∞ . This limit probability is not invariant.

First, we provide general equivalent formulations for the compactness.

Compactness

Example. Note that

$$\frac{1}{2}\,\delta_{(k,0,k,0,\ldots)} + \frac{1}{2}\,\delta_{(0,k,0,k,\ldots)} \;\;\stackrel{*}{\rightharpoonup}\;\; \frac{1}{2}\,\delta_{(B_r,B_r,\ldots)} + \frac{1}{2}\,\delta_{(0,B_r,B_r,\ldots)},$$

as $k \in B_r$ tends to ∞ . This limit probability is not invariant.

First, we provide general equivalent formulations for the compactness.

- \bullet $\mathcal{M}(\hat{\Sigma}, \hat{\sigma})$ is (weak*) compact.
 - $\subset \mathcal{M}(\hat{\Sigma}, \hat{\sigma});$ \emptyset $\bar{\mu}(\{(a, B_r, B_r, \ldots)\}) = 0$, for

Compactness

Example. Note that

$$\frac{1}{2}\,\delta_{(k,0,k,0,\ldots)} + \frac{1}{2}\,\delta_{(0,k,0,k,\ldots)} \;\;\stackrel{*}{\rightharpoonup}\;\; \frac{1}{2}\,\delta_{(B_r,B_r,\ldots)} + \frac{1}{2}\,\delta_{(0,B_r,B_r,\ldots)},$$

as $k \in B_r$ tends to ∞ . This limit probability is not invariant.

First, we provide general equivalent formulations for the compactness.

- \bullet $\mathcal{M}(\hat{\Sigma}, \hat{\sigma})$ is (weak*) compact.

Compactness

Example. Note that

$$\frac{1}{2}\,\delta_{(k,0,k,0,\ldots)} + \frac{1}{2}\,\delta_{(0,k,0,k,\ldots)} \;\;\stackrel{*}{\rightharpoonup}\;\; \frac{1}{2}\,\delta_{(B_r,B_r,\ldots)} + \frac{1}{2}\,\delta_{(0,B_r,B_r,\ldots)},$$

as $k \in B_r$ tends to ∞ . This limit probability is not invariant.

First, we provide general equivalent formulations for the compactness.

Proposition

- \bullet $\mathcal{M}(\hat{\Sigma}, \hat{\sigma})$ is (weak*) compact.

3 $\bar{\mu}\left(\left\{\left(u, B_r, B_r, \ldots\right)\right\}\right) = 0$, for all $\bar{\mu} \in \overline{\mathcal{M}(\Sigma, \sigma)}$;

Compactness

Example. Note that

$$\frac{1}{2}\,\delta_{(k,0,k,0,\ldots)} + \frac{1}{2}\,\delta_{(0,k,0,k,\ldots)} \;\;\stackrel{*}{\rightharpoonup}\;\; \frac{1}{2}\,\delta_{(B_r,B_r,\ldots)} + \frac{1}{2}\,\delta_{(0,B_r,B_r,\ldots)},$$

as $k \in B_r$ tends to ∞ . This limit probability is not invariant.

First, we provide general equivalent formulations for the compactness.

- $oldsymbol{0} \mathcal{M}(\hat{\Sigma},\hat{\sigma})$ is (weak*) compact.

- 3 $\bar{\mu}\left(\left\{\left(u, B_r, B_r, \ldots\right)\right\}\right) = 0$, for all $\bar{\mu} \in \overline{\mathcal{M}(\Sigma, \sigma)}$;

Let Σ be a shift over a countable alphabet verifying the finite cyclic predecessor assumption and the denseness of periodic measures. Then,

$$\bar{\mu}\big(\big\{\left.(a,B_r,B_r,\ldots)\right.\big\}\big)=0\quad\text{for every}\quad\bar{\mu}\in\overline{\mathcal{M}\left(\Sigma,\sigma\right)}.$$

- f 0 Considers a sequence of periodic measures $\dot{\mu}_l$ that converge to $ar{\mu}$
- We analyze three cases based on the unboundedness of symbols or of periods associated to the (periodic) points on the support of $\dot{\mu}_l$;
- In all cases, we construct an appropriate neighborhood Z of (a, B_r, B_r, \ldots) and by finite cyclic predecessor assumption, it is shown that:

 Fither in(Z) = 0 for large I:
- lacktriangle By the Portmanteau Theorem, $\bar{\mu}\left(\left\{\left(a,B_r,B_r,\ldots\right)\right\}\right)=0$

Let Σ be a shift over a countable alphabet verifying the finite cyclic predecessor assumption and the denseness of periodic measures. Then,

$$\bar{\mu}(\{(a, B_r, B_r, \ldots)\}) = 0$$
 for every $\bar{\mu} \in \overline{\mathcal{M}(\Sigma, \sigma)}$.

- **1** Considers a sequence of periodic measures $\dot{\mu}_l$ that converge to $\bar{\mu}_i$;
- ② We analyze three cases based on the unboundedness of symbols or of periods associated to the (periodic) points on the support of $\dot{\mu}_l$;
- **3** In all cases, we construct an appropriate neighborhood Z of (a, B_r, B_r, \ldots) and by **finite cyclic predecessor assumption**, it is shown that:
 - Either $\dot{\mu}_l(Z) = 0$ for large l;
 - Or $i_{II}(Z)$ is bounded by an arbitrarily small:
- 4 By the Portmanteau Theorem, $\bar{\mu}\left(\left\{\left(a,B_r,B_r,\ldots\right)\right\}\right)=0.$

Let Σ be a shift over a countable alphabet verifying the finite cyclic predecessor assumption and the denseness of periodic measures. Then,

$$\bar{\mu}(\{(a, B_r, B_r, \ldots)\}) = 0$$
 for every $\bar{\mu} \in \overline{\mathcal{M}(\Sigma, \sigma)}$.

- **1** Considers a sequence of periodic measures $\dot{\mu}_l$ that converge to $\bar{\mu}_i$;
- 2 We analyze three cases based on the unboundedness of symbols or of periods associated to the (periodic) points on the support of $\dot{\mu}_l$;
- **3** In all cases, we construct an appropriate neighborhood Z of (a, B_r, B_r, \ldots) and by **finite cyclic predecessor assumption**, it is shown that:
 - Either $\dot{\mu}_l(Z) = 0$ for large l;
 - Or $\dot{\mu}_I(Z)$ is bounded by an arbitrarily small
- 4 By the Portmanteau Theorem, $\bar{\mu}(\{(a, B_r, B_r, \dots)\}) = 0$.

Let Σ be a shift over a countable alphabet verifying the finite cyclic predecessor assumption and the denseness of periodic measures. Then,

$$\bar{\mu}(\{(a, B_r, B_r, \ldots)\}) = 0$$
 for every $\bar{\mu} \in \overline{\mathcal{M}(\Sigma, \sigma)}$.

- **1** Considers a sequence of periodic measures $\dot{\mu}_l$ that converge to $\bar{\mu}$;
- 2 We analyze three cases based on the unboundedness of symbols or of periods associated to the (periodic) points on the support of $\dot{\mu}_l$;
- 3 In all cases, we construct an appropriate neighborhood Z of (a, B_r, B_r, \ldots) and by **finite cyclic predecessor assumption**, it is shown that:
 - Either $\dot{\mu}_l(Z) = 0$ for large l;
 - Or $\dot{\mu}_l(Z)$ is bounded by an arbitrarily small;
- 4 By the Portmanteau Theorem, $\bar{\mu}\left(\left\{\left(a,B_r,B_r,\ldots\right)\right\}\right)=0$.

Let Σ be a shift over a countable alphabet verifying the finite cyclic predecessor assumption and the denseness of periodic measures. Then,

$$\bar{\mu}(\{(a, B_r, B_r, \ldots)\}) = 0$$
 for every $\bar{\mu} \in \overline{\mathcal{M}(\Sigma, \sigma)}$.

- **1** Considers a sequence of periodic measures $\dot{\mu}_l$ that converge to $\bar{\mu}$;
- 2 We analyze three cases based on the unboundedness of symbols or of periods associated to the (periodic) points on the support of $\dot{\mu}_l$;
- 3 In all cases, we construct an appropriate neighborhood Z of (a, B_r, B_r, \ldots) and by **finite cyclic predecessor assumption**, it is shown that:
 - Either $\dot{\mu}_l(Z) = 0$ for large l;
 - Or $\dot{\mu}_{l}\left(Z\right)$ is bounded by an arbitrarily small;
- $oldsymbol{a}$ By the Portmanteau Theorem, $ar{\mu}\left(\left\{\left.(a,B_r,B_r,\ldots)\right.
 ight\}
 ight)=0$

Let Σ be a shift over a countable alphabet verifying the finite cyclic predecessor assumption and the denseness of periodic measures. Then,

$$\bar{\mu}\big(\big\{\left.(a,B_r,B_r,\ldots)\right.\big\}\big)=0\quad\text{for every}\quad\bar{\mu}\in\overline{\mathcal{M}\left(\Sigma,\sigma\right)}.$$

- **1** Considers a sequence of periodic measures $\dot{\mu}_l$ that converge to $\bar{\mu}_i$;
- 2) We analyze three cases based on the unboundedness of symbols or of periods associated to the (periodic) points on the support of $\dot{\mu}_l$;
- 3 In all cases, we construct an appropriate neighborhood Z of (a, B_r, B_r, \ldots) and by **finite cyclic predecessor assumption**, it is shown that:
 - Either $\dot{\mu}_l(Z) = 0$ for large l;
 - Or $\dot{\mu}_l(Z)$ is bounded by an arbitrarily small;
- 4 By the Portmanteau Theorem, $\bar{\mu}(\{(a, B_r, B_r, \dots)\}) = 0$.

Potentials

Recall that a potential is

any Borel function $A: \Sigma \to \mathbb{R} \cup \{-\infty\}$ which is bounded from above.

Upper semi-continuity gives us a lot of freedom to obtain extension function on $\hat{\Sigma}$.

Proposition

Let $A:\Sigma\to\mathbb{R}\cup\{-\infty\}$ be an upper semi-continuous potential. Then, the potential $\hat{A}:\hat{\Sigma}\longrightarrow\mathbb{R}\cup\{-\infty\}$ given as

$$x \in \Sigma \longmapsto \hat{A}(x) = A(x) \quad \text{and}$$
$$(v, B_r, B_r, \ldots) \in \partial \Sigma \longmapsto \hat{A}(v, B_r, B_r, \ldots) = \limsup_{B_r \ni i \to \infty} \sup A|_{[vi]}$$

is the minimal upper semi-continuous extension of A to $\hat{\Sigma}$

Potentials

Recall that a potential is

any Borel function $A: \Sigma \to \mathbb{R} \cup \{-\infty\}$ which is bounded from above.

Upper semi-continuity gives us a lot of freedom to obtain extension function on $\hat{\Sigma}$.

Proposition

Let $A:\Sigma\to\mathbb{R}\cup\{-\infty\}$ be an upper semi-continuous potential. Then, the potential $\hat{A}:\hat{\Sigma}\longrightarrow\mathbb{R}\cup\{-\infty\}$ given as

$$x \in \Sigma \longmapsto \hat{A}(x) = A(x) \quad \text{and}$$
$$(v, B_r, B_r, \ldots) \in \partial \Sigma \longmapsto \hat{A}(v, B_r, B_r, \ldots) = \limsup_{B_r \ni i \to \infty} \sup A|_{[vi]}$$

is the minimal upper semi-continuous extension of A to $\hat{\Sigma}$.

Example. Let consider

- (u, B_r, B_r, \ldots) be a point of $\partial \Sigma$
- countable partition of $B_r = \bigsqcup_{k>1} C_k$ into infinite subsets.
- $\{q_k\}_{k\geq 1}$ be an enumeration of rational numbers of (0,1].

We introduce $A:[u] \rightarrow [0,1]$ defined on the cylinder set $[u] \in \Sigma$ as

$$A(uax) = A(ua) = \begin{cases} 0, & \text{if } a \in \mathcal{A} \setminus B_r \\ q_k, & \text{if } a \in C_k \end{cases}$$

where $a \in \mathcal{A}$, $x \in \Sigma$, and $uax \in \Sigma$.

Due to Tietze extension Theorem, there is a bounded continuous $A:\Sigma\to [0,1]$ which extends this locally constant function to Σ .

However, for any open neighborhood Z of $(u, B_r, B_s, ...)$, the oscillation of A is always equal to A.

Example. Let consider

- (u, B_r, B_r, \ldots) be a point of $\partial \Sigma$
- countable partition of $B_r = \bigsqcup_{k>1} C_k$ into infinite subsets.
- $\{q_k\}_{k\geq 1}$ be an enumeration of rational numbers of (0,1].

We introduce $A\,:\,[u]\to[0,1]$ defined on the cylinder set $[u]\in\Sigma$ as

$$A\left(uax\right) = A\left(ua\right) = \left\{ \begin{array}{ll} 0, & \text{if } a \in \mathscr{A} \setminus B_r \\ q_k, & \text{if } a \in C_k \end{array} \right.,$$

where $a \in \mathcal{A}$, $x \in \Sigma$, and $uax \in \Sigma$.

Due to Tietze extension Theorem, there is a bounded continuous $A:\Sigma\to[0,1]$ which extends this locally constant function to Σ .

However, for any open neighborhood Z of (u, B_r, B_r, \ldots) , the oscillation of A is always equal to 1.

Example. Let consider

- (u, B_r, B_r, \ldots) be a point of $\partial \Sigma$
- countable partition of $B_r = \bigsqcup_{k>1} C_k$ into infinite subsets.
- $\{q_k\}_{k\geq 1}$ be an enumeration of rational numbers of (0,1].

We introduce $A\,:\,[u] \to [0,1]$ defined on the cylinder set $[u] \in \Sigma$ as

$$A(uax) = A(ua) = \begin{cases} 0, & \text{if } a \in \mathscr{A} \setminus B_r \\ q_k, & \text{if } a \in C_k \end{cases},$$

where $a \in \mathcal{A}$, $x \in \Sigma$, and $uax \in \Sigma$.

Due to Tietze extension Theorem, there is a bounded continuous $A:\Sigma\to [0,1]$ which extends this locally constant function to Σ .

However, for any open neighborhood Z of $(u, B_r, B_r, ...)$, the oscillation of A is always equal to 1.

Example. Let consider

- (u, B_r, B_r, \ldots) be a point of $\partial \Sigma$
- countable partition of $B_r = \bigsqcup_{k>1} C_k$ into infinite subsets.
- $\{q_k\}_{k\geq 1}$ be an enumeration of rational numbers of (0,1].

We introduce $A:[u] \rightarrow [0,1]$ defined on the cylinder set $[u] \in \Sigma$ as

$$A(uax) = A(ua) = \begin{cases} 0, & \text{if } a \in \mathscr{A} \setminus B_r \\ q_k, & \text{if } a \in C_k \end{cases},$$

where $a \in \mathscr{A}$, $x \in \Sigma$, and $uax \in \Sigma$.

Due to Tietze extension Theorem, there is a bounded continuous $A:\Sigma\to [0,1]$ which extends this locally constant function to Σ .

However, for any open neighborhood Z of (u, B_r, B_r, \ldots) , the oscillation of A is always equal to 1.

Note the following convenient behavior on the class of coercive potentials.

Example. Assume that

- A is a coercive upper semi-continuous potential, $\lim_{i\to\infty}\sup A|_{[i]}=-\infty$;
- \hat{A} is the minimal upper semi-continuous extension of A.

We have the following integrals

$$\int \hat{A}\,d\hat{\mu} = \int A\,d\hat{\mu}, \qquad ext{if} \ \ \hat{\mu}(\Sigma) = 1, \qquad ext{and}$$

 $\int \hat{A} d\delta_{(B_r, B_r, \dots)} = \hat{A} (B_r, B_r, \dots) = \lim_{B_r \ni i \to \infty} \sup A|_{[i]} = \lim_{i \to \infty} \sup A|_{[i]} = -\infty.$

In particular, the coercive assumption prevents the invariant probabilities giving mass to $\partial\Sigma$ from being maximizing measures.

Note the following convenient behavior on the class of coercive potentials.

Example. Assume that

- A is a coercive upper semi-continuous potential, $\lim_{i\to\infty} \sup A|_{[i]} = -\infty$;
- ullet \hat{A} is the minimal upper semi-continuous extension of A.

We have the following integrals

$$\int \hat{A} \, d\hat{\mu} = \int A \, d\hat{\mu}, \qquad \text{if} \quad \hat{\mu}(\Sigma) = 1, \qquad \text{and}$$

$$\int \hat{A} \, d\delta_{(B_r, B_r, \dots)} = \hat{A} \, (B_r, B_r, \dots) = \limsup_{B_r \ni i \to \infty} \sup A|_{[i]} = \lim_{i \to \infty} \sup A|_{[i]} = -\infty.$$

In particular, the coercive assumption prevents the invariant probabilities giving mass to $\partial\Sigma$ from being maximizing measures.

Note the following convenient behavior on the class of coercive potentials.

Example. Assume that

- A is a coercive upper semi-continuous potential, $\lim_{i\to\infty}\sup A|_{[i]}=-\infty$;
- ullet \hat{A} is the minimal upper semi-continuous extension of A.

We have the following integrals

$$\int \hat{A} \, d\hat{\mu} = \int A \, d\hat{\mu}, \qquad \text{if} \quad \hat{\mu}(\Sigma) = 1, \qquad \text{and}$$

$$\int \hat{A} \, d\delta_{(B_r, B_r, \dots)} = \hat{A} \, (B_r, B_r, \dots) = \lim_{B_r \ni i \to \infty} \sup A|_{[i]} = \lim_{i \to \infty} \sup A|_{[i]} = -\infty.$$

In particular, the coercive assumption prevents the invariant probabilities giving mass to $\partial\Sigma$ from being maximizing measures.

Note the following convenient behavior on the class of coercive potentials.

Example. Assume that

- A is a coercive upper semi-continuous potential, $\lim_{i\to\infty} \sup A|_{[i]} = -\infty$;
- ullet \hat{A} is the minimal upper semi-continuous extension of A.

We have the following integrals

$$\begin{split} \int \hat{A} \, d\hat{\mu} &= \int A \, d\hat{\mu}, \qquad \text{if} \quad \hat{\mu}(\Sigma) = 1, \qquad \text{and} \\ \int \hat{A} \, d\delta_{(B_r, B_r, \dots)} &= \hat{A} \, (B_r, B_r, \dots) = \limsup_{B_r \ni i \to \infty} \sup A|_{[i]} = \lim_{i \to \infty} \sup A|_{[i]} = -\infty. \end{split}$$

In particular, the coercive assumption prevents the invariant probabilities giving mass to $\partial \Sigma$ from being maximizing measures.

Ergodic Optimization Ergodic Maximizing Constants

We introduce

$$\hat{eta}ig(ar{A}ig) = \sup_{\hat{\mu} \in \mathcal{M}(\hat{\Sigma}, \hat{\sigma})} \int_{\hat{\Sigma}} ar{A} \, d\hat{\mu}$$

$$\beta(A) = \sup_{\mu \in \mathcal{M}(\Sigma, \sigma)} \int_{\Sigma} A \, d\mu$$

$$\max \bar{A}|_{\hat{\mathcal{L}}_0} = \max_{1 \le r \le s} \int \bar{A} \, d\delta_{(B_r, B_r, \dots)}$$

The ergodic maximizing constants are associated by

$$\bar{\mathbf{I}} = \beta(A) \vee \max \bar{A}|_{\hat{\mathcal{L}}}$$

Ergodic Optimization Ergodic Maximizing Constants

We introduce

$$\hat{\beta}(\bar{A}) = \sup_{\hat{\mu} \in \mathcal{M}(\hat{\Sigma}, \hat{\sigma})} \int_{\hat{\Sigma}} \bar{A} \, d\hat{\mu}$$

$$\beta(A) = \sup_{\mu \in \mathcal{M}(\Sigma, \sigma)} \int_{\Sigma} A \, d\mu \qquad \max_{1 \le r \le s} \int \bar{A} \, d\delta_{(B_r, B_r, \dots)}$$

The ergodic maximizing constants are associated by

Lemma

$$\hat{\beta}(\bar{A}) = \beta(A) \vee \max \bar{A}|_{\hat{\mathcal{L}}_0}$$

Ergodic Optimization Ergodic Maximizing Constants

We introduce

$$\hat{\beta}(\bar{A}) = \sup_{\hat{\mu} \in \mathcal{M}(\hat{\Sigma}, \hat{\sigma})} \int_{\hat{\Sigma}} \bar{A} \, d\hat{\mu}$$

$$\beta(A) = \sup_{\mu \in \mathcal{M}(\Sigma, \sigma)} \int_{\Sigma} A \, d\mu \qquad \max_{1 \le r \le s} \int \bar{A} \, d\delta_{(B_r, B_r, \dots)}$$

The ergodic maximizing constants are associated by

Lemma

$$\hat{\beta}(\bar{A}) = \beta(A) \vee \max \bar{A}|_{\hat{\mathcal{L}}_0}.$$

Ergodic Optimization Maximizing set

$$\hat{\mathcal{M}}_{\max}ig(ar{A}ig) = \left\{\hat{\mu} \in \mathcal{M}ig(\hat{\Sigma}, \hat{\sigma}ig) : \int_{\hat{\Sigma}} ar{A} \, d\hat{\mu} = \hat{eta}ig(ar{A}ig)
ight\}$$

$$\mathcal{M}_{\max}(A) = \left\{ \mu \in \mathcal{M}(\Sigma, \sigma) : \int_{\Sigma} A \, d\mu = \beta(A) \right\}$$

$$\hat{\mathcal{D}}_{\max}(\bar{A}) = \left\{ \delta_{(B_r, B_r, \dots)} : \bar{A}(B_r, B_r, \dots) = \max \bar{A}|_{\hat{\mathcal{L}}_0} \right\}$$

The maximizing sets are associated according to

• If
$$\max |\bar{A}|_{\hat{\sigma}_{-}} > \beta(A)$$
, then $\hat{\mathcal{M}}_{\max}(\bar{A}) = \operatorname{Conv}(\hat{\mathcal{D}}_{\max}(\bar{A}))$

Ergodic Optimization Maximizing set

$$\hat{\mathcal{M}}_{\max}(\bar{A}) = \left\{ \hat{\mu} \in \mathcal{M}(\hat{\Sigma}, \hat{\sigma}) : \int_{\hat{\Sigma}} \bar{A} \, d\hat{\mu} = \hat{\beta}(\bar{A}) \right\}$$

$$\mathcal{M}_{\max}(A) = \left\{ \mu \in \mathcal{M}(\Sigma, \sigma) : \int_{\Sigma} A \, d\mu = \beta(A) \right\}$$

$$\hat{\mathcal{D}}_{\max}(\bar{A}) = \left\{ \delta_{(B_r, B_r, \dots)} : \bar{A}(B_r, B_r, \dots) = \max \bar{A}|_{\hat{\mathcal{L}}_0} \right\}$$

The maximizing sets are associated according to

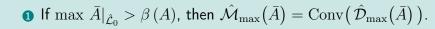
Ergodic Optimization Maximizing set

$$\hat{\mathcal{M}}_{\max}ig(ar{A}ig) = \left\{\hat{\mu} \in \mathcal{M}ig(\hat{\Sigma}, \hat{\sigma}ig) : \int_{\hat{\Sigma}} ar{A} \, d\hat{\mu} = \hat{eta}ig(ar{A}ig)
ight\}$$

$$\mathcal{M}_{\max}(A) = \left\{ \mu \in \mathcal{M}(\Sigma, \sigma) : \int_{\Sigma} A \, d\mu = \beta(A) \right\}$$

$$\hat{\mathcal{D}}_{\max}(\bar{A}) = \left\{ \delta_{(B_r, B_r, \dots)} : \bar{A}(B_r, B_r, \dots) = \max \bar{A}|_{\hat{\mathcal{L}}_0} \right\}$$

The maximizing sets are associated according to



Proposition

- 1 If $\max \bar{A}|_{\hat{\mathcal{L}}_0} = \beta(A)$, then $\hat{\mathcal{M}}_{\max}(\bar{A}) = \operatorname{Conv}(\mathcal{M}_{\max}(A) \sqcup \hat{\mathcal{D}}_{\max}(\bar{A}))$;
- 2 If $\max A|_{\hat{\mathcal{L}}_0} < \beta(A)$, then $\mathcal{M}_{\max}(A) = \mathcal{M}_{\max}(A)$

- lacktriangle The set of blur measures $\mathcal{M}(\Sigma,\hat{\sigma})$ is compact
- ① The upper semi-continuous extension potential A induces an upper semi-continuous application $\mu \longmapsto \int \hat{A} d \, \mu$;
- lacktriangle The set of maximizing measures $\mathcal{M}_{ ext{max}}(A)$ is non-empty;
- Since $\max A|_{\tilde{\mathcal{L}}_0} = \limsup_{i \to \infty} \sup A|_{[i]} < \beta(A)$, we conclude that $\mathcal{M}_{\max}(A)$ is equal to $\hat{\mathcal{M}}_{\max}(\hat{A})$.

Proposition

- 1 If $\max \bar{A}|_{\hat{\mathcal{L}}_0} = \beta(A)$, then $\hat{\mathcal{M}}_{\max}(\bar{A}) = \operatorname{Conv}(\mathcal{M}_{\max}(A) \sqcup \hat{\mathcal{D}}_{\max}(\bar{A}))$;
- 2 If $\max \bar{A}|_{\hat{\mathcal{L}}_0} < \beta(A)$, then $\hat{\mathcal{M}}_{\max}(\bar{A}) = \mathcal{M}_{\max}(A)$.

- $oldsymbol{0}$ The set of blur measures $\mathcal{M}ig(\Sigma,\hat{\sigma}ig)$ is compact;
- ① The upper semi-continuous extension potential A induces an upper semi-continuous application $\mu \longmapsto \int \hat{A} d \, \mu$;
- lacktriangle The set of maximizing measures $\mathcal{M}_{
 m max}(A)$ is non-empty
- Since $\max A|_{\mathcal{L}_0} = \limsup_{i \to \infty} \sup A|_{[i]} < \beta(A)$, we conclude that $\mathcal{M}_{\max}(A)$ is equal to $\hat{\mathcal{M}}_{\max}(\hat{A})$.

Proposition

- 1 If $\max \bar{A}|_{\hat{\mathcal{L}}_0} = \beta(A)$, then $\hat{\mathcal{M}}_{\max}(\bar{A}) = \operatorname{Conv}(\mathcal{M}_{\max}(A) \sqcup \hat{\mathcal{D}}_{\max}(\bar{A}))$;
- 2 If $\max \bar{A}|_{\hat{\mathcal{L}}_0} < \beta(A)$, then $\hat{\mathcal{M}}_{\max}(\bar{A}) = \mathcal{M}_{\max}(A)$.

- **1** The set of blur measures $\mathcal{M}(\hat{\Sigma}, \hat{\sigma})$ is compact;
- 2 The upper semi-continuous extension potential \hat{A} induces an upper semi-continuous application $\mu \longmapsto \int \hat{A} d \mu$;
- **3** The set of maximizing measures $\hat{\mathcal{M}}_{\max}(\hat{A})$ is non-empty;
- ② Since $\max \hat{A}|_{\hat{\mathcal{L}}_0} = \limsup_{i \to \infty} \sup A|_{[i]} < \beta(A)$, we conclude that $\mathcal{M}_{\max}(A)$ is equal to $\hat{\mathcal{M}}_{\max}(\hat{A})$.

Proposition

- 1 If $\max \bar{A}|_{\hat{\mathcal{L}}_0} = \beta(A)$, then $\hat{\mathcal{M}}_{\max}(\bar{A}) = \operatorname{Conv}(\mathcal{M}_{\max}(A) \sqcup \hat{\mathcal{D}}_{\max}(\bar{A}))$;
- 2 If $\max \bar{A}|_{\hat{\mathcal{L}}_0} < \beta(A)$, then $\hat{\mathcal{M}}_{\max}(\bar{A}) = \mathcal{M}_{\max}(A)$.

- **1** The set of blur measures $\mathcal{M}(\hat{\Sigma}, \hat{\sigma})$ is compact;
- 2 The upper semi-continuous extension potential \hat{A} induces an upper semi-continuous application $\mu \longmapsto \int \hat{A} d \mu$;
- **3** The set of maximizing measures $\mathcal{M}_{\max}(A)$ is non-empty;
- ② Since $\max \hat{A}|_{\hat{\mathcal{L}}_0} = \limsup_{i \to \infty} \sup A|_{[i]} < \beta(A)$, we conclude that $\mathcal{M}_{\max}(A)$ is equal to $\hat{\mathcal{M}}_{\max}(\hat{A})$.

Proposition

- 1 If $\max \bar{A}|_{\hat{\mathcal{L}}_0} = \beta(A)$, then $\hat{\mathcal{M}}_{\max}(\bar{A}) = \operatorname{Conv}(\mathcal{M}_{\max}(A) \sqcup \hat{\mathcal{D}}_{\max}(\bar{A}))$;
- 2 If $\max \bar{A}|_{\hat{\mathcal{L}}_0} < \beta(A)$, then $\hat{\mathcal{M}}_{\max}(\bar{A}) = \mathcal{M}_{\max}(A)$.

- **1** The set of blur measures $\mathcal{M}(\hat{\Sigma}, \hat{\sigma})$ is compact;
- 2 The upper semi-continuous extension potential \hat{A} induces an upper semi-continuous application $\mu \longmapsto \int \hat{A} d \mu$;
- 3 The set of maximizing measures $\hat{\mathcal{M}}_{\max}(\hat{A})$ is non-empty;
- Since max Â|_{L̂0} = lim sup_{i→∞} sup A|_[i] < β(A), we conclude that M_{max} (A) is equal to M_{max}(Â).

Proposition

- 1 If $\max \bar{A}|_{\hat{\mathcal{L}}_0} = \beta(A)$, then $\hat{\mathcal{M}}_{\max}(\bar{A}) = \operatorname{Conv}(\mathcal{M}_{\max}(A) \sqcup \hat{\mathcal{D}}_{\max}(\bar{A}))$;
- 2 If $\max \bar{A}|_{\hat{\mathcal{L}}_0} < \beta(A)$, then $\hat{\mathcal{M}}_{\max}(\bar{A}) = \mathcal{M}_{\max}(A)$.

- **1** The set of blur measures $\mathcal{M}(\hat{\Sigma}, \hat{\sigma})$ is compact;
- 2 The upper semi-continuous extension potential \hat{A} induces an upper semi-continuous application $\mu \longmapsto \int \hat{A} d \mu$;
- **3** The set of maximizing measures $\hat{\mathcal{M}}_{\max}(\hat{A})$ is non-empty;
- 4 Since $\max \hat{A}|_{\hat{\mathcal{L}}_0} = \limsup_{i \to \infty} \sup A|_{[i]} < \beta(A)$, we conclude that $\mathcal{M}_{\max}(A)$ is equal to $\hat{\mathcal{M}}_{\max}(\hat{A})$.

References

- R. Bissacot and R. Freire.
 - On the existence of maximizing measures for irreducible countable Markov shifts: a dynamical proof (2014)
- R. Bissacot and E. Garibaldi.

 Weak KAM methods and ergodic optimal problems for countable Markov shifts

 (2010)
- O. Jenkinson, R. Mauldin and M. Urbański.

 Ergodic optimization for countable alphabet subshifts of finite type (2006)

- T. Almeida and M. Sobottka. Blur shift spaces (2021)
- G. lommi and A. Velozo.

 The space of invariant measures for countable Markov shifts (2021)