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Motivation

Joint work with Julien Cassaigne, Pascal Hubert and Renaud
Leplaideur.

Old version on arxiv (without Julien): false.
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Objects

Substitutions

Consider a finite set A. Then consider the monoid A∗. A
substitution is a morphism of this free monoid.{

0 → 01

1 → 10

▶ Thue Morse substitution.
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Objects

A substitution σ defines a subshift K ⊂ AN. The sequence x is in
K if for every integers n, k, the word xn . . . xn+k−1 appears in some
σp(a), a ∈ A, p ∈ N.

For example x = 000 . . . does not appear in the subshift of the
Thue Morse substitution.{

0 → 01 → 0110 → 01101001

1 → 10 → 1001 → 10010110
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Objects

It defines a subshift of zero entropy and it is uniquely ergodic if the
substitution is primitive.

u = lim
+∞

σn(a),

The word u is called a periodic point of the substitution. For Thue
Morse we have for example

u = 01101001 . . .

Remark that, in this case, the subshift is also equal to

{Snu, n ∈ N}
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Objects

Consider a finite set F of words in A∗. A subshift of finite type
(SFT) is a subshift XF of AN such that no word of F appears in an
element of XF .

Examples with A = {0, 1}.
▶ F = {11}
▶ F = ∅,XF = AN.
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Thermodynamics

Entropy

Consider a finite set A. Let S be the shift map on AN.
Let (K,S) be a subshift and µ an invariant measure. We can
define

▶ the metric entropy hµ.

▶ the topological entropy:

htop = lim
+∞

log p(n)

n
,

where p(n) is the complexity function of the subshift.

sup
µ

hµ = htop
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Thermodynamics

V : K → R+ potential.
Pressure function for (K, S):

[0,+∞) → R

β 7→ sup
µ
(hµ − β

∫
Vdµ)
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Thermodynamics

It is a decreasing function with the following properties:.

β

P(β)
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Thermodynamics

▶ For a fixed β, any measure which realizes the maximum is an
equilibrium state.

▶ A phase transition is some β where the pressure function is
not analytic.

▶ The function P has an asymptote of the form −aβ + b with
a = inf{

∫
Vdµ, µ}.

▶ If P reaches its asymptote at some point, we speak of
freezing phase transition.
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Results

We are looking for phase transition for some SFT and potentials
related to substitutions.

Let X be the full shift. Let σ be the Thue Morse substitution and
let K be its subshift.

We find some class of potentials in order to have a freezing phase
transition such that the equilibrium state after the transition is the
measure of unique ergodicity of K.
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Results

Potentials

Le x ∈ AN such that x /∈ K, then we define:

▶ The word w is the biggest prefix of x inside the language of
K. By definition, d(x ,K) = 2−|w |.

▶ Let δ(x) = |w | and δk = δ(Sk(x)).
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Results

Let us denote Ξ1 the set of potentials of the following form where
δ(x) = n.

V : AN → R

V (x) =
g(x)

n + 1
+ o(

1

n
)

with g > 0 on K and g is a continuous functions.

Good example: V0(x) =
1

n+1 .
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Results

Theorem (B-Cassaigne-Hubert-Leplaideur)

For the Thue Morse subshift K, every potential V ∈ Ξ1 fulfills:
There exists a phase transition at some βc :

▶ Before βc the pressure is analytic and the equilibrium state
has full support.

▶ After this point, the pressure is equal to zero and the unique
ergodic measure of the substitution is the equilibrium state.

▶ Explicit upper bound (17) for βc for the potential 1
n+1 .
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Results

β

P(β)

βc
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Background

Theorem (Bruin-Leplaideur 2013, 2015)

For the following substitutions we have
▶ Thue-Morse:

▶ If α < 1 and V ∈ Ξα, phase transition.
▶ If α > 1 and V ∈ Ξα, no phase transition.

▶ Fibonacci substitution: For V ∈ Ξ1, Phase transition.

V (x) =
g(x)

(n + 1)α
+ o(

1

nα
)



Thermodynamic formalism and Thue Morse subshift.

Background

Proofs of Bruin-Leplaideur are not complete.

Recent results of

▶ Kucherenko-Quas 2023 ? but for two sided subshift and not
for the same speed of convergence for the potential ( log nn ).

▶ See also Chazottes-Kucharenko-Quas 2025 ?
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Example of SFT

Theorem (Bowen 75, Ruelle 76, Sinai 72)

For an aperiodic irreducible SFT and for a Holder continuous
potential, there is no phase transition. For every β, there is an
equilibrium state which is a Gibbs measure.
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Example of SFT

Gibbs measure

Definition
The Gibbs measure of a potentiel V is an invariant measure µ such
that there exist p,K such that for every n ∈ N, for every cylinder
C of length n and x ∈ C we have

1

K
≤ µ(C )

exp(SnV (x)− np)
≤ K

Remark that p = PV and PV = hµ +
∫
Vdµ.



Thermodynamic formalism and Thue Morse subshift.

Example of SFT

Method of Ruelle

For the SFT and a potential V we define

LV (f )(x) =
∑
Sy=x

eV (y)f (y)

LnV (f )(x) =
∑

Sny=x

eS
nV (y)f (y)

Then LV is an operator defined over continuous functions if V is.
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Example of SFT

Dual operator defined over measures

µ 7→ ν,∫
fdν =

∫
LV (f )dµ
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Example of SFT

Theorem (Ruelle)

For an irreducible aperiodic SFT and for an Holder continuous
potential V , there exists an unique eigenvalue λ > 0, an Holder
eigenfunction h > 0 and a measure ν such that

▶ LV h = λh

▶ L∗V ν = λν

▶ Moreover µ = hν is an invariant measure and an equilibrium
state.

▶ There exists θ < 1 and C > 0 such that for every function f
we have

||λ−nLnV f − h||∞ ≤ Cθn.

▶ The measure µ is a Gibbs measure of pressure log λ.
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Tool for the theorem

Our method

We define a transfert operator:

Consider a word wJ outside the language of K and V be a
potential constant on the cylinder J = [wJ ].

Let τ(x) be the return time on this cylinder for the shift and let g
be a function from J to R.
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Tool for the theorem

We define the transfert operator for β > 0 by :

(SNV )(y) =
N−1∑
k=0

V ◦ Sk(y)

Lz,β,V (g)(x) =
∑
n∈N

∑
τ(y)=n
Sn(y)=x

e−βSnV (y)−nzg(y)
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Tool for the theorem

Theorem (first citation by Leplaideur in 2000).

Theorem
Assume there exists β0 such that for β > β0 and x ∈ J we have:

L0,β,V (1J)(x) < 1

Then P(β) = zc(β) = 0 for β > β0 and the unique equilibrium
state is µK.

The construction does not depend on J !
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Tool for the theorem

Let x ∈ J, we need to compute for β >> 1:

L0,β,V0(1J)(x) =
∑
n∈N

∑
τ(y)=n
Sn(y)=x

e−βSnV (y)
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Computations

Accident

Consider x with δ(x) = p. If there exists some integer k such that
δ(Skx) > p − k and δ(S ix) = p − i for all i < k , then we speak of
accident at time k.
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Computations

A right special word is a word which has several right extensions.

A right special word is a word which has several left extensions.

A bispecial word is a left and right special word.
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Computations

Lemma
Let x be an infinite word outside K. Assume δ(x) = d and that
the first accident appears at b ≤ d. Then we have:

▶ xb . . . xd−1 is a bispecial word of L.
▶ x0 . . . xd−1 is not a special word.

y y ′

x
db d ′
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Computations

If y has no accident, then it is easy to compute SNV (y):

SNV (y) =
N−1∑
k=0

1

p − k
.

The problems come from accidents. . .
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Computations

A minimal forbidden word of K is a word w which is not in LTM,
and has minimal length in the sense that each of its proper factors
is in LTM.

Lemma
The word w is a minimal forbidden word for LTM if and only if it is
a forbidden bilateral extension of a bispecial word.

Now let R(w) = {u ̸= ε, uw ∈ wA∗, uw /∈ A+wA+}, be the set of
return words to w .
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Computations

Proof in four lines

Assume wJ is a minimal forbidden word of L which defines J.

L0,β,V0(1J)(x) =
∑

u∈R(wJ)

|u|−1∏
k=0

(1 +
1

δ(σk(uwJ))
)−β.

=
∑
M≥0

∑
u∈R(wJ)

M accidents

[
(|u0|+ 1) . . . (|uM−1|+ 1)(|uM |+ 1)

(|v1|+ 1) . . . (|vM |+ 1)(|wJ | − 1)
]−β.

∑
M

SM(wJ) =
∑
M≥0

(AM+1)(a,v ,b),(a,v ,b)

where A is an infinite matrix.


