

Geometric properties of probability spaces: disintegration of measures

Christian S. Rodrigues

Universidade Estadual de Campinas
Brazil

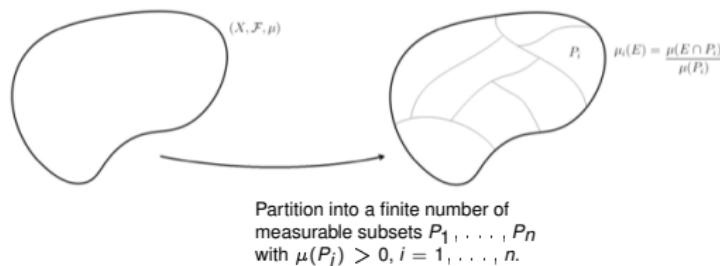
Campinas - 9th December 2025

Brazil-France THERMOGAMAS

Based on joint works with Gomes, Münch, and Possobon

Introduction

The disintegration of a measure over a partition of the space on which it is defined is a way to rewrite this measure as a combination of probability measures, which are concentrated on the elements of the partition.



$$\mu(E) = \sum_{i=1}^n \mu_i(E) \mu(P_i) = \sum_{i=1}^n \mu(P_i) \frac{\mu(E \cap P_i)}{\mu(P_i)}.$$

Introduction

- The disintegration of measures plays an important role on the understanding of statistical properties in many areas such as Dynamical Systems, Geometry, and Probability Theory.
- **Example:** In Ergodic Theory, the possibility of disintegrating a probability measure is directly related to the ergodic decomposition of invariant measures, which are objects encoding the asymptotic behavior of dynamical systems.

Disintegration of measures

Definition: disintegration

Consider:

- (X, \mathcal{F}, μ) probability space;
- \mathcal{P} partition of X into measurable subsets;
- π the natural projection that associates each $x \in X$ to the element $P \in \mathcal{P}$ which contains x ;
- $\hat{\mu} := \pi_* \mu := \mu \circ \pi^{-1}$.

A **disintegration** of μ with respect to \mathcal{P} is a family $\{\mu_P : P \in \mathcal{P}\}$ of probability measures on X such that:

- 1 $\mu_P(P) = 1$ for $\hat{\mu}$ -almost every $P \in \mathcal{P}$;
- 2 $P \mapsto \mu_P(E)$ is measurable for all $E \in \mathcal{F}$;
- 3 $\mu(E) = \int \mu_P(E) d\hat{\mu}(P)$ for all $E \in \mathcal{F}$.

Geometric information is not taken into account while studying the disintegration of measures.

Disintegration of measures

Definition: disintegration

Consider:

- (X, \mathcal{F}, μ) probability space;
- \mathcal{P} partition of X into measurable subsets;
- π the natural projection that associates each $x \in X$ to the element $P \in \mathcal{P}$ which contains x ;
- $\hat{\mu} := \pi_* \mu := \mu \circ \pi^{-1}$.

A **disintegration** of μ with respect to \mathcal{P} is a family $\{\mu_P : P \in \mathcal{P}\}$ of probability measures on X such that:

- 1 $\mu_P(P) = 1$ for $\hat{\mu}$ -almost every $P \in \mathcal{P}$;
- 2 $P \mapsto \mu_P(E)$ is measurable for all $E \in \mathcal{F}$;
- 3 $\mu(E) = \int \mu_P(E) d\hat{\mu}(P)$ for all $E \in \mathcal{F}$.

Geometric information is not taken into account while studying the disintegration of measures.

On optimal transport

Basic problem (G. Monge, 1781): moving a distribution like a pile of sand from a place to another at minimum **cost**.

Monge-Kantorovich Problem: X, Y Radon spaces, $\mu \in \mathcal{P}(X)$, $\nu \in \mathcal{P}(Y)$, and $c : X \times Y \rightarrow [0, \infty]$ fixed Borel cost function, minimise

$$\gamma \mapsto \int_{X \times Y} c(x, y) d\gamma(x, y)$$

among all measures $\gamma \in \mathcal{P}(X \times Y)$ with marginals μ and ν .

On optimal transport

Basic problem (G. Monge, 1781): moving a distribution like a pile of sand from a place to another at minimum **cost**.

Monge-Kantorovich Problem: X, Y Radon spaces, $\mu \in \mathcal{P}(X)$, $\nu \in \mathcal{P}(Y)$, and $c : X \times Y \rightarrow [0, \infty]$ fixed Borel cost function, minimise

$$\gamma \mapsto \int_{X \times Y} c(x, y) \, d\gamma(x, y)$$

among all measures $\gamma \in \mathcal{P}(X \times Y)$ with marginals μ and ν .

Wasserstein spaces

Assume that the Monge-Kantorovich Problem is defined for $\mu, \nu \in \mathcal{P}(M)$.

- 1 When (M, d) is a metric space:

$$W(\mu, \nu) = \left(\inf_{\gamma \in \Pi(\mu \times \nu)} \int d(x_1, x_2)^p d\gamma(x_1, x_2) \right)^{1/p}$$

$\Pi(\mu \times \nu)$ is the set of γ with marginals μ and ν .

Constraining W_p to a subset in which it takes finite values:

- 2 $(\mathcal{P}(M), W_p)$ is a metric space.
- 3 Moreover $\mathcal{P}(M)$ inherits properties of M .
- 4 We can study geometry on $(\mathcal{P}(M), W_2)$.

Wasserstein spaces

Assume that the Monge-Kantorovich Problem is defined for $\mu, \nu \in \mathcal{P}(M)$.

- 1 When (M, d) is a metric space:

$$W(\mu, \nu) = \left(\inf_{\gamma \in \Pi(\mu \times \nu)} \int d(x_1, x_2)^p d\gamma(x_1, x_2) \right)^{1/p}$$

$\Pi(\mu \times \nu)$ is the set of γ with marginals μ and ν .

Constraining W_p to a subset in which it takes finite values:

- 2 $(\mathcal{P}(M), W_p)$ is a metric space.
- 3 Moreover $\mathcal{P}(M)$ inherits properties of M .
- 4 We can study geometry on $(\mathcal{P}(M), W_2)$.

Wasserstein spaces

Assume that the Monge-Kantorovich Problem is defined for $\mu, \nu \in \mathcal{P}(M)$.

- 1 When (M, d) is a metric space:

$$W(\mu, \nu) = \left(\inf_{\gamma \in \Pi(\mu \times \nu)} \int d(x_1, x_2)^p d\gamma(x_1, x_2) \right)^{1/p}$$

$\Pi(\mu \times \nu)$ is the set of γ with marginals μ and ν .

Constraining W_p to a subset in which it takes finite values:

- 2 $(\mathcal{P}(M), W_p)$ is a metric space.
- 3 Moreover $\mathcal{P}(M)$ inherits properties of M .
- 4 We can study geometry on $(\mathcal{P}(M), W_2)$.

Wasserstein spaces

Assume that the Monge-Kantorovich Problem is defined for $\mu, \nu \in \mathcal{P}(M)$.

- 1 When (M, d) is a metric space:

$$W(\mu, \nu) = \left(\inf_{\gamma \in \Pi(\mu \times \nu)} \int d(x_1, x_2)^p d\gamma(x_1, x_2) \right)^{1/p}$$

$\Pi(\mu \times \nu)$ is the set of γ with marginals μ and ν .

Constraining W_p to a subset in which it takes finite values:

- 2 $(\mathcal{P}(M), W_p)$ is a metric space.
- 3 Moreover $\mathcal{P}(M)$ inherits properties of M .
- 4 We can study geometry on $(\mathcal{P}(M), W_2)$.

Wasserstein spaces

Assume that the Monge-Kantorovich Problem is defined for $\mu, \nu \in \mathcal{P}(M)$.

- 1 When (M, d) is a metric space:

$$W(\mu, \nu) = \left(\inf_{\gamma \in \Pi(\mu \times \nu)} \int d(x_1, x_2)^p d\gamma(x_1, x_2) \right)^{1/p}$$

$\Pi(\mu \times \nu)$ is the set of γ with marginals μ and ν .

Constraining W_p to a subset in which it takes finite values:

- 2 $(\mathcal{P}(M), W_p)$ is a metric space.
- 3 Moreover $\mathcal{P}(M)$ inherits properties of M .
- 4 We can study geometry on $(\mathcal{P}(M), W_2)$.

How is the disintegration of measure associated with the Optimal Transport Theory?

Theorem A - Disintegration of measures (Possobon, R. 2025)

- X and Y locally compact and separable metric spaces;
- $\pi : X \rightarrow Y$ Borel map;
- μ in $\mathcal{M}_+(X)$;
- $\nu = \pi_* \mu \in \mathcal{M}_+(Y)$.

Then, there exists measures $\{\mu_y \in \mathcal{M}_+(X)\}_{y \in Y}$ such that:

- 1 $y \mapsto \mu_y$ is a Borel map;
- 2 μ_y is a probability on X for ν -almost every $y \in Y$;
- 3 $\mu = \nu \otimes \mu_y$, that is, $\mu(A) = \int_Y \mu_y(A) d\nu(y)$ for all measurable subset $A \subset X$;
- 4 μ_y is concentrated on $\pi^{-1}(y)$ for ν -almost every $y \in Y$.

How is the disintegration of measure associated with the Optimal Transport Theory?

Theorem A - Disintegration of measures (Possobon, R. 2025)

- X and Y locally compact and separable metric spaces;
- $\pi : X \rightarrow Y$ Borel map;
- μ in $\mathcal{M}_+(X)$;
- $\nu = \pi_* \mu \in \mathcal{M}_+(Y)$.

Then, there exists measures $\{\mu_y \in \mathcal{M}_+(X)\}_{y \in Y}$ such that:

- 1 $y \mapsto \mu_y$ is a Borel map;
- 2 μ_y is a probability on X for ν -almost every $y \in Y$;
- 3 $\mu = \nu \otimes \mu_y$, that is, $\mu(A) = \int_Y \mu_y(A) d\nu(y)$ for all measurable subset $A \subset X$;
- 4 μ_y is concentrated on $\pi^{-1}(y)$ for ν -almost every $y \in Y$.

How is the disintegration of measure associated with the Optimal Transport Theory?

Theorem A - Disintegration of measures (Possobon, R. 2025)

- X and Y locally compact and separable metric spaces;
- $\pi : X \rightarrow Y$ Borel map;
- μ in $\mathcal{M}_+(X)$;
- $\nu = \pi_* \mu \in \mathcal{M}_+(Y)$.

Then, there exists measures $\{\mu_y \in \mathcal{M}_+(X)\}_{y \in Y}$ such that:

- ➊ $y \mapsto \mu_y$ is a Borel map;
- ➋ μ_y is a probability on X for ν -almost every $y \in Y$;
- ➌ $\mu = \nu \otimes \mu_y$, that is, $\mu(A) = \int_Y \mu_y(A) d\nu(y)$ for all measurable subset $A \subset X$;
- ➍ μ_y is concentrated on $\pi^{-1}(y)$ for ν -almost every $y \in Y$.

How is the disintegration of measure associated with the Optimal Transport Theory?

Theorem A - Disintegration of measures (Possobon, R. 2025)

- X and Y locally compact and separable metric spaces;
- $\pi : X \rightarrow Y$ Borel map;
- μ in $\mathcal{M}_+(X)$;
- $\nu = \pi_* \mu \in \mathcal{M}_+(Y)$.

Then, there exist measures $\{\mu_y \in \mathcal{M}_+(X)\}_{y \in Y}$ such that:

- ❶ $y \mapsto \mu_y$ is a Borel map;
- ❷ μ_y is a probability on X for ν -almost every $y \in Y$;
- ❸ $\mu = \nu \otimes \mu_y$, that is, $\mu(A) = \int_Y \mu_y(A) d\nu(y)$ for all measurable subset $A \subset X$;
- ❹ μ_y is concentrated on $\pi^{-1}(y)$ for ν -almost every $y \in Y$.

Definition: disintegration map

- X and Y locally compact and separable metric spaces;
- $\pi : X \rightarrow Y$ Borel map;
- $\mu \in \mathcal{M}_+(X)$;
- $\nu = \pi_* \mu \in \mathcal{M}_+(Y)$;
- disintegration of μ such that $\mu = \nu \otimes \mu_y$.

We define the **disintegration map** by:

$$f : Y \rightarrow (\mathcal{P}(X), W_2)$$

$$y \mapsto \mu_y$$

such that $\mu = \nu \otimes f(y)$.

Definition: disintegration map

- X and Y locally compact and separable metric spaces;
- $\pi : X \rightarrow Y$ Borel map;
- $\mu \in \mathcal{M}_+(X)$;
- $\nu = \pi_* \mu \in \mathcal{M}_+(Y)$;
- disintegration of μ such that $\mu = \nu \otimes \mu_y$.

We define the **disintegration map** by:

$$f : Y \rightarrow (\mathcal{P}(X), W_2)$$

$$y \mapsto \mu_y$$

such that $\mu = \nu \otimes f(y)$.

Theorem B (Possobon, R. 2025)

- X, Y be locally compact, complete, separable metric spaces;
- $\pi : X \rightarrow Y$ Borel map;
- $\mu \in \mathcal{M}_+(X)$;
- $\nu := \pi_* \mu$.

If the disintegration map of μ with respect to ν is weakly continuous and Y is path connected, then given two points $y, y' \in Y$:

- (i) there exists a path on $(\mathcal{P}_2(X), W_2)$, given by the disintegration map, connecting μ_y and $\mu_{y'}$, the respective conditional measures given by Theorem A;
- (ii) if X is a smooth compact Riemannian manifold equipped with a volume measure vol , $\mu \ll \text{vol}$, π is such that $\pi^{-1}(y)$ has μ -positive measure for ν -almost every y , the disintegration map is minimising invariant, and either μ_y or $\mu_{y'}$ is absolutely continuous w.r.t. vol , then all the measures μ_{y_t} on the path given by item (i) are absolutely continuous w.r.t. vol ;

Theorem B (Possobon, R. 2025)

- X, Y be locally compact, complete, separable metric spaces;
- $\pi : X \rightarrow Y$ Borel map;
- $\mu \in \mathcal{M}_+(X)$;
- $\nu := \pi_* \mu$.

If the disintegration map of μ with respect to ν is weakly continuous and Y is path connected, then given two points $y, y' \in Y$:

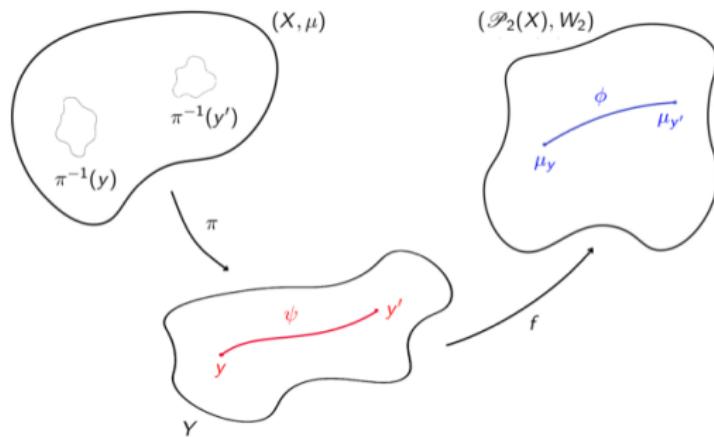
- (i) there exists a path on $(\mathcal{P}_2(X), W_2)$, given by the disintegration map, connecting μ_y and $\mu_{y'}$, the respective conditional measures given by Theorem A;
- (ii) if X is a smooth compact Riemannian manifold equipped with a volume measure vol , $\mu \ll \text{vol}$, π is such that $\pi^{-1}(y)$ has μ -positive measure for ν -almost every y , the disintegration map is minimising invariant, and either μ_y or $\mu_{y'}$ is absolutely continuous w.r.t. vol , then all the measures μ_{y_t} on the path given by item (i) are absolutely continuous w.r.t. vol ;

Theorem B (Possobon, R. 2025)

- X, Y be locally compact, complete, separable metric spaces;
- $\pi : X \rightarrow Y$ Borel map;
- $\mu \in \mathcal{M}_+(X)$;
- $\nu := \pi_* \mu$.

If the disintegration map of μ with respect to ν is weakly continuous and Y is path connected, then given two points $y, y' \in Y$:

- (i) there exists a path on $(\mathcal{P}_2(X), W_2)$, given by the disintegration map, connecting μ_y and $\mu_{y'}$, the respective conditional measures given by Theorem A;
- (ii) if X is a smooth compact Riemannian manifold equipped with a volume measure vol , $\mu \ll \text{vol}$, π is such that $\pi^{-1}(y)$ has μ -positive measure for ν -almost every y , the disintegration map is minimising invariant, and either μ_y or $\mu_{y'}$ is absolutely continuous w.r.t. vol , then all the measures μ_{y_t} on the path given by item (i) are absolutely continuous w.r.t. vol ;



- Existence of ϕ .
 - $\mu \ll \text{vol}$, $\mu(\pi^{-1}(y)) > 0$ for ν -a.e. y , f minimising invariant, and either $\mu_y \ll \text{vol}$ or $\mu_{y'} \ll \text{vol} \implies \mu_{y_t} \ll \text{vol}$.

On foliations and disintegration maps

- X, Y locally compact separable metric spaces;
- $\pi : X \rightarrow Y$ Borel map;
- $\mu \in \mathcal{M}_+(X)$;
- $\nu := \pi_* \mu$;
- $\{\mu_y\}_{y \in Y}$ a disintegration of μ with respect to ν given by Theorem A;
- f the disintegration map;

$$|\nabla f(y)|_p := \lim_{\varepsilon \rightarrow 0} \sup_{y', y'' \in B_\varepsilon(y)} \frac{W_p(\mu_{y'}, \mu_{y''})}{d_Y(y', y'')}$$

$$\mathcal{E}_p(f) := \|\nabla f\|_{\infty, p} = \sup_{y \in Y} |\nabla f(y)|_p.$$

- $|\nabla f(y)|_p \geq 1$ everywhere.
- $\min_f \mathcal{E}_p(f) = 1 \iff \|\nabla f\|_{\infty, p} = 1 \iff |\nabla f(y)| = 1$ for all y . In this case, we have an isometry $W_p = d_Y$.

Theorem C (Münch, Possobon, R. 2025)

- (X, d) locally compact geodesic Polish space;
- Y compact Polish space;
- $\pi : X \rightarrow Y$ Borel map;
- $\mu \in \mathcal{M}_+(X)$;
- $\nu := \pi_* \mu$;
- $\{\mu_y\}_{y \in Y}$ disintegration of μ w.r.t. ν such that $\text{supp}(\mu_y) = \pi^{-1}(y)$;
- $f_{\mu, \pi}$ the related disintegration map.

Then,

$$\min_{f_{\mu, \pi}} \mathcal{E}_p(f_{\mu, \pi}) = 1 \iff \{\pi^{-1}(y)\} \text{ "uniform" foliation on } X.$$

Isometric group actions

Definition: Isometric group actions

Given a group G (with identity e) and a Riemannian manifold M , an **isometric group action** of G on M , denoted by $G \curvearrowright M$, is a group homomorphism $\theta : G \rightarrow Iso(M)$, where $Iso(M)$ is the group of isometries of M . For $g \in G$ and $x \in M$ we denote $g \cdot x$, the action of g on x . By the Myers-Steenrod Theorem, G is actually a Lie group.

Definition: Orbits and quotient spaces

Given $x \in M$ we define its **orbit** as the set $G \cdot x := \{g \cdot x : g \in G\}$, the **quotient space** of this action as

$$M/G := \{G \cdot x : x \in M\},$$

and endow it with the quotient topology under the projection $\pi : M \rightarrow M/G$ defined via $\pi(x) = G \cdot x$.

Isometric group actions

Definition: Isometric group actions

Given a group G (with identity e) and a Riemannian manifold M , an **isometric group action** of G on M , denoted by $G \curvearrowright M$, is a group homomorphism $\theta : G \rightarrow \text{Iso}(M)$, where $\text{Iso}(M)$ is the group of isometries of M . For $g \in G$ and $x \in M$ we denote $g \cdot x$, the action of g on x . By the Myers-Steenrod Theorem, G is actually a Lie group.

Definition: Orbits and quotient spaces

Given $x \in M$ we define its **orbit** as the set $G \cdot x := \{g \cdot x : g \in G\}$, the **quotient space** of this action as

$$M/G := \{G \cdot x : x \in M\},$$

and endow it with the quotient topology under the projection $\pi : M \rightarrow M/G$ defined via $\pi(x) = G \cdot x$.

Theorem D (Gomes, R. 2023)

Let $G \curvearrowright M$ be an isometric group action with group G being compact and M a complete Riemannian manifold equipped with geodesic distance d . Then, convexity properties of an entropy-like functional defined on the disintegrated measures on the orbits guarantees necessary and sufficient conditions to the Ricci curvature on directions related to the orbits to be bounded below by a constant $K \in \mathbb{R}$.

References

- R. Possobon and C. Rodrigues; “Geometric properties of disintegration of measures” in *Ergodic Theory and Dynamical Systems* 45, 1619-1648 (2025)
- F. Münch, R. Possobon, and C. Rodrigues; “Classification of foliations via disintegration maps” in [arXiv:2509.14209]
- A. M. de S. Gomes, and C. Rodrigues; “Rigidity of curvature bounds of quotient spaces of isometric actions” in [arXiv:2310.15332]

Thanks for your attention!