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Thaler’s intermittent maps

Let X =10,1], and consider f:[0,1] — [0,1] such
that

* d > 2 full branches: [0,1] = 1; U---U I, sub-in-
tervals with f : I, — [0, 1] a orientation preserving
C? diffeomorphism

So, f has d fixed points &, ..., €.

* non-uniform expansion: f'(z)>1, z¢
{51, 7£d}’ and f/(ék) — 1 €. 5 }s

* nice-expansion near fixed points: o € (0,1),
f(@) =z~ by(z — fk)HE

P

332 Urr3

e V¢ W

G372 UNIVERSIDADE FEDERAL
“EEZ~ DO RIO DE JANEIRO

1/8



Thaler’s intermittent maps

Theorem (Thaler): There exists a unique er-
godic absolutely continuous o-finite measure
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Almost sure behaviour of the physical measures.

Lete, : [0,1] — M, ([0, 1]) denote the nt* empirical measure

1 n—1
k=0

Non-statistical behaviour (C., Melbourne, Talebi, 24): For almost every x € [0, 1]

d
{limit points of e, (x)} = {p15§1 + -+ Paoe Zpi = 1,and p, > O}.
—1

(/

- ¢, (x) does not converge for almost every x (non-statistical behaviour)
* no physical measures
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Distributional behaviour of the empirical measures

*let S = {(p1,...Pa) EREy:py + - +pg =1}
» forp € Sletv, = p,d, + - +pyd, , recall: e, () accumulates at {v,:pe8}

Distributional convergence of e,, (C., Melbourne, Talebi, 24): There exists a
random variable Z taking values in § so that

d
€n — Vg,

i.e. for A C M,([0,1])
Leb(z : e, (x) € A) - P(Z € n(A)),

where 7 : M,([0,1]) — § is the natural identification.
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Distributional behaviour of the empirical measures

For A c M,([0,1)]),
Leb(z :e,(x) € A) —» P(Z € n(A)),

and P(Z € -) can be computed for nice
sets.
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Natural measures

Corollary: There exists a p* € § so that for every probability measure A « Leb

1 n—1
" =0

Strong natural measures (C., Melbourne, Talebi, 24): For every probability
measure A\ < Leb

JeA = v,

6/8



Decay of correlations

Corollary: For every bounded u continuous at the &, ..., &,

/v-uof”dLeb%/vdLeb/ude* for all u € L' (Leb),

or equivalently,

/v-uof"d,u—>/vd,u/ud1/p* for all v € L (p).

N
52 UFR3

&g =T unveRsiDADE FeDERAL

=2 DO RIO DE JANEIRO



Thank you!
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