
Geometric properties of probability spaces:
disintegration of measures

Christian S. Rodrigues

Universidade Estadual de Campinas
Brazil

Campinas - 9th December 2025

Brazil-France THERMOGAMAS
Based on joint works with Gomes, Münch, and Possobon



Disintegration
On optimal transport

Main results

Introduction

The disintegration of a measure over a partition of the space on
which it is defined is a way to rewrite this measure as a combination
of probability measures, which are concentrated on the elements of
the partition.

Partition into a finite number of
measurable subsets P1; : : : ; Pn
with �(Pi ) > 0, i = 1; : : : ; n.

�(E) =

nX
i=1

�i (E)�(Pi ) =

nX
i=1

�(Pi )
�(E \ Pi )

�(Pi )
:
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Introduction

The disintegration of measures plays an important role on the
understanding of statistical properties in many areas such as
Dynamical Systems, Geometry, and Probability Theory.

Example: In Ergodic Theory, the possibility of disintegrating a
probability measure is directly related to the ergodic
decomposition of invariant measures, which are objects
encoding the asymptotic behavior of dynamical systems.
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Disintegration of measures

Definition: disintegration

Consider:

(X ;F ; �) probability space;

P partition of X into measurable subsets;

� the natural projection that associates each x 2 X to the element P 2 P which contains x ;

�̂ := ��� := � � ��1.

A disintegration of � with respect to P is a family f�P : P 2 Pg of probability measures on X
such that:

1 �P(P) = 1 for �̂-almost every P 2 P ;
2 P 7! �P(E) is measurable for all E 2 F ;

3 �(E) =
R
�P(E) d�̂(P) for all E 2 F .

Geometric information is not taken into account while studying the disintegration of measures.
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On optimal transport

Basic problem (G. Monge, 1781): moving a distribution like a pile of
sand from a place to another at minimum cost.

Monge-Kantorovich Problem: X , Y Radon spaces, � 2 P(X ),
� 2 P(Y ), and c : X � Y ! [0;1] fixed Borel cost function, minimise


 7!

Z
X�Y

c(x ; y) d
(x ; y)

among all measures 
 2 P(X � Y ) with marginals � and �.
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Wasserstein spaces

Assume that the Monge-Kantorovich Problem is defined for
�; � 2 P(M).

1 When (M;d) is a metric space:

W (�; �) =

�
inf


2Π(���)

Z
d(x1; x2)

pd
(x1; x2)

�1=p

Π(�� �) is the set of 
 with marginals � and �.

Constraining Wp to a subset in which it takes finite values:
2 (P(M);Wp) is a metric space.
3 Moreover P(M) inherits properties of M.
4 We can study geometry on (P(M);W2).
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Disintegration and absolute continuity
Disintegration maps and foliations
Disintegration maps and curvature

How is the disintegration of measure associated with the Optimal
Transport Theory?

Theorem A - Disintegration of measures (Possobon, R. 2025)

� X and Y locally compact and separable metric spaces;

� � : X ! Y Borel map;

� � in M+(X );

� � = ��� 2M+(Y ).

Then, there exists measures f�y 2M+(X )gy2Y such that:
1 y 7! �y is a Borel map;
2 �y is a probability on X for �-almost every y 2 Y ;
3 � = � 
 �y , that is, �(A) =

R
Y �y (A) d�(y) for all measurable

subset A � X ;
4 �y is concentrated on ��1(y) for �-almost every y 2 Y .
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Definition: disintegration map

X and Y locally compact and separable metric spaces;

� : X ! Y Borel map;

� 2M+(X );

� = ��� 2M+(Y );

disintegration of � such that � = � 
 �y .

We define the disintegration map by:

f : Y ! (P(X );W2)

y 7! �y

such that � = � 
 f (y).
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Theorem B (Possobon, R. 2025)

X , Y be locally compact, complete, separable metric spaces;

� : X ! Y Borel map;

� 2M+(X );

� := ���.

If the disintegration map of � with respect to � is weakly continuous
and Y is path connected, then given two points y ; y 0 2 Y :
(i) there exists a path on (P2(X );W2), given by the disintegration
map, connecting �y and �y 0 , the respective conditional measures
given by Theorem A;
(ii) if X is a smooth compact Riemannian manifold equipped with a
volume measure vol, �� vol, � is such that ��1(y) has �-positive
measure for �-almost every y , the disintegration map is minimising
invariant, and either �y or �y 0 is absolutely continuous w.r.t. vol, then
all the measures �yt on the path given by item (i) are absolutely
continuous w.r.t. vol;
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Existence of �.

�� vol, �(��1(y)) > 0 for �-a.e. y , f minimising invariant, and either �y � vol or
�y0 � vol =) �yt � vol.
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On foliations and disintegration maps

X ; Y locally compact separable metric spaces;

� : X ! Y Borel map;

� 2 M+(X );

� := ���;

f�ygy2Y a disintegration of � with respect to � given by Theorem A;

f the disintegration map;

jrf (y)jp := lim
"!0

sup
y 0;y 002B"(y)

Wp(�y 0 ; �y 00)

dY (y 0; y 00)

Ep(f ) := krfk1;p = sup
y2Y

jrf (y)jp:

jrf (y)jp � 1 everywhere.

minf Ep(f ) = 1 () krfk1;p = 1 () jrf (y)j = 1 for all y . In this
case, we have an isometry Wp = dY .
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Theorem C (Münch, Possobon, R. 2025)

(X ;d) locally compact geodesic Polish space;

Y compact Polish space;

� : X ! Y Borel map;

� 2M+(X );

� := ���;

f�ygy2Y disintegration of � w.r.t. � such that supp(�y ) = ��1(y);

f�;� the related disintegration map.

Then,

min
f�;�

Ep(f�;�) = 1 () f��1(y)g “uniform” foliation on X .
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Isometric group actions

Definition: Isometric group actions

Given a group G (with identity e) and a Riemannian manifold M, an
isometric group action of G on M, denoted by G y M, is a group
homomorphism � : G ! Iso(M), where Iso(M) is the group of
isometries of M. For g 2 G and x 2 M we denote g � x , the action of g
on x . By the Myers-Steenrod Theorem, G is actually a Lie group.

Definition: Orbits and quotient spaces

Given x 2 M we define its orbit as the set G � x := fg � x : g 2 Gg,
the quotient space of this action as

M=G := fG � x : x 2 Mg;

and endow it with the quotient topology under the projection
� : M ! M=G defined via �(x) = G � x .
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Theorem D (Gomes, R. 2023)

Let G y M be an isometric group action with group G being compact
and M a complete Riemannian manifold equipped with geodesic
distance d . Then, convexity properties of an entropy-like functional
defined on the disintegrated measures on the orbits guarantees
necessary and sufficient conditions to the Ricci curvature on
directions related to the orbits to be bounded below by a constant
K 2 R.
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Thanks for your attention!
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