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Course I- Discrete Breathers (DBs) in Periodic Networks
             Existence proofs of DBs and Multi(sites)breathers

Linear Stability
Numerical calculations of DBs 

Course II- Playing with Discrete Breathers
Spontaneous Manifestation of DBs
Spreading of a wave packet
Interaction of DBs with phonons (elastic and inelastic)
Energy Transportation:Mobility of DBs, Energy transport 
by phase torsion (Multibreathers)
Targeted  Transfer….. Biochemistry

Course III- Random Nonlinear Networks
DBs in systems with discrete phonon spectrum 
(random etc…)

             Open problem: Spreading of a wave packet in random 
nonlinear networks with discrete linear spectrum
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DBs: Discrete Breathers (Time periodic solutions)
interest in physics: energy (or charge) trapping

Spontaneous Energy trapping by
Discrete Breathers (DB)

in complex extended dynamical
systems

DBs are spatially localized time-
periodic solutions

(avoid resonances with linear
spectrum)

DBs families behave as Single
Anharmonic Oscillators (their

frequency depends on the
amplitude):

Energy versus Action H(I)
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Course I: Discrete Breathers in Periodic Networks 

Pioneering Discovery:
Sievers and Takeno 1988 (ILM)
Campbell and Peyrard 1990 (Discrete Breathers-DBs)

Generic Nonlinear Excitations (not restricted to 
special Integrable Models)

1- Existence proofs of DBs and Multi(sites)breathers
2-Linear Stability
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Initial wavepacket
(large enough)

Chaotic or « quasiperiodic »
transient

radiationradiation

Time periodic
solution

no radiation

Spontaneous Formation of a
DISCRETE BREATHER

Sievers and Takeno 1988

Sievers and Takeno (1988): 
from a initial localized wavepacket

A large part of the initial energy 
remains localized as a DB, the rest 
spreads to zero at infinity

Limit

Transient

Initial

The second moment diverges but 
the participation number does not
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Discrete Breathers-DBs are spatially localized 
TIME-PERIODIC solutions 
They may spontaneously manifest in various situations

DBs are generic Nonlinear Excitations (not restricted to 
special Integrable Models)

Part of the energy does not spread at infinity
The limit state is  a DISCRETE BREATHER
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1-Existence Proofs of DBs:

General Principles 
Anharmonicity: the frequency depends on the amplitude
Discreteness: The frequency (and harmonics) escape the linear 
continuous spectrum
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Typical Models with DBs on networks in d dimensions

DNLS models

FPU

Klein-Gordon
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1-Existence Proofs of DBs  by the Principle of Anticontinuity
(MacKay SA 1994)  An array of weakly coupled nonlinear oscillators
(any dimension not necessarily spatially periodic )

Anticontinuous limit: the system is a
collection of uncoupled
anharmonic oscillators C=0.

At C=0, the anharmonic oscillators oscillate independantly
periodicallywith theit own period
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Single DB: σi=0 for all i except for one value of i

Multisite DBs σi=0, 1 or -1

Theorem: Continuation at C≠0  in the space of
time reversible solutions of the solutions at C=0 by
the Implicit Function Theorem

Coding sequence at C=0

At C=0, time periodic solutions which are time  reversible can be
Described by a discrete coding sequence e.g.
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Implicit function theorem (Wikipedia):

Let X, Y, Z be Banach Spaces. Let the mapping f: X×Y ➝ Z be
continuously Frechet Differentiable. If (x0,y0) ∈ X×Y , f(x0,y0) = 0, and
y ➝ D f(x0,y0) . (0,y)  is a Banach space isomorphism from Y onto Z,
then there exist neighbourhoods U of x0 and V of y0 and a Frechet
differentiable function  g : U ➝V such that f(x,g(x)) = 0 and f(x,y) = 0

 if and only if y = g(x), for all (x,y) ∈ U×V.
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Conditions for implicit function theorem hold
at the anticontinuous limit (ω= 2 π/T) if

n ω ≠  ω0 for all n
d Ω/d I ≠  0  at Ω(I)= ω

The frequency of  a single
anharmonic oscillator Ω(I)
depends on its action I

Action-angle representation
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This theorem hold close to an anticontinuous limit

Example of model without anticontinuous limit:
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Theorem: If on can find a 2π−periodici (trying) function  g such that J≠0
and

Then (hard) DB exists

DB= Invariant 2π periodic loops

Extrema of E at constant J with respect to ai and 2π−periodic gi 
yields solutions. Lagrange multiplier is the square frequency.

2-Existence Proofs of hard DBs  by variational Methods for Hamiltonian with the form
H= Σi pi

2 /2m +V({ui})   Aubry Kopidakis Kadelburg 2001
V is a convex function. Works for « Hard DBs » in -Translationally Invariant systems
-at any dimension- with or without acoustic Phonons
(Hold for ß-FPU)  ui(t)= ai + gi(ω t+α )
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Trying loops

with

Example of application: DBs in FPU chain

For κ small 

When
Proof for the existence of DBs near
Band edge
« James Condition »

0<α <1
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3-Existence Proofs of DBs  near band edge by  central manifold theorem
(G. James 2001-2003)

Numerical calculations of DBs
can be easily done by following by continuation 
(by small steps and  a Newton scheme), 
the trivial DBs from the anticontinuous
limit C=0

One discovers various  bifurcations
simple or pitchfok for DBs away from the 
anticontinuous limit. 

Some similarity with the standard map (related 
with the Frenkel Kontorowa model
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Discrete Breathers can be numerically calculated
with a high accuracy:

DB profiles in a 1d chain of
harmonically coupled Cubic,

Morse and Lenard-Jones potentials DB profile in 2d (cubic potential) 
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The Hill equation:
Linear with time periodic
coefficients period T

Linear symplectic Floquet operator

Internal modes and continuum

2-Linear Stability  of DBs:

Extended modes

Floquet spectrum
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DBs are linearly stable when all the eigenvalues of the Floquet
operator are on the unit circle

Near the anticontinuous limit, single DBs are linearly stable while
multi DBs may be either linearly stable or unstable.

For multi DBs, there is always a choice of the sign of the σi of the
coding sequence  {σi} such that the multi DBs is linearly stable near
the anticontinuous limit
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DBs can be continued versus ωb by the implicit function theorem 
when this condition is fulfilled.
It is always continuable in some neighbourhood of the anticontinuous 
limit. 

There is always a Floquet eigenvalue 1 corresponding to
the eigenvector obtained by phase derivation  ui(t) = gi(ωbt+α) with
respect to phase α.  εi(t) = gi

’(ωbt+α) is solution of

This eigenvalue 1 generally is twice degenerate with 
a single eigenvector
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DBs can be generally continued as a function of ωb (or the action,
amplitude etc…)   ui(t, ωb) = gi(ωbt+α,ωb)

dui(t, ωb)/ d ωb = t gi’(ωbt+α,ωb) + ∂ gi(ωbt+α,ωb) / ∂ωb    fulfills the
Hill equation

But is not an eigenvector  with eigenvalue 1 because it
grows linearly with time and thus is not bound.

This  marginal mode is called growth mode

Bifurcation when ∂ gi(ωbt+α,ωb) / ∂ωb  is not defined (∞)
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Band Analysis of DBs

Bands ν

Instability at θ=0

Since ui(t) is time-periodic with period T,
Bloch-Floquet theorem holds and  the eigen
solutions fulfills:

Equations Eν(θ) =0 yield the arguments
of the Floquet eigenvalues on the unit
circle

Introduce the eigenvalue problem of the self-adjoint operator
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Instability at θ=π

Krein Instability
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DB Bifurcation

Example of Band Structure
(KG chain with Morse potential)
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Course II- Playing with Discrete Breathers
Spontaneous Manifestation of DBs
Spreading of a wave packet
Interaction of DBs with phonons (elastic and inelastic)
Energy Transportation:Mobility of DBs, Energy transport 
by phase torsion (Multibreathers)
Targeted  Transfer….. Biochemistry
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1- Spontaneous Manifestation of DBs

1- At thermal equilibrium ?

2-Out of thermal equilibrium:
1-by a local injection of a big packet of energy

Takeno and Sievers

2- by modulational instability
M. Peyrard

3- by fast quenching
Aubry and Tsironis
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Initial wavepacket
(large enough)

Chaotic or « quasiperiodic »
transient

radiationradiation

Time periodic
solution

no radiation

Spontaneous Formation of a DB
from an initial wave packet

Sievers and Takeno 1988

Sievers and Takeno (1988): 
from a initial localized wavepacket

A large part of the initial energy 
remains localized as a DB, the rest 
spreads to zero at infinity

Limit

Transient

Initial

The second moment diverges but 
the participation number does not
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DBs generation by fast quenching of a 2d KG quartic model

Tsironis SA PRL 1996
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Anomalous slow relaxation of the energy  observed as t−α   where
α(T) depends on the initial temperature T
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2

DBs creation from modulational instability 

From a small amplitude plane wave un(0) = a (-1)n at q= π

I. Daumont, T. Dauxois & M. Peyrard 1997
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2-DBs interacting with
small amplitude travelling waves

(phonon with frequency ω(q) )

1-linear interaction (the Hill equation)

One channel Two-channels

Generation of harmonics ±ω(q) + nΩ
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One-channel: Elastic phonon scattering on a single impurity
Fano resonance 

Phase shifts (Levinson theorem): Transmission coefficient   

DB
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Two channel scattering

Inelastic:  the DB energy decays

Higher order p:   p ω(q)+k Ω belongs to the phonon spectrum
DB may grow at the expanse of the incoming phonon or decay
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Fig. T. Cretegny
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Interaction of DBs with small perturbations at higher
order p is always inelastic  Johansson-Aubry

pω + n Ω��  ∈ Linear spectrum
for some p large enough  ⇒ radiation  � ����

Example:

Generate either a Growth of the DB or a Decay
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Breathing Mode

Decay of the perturbation by
radiation

and  Growth of the DB
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Interaction with small amplitude extended phonons

Growth or Decay of the DB

Since the phonon has infinite energy, the process stops either by
DB decay to zero or a DB instability,  DB mobility etc….



Serge Serge AubryAubry,  LLB, FRANCE,  LLB, FRANCE

 Energy Transportation by  DBs

1- Mobile DBs (periodic systems)

2- MultiDBs are able to carry energy by phase torsion

3-Targeted Transfer of DBs
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A DB is an invariant loop in the phase space
Perturbation: a  mobile DBs is a slowly moving loop

Almost degenerate set of
Invariant Loops

Determine a continuum of DB at constant
action under the constraint of spatial
location x
Peierls-Nabarro energy profile:E(x)
The extrema of E(x) are real DB
Mobile DB  E(x) is almost constant

constant action

1-DB mobility
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When two Floquet eigenvalues become degenerate, there are
Marginal Modes: (pseudo eigen vectors of the Floquet operator)
which grows algebraically as a function of time
Pinning modes appears at an instability at θ=0 and grows linearly.
Mobility appears close to DB instability threshold!

Motion of a DB by excitation of the pinning mode (kick).

Threshold for the amplitude of the kick (PN energy profile)

However, mobility of very long distances  may be obtained in some specific cases
even for narrow DB ( small energy dissipation).

Exact numerical solutions for moving DB (always exhibit a non vanishing tail.
Generically, there is no exact mobile DBs (which are spatially localized)
Cf. Y. Sire and G. James

Spatially extended (large)  DB are usually mobile.  Narrow DBs are exceptionally mobile.
Requires uniform generally 1d systems (no defects)
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Instability and pitchfork bifurcations
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..010… ..0110…
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A (numerically) exact moving DB calculated with a Newton method
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Inelastic Collision of two DBs   

Ding Chen, S. A and G. P. Tsironis 1996
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2- Energy Transportation by phase torsion of multiDBs in more than 1D

rivers

vortices

Plane waves can be viewed 
as multibreather states (at all sites)
with Phase Torsion

Other multibreather states 
may carry energy by phase torsion

1- Extremalize the Grand Action 
at fixed phases
2- Extremalize with respect to phases
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Summary of previous lecture

Existence of time-periodic spatially localised solutions in infinite
arrays of coupled non linear oscillators
Proof 1 From the anticontinous limit (uncoupled oscillators)
Proof 2 By variational method

Linear stability
Bifurcation
Mobility

Physical interest: Though DBs are special solutions
Numerics show spontaneous manifestations of DBs

Experimental manifestations:
Bose Einstein Condensate, Coupled Optical Wave Guides, 
Arrays of coupled Josephson junctions
Micromechanics (cantilever) etc ....
Biomolecules ???
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Targeted Energy (or charge) Transfer

1-linear resonance Galileo  (Quantum Tunneling)

Resonance is a Linear
Phenomena

Small coupling

The energy oscillates back and forth between the two oscillators
with a  long period proportional to the small coupling constant
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 Only partial Energy Transfer
for anharmonic resonance

Weakly Coupled Anharmonic  Oscillators
(or Discrete Breathers)

A non-integrable system close to integrable (weak coupling):
Quasiperiodic (KAM) solutions  block energy transfer

Because the frequency of anharmonic
oscillator depends on its energy, 
initial resonance is GENERALLY 
lost after only a small energy transfer
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EXCEPTIONALLY, resonance persists at all energy transfer:
Targeted Energy Transfer between Conjugate Anharmonic Oscillator
D and A

Find  I0  such that  K does not depend on I

Nonlinear condition for TET

TET at weak coupling

I0 = (ID+ IA)/2                 I= (ID- IA)/2 
θ0 = θ D+ θA θ = θ D- θA

Action-angle

variables

A continuum of loops at constant action and constant energy
(as for  DB mobility)

H(I0 , I)=
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Let us consider a weak perturbation λV(I0,I,θ0, θ)
which couples the two anharmonic oscillators
<λV(I0,I,θ0, θ)>θ0,θ=0

θ0 is a fast variable θ is a slow variable 
λ<V(I0,I,θ0, θ) > averaged over the fast variable θ0
= λ Veff(I0,I, θ) 
 of the Hamiltonian induces a complete 
energy transfer (at a SELECTED energy only) 
between Donor and Acceptor which oscillates back and forth.

-I0 ≤ I ≤ I0 I, θ define  a sphere

Dynamics with Hamiltonian λ Veff(I0,I, θ)
If  λ Veff(I0,I, θ) = 0   define a circle connecting the poles
Targeted Transfer
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An integrable model

Energy E= H   and total norm I0  are conserved
Action-Angle representation
I0 =(I1 + I2 )/2=Cste        I =(I1 - I2 )/2       θ = θ1 - θ2
The phase space (I, θ ) has the topology of a sphere
V(I0,I,θ) = - 2 λ  ( I0

2-I2 )1/2 cos θ

Targeted transfer for I0=IT     where  H0(I0, I)= ET =Cste
Circular orbit between the poles



Serge Serge AubryAubry,  LLB, FRANCE,  LLB, FRANCE



Serge Serge AubryAubry,  LLB, FRANCE,  LLB, FRANCE

Condition for TET   χ1 + χ2 =0      ω1 - ω2 + I0 (χ1 -χ2)=0   Then

Maximum of  I+1/2

ω0 = ω1 + ω2
ω = ω1 - ω2

ω

ω
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Extension: Conjugate oscillators when 

Giving an arbitrary oscillator p2/2+VD(u), it is possible to find
a conjugate oscillator p2/2+VA(u), at total action 2I0

Quantization: Targeted energy transfer persists after quantization
and manifest as a « path » of almost degenerate quantum states

Semiclassical quantization:
Edn +EA(p-n) = independant of n for some p
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If

HD(I0+I)+ HA(I0-I) is not strictly constant

ε= Var(HD(I0+I)+ HA(I0-I) )  small

Targeted transfer occurs for ｜λ ｜ > λc  small
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(out of band) Discrete Breathers comes as 1-parameter family
H(I)    ω(I)= dH(I)/dI

Behave like single anharmonic oscillators

Possibility of Targeted Transfer 

Role of damping: Irreversible transfer
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Targeted Transfer for Discrete Breathers 
DBs comes by family. The energy Eα of a DB α is a function of its action Iα

Two systems X=D or A which are weakly coupled

It is rare to find two DB families α in D and β  in A such that for some Ι0
Eα(Ι0+I)+ Eα(Ι0-I)≈ Cste
However by tuning models parameters one can find DBs family fulfilling
this condition
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TET in a weakly coupled Rotor-Morse oscillator system:
A toy model for a Chemical  Expressway for Ultrafast

Chemical Reaction (non Brownian)
A rotor weakly coupled to a chemical bond

TET for JR=1  

Action-Angle representation

Isotopic kinetic fractionation
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Analytic
result
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Longer term behavior: Fast Chemical Dissociation
This chemical reaction is fast and work at low temperature
Usual models in Chemistry require a Brownian exploration of the 
phase space due to thermal noise which is slow and ineffective at
low temperature

Time scale
picosecond
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Dissociation

Tip Magnification
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Targeted energy Transfer by Fermi resonance
(resonance by harmonics)

The harmonic nD  of a nonlinear oscillator D
is resonant with the harmonics nA of the rest frequency of
another nonlinear oscillator A.

Then nonlinearities can be tuned for having targeted energy
transfer

Canonical
transformation
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Morse-Rotor Model   Targeted Transfer by third order resonance
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In ordinary chemistry, chemical reactions obey the standard Arrhenius
law of chemistry
Energy barrier overcome by thermal fluctuations.
Chemical reaction are slow and stochastic (non selective)
because of the random exploration of the accessible phase space.

Biochemistry is very different because it is entirely controlled by
enzymes. It is highly selective and for any chemical reaction in the cell,
there is an enzyme which work for it. Those reactions are very fast and
do not obey the Arrhenius law. The role of the enzyme is to depress to
zero the energy barrier  of a specific reaction.
Highly energetic reaction occurs with little heat generation.
Energy storage.

There is no exploration of the phase space but the use of chemical
expressways.
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Ultrafast Electron Transfer (non Marcus)

Electrons (or quantum excitations)  
in deformable molecules=polarons

Targeted Transfer of Polarons

No Energy Barrier: Marcus Inversion point
(not sufficient : Nonadiabatic model!)

TET with electrons
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What is a polaron?

H= Σn (E0 -k un ) ｜ψn｜2 + 1/2 un 
2 + 1/2 pn 

2

-Σ<n,m> C ( ψn ψm
* + ψm ψn

* )
 Σn｜ψn｜2 = 1

Special localized solutions at C=0: 
ψn =0   except n=0 ψ0 =1
un =0  except n=0 un = k

It is the ground state
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Chemical reactions corespond a reorganisation of the chemical bonds
that is to electron transfers

The most elementary chemical reaction is an electron transfer.

Electrons are charged and strongly coupled to the ions.

An electron+deformation is a polaron which is a nonlinear object
similar to DBs

D

A

No transfer if no resonance
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Standard Marcus Theory for Electron Transfer in Chemistry
(adiabatic theory)

A two states system coupled to a phonon bath

Electron transfer
at (linear) resonance
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Normal

Inverted
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Electron (polaron) transfer occurs by quantum tunneling
of the electron when the thermal  fluctuations of  the
environment brings the system at the top of the energy
barrier  (Peierls-Nabarro energy barrier) where the
electronic eigenenergies are degenerate.

Standard formula for the reaction characteristic
time :Arrhenius law with prefactor
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A nonadiabatic model for electron transfer

Quantum electrons
Classical lattice
Anti-adiabatic Hamiltonian

Harmonic normal modes
coupled linearly to electronic
densities on different orbitals
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The antiadiabatic electronic Hamiltonian includes all
electrostatic interactions and is anharmonic.
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Memory function
Cut-off at Debye frequency

Random force
(effect of temperature)

Langevin relationship
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The photosynthetic reaction center
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Simplified Model: distant sites 

Transfer integral λα,β  small  

Electronic level µα

Nonlinear  term  χα= χαR+ χα
C

χα
C >0     capacitive energy

χα
R=-Σαmiωi

2 ki,α
2 <0     reorganization energy
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Catalytic Electron Transfer with a third site  C

Assume χD+ χC=0  and µD+ χD= µC
Transfer is fast from D to C but reversible (almost
zero reaction energy). Slow electron oscillations

Coherent Electron-Phonon
Oscillator: CEPO

The electronic level oscillates
as a function of time
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Energy variation
Versus transfer
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Extension of CEPO to many sites 
ATcase  the binding of small molecules trigger a 
huge change of conformation

Model:  Electromechanical signal
transmission
there is a highly mobile polaron  along a
chain of selected sites which fastly moves
by electric field and change the protein
conformation
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Signal Transmission-Control
in allosteric enzymes

An almost degenerate path
in the phase space
(chemical expressway)

Eg. For polarons  Ii = ρi
A small electrostatic change (e.g at one

end)  may induce large BARRIERLESS
displacement of an electronic charge

associated with large atomic
reorganisation (eg. till the other end

« ELECTROMECHANICAL SIGNAL
TRANSMISSION »

Assumption: The highest occupied molecular orbital
Is a polaron in Targeted transfer along a chain
Of sites
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Microtubule Motors:

Kinesins belong to a large family of motor proteins,
most of which walk along microtubules toward the
plus end, away from the centrosome
Cargo for vesicules or mitochondria which are too big to diffuse

Dyneins are other motor proteins most of which walk
along microtubules toward the minus end (toward
the centrosome).
(Microtubules are polar ⇒ Motion Directionality)
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Kinesin bound 
on microtubule

Microtubules 
are polar chains
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ATP ATPADP

hydrolysis binding

ATP binding and Hydrolysis generates 
Conformational  changes which result into Motion

Walking Kinesin
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Molecular Motion is a consequence of the sequence of Molecular
Reorganisation induced by a specific chemical reaction (e.g. ATP
hydrolysis) catalysed by this molecule (biomotor).
Note the catalytic effect requires fine tuning of parameters so that
small variations of the environment could induce small variations of
parameters which could block the catalyst (control of the biomotor).

Efficiency in energy conversion could be close to 100%!
but thermal fluctuation (Brownian forces) reduces this efficiency

Forget first about the molecular complexity and the various
molecules and situations
Goal: Make first a simple Model where
we show that this is possible in principle
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A simple model for biomotors
The Catalyst is strongly coupled to one or few degrees of freedom

Donor D, Acceptor A    C Catalyst and motor

We couple our model for UET to a deformable molecule on a ratchet
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The motion of the molecule is overdamped
No extra damping
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Ratchet Mechanism
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Motor Motion 
by a single period
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Course III: Random Nonlinear Networks

1-DBs in systems with discrete phonon spectrum 
(random etc…)
2- Open problem: Spreading of a wave packet in random 
nonlinear networks with discrete linear spectrum
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Existence Proofs(?) of Intraband DBs (IDBs)

Numerical investigations: G. Kopidakis and SA 1999-2000
Theorem: Albanèse and Frohlich 1991

Random systems: The linear spectrum  may be discrete
Anderson localization implies no phonon radiation 

Conjecture:
1- Quasi-continuation in L2: Each Anderson mode generates a family
of IDBs with frequency in a fat Cantor set (with nonvanishing measure)
2- Continuation in L∞: Each Anderson mode becomes an extended multiDB
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Hard DB interacting
with a resonance

Hard resonance Hard+Soft resonance

linear resonance

(exact calculation
on a DNLS dimer)
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Random System

Study on finite size with periodic boundary conditions
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Anderson Mode continued as an extended multiDB with norm l∞
(cannot be continued with norm  l2  )

Quartic KG model with random linear coefficients
(G. Kopidakis S.A99)

Consequence: Nonlinearity restaures possible energy transport in models 
with linear discrete spectrum  (at nonvanishing temperature)



Serge Serge AubryAubry,  LLB, FRANCE,  LLB, FRANCE

In spatially periodic systems which have an absolutely continuous
linear spectrum, DBs are the only
localized solutions which  could be stable because they avoid
linear radiation  through the linear spectrum
(nωb does not belong to the phonon spectrum for any integer n)

In nonperiodic systems where the linear spectrum is purely discrete
and cannot radiate energy, this is not true.

In Systems with purely Discrete linear Spectrum,
DBs are not the only spatially localized solution (l2 )

Possibility of many other localized solutions than DBs
For example: almost periodic solutions (KAM tori)
Marginal KAM tori with singular continous spectrum???
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A FINITE ENERGY PACKET in an INFINITE SYSTEM:
« temperature 0 ». Is thermalization possible?

What is the long time behavior of an initially localized wavepacket
in an infinite array of oscillators
1-Does it spread to zero amplitude (diffusion)?
2- Does it remain localized (absence of diffusion)?
3- Does a part of the energy spread and another part remains
localized?
Known answers:
-Linear: Diffusion  if the linear spectrum is absolutely
continuous (extended eigenmodes ), no diffusion if the spectrum
is purely discrete (Anderson Localization).
-Nonlinear with linear absolutely continuous spectrum
Possible formation of Discrete Breather (Sievers and Takeno) and
partial diffusion.

Spreading of a Wave Packet: Open questions
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Nonlinear systems with purely discrete linear spectrum .

Most common belief on the base of numerical simulation:
The nonlinear terms couple the Anderson modes and
« seems » to produce random energy transfers  resulting in
« subdiffusion »

The second moment of the energy distribution is expected to
diverge as tα   with α<1.
(α=1 for a standard diffusion or random walk)

Flaw of the numerics: Finite size and finite time,
Drastic effect of the numerical noise after long time
No universality is observed.
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Interpretation of subdiffusion:

It is assumed that because of nonlinarity, most trajectories (with
probability 1) are chaotic and remains so forever (it is believed
that because the system is infinite, KAM tori are absent or
negligible).

It is assumed there is a kind of thermalization inside the
wavepacket with broad band frequency spectrum which « heats »
the cold system outside and thus spread the energy.

Subdiffusion is due to the fact the local temperature decays as the
packet is spreading. The second moment behaves as tα

α can be estimated with different assumptions which yields
different values 1/2, 2/5, 1/3... But exponents α obtained from
numerics,  disagree and worst depend on system and initial
conditions. α not well defined.      No obvious universality!
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Exact KAM tori in nonlinear systems
with discrete linear spectrum

Nondiffusive solutions

Early rigorous results

Exact Results for Almost Periodic solutions
Fröhlich Spencer Wayne (1986) for 
random Hamiltonian Systems with pair interactions

Bourgain Wang (2008) for RDNLS

However, KAM tori may exist in infinite nonlinear systems
with non vanishing probability
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Fröhlich Spencer Wayne theorem  (1986)

Assumption on the Anderson base

Anderson modes have random frequencies ωi
and can be arranged on a periodic square
lattice where they are only coupled between
nearest neighbours by purely nonlinear terms

H(P,Q)= 1/2 Σi (Pi
2 +ωi

2 Qi
2)+ εΣ<i,j> f <i,j>(Pi

 , Qi,Pj, Qj)

i belongs to a lattice Zd 
ωi are random variables with a smooth probability density
f <i,j> are nearest neighbour coupling terms analytic of order  4 

FSW model

Action-angle representation
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Giving an « initial state » I0 ={Ii
0} which decays faster than

exponential at infinity
 Then there exists ε0  such that for ε< ε0 there is a set of
(nonresonant frequencies) Ω(I0) with Prob(Ω({I0 }) )
arbitrarily close to 1
such that if ω∈ Ω(I0) , there is a set of action-angle  variables
{Ii, θi} with I close to I0

which trajectory lies on an infinite dimensional torus
(with fundamental frequencies ω)

FSW theorem holds for random DNLS-like models
(with norm conservation)
Can be extended to next nearest neighbour interactions etc...
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Bourgain Wang theorem (2008) for RDNLS

Theorem (simplified):
Quasiperiodic solutions at V=0 and β=0 over a finite  number
of sites persist as quasiperiodic solutions (with small
perturbations) with a nonvanishing probability (over outside
disorder) and over a fat Cantor set of neighbouring
frequencies, providing V and β be not too large.

As V and β  goes to zero, this probability goes to 1
and the Cantor set goes to full measure.

Flaw: Unlike FSW, invariant tori have finite dimension in an infinite
dimension phase space.
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If there would exist a localized almost periodic solution, its
harmonics would be dense and would overlap the absolutely
continuous spectrum and would radiate energy at infinity.

No KAM tori in spatially periodic nonlinear systems

Localized Time Periodic solutions (Discrete Breathers) only are
allowed if their harmonics do not overlap the phonon bands

The existence of KAM tori requires a purely discrete linear spectrum
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Empirical arguments

for the existence of infinite dimension tori (almost
periodic solutions) with finite norm (and energy)  in

the 1D Random DNLS model

More generaly in infinite systems with linear discrete
spectrum (and exponential localization)
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Anderson Representation of random DNLS

New complex variables random

The Anderson modes are coupled by nonlinear terms

norm  current p  —>  p’  
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Consistency of this perturbation theory (at the lowest
order)
requires that the current fluxes
remains small at all time   and bounded

∫  Jp→p’(t) dt   < ∞

There are resonances  between four modes p,p’,q,q’ if

( ωq - ωq’ ) ± ( ωp - ωp’ ) ≈ 0

Small denominator



Serge Serge AubryAubry,  LLB, FRANCE,  LLB, FRANCE

Nonresonance between modes p≠p’ involving q,q’:

κ >>1

If this property is fulfilled for all p,p’,q,q’ perturbation theory is
consistent. Possibility of existence of a KAM torus

 μn ∝e-iωn t Consistency of Perturbation expansion (involves
small denominators)

Assume random frequencies with maximum probability density P0

Bound for the Probability of resonance
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Probability to have  at least one resonance
PR < Σp≠p’,q,q’ δp≠p’,q,q’< 

If  A has a finite norm then for                                                        PR <1

The probability PN =1- PR of having no resonance is strictly positive

A has a finite norm when the linear spectrum is discrete
and an infinite norm when it is absolutely continuous
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Assumption: exponential localization

The norm upper bound for having no resonance (and a KAM
torus?) goes to zero as the localization length diverges.

If the packet is already spread μp is small and

 PN > exp (-                                                  ) >0
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Giving a l2 initial condition for the wave packet with a norm not
too large,

And chosing randomly the disorder according to some probability
law, in order the linear spectrum be purely discrete (with
probability 1),

Then this initial condition has a finite probability to generate an
infinite dimensional KAM torus and moreover this probability
goes to 1 when the norm of the wave packet goes to zero.

(I.e. the system behave like linear for small norm wave packets)

Conjecture:
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Numerical test for the existence of KAM tori

in the 1D Random DNLS model

Equivalent tests:
- Bohr recurrence
- Largest Lyapounov

No recurrence a found for large spatially periodic systems
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Almost periodic function:
Harald Bohr theorem

Definition
F(t) = Σ n  fn eiωnt with Σ n  |fn | < ∞

Theorem:
This definition is equivalent to

∀ε>0 ∃ {τn} (pseudo periods) such that
-       {τn} is relatively dense
-         | F(t+ τn )- F(t)| < ε  for any t
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For single site excitation at site 0, check only
|Ψ0(0)|2 -|Ψ0(t)|2 =N -|Ψ0(t)|2 < εN
(because of norm conservation, no need to have recurrence
in phase)

Choose ε no too large for having pseudoperiods of
recurrence not too large

Actually it is found that if there are recurrence at relatively
large ε, recurrences are found at smaller ε though more
rarely. The pseudoperiods go roughly as 1/ ε

Implementation for DNLS
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Note that Poincaré recurence theorem only holds for finite systems (and is
not uniform). No recurrence is found for chaotic trajectories

Method: Vary by small steps δ the amplitude of a single site initial
condition from 0 to B. We observe for large systems and over
computing time as long as possible that

Initial conditions can be classified in two categories:
Recurrent or nonrecurrent
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-Within a given accuracy ε small, many trajectories return
close to their initial condition during the whole computing
time (recurrent) and within bounded pseudo periods.
-Recurrence is found for smaller ε but more sparsely.
- Trajectories repeat from the recurrence time, a new
trajectory which is uniformly close from the initial one.
-Recurrence is observed simultaneously for all components
of the trajectory
-Some trajectories  are only recurrent up to some computing
time « sticking ». They become more rare as  the computing
time increase. Interpretation: those trajectories belongs to
thin gaps of the fat Cantor set of KAM tori.
- Recurrent trajectories have zero Lyapounov exponents.
-Conversely, all trajectories found with zero Lyapounov
exponents are recurrent.

Recurrent trajectories
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There are also many trajectories which are  not recurrent
or loose recurrence after some computing time,

During the computing time.

They are (or become) apparently chaotic and (start to) spread (????).

Their Lyapounov exponents are non vanishing

Non Recurrent trajectories
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Depends on disorder realisation
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Finite size studies

When the size increases, the measure of recurrent
trajectories has a clearly non vanishing  asymptotic
limit which is reached when the system size is
sufficiently larger than the localization length (or
volume).
Large fluctuations. Make disorder average for smooth
graphs versus size.

If the system is periodic (no randomness), no recurrent
trajectories are found as soon the system size exceeds
only 10.
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Averaged for 100 realizations
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Conclusions for wave packets in infinite Nonlinear
systems with linear Anderson localization:
There are two kinds of wavepackets both with
nonvanishing probability
-wavepackets in fat Cantor sets which are almost
periodic stationary states and do not spread.
--spreading chaotic wavepackets

Open problems
There are situations where wavepackets cannot spread
totally or partially
-Do situations exist where they spread to zero.
Blocking KAM tori. Inverse Arnold diffusion?
-If no spreading, what is the limit state?
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Trajectories « initially chaotic »

(non KAM tori)

in the 1D Random DNLS model

Which « attractor » to expect for initially chaotic trajectories?

Many trajectories are found chaotic (with sensitivity to initial
conditions) and nonvanishing (transient) Lyapounov
exponent.
But if the wave packet spreads, the system becomes close to
linear and its Lyapounov exponent goes to zero.
In infinite system, no Poincaré recurrence
Chaos does not imply wavepacket spreading.
Self-organization?
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3 examples with chaos and absence or incomplete diffusion
     -large norm  
     -No linear band dispersion
     -Linear system beyond a cut-off distance
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Rigorous proof for the absence of complete diffusion for
a « large enough » Wavepacket  

with invariance by phase rotation
(implies norm l2 conservation)

quadratic Nonlinear higher order
HNL  > 0 strictly positive

(or negative)
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Assume the wavepacket spreads uniformy to zero:
(limt= �∞   ||Ψ|| ∞ =0 ),
then  at infinite time  the nonlinear contribution HNL to the
energy is zero since

and the norm ||Ψ||2 is time constant. Then

                                                               energy cannot be
conserved and consequently the wave packet cannot
spread uniformly to zero.

Since the higher order nonlinear energy grows faster
than the norm the wavepacket cannot spread uniformly
to zero  when its amplitude is large enough
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2-A family of  models without diffusion 
(random or not random) :
DNLS Models with Dispersionless Linear Phonons

HL is time constant, then HNL is time constant

Any initial l2 wavepacket cannot spread to zero
independantly whether there is  disorder or not
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Example:  FSW model

What is the long time behavior of a wavepacket if no
spreading to zero is possible.



Serge Serge AubryAubry,  LLB, FRANCE,  LLB, FRANCE

In the Anderson base same model, the random DNLS
Model belong to this family of
NONdiffusive Hamiltonian  except that operator L (though it is
diagonal), is not proportional to unity but is random.

Why extra randomness would generate diffusion?
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Modelling Discrete Breathers
The central part of the system only is nonlinear. 

Linear approximation far away

Extended phonons: Absolutely continuous spectrum

Case I
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The properties of the linear spectrum is essential

Random systems with complete Anderson
(Localized phonons) Purely Discrete  spectrum

There is no possible radiation from the linear part

Case II
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Let us consider a dynamical system coupled to an infinite harmonic system

Standard Langevin Thermostat
A model for thermalization

Coupling matrix C is short range ( l2  eg. nearest neighbors)
 equivalent to a dynamical system coupled to an infinite collection

of harmonic oscillators (normal modes)
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General solution of the linear part

Hamilton equations
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Effective equation after eliminations of linear degrees of freedom

Kernel (delayed interaction)

Thermalization of the thermostat
Langevin force

Langevin relation
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Standard Langevin approximation:

the Fourier spectrum of  Γ(t) is uniform
on the whole real axis

which yields the standard Langevin equation

commonly used in physics and chemistry
(eg Kramers theory)

Model for thermalization
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General case:Time Fourier transform of the kernel is a positive measure

1/2 <u|M|u> is the harmonic potential energy
M is positive and its eigenvalues are ων2 
C(ω) is a loop in the complex plane 
which contains only ων2 smaller than ω2 
The spectrum of M  determines those of Γ

   1_
  2 i
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Energy Dissipation at zero temperature T=0

Average energy
variation
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Correlation functions

Average energy dissipation (exact)

dω

Should vanish: nonoverlap criteria
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Asymptotic Solutions?

Initial condition: finite energy
The limit solutions cannot dissipate an infinite energy

implies no overlap between positive measures

(disjoint supports)

If the support of measure Γ(ω)dω is the whole real axis,
only q(t)=0 is an asymptotic solution (standard damping)
but if not  →→→→
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Case I: Time periodic asymptotic solutions (Discrete Breathers)

1-Spatially periodic systems with Bands
(absolutely continuous spectrum: the support of Γ(ω)dω
consists of finite intervals)
Ω and harmonics cannot belong to the bands
Confirmation of what is known
2-Spatially random systems with Anderson localization
(discrete spectrum: the support of Γ(ω)dω consists of a countable
Dense set of points)
Ω and harmonics should not be equal to eigen frequencies
(and a zero measure Liouvills set)
Intraband Discrete Breathers may exist (proven) with
frequency inside the spectrum (closure of the set of eigenvalues).

+ harmonics



Serge Serge AubryAubry,  LLB, FRANCE,  LLB, FRANCE

Normal Dissipation -<ET(T)>  diverges as T

Discrete spectrum thermostat:
The energy dissipation depends on the frequency of
the driving force

For most frequencies -<ET(T)>  does not diverges
(non resonant frequencies) 

But possible subdissipative behavior (« Liouville » subset)
-<ET(T)>  diverges slower than T
And also possible superdissipative
behavior (zero measure set of frequencies)
-<ET(T)>  diverges faster than T
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Case2: Quasi periodic or almost periodic asymptotic
solutions

The series is absolutely convergent 
and the set of frequencies Ωp is dense on the real axis

Cannot exist for spatially periodic  systems
(phonon radiation)

But could exist for spatially random  systems with
Anderson localization and purely discrete
spectrum (no mobility edge)  KAM TORI?
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Case 3: Fully chaotic asymptotic solutions

is an absolutely continuous measure 

If one assume that for any ω1 and ω2 in the support
of K(ω), then n1ω1+ n2 ω2 with n1, n2 integers 
Is also in the support,
there is energy dissipation in all cases 
(absolutely continuous, singular continuous or discrete) 

Fully chaotic asymptotic solutions cannot exist
for any phonon bath with spectrum dense on intervals

absolutely continuous or discrete
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Case 4: Asymptotic solutions 
with singular continuous spectra
(weakly chaotic)

cannot exist if the phonon spectrum is absolutely continuous 
in some intervals

Conjecture: It could exist if the phonon spectrum 
is purely discrete and dense on intervals.
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A nonlinear system coupled to a linear phonon bath 

-could have either the rest solution 0 
or only time periodic solutions (Discrete Breathers)
as asymptotic solutions

-could have either the rest solution 0 
-or  time periodic solutions 
-or quasiperiodic, almost periodic solutions 
-or solutions with singular continuous 
spectra (marginally chaotic)

for a phonon bath with absolutely continuous spectrum dense on some
intervals

for a phonon bath with purely discrete spectrum dense on some  intervals
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Perspective for Physics

1- Long time focusing (energy, charge etc…) : Retarded
Thermalization.
2- Targeted Transfer: Energy, charge, signal….
 and  Selective transport.
3- Ultrafast chemical Expressways: Degenerate pathways in the
phase space of complex (but specially built) systems may exist
(DB mobility in periodic systems is a special marginal case)
4- Control: Targeted transfer is controllable by small
perturbations « Breathonics », molecular transistors….
Biophysics.

Conditions: Coherent dynamics demand a relatively low
temperature (cold chemistry). High temperature produces
decoherence (standard models)

Discrete Breathers (or ILM, local modes etc): Stable excitations  in
highly complex nonintegrable systems (finite or infinite).
(their Fourier spectrum is not dense and avoid resonances)
Essential  for


