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Abstract

We consider the reaction-diffusion equation

ut = uxx + µ

(∫
Ω

M(y, z)u(t, x, z)dz − u
)

+ u

(
a(y)−

∫
Ω

K(y, z)u(t, x, z)dz

)
,

where u = u(t, x, y) stands for the density of a theoretical population with a spatial (x ∈ R) and phenotypic
(y ∈ Ω ⊂ Rn) structure, M(y, z) is a mutation kernel acting on the phenotypic space, a(y) is a fitness
function and K(y, z) is a competition kernel. Using a vanishing viscosity method, we construct measure-
valued traveling waves for this equation, and present particular cases where singular traveling waves do
exist. We determine that the speed of the constructed traveling waves is the expected spreading speed
c∗ := 2

√
−λ1, where λ1 is the principal eigenvalue of the linearized equation. As far as we know, this is the

first construction of a measure-valued traveling wave for a reaction-diffusion equation.

1 Introduction

In this work we consider the reaction-diffusion equation:

ut = uxx + µ(M ? u− u) + u(a(y)−K ? u), (1.1)

where t > 0, x ∈ R, y ∈ Ω for a bounded domain Ω ⊂ Rn, u = u(t, x, y), µ > 0 is a positive constant, a = a(y) is
a continuous function, M = M(y, z) and K = K(y, z) are integration kernels, and the ? operation is defined by
(2.1). After discussing the existence of stationary states for (1.1), we construct measure-valued traveling waves
and show the existence of a singularity for a subclass of parameters.

Equation (1.1) describes an asexual population living on a linear space, represented by the variable x. Several
genotypes exist in the population, yielding a continuum of phenotypes, represented by the y variable. We denote
Ω ⊂ Rn the set of all reachable phenotypes. Our basic assumption is that the fitness (or intrinsic growth rate)
of each individual is a function a(y) of its phenotype. We also assume the existence of an underlying mutation
process, by which an individual of phenotype z ∈ Ω may give birth to an individual of phenotype y ∈ Ω,
with probability M(y, z). Such mutations are expected to occur at rate µ > 0. Finally, the individuals are in
competition for e.g. a finite resource, and we denote K(y, z) the cost on the fitness of y caused by the presence
of z.

In the context of epidemiology, u(t, x, y) can be thought as a density of hosts at point x, infected with a
pathogen of trait y. Equation (1.1) is particularly relevant in this context, since evidences suggest that pathogens
(like e.g. viruses [36]) can be subject to rapid evolution, which may then occur at the same time scale as the
propagation of the epidemic [42, 43]. Moreover, equation (1.1) can easily be derived from a host-pathogen
microscopic model [33] in which we neglect the influence of the pathogen on the hosts’ motility.

The study of asymptotic propagation in biological models can be traced back to the seminal works of Fisher
[23] and Kolmogorov, Petrovsky, and Piskunov [37], who investigated simultaneously the equation:

ut = uxx + u(1− u), (1.2)

where u = u(t, x) stands for the density of a spatially structured theoretical population. They have shown,
in particular, that for any compactly supported initial condition, the solution u(t, x) invades the whole space
with constant speed c = 2 (such a result is often called spreading); and that there exists a particular solution to
(1.2), which consists of a fixed profile shifting along the axis at speed c, u(t, x) = ũ(x− ct), and connecting the
unstable state 0 near +∞ to the stable state 1 near −∞ (such a particular solution is called traveling wave).
Since then, these results have been generalized to a variety of related models: see e.g. [51, 6, 49], and the
references therein.
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In the last decades, there has been an increasing interest in propagation models that take into account
a multiplicity of different species. The main problems in the field include the replacement of a species by
competitive interaction (see e.g. [25]), predation [38], adaptation to climate change [4], or cooperation [39, 50].
This last class of cooperative reaction-diffusion system has lead to particularly strong results, since its properties
are somewhat comparable to those of scalar equations.

In a recent work [32], the authors investigated the existence of traveling waves in the spatially homogeneous
epidemiological model: {

wt = wxx + w(1− (w +m)) + µ(m− w)

mt = mxx + rm
(
1− w+m

K

)
+ µ(w −m),

(1.3)

where w and m stand for a density of hosts infected by a wild type and mutant pathogen, respectively. Though
this system is not globally cooperative, the authors managed to prove the existence and to compute the minimal
speed of traveling waves as a function of the principal eigenvalue λ of the associated principal eigenvalue problem:(

1− µ µ
µ r − µ

)(
w
m

)
+ λ

(
w
m

)
= 0,

via the formula c = 2
√
−λ. Intuitively, the spatial dynamics is then guided by the linearized system far away

from the front (such a traveling wave is sometimes called a pulled front [26, 45]). Since then, these results have
been extended to a more general class of systems in [30].

Equation (1.1) can be seen as the continuous limit of system (1.3) with a large number of equations. Since
we aim at computing the propagation speed for this equation, we turn to the associated principal eigenvalue
problem:

µ(M ? u− u) + u(a(y) + λ) = 0. (1.4)

This problem has been investigated in [19] and [20], where the author shows an unexpected concentration
phenomenon occurring for very natural fitness functions: if

1

supz∈Ω a(z)− a(y)
∈ L1(Ω), (1.5)

and µ is small enough, there exists no continuous eigenfunction associated to (1.4), but rather singular measure
eigenvectors with a singularity concentrated on the maximum of fitness Ω0 := {y ∈ Ω | a(y) = supz∈Ω a(z)}.
According to (1.5), this phenomenon happens when a(y) is sufficiently steep near its global maximum, and is
highly dependant on the Euclidean dimension of Ω. For instance, if n = 1, a concentration may appear at the
optimum y = 0 for the particular fitness function a(y) = 1−

√
|y|, when a(y) = 1− |y| always yields continuous

eigenfunctions; if n = 2, a(y) = 1−|y| may induce concentration, but a(y) = 1−|y|2 cannot. In dimension n = 3
or higher, smooth fitness functions such as a(y) = 1 − |y|2 may induce concentration. A similar phenomenon,
and in particular the critical mutation rate under which concentration appears for a sufficiently steep fitness
function, has been discussed by Waxman and Peck [46, 47].

The nonlocal competition term −K?u(y) in (1.1) is quite standard in models involving competition between
different phenotypes. Many models focus on the case where the competition is simply the integral of the
distribution — this corresponds to K(y, z) = 1. As an example, the nonlocal Fisher-KPP equation

ut −∆u = µu(1− Φ ∗ u), (1.6)

where Φ(y) is usually in L1(Rn) with possibly additional restrictions, has attracted a lot of attention in the
past [31, 27, 8, 34, 22, 35]. Nonlocal competition also appears in numerous other studies in population genetics
and population dynamics [2, 28, 3, 17, 7]. In general, the qualitative behavior of traveling waves, and the
long-time behavior of the solutions to the parabolic equation, are still difficult to handle. Recent advances
have been made towards a better understanding of the asymptotic location of the front for the solutions to the
parabolic equations, see [34, 13, 41, 1] for the nonlocal Fisher-KPP equation; [16] for the cane toads equation.
In the case of the nonlocal Fisher-KPP equation (1.6), the existence of traveling waves has been established
and the associated minimal speed characterized in [8, 34]. The convergence towards a stationary state on the
back of the wave, has been shown in [8] for small µ or when the Fourier transform of the competition kernel is
positive (in which cases one can prove the stability of the constant steady state u ≡ 1); and more recently, in a
perturbative case [1], the convergence in long time has been shown for solutions to the parabolic equation. In
the general case, the convergence towards a stationary solution on the back of the wave is far from being clear.
The situation is similar in the case of many other models involving nonlocal competition.

As an indication that spreading happens, in the present paper we construct traveling waves for equation (1.1)
which travel at the expected spreading speed. One of the main difficulties we encountered studying equation
(1.1) is the lack of a regularizing effect in the mutation operator M ? u. This phenomenon is confirmed by the
existence of traveling waves having a nontrivial singular part — in particular, there is no hope for asymptotic
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regularity. This lack of regularity also makes it more difficult to apply some of the techniques commonly used
in the study of reaction-diffusion equations (in particular, taking the limit of a subsequence of large shifts of a
solution). Finally, the non-compactness of the time-1 map prevents an application of the spreading results of
Weinberger [49]. One other challenging issue is the absence of a comparison principle for equation (1.1), because
of the nonlocal competition term. As in many other studies involving a nonlocal competition, this prevents a
precise study of the long-time behavior of the solutions to the Cauchy problem and the behavior at the back of
the waves (see also the above paragraph). To show that the traveling waves stay away from 0 on the back, we
introduce a secondary problem, constructed by increasing self-competition in equation (1.1), which satisfies a
comparison principle and serves as a sub-solution factory. To overcome the lack of regularity, we approximate
the solutions of (1.1) by a vanishing viscosity method. We choose the zero Neumann boundary conditions for
the approximating problem because they behave well with respect to the integration across the domain. Finally,
we introduce a weak notion of traveling waves which admit singularities. As we will see below, there is little
hope to obtain more regularity in general, since there exist traveling waves for equation (1.1) which present an
actual singularity. As far as we know, the present work constitutes the first construction of a measure-valued
traveling wave in a reaction-diffusion equation.

2 Main results and comments

2.1 Function spaces and basic notions

Throughout this document we use a number of function spaces that we make precise here to avoid any confusion.
WheneverX is a subset of a Euclidean space, we will denote C(X), Cb(X), C0(X), Cc(X) the space of continuous
functions, bounded continuous functions, continuous functions vanishing at ∞ and continuous functions with
compact support over X, respectively. Notice that if X is compact, then those four function spaces coincide.
Whenever X ⊂ Rd is a Borel set, we define M1(X) as the set of all Borel-regular measures over X. Let us
recall that M1(X) is the topological dual of C0(X), by Riesz’s representation theorem [44]. In our context,
M1(X) coincides with the set of Borel measures that are inner and outer regular [44, 11]. We will thus call
Radon measure an element of M1(X).

When p ∈M1(X), we say that the equality p = 0 holds in the sense of measures if

∀ψ ∈ Cc(X),

∫
X

ψ(x)p(dx) = 0.

We now define the notion of transition kernel (see [11, Definition 10.7.1]), which is crucial for our notion of
traveling wave:

Definition 2.1 (Transition kernel). We say that u ∈ M1(R × X) has a transition kernel if there exists a
function k(x, dy) such that

1. for any Borel set A ⊂ X, k(·, A) is a measurable function, and

2. for almost every x ∈ R (with respect to the Lebesgue measure on R), k(x, ·) ∈M1(X)

and u(dx, dy) = k(x, dy)dx in the sense of measures, i.e. for any ϕ ∈ Cc(R×X), the following equality holds∫
R×X

ϕ(x, y)u(dx, dy) =

∫
R

∫
X

ϕ(x, y)k(x, dy)dx.

For simplicity, if the measure u has a transition kernel, we will often say that u is a transition kernel and use
directly the notation u(dx, dy) = u(x, dy)dx.

We denote f ? g the function:

f ? g(y) :=

∫
Ω

f(y, z)g(dz) (2.1)

whenever f : Ω
2 → R and g is a measure on Ω. If g is continuous or L1(Ω) we use the convention g(dz) := g(z)dz

in the above formula. Remark that the operation ? is not the standard convolution, though both notions share
many properties.

Finally, for y ∈ ∂Ω we will call ν(y) or simply ν the outward normal unit vector of Ω.
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2.2 Main results

Our main result is the existence of a measure traveling wave, possibly singular, for equation (1.1). Before stating
the result, let us give our assumptions, as well as subsidiary results.

Assumption 1 (Minimal assumptions). 1. Ω ⊂ Rn is a bounded connected open set with C3 boundary.
For simplicity we assume 0 ∈ Ω.

2. M = M(y, z) is a Cα positive function Ω× Ω→ R satisfying

∀z ∈ Ω,

∫
Ω

M(y, z)dy = 1.

In particular, 0 < m0 ≤M(y, z) ≤ m∞ < +∞ for any (y, z) ∈ Ω× Ω.

3. K = K(y, z) is a Cα positive function Ω× Ω→ R. In particular, we have 0 < k0 ≤ K(y, z) ≤ k∞ < +∞
for any (y, z) ∈ Ω× Ω.

4. a = a(y) ∈ Cα(Ω) is a non-constant function with supy∈Ω a(y) > 0. We assume that a(0) = sup a. In
particular, −∞ < inf a < sup a < +∞ holds.

5. We let Ω0 :=
{
y ∈ Ω | a(y) = a(0) = supz∈Ω a(z)

}
be the set of maximal value for a and assume Ω0 ⊂⊂ Ω.

6. 0 < µ < sup a− sup
z∈∂Ω

a+(z).

We are particularly interested in a more restrictive set of assumptions, under which we hope to see a
concentration phenomenon in (1.1):

Assumption 2 (Concentration hypothesis). In addition to Assumption 1, we suppose

y 7→ 1

supz∈Ω a(z)− a(y)
∈ L1(Ω).

Let us introduce the principal eigenvalue problem that guides our analysis:

Definition 2.2 (Principal eigenvalue). We call principal eigenvalue associated with (1.1) the real number:

λ1 := sup{λ | ∃ϕ ∈ C(Ω), ϕ > 0 s.t. µ(M ? ϕ− ϕ) + (a(y) + λ)ϕ ≤ 0}. (2.2)

Clearly, λ1 is well-defined and we have λ1 ≤ −(sup a− µ) by evaluating (2.2) at y = 0. Though we call λ1

the principal eigenvalue, we stress that λ1 is not always associated with a usual eigenfunction. In particular,
Coville, in his work [20, 19], gives conditions on the coefficients of (1.1) under which there exists no associated
eigenfunction. We will recall and extend these results in section 3.1.

Proposition 2.3 (On the principal eigenvalue). Under Assumption 1, there exists a unique λ ∈ R such that
the equation

µ(M ? ϕ− ϕ) + (a(y) + λ)ϕ = 0 (2.3)

has a nonnegative nontrivial solution in the sense of measures, and λ = λ1.
Moreover, under Assumption 2, there exists µ0 > 0 such that if µ < µ0, we have

λ1 = −(sup a− µ)

and, in this case, there exists a nonnegative measure ϕ solution to (2.3) with a non-trivial singular part concen-
trated in Ω0.

The most part of Proposition 2.3 comes from the work of Coville [19, 20]. Our contribution to the result is
the uniqueness of the real number λ such that there exists a nonnegative nontrivial measure solution to (2.3).
We use this uniqueness result several times in the paper, in particular, in many of the arguments involving a
vanishing viscosity; for instance in the proofs of Theorem 3.4 and Theorem 2.4.

As well-known in KPP situations, we expect the sign of λ1 to dictate the long-time persistence of solutions
to equation (1.1). In particular, when λ1 > 0, we expect that any nonnegative solution to the Cauchy problem
(1.1) starting from a positive bounded initial condition goes to 0 as t→∞. Indeed, in this case there exists a
positive continuous function ψ > 0 such that

µ(M ? ψ − ψ) +

(
a+

λ1

2

)
ψ ≤ 0.
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One can check that Ce−
λ1
4 tψ(y) and u(t, x, y) are respectively a super- and subsolution of the equation

ut = uxx + µ(M ? u− u) + a(y)u.

with ordered initial data (for C large enough). The result is then a consequence of the comparison principle
satisfied by the (linear) above equation.

In the λ1 = 0 case, we expect extinction as in the λ1 > 0 case. This is generally the case for scalar reaction-
diffusion equations, as well as in the case of some systems (see in particular [30, Proposition 5.2]). However,
the usual strategy, which consists in establishing a contradiction by studying the least multiple of the principal
eigenfunction which lies above the ω-limit set of a solution to (1.1), seems difficult to apply here. Indeed we
lack three of the main ingredients for this argument: a Harnack inequality, compactness, and a L∞ bound on
the orbit which would allow us to place a multiple of the principal eigenvector above the ω-limit set. Thus, in
the present paper, we leave this particular point open. Note however that, in the case where M is symmetric
(M(y, z) = M(z, y)), an argument similar to the one employed in [15, Section 5] may lead to an actual proof,
by working directly on the parabolic problem.

In the present paper we focus on the λ1 < 0 case, in which we expect survival of the population. To confirm
this scenario, we first prove the existence of a nonnegative nontrivial stationary state for equation (1.1).

Theorem 2.4 (Survival of the population). Let Assumption 1 hold and assume further λ1 < 0. Then, there
exists a nonnegative nontrivial stationary state for equation (1.1), i.e. a nonnegative nontrivial measure p ∈
M1(Ω) which satisfies

µ(M ? p− p) + p(a(y)−K ? p) = 0 (2.4)

in the sense of measures.

Under the hypothesis for concentration (Assumption 2) and in the special case where the competition kernel
K(y, z) is independent of the trait y, Bonnefon, Coville and Legendre [12] have shown that the solution to (2.4)
has a singularity concentrated in Ω0 when µ is small. A key argument was a separation of variables method,
allowed by the assumption K(y, z) = K(z). Here we show that the concentration phenomenon occurs under a
more general hypothesis on K, namely that the trait y ∈ Ω0 suffers less from the competition than any other
trait. Since Ω0 also maximizes the basic reproductive ratio a(y), it seems natural to expect concentration in Ω0

in this case.

Assumption 3 (Nonlinear concentration). In addition to Assumption 2, we suppose that

∀(y, z) ∈ Ω× Ω, K(0, z) ≤ K(y, z).

Theorem 2.5 (Concentration on dominant trait). Let Assumption 3 hold, and assume λ1 < 0. Then, there
exists µ0 > 0 such that, for any µ < µ0, the measure p, constructed in Theorem 2.4, has a singular part
concentrated in Ω0.

To better characterize the spatial dynamics of solutions to (1.1), we are going to construct traveling waves
for (1.1).

Definition 2.6 (Traveling wave). A traveling wave for equation (1.1) is a couple (c, u) where c ∈ R and u is a
locally finite transition kernel (see Definition 2.1) defined on R× Ω. We require that (c, u) satisfies:

− cux − uxx = µ(M ? u− u) + u(a−K ? u) (2.5)

in the sense of distributions, and that the measure u satisfies the limit conditions:

lim inf
x̄→+∞

∫
R×Ω

ψ(x+ x̄, y)u(dx, dy) > 0, (2.6)

lim sup
x̄→−∞

∫
R×Ω

ψ(x+ x̄, y)u(dx, dy) = 0 (2.7)

for any positive test function ψ ∈ Cc(R× Ω).

Condition (2.6) differs from the usual behavior of traveling waves as defined, for instance, in [48, 6, 40], in
which the convergence to a stationary state is required. Because of the nonlocal competition, indeed, it is very
difficult to prove that a solution to equation (1.1) converges to a stationary state when t → ∞. Imposing a
weak condition like (2.6) on the back of the wave is the usual way to go around this issue. One can refer for
instance to [8, 4, 14, 30], where a similar condition is imposed on the back of traveling waves.

We are now in the position to state our main result, which concerns the existence of a traveling wave for
(1.1).
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Theorem 2.7 (Existence of a traveling wave). Under Assumption 1 and if λ1 < 0, there exists a traveling wave
(c, u) for (1.1) with c = c∗ := 2

√
−λ1.

As it is the case in many nonlocal problem, the uniqueness and stability of the traveling waves are unknown.
In this paper, we focus on the construction of a traveling wave for c = c∗. Altough this is expected, we leave the
construction of traveling waves for c > c∗ for future work, as well as a proof of the non-existence of traveling
waves for c < c∗. In the general case, it seems very involved to determine whether u has a singular part or not.
Nevertheless, there are some particular cases where singular traveling waves do exist.

Remark 2.8 (Traveling waves with a singular part). In the special case where K is independent from y
(K(y, z) = K(z)), a separation of variables argument — see [7] for a related argument— allows us to con-
struct traveling waves that actually have a singular part in Ω. From Proposition 2.3, under Assumption 2,
there is µ0 > 0 such that, for any µ < µ0, there exists a measure eigenvector ϕ ∈ M1(Ω) with a singular part
concentrated in Ω0. We choose such a ϕ with normalization

∫
Ω
K(z)ϕ(dz) = 1. If moreover λ1 < 0, then there

exists a positive front ρ, connecting −λ1 to 0, for the Fisher-KPP equation

− ρxx − cρx = ρ(−λ1 − ρ) (2.8)

for any c ≥ 2
√
−λ1. If we define u(x, dy) := ρ(x)ϕ(dy), we see that u matches the definition of a traveling wave.

Hence for any x ∈ R, u(x, ·) possesses a singular part concentrated in Ω0.

The organization of the paper is as follows. In Section 3 we study related eigenvalue problems for which
concentration may occur. Section 4 is devoted to the construction of stationary states through a bifurcation
method. Last, we construct a (possibly singular) measure traveling wave in Section 5.

3 On the principal eigenvalue problem

In this section, we prove Proposition 2.3, which allows an approximation by an elliptic Neumann eigenvalue
problem in Theorem 3.4 of crucial importance for the construction of steady states in Section 4.

3.1 The principal eigenvalue of nonlocal operators

Under Assumption 1, Coville et al. [19, 20, 21] have extensively studied the principal eigenvalue problem
associated with (1.1). We summarize and extend the results in [20]. Our contribution is to show the uniqueness
of the principal eigenvalue as a solution to (2.3) in the sense of measures.

Theorem 3.1 (On the principal eigenproblem (2.3)). 1. Let Assumption 1 be satisfied. Then, there exists
a unique λ ∈ R such that (2.3) admits a nonnegative nontrivial Radon measure solution, and λ = λ1.

2. Let Assumption 2 hold, and let −γ1 be the principal eigenvalue1of the operator

M[ψ] :=

∫
Ω

µM(y, z)
ψ(z)

sup a− a(z)
dz,

acting on ψ ∈ Cb(Ω). Then the following holds:

(i) γ1 > 1 if, and only if, λ1 < −(sup a−µ). In this case, any solution to (2.3) in the sense of measures
is a pointwise solution.

(ii) γ1 = 1 if, and only if, λ1 = −(sup a−µ) and there exists a nonnegative nontrivial function ϕ ∈ L1(Ω)
solution to (2.3) almost everywhere. In this case, ϕ is unique (up to multiplication by a positive
constant).

(iii) γ1 < 1 if, and only if, λ1 = −(sup a − µ) and there exists a nonnegative singular measure ϕ ∈
M1(Ω) solution to (2.3). In this case, any nonnegative nontrivial solution to (2.3) has a singularity
concentrated in Ω0.

Proof. The existence of a measure-valued solution to (2.3) has been shown in [20, Theorem 1.2]. Here we focus
on the uniqueness of λ. We first prove the uniqueness of λ when the complement of Assumption 2 holds, by
showing that any eigenvector is in fact a continuous eigenfunction. Then, we show that uniqueness holds under
Assumption 2. Finally we prove the trichotomy in item 2.

Step 1: Let the complement of Assumption 2 hold, i.e. 1
sup a−a(y) 6∈ L

1(Ω). Let ϕ ∈M1(Ω) be a nonnegative

nontrivial Radon measure solution to (2.3). Then by the Lebesgue-Radon-Nikodym Theorem [44, Theorem 6.10],

1We use the ”minus” sign for consistency between Definition 2.2 and the algebraic notion generally used in the Krein-Rutman
Theorem : M[Φ] = γ1

1Φ.
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there exists a nonnegative ϕac ∈ L1(Ω) and a nonnegative measure ϕs ∈M1(Ω), which is singular with respect
to the Lebesgue measure on Ω, such that:

ϕ = ϕacdy + ϕs.

Equation (2.3) is then equivalent to the following system:{
µM ? ϕ+ (a(y)− µ+ λ)ϕac = 0 a.e.(dy)

a(y)− µ+ λ = 0 a.e.(ϕs).
(3.1)

This readily shows that (a(y) − µ + λ)ϕac = −µM ? ϕ is a continuous negative function and in particular
λ ≤ −(sup a− µ).

We distinguish two cases:
Case 1: Assume first that λ < −(sup a−µ). Then the second line of (3.1) implies suppϕs = ∅, i.e. ϕs ≡ 0.

In this case we have ϕac(y) = µM?ϕac(y)
−λ−(a(y)−µ) , which is a positive continuous function since the kernel M(y, z) is

itself continuous. A classical comparison argument (such as the one presented below on Step 2 case 1) then
shows λ = λ1.

Case 2: Assume λ = −(sup a− µ). Then

ϕac(y) =
µM ? ϕ

sup a− a(y)
,

and since µ(M ? ϕ)(y) ≥ µm0

∫
Ω
ϕ(dz) > 0, this implies ϕac 6∈ L1(Ω), which contradicts the definition of ϕac.

We have thus shown the uniqueness of the real number λ such that there exists a solution (λ, ϕ) to (2.3).

Step 2: Let Assumption 2 hold. We first establish that γ1 is well-defined, then resume the proof.
The operatorM defined above is compact by virtue of the Arzelà-Ascoli Theorem [18, Theorem 4.25]. Since

for any ψ ≥ 0, ψ 6≡ 0, we have

∀y ∈ Ω, M[ψ](y) =

∫
Ω

µM(y, z)
ψ(z)

sup a− a(z)
dz

≥ µm0

∫
Ω

ψ(z)

sup a− a(z)
dz > 0,

M satisfies the hypotheses of the Krein-Rutman Theorem [18, Theorem 6.13], which ensures that the real
number γ1, defined by M[Ψ] = γ1Ψ for a positive Ψ ∈ Cb(Ω), is well-defined and positive.

Let us resume the proof. Let (λ, ϕ) be a solution to (2.3) in the sense of measures. Then, as above,
by Lebesgue-Radon-Nikodym Theorem [44, Theorem 6.10], there exists a nonnegative ϕac ∈ L1(Ω) and a
nonnegative measure ϕs ⊥ dy, such that ϕ = ϕacdy+ϕs. In this context, equation (2.3) is equivalent to system
(3.1), and in particular we have λ ≤ −(sup a− µ). We subdivide the rest of the proof in two cases.

1. Let us first assume λ < −(sup a − µ). Then it follows from equation (3.1) that ϕs ≡ 0. Moreover,

ϕac(y) = µ(M?ϕ)(y)
−λ−(a(y)−µ) is then a positive bounded continuous function and satisfies:

µ(M ? ϕac − ϕac) + (a(y) + λ)ϕac = 0

in the classical sense.
Let us show that λ = λ1. Let (λ, ϕ) ∈ R× C(Ω) be a supersolution to (2.3), i.e. ϕ > 0 and

µM ? ϕ+ ϕ(a(y)− µ+ λ) ≤ 0.

Then ϕ(0)(−a(0) + µ− λ) ≥ µM?ϕ > 0 and thus λ < −(a(0)−µ) = −(sup a−µ). Moreover ϕ(y) ≥ µM?ϕ(y)

µ−a(y)−λ ≥
µm0

∫
ϕ

−(inf a+λ−µ)
> 0 and thus ϕ is uniformly bounded from below. In particular, α := sup{ζ > 0 | ∀y ∈ Ω, ζϕac(y) ≤

ϕ(y)} is well-defined and positive. By definition of α we have αϕac(y) ≤ ϕ(y) for any y ∈ Ω, and there exists
a converging sequence Ω 3 yn → y ∈ Ω such that αϕac(yn) − ϕ(yn) → 0. Up to further extraction ϕac(yn)
converges to a positive limit that we denote ϕac(y). We have then

0 ≥ µ
∫

Ω

M(yn, z)
(
ϕ(z)− αϕac(z)

)
dz

+
(
ϕ(yn)− αϕac(yn)

)
(a(yn)− µ) + λϕ(yn)− λαϕac(yn)

≥ 0 +
(
ϕ(yn)− αϕac(yn)

)
(a(yn)− µ) + λϕ(yn)− λαϕac(yn)

= (λ− λ)αϕac(y) + on→∞(1).
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Taking the limit n→∞, we have shown λ ≤ λ. Hence,

λ ≥ sup{λ | ∃ψ ∈ C(Ω), ψ > 0 s.t. µ(M ? ψ − ψ) + ψ(a(y) + λ) ≤ 0} = λ1.

The reverse inequality λ ≤ λ1 is clear since ϕac is a supersolution to (2.3). Thus λ = λ1.
In this case, we notice that

M[(sup a− a(y))ϕac] = µM ? ϕac > (sup a− a(y))ϕac.

Hence, by a classical comparison argument, γ1 > 1.

2. Let us assume now λ = −(sup a− µ).
We define the auxiliary function Ψ(y) := ϕac(y)(sup a− a(y)) = µ(M ? ϕ). Then Ψ is a nontrivial positive

bounded continuous function which satisfies:

M[Ψ]−Ψ = µ(M ? ϕac − ϕac) + (a(y) + λ)ϕac = −µM ? ϕs ≤ 0.

Thus, by a classical comparison argument, γ1 ≤ 1.
We claim that λ1 = λ. As above, ϕac is a supersolution to (2.3), and thus λ ≤ λ1. Assume by contradiction

that λ1 < λ. By the existence property [20, Theorem 1.1], there exists a continuous function ϕ1 > 0 associated
with λ1. Since λ1 < λ = −(sup a − µ), point 1 above then applies to (λ1, ϕ1) and we have γ1 > 1. This is a
contradiction. Hence λ = λ1.

Step 3: We show (i), (ii), and (iii).
Assume λ1 < −(sup a − µ). Then, γ1 > 1, and the fact that any measure eigenvector is a continuous

eigenfunction has been shown in Step 2.
Assume λ1 = −(sup a − µ) and ϕs ≡ 0. Let Ψ(y) := (sup a − a(y))ϕac(y). Then, by a straightforward

computation, Ψ satisfies Ψ(y) = µM ? ϕ(y), which shows that Ψ is bounded and continuous. We remark that:

M[Ψ]−Ψ = µM ? ϕac − (sup a− a)ϕac = −µM ? ϕs = 0.

By the Krein-Rutman Theorem, we have γ1 = 1 and ϕ ≡ ϕac is unique up to multiplication by a scalar.
Assume that λ1 = −(sup a− µ) and ϕs 6≡ 0. Let Ψ(y) := (sup a− a(y))ϕac(y), then

M[Ψ]−Ψ = −µM ? ϕs < 0

and thus γ1 < 1. Notice that in this case, the second line in equation (3.1) implies by definition ϕs
(
{y ∈ Ω | a(y) 6= sup a}

)
=

0, hence supp ϕs ⊂ Ω0.
Since we have investigated all the possibilities (recall λ ≤ −(sup a− µ)), the equivalence holds in each case.

This finishes the proof of Theorem 3.1.

3.2 The critical mutation rate

In this subsection we investigate further the linear eigenvalue problem (2.3), with λ = λ1 as compelled by
Theorem 3.1, under Assumption 2.

We introduce the notion of critical mutation rate, which distinguishes between the existence of a bounded
continuous eigenfunction for equation (2.3) and the existence of a singular measure.

Theorem 3.2 (Critical mutation rate). Let Assumption 2 hold. Then, there exists µ0 = µ0(Ω,M, sup a − a)
such that for any 0 < µ < µ0, problem (2.3) has only singular measures solutions with a singularity concentrated
in Ω0 (in which case λ1 = −(sup a−µ) from Theorem 3.1), whereas for µ > µ0 equation (2.3) has only bounded
continuous eigenfunctions.

Finally, µ0 = 1
γ1

1
where −γ1

1 is the principal eigenvalue of the operator

M1[ψ] =

∫
Ω

M(y, z)
ψ(z)

sup a− a(z)
dz,

acting on bounded continuous functions.

Proof. Let us define, for ψ ∈ Cb(Ω), Mµ[ψ] = µ
∫

Ω
M(y, z) ψ(z)

sup a−a(z)dz. Then by the Krein-Rutman Theorem

there exists a unique principal eigenpair (−γµ1 ,Φµ) satisfying γµ1 > 0, Φµ(y) > 0, sup Φµ = 1 and Mµ[Φµ] =
γµ1 Φµ. Since Mµ = µM1, we deduce from the uniqueness of (−γµ1 ,Φµ) that the equalities γµ1 = µγ1

1 and
Φµ = Φ1 hold for any µ > 0. The result then follows from the trichotomy in Theorem 3.1

We can now summarize our findings and prove Proposition 2.3.
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Proof of Proposition 2.3. The first part, under Assumption 1, follows from Proposition 3.1, while the second
part, under Assumption 2, follows from Theorem 3.2.

We prove below that µ0 is linked to the steepness of the fitness function a near its maximum. This property
will be used in the proof of Theorem 2.5.

Corollary 3.3 (Monotony of µ0). Let Assumption 2 hold and b be a continuous function on Ω, satisfying

∀y ∈ Ω, sup a− a(y) ≤ sup b− b(y).

Then we have
µ0(Ω,M, sup a− a) ≤ µ0(Ω,M, sup b− b),

where µ0 is defined in Theorem 3.2.

Proof. It follows from our assumptions that, for y ∈ Ω:

0 <
1

sup b− b(y)
≤ 1

sup a− a(y)
. (3.2)

In particular y 7→ 1
sup b−b(y) ∈ L

1(Ω). Thus Theorem 3.2 can be applied with both a and b.

We claim that γb1 ≤ γa1 , where γb1, γa1 denote the first eigenvalue of the operatorMb[ψ] =
∫

Ω
M(y, z) ψ(z)

sup b−b(z)dz

and Ma[ψ] =
∫

Ω
M(y, z) ψ(z)

sup a−a(z)dz acting on the function ψ ∈ Cb(Ω), respectively. Indeed, let ϕa ∈ Cb(Ω),

ϕa > 0 satisfy
∫

Ω
M(y, z) ϕa(z)

sup a−a(z)dz = γa1ϕ
a(y) and ϕb ∈ Cb(Ω), ϕb > 0 respectively satisfy

∫
Ω
M(y, z) ϕb(z)

sup b−b(z)dz =

γb1ϕ
b(y). Up to multiplication by a positive constant, we assume without loss of generality that ϕb ≤ ϕa and

that there exists y ∈ Ω satisfying ϕb(y) = ϕa(y) = 1. At this point, we have

γb1 =

∫
Ω

M(y, z)
ϕb(z)

sup b− b(z)
dz ≤

∫
Ω

M(y, z)
ϕa(z)

sup a− a(z)
dz = γa1 .

We conclude that

µ0(Ω,M, sup a− a) =
1

γa1
≤ 1

γb1
= µ0(Ω,M, sup b− b)

which finishes the proof of Corollary 3.3.

3.3 Approximation by a degenerating elliptic eigenvalue problem

Here we show that the previously introduced principal eigenvalue can be approximated by an elliptic Neumann
eigenvalue.

Theorem 3.4 (Approximating λ1 by vanishing viscosity). Let Assumption 1 hold, and (λε1, ϕ
ε(y) > 0) be the

solution to the principal eigenproblem:{
−ε∆ϕε − µ(M ? ϕε − ϕε) = a(y)ϕε + λε1ϕ

ε in Ω
∂ϕε

∂ν = 0 on ∂Ω,
(3.3)

with
∫

Ω
ϕε(z)dz = 1, where ν is the unit normal vector.

Then limε→0 λ
ε
1 = λ1, where λ1 is the principal eigenvalue defined by (2.2).

Proof. We divide the proof into three steps.
Step 1: We show that λε1 is bounded when ε→ 0.
Integrating equation (3.3) by parts, we have 0 =

∫
Ω

(λε1 + a(y))ϕεdy. In particular, the function a(y) + λε1
takes both nonnegative and nonpositive values. Hence, we have − sup a ≤ λε1 ≤ − inf a, and (λε1)ε>0 is bounded.

Step 2: We identify the limit of converging subsequences.
Let λεn1 be a converging sequence and λ0

1 := limλεn1 . Then ϕεn satisfies, for any ψ ∈ C2(Ω),∫
Ω

−εnϕεn∆ψdy − εn
∫
∂Ω

ϕεn
∂ψ

∂ν
dS −

∫
µ(M ? ϕεn − ϕεn)ψ − a(y)ϕεnψ = λεn1

∫
ϕεnψ.

Let

F0 :=

{
ψ ∈ C2(Ω) | ∀y ∈ ∂Ω,

∂ψ

∂ν
(y) = 0

}
(3.4)
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denote the space of functions in C2(Ω) with zero boundary flux as in Lemma A.1 item (i). For ψ ∈ F0, this
equation becomes: ∫

Ω

−εnϕεn∆ψdy −
∫
µ(M ? ϕεn − ϕεn)ψ − a(y)ϕεnψ = λεn1

∫
ϕεnψ.

Since
∫

Ω
ϕεn(y)dy = 1 and Ω is compact and by Prokhorov’s Theorem [11, Theorem 8.6.2], the sequence

(ϕεn) is precompact for the weak topology in M1(Ω), and there exists a weakly convergent subsequence ϕε
′
n ,

which converges to a nonnegative Radon measure ϕ. Since 1 ∈ Cc(Ω), we have lim
∫

Ω
ϕε
′
n =

∫
Ω
ϕ(dy) = 1.

Hence ϕ is non-trivial. Moreover, we have

µ

∫
Ω

∫
Ω

M(y, z)dϕ(z)ψ(y)dy +

∫
Ω

(a(y)− µ)ψ(y)dϕ(y) + λ0
1

∫
Ω

ψ(y)dϕ(y) = 0 (3.5)

for any test function ψ ∈ F0. Since F0 is densely embedded in Cb(Ω) by Lemma A.1, (3.5) holds for any
ψ ∈ Cb(Ω). Applying Proposition 2.3, we have then λ0

1 = λ1.

Step 3: Conclusion.

We have shown that for any sequence εn → 0, there exists a subsequence ε′n → 0 such that λ
ε′n
1 → λ1. Thus

λε1 → λ1 when ε→ 0.

4 Stationary states in trait

This section deals with stationary states for (1.1). In particular, we prove Theorem 2.4 and Theorem 2.5 via a
bifurcation argument.

4.1 Regularized solutions

We investigate the existence of positive solutions p = p(y) to the following problem{
−ε∆p− µ(M ? p− p) = p(a(y)−K ? p− βp) in Ω
∂p
∂ν = 0 on ∂Ω,

(4.1)

for any β ≥ 0. We prove the existence of positive solutions for (4.1) when λε1 < 0. We plan to let ε → 0
with β = 0 in Section 4.2, in order to prove the existence of stationary solutions to (1.1). The reason why we
include a weight β ≥ 0 on the competition term in equation (4.1) is that solutions to the latter will be used as
subsolutions in the construction of traveling waves in Section 5.

Throughout this subsection we denote (λε1, ϕ
ε) the eigenpair of the regularized problem, solving (3.3). Notice

that (λε1, ϕ
ε) is independent from β. Our main result is the following:

Theorem 4.1 (Regularized steady states). Let Assumption 1 hold, ε > 0, (λε1, ϕ
ε) be defined by (3.3), and

β ≥ 0.

(i) Assume λε1 > 0. Then 0 is the only nonnegative solution to (4.1).

(ii) Assume λε1 < 0. Then there exists a positive solution to (4.1) for any β ≥ 0.

Item (i) is rather trivial and we will discuss it later in the proof of Theorem 4.1. The actual construction in
the case λε1 < 0 is more involved. Our method is inspired by the similar situation in [5]. We start by establishing
a priori estimates on the solutions p to (4.1).

Lemma 4.2 (A priori estimates on p). Let Assumption 1 hold, let ε > 0, β ≥ 0 and p be a nonnegative
nontrivial solution to (4.1). Then:

(i) p is positive.

(ii) If β = 0, there exists a positive constant C = C(Ω, ε, µ, ‖a‖L∞ ,m∞, k0, k∞) such that ‖p‖L∞ ≤ C. If
β > 0 then we have sup p ≤ sup a

β .

Proof. Point (i) follows from the strong maximum principle. We turn our attention to point (ii).
Assume first β > 0. Let y ∈ Ω such that p(y) = supz∈Ω p(z) and assume by contradiction that p(y) > sup a

β .
If y ∈ Ω, then we have

0 ≤ −ε∆yp(y)− µ(M ? p− p) = p(a(y)−K ? p− βp) < 0
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which is a contradiction. If y ∈ ∂Ω, then µ(M ?p− p) ≤ 0 and a−K ?p− βp ≤ 0 in a neighbourhood of y, and
thus −ε∆p− (a(y)−K ? p− βp)p ≤ 0 in a neighbourhood of y. It follows from Hopf’s Lemma that ∂p

∂ν (y) > 0,
which contradicts the Neumann boundary conditions satisfied by p. Hence sup p ≤ sup a

β .

We turn our attention to the case β = 0, which is more involved. We divide the proof in four steps.
Step 1: We establish a bound on

∫
Ω
p(y)dy.

Integrating over Ω, we have∫
Ω

a(y)p(y)dy −
∫

Ω

∫
Ω

p(y)K(y, z)p(z)dydz = β

∫
Ω

p2(y)dy ≥ 0.

Thus
∫
a(y)p(y)dy ≥ k0

(∫
Ω
p(y)dy

)2
and ∫

Ω

p(y)dy ≤ sup a

k0
. (4.2)

Step 2: We reduce the problem to a boundary estimate.
By a direct application of the local maximum principle [29, Theorem 9.20], for any ball BR(y) ⊂ Ω, there

exists a constant C = C(R, ε, ‖a‖L∞ , k0, k∞, µ,m∞) > 0 such that sup
BR/2(y)

p ≤ C. This shows an interior bound

for any point at distance R from ∂Ω.
To show that this estimate does not degenerate near the boundary, we use a coronation argument. Let

d(y, ∂Ω) := infz∈∂Ω |y − z|, and
ΩR := {y ∈ Ω | d(y, ∂Ω) < R}

for any R > 0. As noted in [24], the function y 7→ d(y, ∂Ω) has C3 regularity on a tubular neighbourhood of
∂Ω. In particular, ∂ΩR\∂Ω is C3 for R small enough, since ∇d 6= 0 in this neighbourhood. Moreover, by the
comparison principle in narrow domains [10, Proposition 1.1], the maximum principle holds for the operator
−ε∆v − (a(y) − µ)v in ΩR provided |ΩR| is small enough, meaning that if v satisfies −ε∆v − (a(y) − µ)v ≥ 0
in ΩR and v ≥ 0 on ∂ΩR, then v ≥ 0. In particular, we choose R small enough for this property to hold.

At this point, p ≤ C in Ω\ΩR and comparison holds in ΩR.

Step 3: We construct a supersolution.
Notice that, in contrast with [4] where Dirichlet boundary conditions are used, we need an additional

argument to deal with the Neumann boundary conditions. Since the comparison principle holds in the narrow
domain ΩR, the Fredholm alternative implies that, for any δ ∈ (0, 1], there exists a unique (classical) solution
to the system: 

−ε∆vδ − (a(y)− µ)vδ = µm∞
sup a
k0

in ΩR

vδ = C on ∂ΩR\∂Ω

δvδ + (1− δ)∂v
δ

∂ν = δ on ∂Ω.

As a result of the classical Schauder interior and boundary estimates, the mapping δ 7→ vδ is continuous from
(0, 1] to Cb(ΩR). Moreover, vδ is positive for δ ∈ (0, 1] by virtue of the maximum principle.

Next, still by a direct application of the Schauder estimates, (vδ)0<δ≤1 is precompact and there exists a
sequence δn → 0 and v ∈ C2 such that vδn → v in C2

loc(ΩR) ∩ C1(ΩR). Then v ≥ 0 satisfies:
−ε∆v − (a(y)− µ)v = µm∞

sup a
k0

in ΩR

v = C on ∂ΩR\∂Ω
∂v
∂ν = 0 on ∂Ω.

By a direct application of the strong maximum principle and Hopf’s Lemma, we have v > 0 on ΩR.

Step 4: We show that p ≤ v on ΩR.
Let p be a solution to (4.1) and select α := inf{ζ > 0 | ζv ≥ p in ΩR}.
Assume by contradiction that α > 1. Then there exists y0 ∈ ΩR such that the equality p(y0) = αv(y0)

holds, and αv − p ≥ 0. In particular y0 is a zero minimum for the function αv − p. Because of the boundary
conditions satisfied by p and v, y0 cannot be in ∂ΩR. y0 is then an interior local minimum to αv − p and thus

0 ≥ −ε∆(αv − p)(y0) = (a(y0)− µ)(αv − p)(y0) + αµm∞
sup a

k0

− µ(M ? p)(y0) + p(y0)(K ? p)(y0)

> αµm∞
sup a

k0
− µ(M ? p)(y0) ≥ 0,

using estimate (4.2), which is a contradiction. Thus α ≤ 1.
This shows that p ≤ v. Since v is a bounded function, we have our uniform bound for p in ΩR. In Ω\ΩR,

we have p ≤ C. This ends the proof of Lemma 4.2.

11



In order to proceed to the proof of Theorem 4.1, we yet need an additional technical remark.

Lemma 4.3 (Fréchet differentiability at 0). Let Assumption 1 hold, β ≥ 0 and

G : Cb(Ω) → Cb(Ω)
p(y) 7→ p(y)(K ? p)(y) + βp2(y),

then G is Fréchet differentiable at p = 0 and its derivative is DG(p) = 0.

Proof. This comes from the remark∣∣∣∣∫
Ω

K(y, z)p(z)dzp(y) + p2(y)

∣∣∣∣ ≤ ∫
Ω

K(y, z)|p(z)|dz|p(y)|+ βp2(y)

≤ k∞|Ω|‖p‖2Cb(Ω) + β‖p‖2Cb(Ω)

Proof of Theorem 4.1. Step 1: We prove item (i).
We assume λε1 > 0. We recall that (λε1, ϕ

ε) is the solution to (3.3) with the normalization
∫

Ω
ϕε(y)dy = 1.

Let p > 0 be a nonnegative solution to (4.1) in Ω. Since p is bounded and ϕε is positive on Ω, the quantity
α := inf{ζ > 0 | ζϕε > p} is well-defined and finite. Then, there exists y0 ∈ Ω such that p(y0) = αϕε(y0).
Remark that y0 is a minimum to the nonnegative function αϕε − p. If y0 ∈ ∂Ω, then Hopf’s Lemma implies
∂(αϕε−p)

∂ν (y0) < 0, which contradicts the Neumann boundary conditions satisfied by p and ϕε. Thus y0 ∈ Ω.
Evaluating equation (4.1), we have:

0 ≥ −ε∆(αϕε − p)(y0) = µ
(
M ? (αϕε − p)− (αϕε − p)

)
+ a(y0)

(
αϕε(y0)− p(y0)

)
+ p(y0)(K ? p)(y0) + βp2(y0) + λε1αϕ

ε

≥ p(y0)(K ? p)(y0) + βp2(y0) + λε1αϕ
ε > 0

which is a contradiction.

Step 2 : We prove item (ii).
We assume λε1 < 0. We argue as in [5]: if the nonlinearity is negligible near 0 and we can prove local

boundedness of the solutions in L∞, then we can prove existence through a bifurcation argument. This requires
a topological result stated in Appendix A.2.

More precisely, for α ∈ R and p ∈ Cb(Ω), we let F (α, p) = p̃ where p̃ is the unique solution to:{
−ε∆p̃+ (sup a− a(y))p̃− µ(M ? p̃− p̃) = αp−G(p) in Ω
∂p̃
∂ν = 0 on ∂Ω

where G is as in Lemma 4.3. Notice that sup a − a(y) ≥ 0, so comparison applies and the operator F is well-
defined due to the Fredholm alternative. In particular, for each α ∈ R, F (α, ·) is Fréchet differentiable near 0
and its derivative is the linear operator αT , where Tp = p̃ and p̃ is defined by:{

−ε∆p̃+ (sup a− a(y))p̃− µ(M ? p̃− p̃) = p in Ω
∂p̃
∂ν = 0 on ∂Ω.

Let C := {p ∈ Cb(Ω) | p ≥ 0}. By a classical comparison argument, T maps the cone C\{0} into Int C = {p ∈
Cb(Ω) | p > 0}. By virtue of the Krein-Rutman Theorem [18, Theorem 6.13], T has a first2 eigenvalue λ(T )
(satisfying Tψ = λ(T )ψ for a ψ > 0) and we have the formula λ(T ) = 1

λε1+sup a .

We now check one by one the hypotheses of Theorem A.2:
1. Clearly we have F (α, 0) = 0 for any α ∈ R.
2. It follows from Lemma 4.3 that G is Fréchet differentiable near 0 with derivative 0. As a consequence,

F (α, ·) is Fréchet differentiable near 0 with derivative αT .
3. T satisfies the hypotheses of the Krein-Rutman Theorem.
4. It follows from Lemma 4.2 that the solutions to F (α, p) = p are locally uniformly bounded in α.
5. Since any nontrivial nonnegative fixed point p is positive, there is no nontrivial fixed point in the boundary

of C.
Thus, applying Theorem A.2, there exists a branch of solutions C connecting α = 1

λ(T ) to either α → +∞
or α→ −∞.

By the uniqueness in the Krein-Rutman Theorem, if λα denotes the principal eigenvalue associated with
F (α, p) = p, we have λα = λε1 + sup a−α = 1

λ(T ) −α. In particular, for α < − sup a− λε1, we deduce from Step

1 that there cannot exist a solution to F (α, p) = p in C. Thus C connects 1
λ(T ) to +∞. In particular, there

exists a positive solution for α = sup a = 1
λ(T ) − λ

ε
1 >

1
λ(T ) , which solves (4.1). This ends the proof of Theorem

4.1.
2We stress that this first eigenvalue is not the principal eigenvalue of the problem F (α, p) = p, but the algebraic eigenvalue.
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We now prove a lower estimate for solutions to (4.1), which is crucial for the construction of traveling waves,
but will not be used in the meantime. We stress that in the lemma below, the constant ρβ is independent from
ε.

Lemma 4.4 (pε,β does not vanish). Let Assumption 1 be satisfied, let β > 0 and λ1 < 0. Let finally pε,β be a
solution to (4.1). Then, there exists constants ε0 = ε0(Ω, µ,M, a) > 0 and ρβ = ρβ(Ω,M, a, β) > 0 such that if
ε ≤ ε0, then

inf
Ω
pε,β ≥ ρβ .

Proof. This proof is inspired by the one of [21, Lemma 5.2].

Step 1: Setting of an approximating eigenvalue problem.
Here we introduce an approximating eigenvalue problem, that will be used to estimate from below the

solutions to (4.1).
Let δ > 0, ε > 0, aδ(y) := min(a(y), sup a− δ) and (λδ,ε, ϕδ,ε) be the principal eigenpair solving the problem{

ε∆ϕδ,ε + µ(M ? ϕδ,ε − ϕδ,ε) + (aδ(y) + λδ,ε)ϕδ,ε = 0 in Ω
∂ϕδ,ε

∂ν = 0 on ∂Ω,
(4.3)

with
∫

Ω
ϕδ,ε(y)dy = 1. It follows from Theorem 3.4 that λδ,ε converges to the principal eigenvalue λδ,0 of the

operator ψ 7→ µ(M ? ψ − ψ) + aδ(y)ψ when ε → 0. λδ,0, in turn, converges to λ1 when δ → 0 by Lipschitz
continuity [19, Proposition 1.1]. Thus we may approximate λ1 by λδ,ε for δ > 0 and ε > 0 small enough.

Since y 7→ 1
sup aδ−aδ(y)

6∈ L1(Ω), it follows from [19, Theorem 1.1] (which can be adapted in our context; see

[20]) that there exists a continuous eigenfunction associated with λδ,0. In this case [20, Theorem 1.1] shows the
strict upper bound λδ,0 < − sup aδ + µ = − sup a+ δ + µ.

In what follows we fix the real number δ > 0 small enough so that the inequality δ < 1
2 min

(
µ, sup a− inf a, sup a− sup

∂Ω
a+ − µ

)
holds, together with λδ,0 ≤ 3λ1

4 . We define η := −λδ,0 − sup a + δ + µ > 0. Since λδ,ε → λδ,0 as ε → 0, we fix

ε0 > 0 such that for any 0 < ε < ε0, |λδ,ε − λδ,0| ≤ −λ1

4 , and λδ,ε ≤ λδ,0 + η
2 .

Finally, integrating equation (4.3), we have 0 =
∫

Ω
(aδ(y) + λδ,ε)ϕδ,ε(y)dy, thus the function aδ(y) + λδ,ε

takes nonpositive and nonnegative values. This shows

inf a = inf aδ ≤ −λδ,ε ≤ sup aδ = sup a− δ.

Step 2: Estimates from above and from below of ϕδ,ε.
Let us establish some upper and lower bounds for ϕδ,ε. Since ϕδ,ε is continuous on Ω, there exists y0 ∈ Ω

such that ϕδ,ε(y0) = infz∈Ω ϕ
δ,ε(z). If y0 ∈ ∂Ω, then it follows from Hopf’s Lemma that ∂ϕδ,ε

∂ν (y0) < 0, which

contradicts the Neumann boundary conditions satisfied by ϕδ,ε (recall that a(y0) + λδ,ε < 0 for y0 ∈ ∂Ω). We
conclude that y0 ∈ Ω. Thus we can evaluate equation (4.3):

0 ≥ −ε∆ϕδ,ε(y0) = µ
(
M ? ϕδ,ε − ϕδ,ε

)
+
(
aδ(y0) + λδ,ε

)
ϕδ,ε,

(sup a− inf a+ µ)ϕδ,ε(y0) ≥
(
− λδ,ε − aδ(y0) + µ

)
ϕδ,ε(y0) ≥ µm0

∫
Ω

ϕδ,ε,

min
z∈Ω

ϕδ,ε(z) ≥ µm0

sup a− inf a+ µ
.

Similarly, there exists y0 ∈ Ω such that ϕδ,ε(y0) = maxz∈Ω ϕ
δ,ε(z). Evaluating equation (4.3), we get

(recalling aδ(y0)− µ+ λδ,ε ≤ −η2 < 0):

0 ≤ −ε∆ϕδ,ε = µM ? ϕδ,ε +
(
aδ(y0)− µ+ λδ,ε

)
ϕδ,ε(y0),

η

2
ϕδ,ε ≤ µm∞

∫
Ω

ϕδ,ε = µm∞,

max
z∈Ω

ϕδ,ε(z) ≤ 2
µm∞
η

.

Hence, for 0 < ε ≤ ε0 and y0 ∈ Ω, we have shown that

µm0

sup a− inf a+ µ
≤ ϕδ,ε(y0) ≤ 2

µm∞
η

.

Step 3: Lower estimate for pε,β .
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We are now in a position to derive a lower bound for pε,β . Since pε,β > 0 in Ω, we can define α :=
sup

{
ζ > 0 | ∀y ∈ Ω, ζϕδ,ε(y) ≤ pε,β(y)

}
.

Assume by contradiction that α < α0 := min
(

m0η
2k∞m∞

, −λδ,εη
2βµm∞+ηk∞

)
. By definition of α there exists y0 ∈ Ω

such that αϕδ,ε(y0) = p(y0). Assume y0 ∈ ∂Ω, then it follows from Hopf’s Lemma that ∂(pε,β−αϕδ,ε)
∂ν (y0) < 0,

which contradicts the Neumann boundary conditions satisfied by pε,β and ϕδ,ε. Thus y0 ∈ Ω. We have:

0 ≥ −ε∆(pε,β − αϕδ,ε)(y0) = µ
(
M ? (pε,β − αϕδ,ε)− (pε,β − ϕδ,ε)

)
+ pε,β

(
a(y0)−K ? pε,β − βpε,β

)
−
(
λδ,ε + aδ(y0)

)
αϕδ,ε

=

∫
Ω

(
µM(y0, z)− αϕδ,ε(y0)K(y0, z)

)(
pε,β(z)− αϕδ,ε(z)

)
dz

− αϕδ,ε(y0)

∫
Ω

K(y0, z)
(
αϕδ,ε(z)

)
dz

+ αϕδ,ε
(
a(y0)− aδ(y0)

)
− β

(
pε,β

)2 − λδ,εαϕδ,ε(y0).

By definition, µM(y0, z) − αϕδ,ε(y0)K(y0, z) ≥ µm0 − k∞ m0η
2k∞m∞

2µm∞
η = 0 for any z ∈ Ω, and thus, recalling

a(y0) ≥ aδ(y0),

0 ≥ −αλδ,εϕδ,ε(y0)− α2ϕδ,ε(y0)

(
βϕδ,ε +

∫
Ω

K(y0, z)ϕ
δ,ε(z)dz

)
,(

2β
µm∞
η

+ k∞

)
α ≥ α

(
βϕδ,ε(y0) +

∫
Ω

K(y0, z)ϕ
δ,ε(z)dz

)
≥ −λδ,ε,

which is a contradiction since α < α0 = min
(

m0η
2k∞m∞

, −λδ,εη
2βµm∞+ηk∞

)
.

We conclude that α ≥ α0 and thus (recalling λδ,ε ≤ λ1

2 )

min
y∈Ω

pε,β(y) ≥ α0 min
y∈Ω

ϕδ,ε(y)

≥ min

(
m0η

2k∞m∞
,

(−λ1)η

4βµm∞ + 2ηk∞

)
µm0

sup a− inf a+ µ
> 0.

Since this lower bound is independent from ε, this ends the proof of Lemma 4.4.

4.2 Construction of a stationary solution at ε = 0

In this section we assume λ1 < 0. Then, Theorem 4.1 guarantees the existence of a positive solution to (4.1)
for ε small enough, since λε1 → λ1 as ε → 0 (recall Theorem 3.4). In this context, we expect the solution
constructed in Theorem 4.1 with β = 0 to converge weakly to a (possibly singular) Radon measure, solution
to (2.4). Here we prove this result, and complete the proof of Theorem 2.4. In particular, in this section we
assume β = 0.

Before we can prove Theorem 2.4, we need a series of estimates on the previously constructed solutions
pε := pε,0.

Lemma 4.5 (Estimates on the mass). Let Assumption 1 hold, let ε > 0, λε1 < 0, and pε be a solution to
equation (4.1) with β = 0. Then

−λε1
k∞
≤
∫

Ω

pε(y)dy ≤ sup a

k0
. (4.4)

Proof. The upper bound in equation (4.4) has been established in Lemma 4.2. We turn our attention to the
lower estimate.

We assume by contradiction that λε1+k∞
∫

Ω
pε(y)dy < 0. Let (λε1, ϕ

ε > 0) be the solution to the eigenproblem
(3.3), normalized with

∫
ϕε = 1. Then, we define the real number α := sup{ζ > 0 | ∀y ∈ Ω, ζϕε ≤ pε} > 0,

which is then well-defined since pε > 0 and ϕε is bounded.
By definition of α we have αϕε ≤ pε and there exists a point y0 ∈ Ω such that pε(y0) = αϕε(y0). If y0 ∈ ∂Ω,

since y0 is a maximum point for the function αϕε−pε, then it follows from Hopf’s Lemma that ∂αϕε−pε
∂ν (y0) > 0,

which contradicts the Neumann boundary conditions satisfied by pε and ϕε. Thus y0 ∈ Ω and we compute

0 ≤ −µ
(
M ? (αϕε − pε)− (αϕε − pε)

)
− ε∆(αϕε − pε)

= λε1αϕ
ε + (K ? pε)pε + a(y0)(αϕε − pε) =

(
λε1 + (K ? pε)(y0)

)
pε(y0),

which is a contradiction since λ1 + (K ? p)(y0) ≤ λ1 + k∞
∫

Ω
pε(y)dy < 0. This finishes the proof of Lemma

4.5.
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Proof of Theorem 2.4. It follows from Lemma 4.5 that the family (pε)0<ε≤1 of solutions to (4.1) with ε > 0 and
β = 0 is uniformly bounded in M1(Ω). Hence, applying Prokhorov’s Theorem [11, Theorem 8.6.2], (pε)0<ε<1

is precompact for the weak topology in M1(Ω), and there exists a sequence pεn (with εn → 0) and a measure
p such that pεn ⇀ p in the sense of measures. In particular, taking ψ = 1, we recover the estimate of Lemma
4.5: 0 < −λ1

k∞
≤
∫

Ω
p(dy) ≤ sup a

k0
. Hence p is non-trivial.

Let us show that p is indeed a solution to (2.4). Multiplying equation (4.1) by ψ ∈ F0, where F0 is the set
of functions with zero boundary flux as defined in (3.4), and integrating by parts, we get

−εn
∫

Ω

pεn∆ψdy =

∫
Ω

µ(M ? pεn − pεn)ψ + a(y)pεnψdy (4.5)

−
∫

Ω

(K ? pεn)(y)ψ(y)pεn(y)dy.

Since ∆ψ ∈ Cb(Ω) and
∫

Ω
pεn is bounded uniformly in n, the left-hand side of (4.5) goes to 0 when n → ∞.

Moreover since ψ(y)(a(y) − µ) ∈ C(Ω), then by definition the convergence
∫

Ω
ψ(y)(a(y) − µ)pεn(y)dy →n→∞∫

Ω
ψ(y)(a(y)− µ)p(dy) holds.
We turn our attention to the term

∫
Ω
M ? pεn(y)ψ(y)dy. We notice that∫

Ω

∫
Ω

M(y, z)pεn(z)dzψ(y)dy =

∫
Ω

pεn(z)

∫
Ω

M(y, z)ψ(y)dy =

∫
Ω

pεn(z)M̌ ? ψ(z)dz,

where M̌(y, z) = M(z, y). Since M̌ ? ψ(z) is a valid test function, we have indeed
∫

Ω
M ? pεn(y)ψ(y)dy →∫

Ω
M ? p(y)ψ(y)dy.
We turn to the convergence of the nonlinearity

∫
Ω

(K ?pεn)(y)ψ(y)pεn(y)dy. Since the sequence pεn appears
twice in this term, the above argument cannot be used directly. Therefore, we first show a stronger convergence
for K ? pεn , namely that it converges uniformly to a continuous limit. We notice that

|(K ? pεn)(y)− (K ? pεn)(y′)| =
∣∣∣∣∫

Ω

(
K(y, z)−K(y′, z)

)
pεn(z)dz

∣∣∣∣
≤2‖K(y, ·)−K(y′, ·)‖Cb(Ω)

sup a

k0
.

Thus, the modulus of continuity of K ? pεn is uniformly bounded. Up to the extraction of a subsequence,
K ? pεn converges in Cb(Ω) to a limit which we identify as K ? p (by using another test function and the weak
convergence pεn ⇀ p). Along this subsequence, we have then

lim
n→∞

∫
Ω

(K ? pεn)(y)ψ(y)pεn(y)dy =

∫
Ω

(K ? p)ψ(y)p(dy).

We have shown that equation (4.5) is satisfied for any ψ ∈ F0. Applying Lemma A.1, F0 is densely embedded
in Cb(Ω). Equation (4.5) is thus satisfied for any ψ ∈ Cb(Ω). This ends the proof of Theorem 2.4.

4.3 Proof of Theorem 2.5

Under Assumption 3 and if µ is small enough according to Theorem 3.2, we can actually prove that the measure
solution to (2.4) is concentrated in Ω0 (Theorem 2.5). To do so, we write a solution p to (2.4) as an eigenvector
for a problem similar to (2.3), and make use of Theorem 3.1.

Proof of Theorem 2.5. Let p ∈M1(Ω), p 6≡ 0 be a nonnegative solution to (2.4). Define b(y) := a(y)−(K?p)(y).
Then b is a continuous function and we have

∀y ∈ Ω, b(y) = a(y)−
∫

Ω

K(y, z)p(dz) ≤ a(0)−
∫

Ω

K(0, z)p(dz) = b(0),

as a result of Assumption 3. This shows that sup b = b(0). Next we compute:

b(0)− b(y) = a(0)− a(y) +

∫
Ω

(
K(y, z)−K(0, z)

)
p(dz) ≥ a(0)− a(y).

Thus, b satisfies Assumption 2.
We remark that p solves

µ(M ? p− p) + b(y)p = 0 (4.6)
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in the sense of measures. Thus p is a solution to (2.3) with a replaced by b. Applying Corollary 3.3, since
µ < µ0(Ω,M, sup a− a), then µ < µ0(Ω,M, sup b− b) and thus the only solutions to (4.6) are singular measures
which singular part is concentrated in {y ∈ Ω | b(y) = sup b}. Let us show that {y | b(y) = sup b} ⊂ Ω0. Let
y ∈ Ω such that y 6∈ Ω0. Then a(y) < a(0) and

b(y) = a(y)− (K ? p)(y) < a(0)− (K ? p)(y) ≤ a(0)− (K ? p)(0) = sup b,

which shows that y 6∈ {y | b(y) = sup b}. This ends the proof of Theorem 2.5.

5 Construction of traveling waves

In this section, we prove our main result Theorem 2.7. To construct the desired measure traveling wave, we
first consider a regularized problem in a box −l ≤ x ≤ l, y ∈ Ω.

5.1 Construction of a solution in a box

Here we aim at constructing solutions (c, u = u(x, y)) to

−ε∆yu− uxx − cux = µ(M ? u− u)

+u(a(y)−K ? u− βu) in (−l, l)× Ω

∇yu(x, y) · ν = 0 on (−l, l)× ∂Ω

u(l, y) = 0 in Ω

u(−l, y) = p(y) in Ω,

(5.1)

for β ≥ 0 and p solving (4.1). Notice that any solution to (5.1) with β > 0 is a subsolution to (5.1) with β = 0.
In particular, we will use some solutions to (5.1) with β > 0 to get lower estimates on solutions to (5.1) with
β = 0.

In contrast with [9, 8, 4, 32], we use a global continuation theorem (in the proof of Theorem 5.1 below)
instead of a topological degree to construct solutions to the local problem (5.1). Though both arguments have
the same topological basis, we believe that this is an improvement of the usual method, since it spares the need
to explicitly compute the topological degree associated with (5.1).

Let us also introduce the following quantity, which is the minimal speed for traveling waves (as we will show
later):

c∗ε := 2
√
−λε1. (5.2)

Our result is the following:

Theorem 5.1 (Existence of solutions in the box). Let Assumption 1 hold, ε > 0 be such that λε1 < 0, and

β ≥ 0. Then, there exists a nonnegative solution to (5.1). Moreover, let l0 := π√
−λε1

> 0, τ0 :=
−λε1

2 > 0. Then,

for any 0 < τ < τ0, there exists l̄(τ) ≥ l0 + 1 such that if l > l̄(τ), there exists a nonnegative solution (c, u) to
(5.1) with 0 < c ≤ c∗ε, which also satisfies the normalization condition

sup
(x,y)∈(−l0,l0)×Ω

(∫
Ω

K(y, z)u(x, z)dz + βu(x, y)

)
= τ. (5.3)

Before we prove Theorem 5.1, we need to establish some a priori estimates on the solutions to (5.1). For
technical reasons, we actually study the solutions to

−ε∆yu− uxx − cux = σ
(
µ(M ? u− u)

+uχu≥0(a(y)−K ? u− βu)
)

in (−l, l)× Ω

∇yu(x, y) · ν = 0 on (−l, l)× ∂Ω

u(l, y) = 0 in Ω

u(−l, y) = p(y) in Ω,

(5.4)

where χu≥0 = 0 if u ≤ 0, χu≥0 = 1 if u > 0, and σ ∈ (0, 1]. We introduce the positive-part cutoff involving χ
in Problem (5.4) in order to ensure that the nontrivial solutions to this problem are positive.

Lemma 5.2 (A priori estimates on the solutions to (5.4)). Let Assumption 1 hold, ε > 0 such that λε1 < 0,
β ≥ 0, and |c| ≤ c∗ε. We define l0 := π√

−λε1
. Let u be a solution to (5.4), then
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(i) u ∈ C2
loc

(
(−l, l)× Ω

)
∩ C1

loc

(
(−l, l)× Ω

)
∩ Cb

(
[−l, l]× Ω

)
.

(ii) u is positive in (−l, l)× Ω.

(iii) For any x ∈ [−l, l], we have
∫

Ω
u(x, y)dy ≤ sup a

k0
.

(iv) There exists a positive constant Cε, independent from c, l and σ, such that we have ‖u‖Cb((−l,l)×Ω) ≤ Cε.
If β > 0, then we have the estimate ‖u‖Cb((−l,l)×Ω) ≤ sup a

β .

(v) If σ = 1, c = 0, and l > l0, then

sup
(x,y)∈(−l0,l0)×Ω

(∫
Ω

K(y, z)u(x, z)dz + βu(x, y)

)
>
−λε1

2
.

Remark that for this result to hold, u needs only be defined on (−l0, l0)× Ω.

(vi) If σ = 1 and c = c∗ε, then there exists a constant A (independent from l) and λ :=
c∗ε
2 > 0 such that

∀(x, y) ∈ (−l, l)× Ω, u ≤ Ae−λ(x+l).

In particular for any l ≥ l̄(τ) := 1
λ ln

(
τ

2A(k∞
∫
Ω
ϕε+β supΩ ϕ

ε)

)
− l0 and 0 < τ ≤ τ0 =

−λε1
2 , we have

sup
(x,y)∈(−l0,l0)×Ω

(∫
Ω

K(y, z)u(x, z)dz + βu(x, y)

)
< τ.

Proof. Item (i) holds by a direct application of [10, Lemma 7.1], and item (ii) by a classical comparison
argument. Let us resume to the remaining items.

Item (iii): By the estimate in Lemma 4.5, we have
∫

Ω
p(y)dy ≤ sup a

k0
. Assume that the function x 7→∫

Ω
u(x, y)dy has a maximal value at x0 ∈ (−l, l), then integrating (5.4) over Ω we have

0 ≤ −
d2
∫

Ω
u(x0, y)dy

dx2
− c

d
∫

Ω
u(x0, y)dy

dx

= σ

∫
Ω

a(y)u(x0, y)− (K ? u)(x0, y)u(x0, y)dy,

and thus:

k0

(∫
Ω

u(x0, y)dy

)2

≤
∫

Ω

∫
Ω

K(y, z)u(x0, z)u(x0, y)dydz

=

∫
Ω

a(y)u(x0, y)dy ≤ sup a

∫
Ω

u(x0, y)dy.

This shows item (iii).
Item (iv): Assume first β > 0 and let u(x0, y0) = supu at (x0, y0) ∈ [−l, l]× Ω. Assume by contradiction

that u(x0, y0) > sup a
β . If x0 = −l, since p satisfies the upper bound sup p ≤ sup a

β by the estimate in Lemma 4.2

item (ii), we have a contradiction. If x0 = +l, since u(x0, y0) = 0, we have a contradiction. Assume x0 ∈ (−l, l).
If y0 ∈ ∂Ω, then it follows from Hopf’s Lemma that ∂u

∂ν (x0, y0) > 0, which is a contradiction. Thus y0 ∈ Ω.
Now, testing (5.4) at (x0, y0), we have

0 ≤ −ε∆yu(x0, y0)− uxx(x0, y0)− cux(x0, y0)− σµ
(
(M ? u)− u

)
(x0, y0)

= σu(x0, y0)
(
a(y0)− (K ? u)(x0, y0)− βu(x0, y0)

)
< 0

which is a contradiction. Thus u ≤ sup a
β .

We turn our attention to the case β = 0. In this case, we construct a supersolution as in Lemma 4.2.
Recalling that u satisfies Dirichlet boundary conditions at x = ±l, the local maximum principle up to the
boundary [29, Theorem 9.26] shows the existence of C = C(Ω, R, ε, ‖a‖L∞ , k0, k∞, µ, c

∗
ε) such that for any

x ∈ [−l, l], y ∈ Ω with d(y, ∂Ω) ≥ R, we have the estimate sup
BR/2(x,y)

u ≤ C.

To show that this estimate does not degenerate near the boundary, we use the same kind of supersolution
as in Lemma 4.2. Let

ΩR := {y ∈ Ω | d(y, ∂Ω) < R}

for any R > 0. We select R small enough so that ΩR has a C3 boundary and the comparison principle [10,
Proposition 1.1] holds in the narrow domain ΩR. Let us stress that since σ ∈ (0, 1), R can be chosen uniformly
in σ.
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This allows us to construct a positive solution to
−ε∆v − σ(a(y)− µ)v = µm0

m∞ sup a
k0

in Ω

v = C on ∂ΩR\∂Ω
∂v
∂ν = 0 on ∂Ω,

which is bounded uniformly in σ, as we did in the proof of Lemma 4.2. Now we select α := inf{ζ > 0 | ∀x ∈
(−l, l),∀y ∈ Ω, ζv(y) ≥ u(x, y)}. Assume by contradiction that α > 1. Then there exists (x0, y0) ∈ [−l, l] × Ω
such that u(x0, y0) = αv(y0). If x0 = l then u = 0, which is a contradiction. If x0 = −l, since u(−l, y0) = p(y0)
solves (4.1), we argue as in Lemma 4.2 and get a contradiction. We are left to investigate the case x0 ∈ (−l, l). If

y0 ∈ ∂Ω, since (x0, y0) is a minimum to the function αv−u, then by Hopf’s Lemma we have ∂(αv−u)
∂ν (x0, y0) < 0

which is a contradiction. Thus y0 6∈ ∂Ω. Since α > 1 and u ≤ C on ∂ΩR\∂Ω, then y0 ∈ ΩR. Now (x0, y0) is a
local minimum to αv − u and thus

0 ≥ −ε∆(αv − u)(x0, y0) = σ(a(y0)− µ)(αv − u)(x0, y0) + αµm0
m∞ sup a

k0

− σµ(M ? u)(x0, y0) + u(x0, y0)(K ? u)(x0, y0)

> αµm0
m∞ sup a

k0
− σµ(M ? u)(x0, y0) ≥ 0

which is a contradiction. Thus α ≤ 1.
This shows that u(x, y) ≤ v(y) in (−l, l) × ΩR. Since v is bounded uniformly in σ, we have our uniform

bound for u in [−l, l]× ΩR. In the rest of the domain (−l, l)× Ω\ΩR, we have u ≤ C.
This proves item (iv), with Cε := max(supy∈ΩR v(y), C).

Item (v): This proof is similar to the one in [4]. Assume by contradiction that sup(x,y)∈(−l0,l0)×Ω

(∫
Ω
K(y, z)u(x, z)dz + βu(x, y)

)
≤

τ0. Then u satisfies:

− uxx − ε∆yu− µ(M ? u− u)− a(y)u ≥ −τ0u in (−l0, l0). (5.5)

Define ψ(x, y) := cos
(
π

2l0
x
)
ϕε(y), where ϕε is the principal eigenfunction solution to (3.3) satisfying

supy∈Ω ϕ
ε = 1. Since u is positive in [−l0, l0] × Ω, we can define the real number α := sup{ζ > 0 | ∀(x, y) ∈

(−l0, l0)× Ω, ζψ(x, y) ≤ u(x, y)}, and we have α > 0.
Then, there exists (x0, y0) ∈ [−l0, l0] × Ω such that αψ(x0, y0) = u(x0, y0). Because of the boundary

conditions satisfied by u and ψ, (x0, y0) has to be in (−l0, l0)×Ω. Since (x0, y0) is the minimum of u− αψ, we
have

0 ≥ −ε∆y(u− αψ)(x0, y0)− (u− αψ)xx(x0, y0)

− µ
(
M ? (u− αψ)− (u− αψ)

)
(x0, y0)− a(y0)(u− αψ)(x0, y0)

≥ −τ0u(x0, y0) + α

(
−λε1 −

(
π

2l0

)2
)
ψ(x0, y0)

=

(
−3λε1

4
− τ0

)
u(x0, y0) > 0,

since −τ0 =
λε1
2 . This is a contradiction.

This proves item (v).

Item (vi): Let ψ(x, y) := e−
c∗ε
2 xϕε(y) with (λε1, ϕ

ε) solution to (3.3). Then ψ satisfies:

−c∗εψx − ψxx − ε∆yψ − µ(M ? ψ − ψ) = a(y)ψ.

Since ψ > 0 on [−l, l] × Ω, there exists ζ > 0 such that ζψ ≥ u on (−l, l) × Ω. Let us select α := inf{ζ >
0 | ∀(x, y) ∈ (−l0, l0) × Ω, ζψ(x, y) ≥ u(x, y)}. By definition of α we have αψ ≥ u and there exists (x0, y0) ∈
[−l, l] × Ω such that αψ(x0, y0) = u(x0, y0). Because of the boundary conditions satisfied by u and ψ, (x0, y0)
has to be in [−l, l)× Ω. If x0 ∈ (−l, l), we have:

0 ≤ −ε∆y(u− αψ)(x0, y0)− (u− αψ)xx(x0, y0)

− µ
(
M ? (u− αψ)− (u− αψ)

)
(x0, y0)− a(y0)(u− αψ)(x0, y0)

< 0

which is a contradiction. We conclude that x0 = −l0 and thus α ≤ supΩ p
infΩ ϕε

e−
c∗ε
2 l. By definition of α, we can

then write:

u(x, y) ≤ αe−
c∗ε
2 xϕε(y) ≤ supΩ p

infΩ ϕε
e−

c∗ε
2 (x+l)ϕε(y)

which concludes the proof of item (vi).
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We are now in the position to prove Theorem 5.1, by using the global continuation principle [52, Theorem
14 C].

Proof of Theorem 5.1. For c ∈ R and u ∈ Cb
(
(−l, l)× Ω

)
. We define F (c, u) = ũ where ũ solves:

−ũxx − cũx − ε∆yũ = µM ? u

+uχu≥0(a(y)− µ−K ? u− βu) in (−l, l)× Ω
∂ũ
∂ν (x, y) = 0 on (−l, l)× ∂Ω

ũ(l, y) = 0 in Ω

ũ(−l, y) = p(y). in Ω.

(5.6)

It follows from [10, Lemma 7.1] that for any u the function ũ is well-defined and belongs to the space Cb([−l, l]×
Ω) ∩W 2,p

loc ([−l, l]× Ω\{−l, l} × ∂Ω) for any p > 0.
Step 1: Let us briefly show that F is in fact a compact operator. Since the right-hand side of the first

equation in (5.6) is bounded, it is easily seen that the function (x, y) 7→
(
1+γ(x+l)α

)
p(y) is a local supersolution

to equation (5.6) near x = l for 0 ≤ α < α0, γ ≥ γ0 > 0, where α0 and γ0 depend only on ‖u‖Cb((−l,l)×Ω), a

bound for c and the data and coefficients of the problem. Similarly, (1− γ(x+ l)α
)
p(y) is a local subsolution,

provided α is chosen small enough. Thus the inequality
(
1 − γ(x + l)α

)
p(y) ≤ ũ(x, y) ≤

(
1 + γ(x + l)α

)
p(y)

holds for α > 0 small enough. In particular, the function x ∈ [−l, 0] 7→ ũ(x, y) is uniformly in Cα for y ∈ Ω. It
then follows from [29, Corollary 9.28] (and the classical interior Sobolev embeddings) that ũ ∈ Cα([−l, 0]×Ω).
Regularity near x = l can be shown the same way. Thus ũ ∈ Cα([−l, l]×Ω) where α depends only on a bound
for ‖u‖Cb((−l,l)×Ω) and c, and the data and coefficients of problem (5.6). In particular, F maps bounded sets of
R× Cb((−l, l)× Ω) into relatively compact sets in Cb((−l, l)× Ω).

Step 2: We aim at applying the Leray-Schauder fixed-point theorem [52, Corollary 13.1 item (iii)] to
F (0, ·). We remark that the solutions to u = σF (0, u) for σ ∈ (0, 1] are in fact the solutions to (5.4). In
particular, Lemma 5.2 gives us a positive constant C > 0 such that any solution to (5.4) satisfies the inequality
‖u‖Cb(−l,l)×Ω ≤ C. Let G := {u ∈ Cb((−l, l)× Ω) | ‖u‖Cb((−l,l)×Ω) ≤ 2C}, then

1. G is a bounded open subset of the Banach space Cb((−l, l)× Ω),

2. 0 ∈ G,

3. F (0, ·) : G→ Cb((−l, l)× Ω) is a compact mapping, and

4. applying Lemma 5.2, there is no solution to u = σF (0, u) with u ∈ ∂G and σ ∈ (0, 1].

Thus the Leray-Schauder fixed-point Theorem [52, Corollary 13.1 item (iii)] applies and we have ind(F (0, ·), G) =
1, where ind is the Leray-Schauder fixed-point index.

Step 3: Let us now check that the hypotheses of the global continuation principle [52, Theorem 14 C] are
satisfied. We have:

1. F is a compact mapping from (0, c∗ε)×G into Cb((−l, l)× Ω),

2. applying Lemma 5.2, there is no solution to u = F (c, u) with u ∈ ∂G and c ∈ [0, c∗ε], and

3. ind(F (0, ·), G) = 1.

Thus, the global continuation principle applies and there exists a connected set of solutions C to u = F (c, u)
connecting {0} ×G to {c∗ε} ×G. In particular, there exists a solution to (5.1) for any c ∈ [0, c∗ε].

Step 4: Now let us assume l ≥ l̄(τ) (where l̄(τ) is given by Lemma 5.2, item 5). Since the mapping

u ∈ Cb((−l, l)× Ω)
N7−→ sup

(x,y)∈(−l0,l0)×Ω

∫
Ω

K(y, z)u(x, z)dz + βu(x, y)

is continuous, then N(C) is a connected subset of R, i.e. an interval. Applying Lemma 5.2, we have:

– From point (v), if (c, u) ∈ C and c = 0, then N(u) > τ .

– From point (vi), if (c, u) ∈ C and c = c∗ε then N(u) < τ .

Thus there exists c ∈ (0, c∗ε) and u such that (c, u) ∈ C and N(u) = τ . This finishes the proof of Theorem
5.1.

An immediate consequence is the following:

19



Corollary 5.3 (Existence of a solution on the line). Let Assumption 1 hold, ε > 0 be such that λε1 < 0, β ≥ 0

and 0 < τ ≤ −λ
ε
1

2 . Then there exists a classical positive solution to
−uxx − cux = ε∆yu+ µ(M ? u− u)

+u(a(y)−K ? u− βu) on R× Ω
∂u
∂ν = 0 on R× ∂Ω,

(5.7)

with 0 < c ≤ c∗ε. Moreover u ∈ Cb(R× Ω) ∩ C2(R× Ω), satisfies (5.3) and

∀x ∈ R,
∫

Ω

u(x, y)dy ≤ sup a

k0
.

Proof. Let 0 < τ ≤ τ0 and l̄ = l̄(τ) as in Theorem 5.1. Then it follows from the existence theorem (Theorem 5.1),
that for any n ∈ N, there exists a positive classical solution (cn, un) ∈ (0, c∗ε)×C2((−ln, ln)×Ω)∩C1((−ln, ln)×Ω)
to (5.1) which satisfies (5.3), where ln := l̄ + n. By the uniform bound satisfied by supun (Lemma 5.2 point
(iv)), the classical Schauder interior estimates [29, Theorem 6.2] and the boundary Schauder estimates [29,
Theorem 6.29], there exists a constant Ck > 0, independent from n such that ‖un‖C2,α((−lk,lk)×Ω) ≤ Ck for any

k < n. Using a classical diagonal extraction process, there exists u, c0 and a subsequence such that cn → c0,
and ‖un − u‖C2((−lk,lk)×Ω) → 0 for any k ∈ N. Since u solves (5.3) with τ > 0, it is a nontrivial solution to

(5.7). Then, by a direct application of Lemma 5.2 point (v), c0 > 0 (indeed Lemma 5.2 point (v) also applies
to solutions defined on the whole line).

Finally we have ∀x ∈ R,
∫

Ω
u(x, y)dy ≤ sup a

k0
by the estimate in Lemma 5.2 point (iii). This finishes the

proof of Corollary 5.3.

5.2 Proof of minimality for β ≥ β0

In the case β ≥ β0 := k∞ sup a
µm0

, we recover the comparison principle. Indeed, the increased self-competition (via

large β) enforces the solution to remain in the region “u small” where the system is cooperative (see Lemma
5.5). We can then retrieve many of the classical properties satisfied by traveling waves in a KPP situation.

Theorem 5.4 (Minimal speed traveling waves for β ≥ β0). Let Assumption 1 hold, 0 < ε ≤ ε0 — where ε0 is
as in Lemma 4.4— be such that λε1 < 0, and β ≥ β0 = k∞ sup a

µm0
. Then, there exists a solution (c, u) to (5.7)

satisfying c = c∗ε and the limit conditions

lim inf
x→−∞

inf
y∈Ω

u(x, y) > 0, lim
x→+∞

sup
y∈Ω

u(x, y) = 0. (5.8)

Moreover, u is nonincreasing in x, and there exists no positive solution to (5.7) satisfying (5.8) and 0 ≤ c < c∗ε.
Finally, we have

lim
x→−∞

inf
y∈Ω

u(x, y) ≥ ρβ

where ρβ is the constant defined in Lemma 4.4.

Our main tool is the following comparison principle for small densities.

Lemma 5.5 (Comparison principle). Let Assumption 1 hold and β ≥ 0. Let u ∈ C2 be a supersolution to

− cux − uxx − ε∆yu− µ(M ? u− u)− u(a(y)−K ? u− βu) ≥ 0 (5.9)

and v ∈ C2 be a subsolution to

− cvx − vxx − ε∆yv − µ(M ? v − v)− v(a(y)−K ? v − βv) ≤ 0. (5.10)

If there exists (x0, y0) ∈ R × Ω such that 0 < u(x0, y0) ≤ µm0

k∞
, u ≥ v in a neighbourhood of {x0} × Ω, and

u(x0, y0) = v(x0, y0), then u ≡ v.

Proof. Let (x0, y0) as in Lemma 5.5. Then (x0, y0) is a local zero minimum to u− v. We have:

−c(u− v)x(x0, y0)− (u− v)xx(x0, y0)− ε∆y(u− v)(x0, y0) ≤ 0

and thus:
µ
(
M ? (u− v)− (u− v)

)
+ a(y)(u− v)− uK ? u+ vK ? v − βu2 + βv2 ≤ 0. (5.11)
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Using the fact that u(x0, y0) = v(x0, y0), we rewrite (5.11) as∫
Ω

(
µM(y0, z)− u(x0, y0)K(y0, z)

)((
u(x0, z)− v(x0, z)

)
−
(
u(x0, y0)− v(x0, y0)

))
dz

≤ 0.

Since µM(y0, z) − u(x0, y0)K(y0, z) > 0 for any z ∈ Ω and u(x0, y) − v(x0, y) is nonnegative for any y ∈ Ω,
we conclude that u(x0, y) = v(x0, y) for any y ∈ Ω. Applying the strong maximum principle, we have then
u− v ≡ 0. This ends the proof of Lemma 5.5.

Lemma 5.6 (Estimates for β ≥ k∞ sup a
µm0

). Assume β ≥ β0 = k∞ sup a
µm0

. Then there exists a unique solution to

(5.1). Moreover, the solution to (5.1) is decreasing in x, and the mapping c 7→ u is decreasing.

Proof. We divide the proof in four steps. Recall that, due to Theorem 5.1, there exists a solution to (5.1).

Step 1: We show that any solution satisfies u(x, y) < p(y) at any interior point.
Let us define α := sup{ζ > 0 | ζu ≤ p}. Since u is bounded and p is positive on Ω, α is well-defined and

positive. Assume by contradiction that α < 1. By definition of α, there exists (x0, y0) ∈ [−l, l] × Ω such that
p(y0) = αu(x0, y0). Testing at x = ±l, we have αu(−l, y0) = αp(y0) < p(y0) and αu(l, y0) = 0 < p(y0); thus
x0 ∈ (−l, l). If y0 ∈ ∂Ω, then it follows from Hopf’s Lemma that ∂p−αu

∂ν (x0, y0) < 0, which contradicts the
Neumann boundary conditions satisfied by u and p. Thus y0 ∈ Ω. Next we remark that

− c(αu)x − (αu)xx − ε∆y(αu)− µ
(
M ? (αu)− (αu)

)
− a(y0)(αu)

= (αu)(−K ? u− βu) < αu
(
−K ? (αu)− β(αu)

)
,

since α < 1. Hence αu is a subsolution to (5.10). Moreover p is a supersolution to (5.9). Finally, by the
estimate in Lemma 5.2 point (iv) and the condition β ≥ β0, we have the inequality ‖u‖L∞ ≤ sup a

β ≤ µm0

k∞
,

and by definition (x0, y0) is the global minimum of (p− αu). Thus Lemma 5.5 applies and αu = p, which is a
contradiction.

Thus α ≥ 1, which shows that u ≤ p. Assume now that u(x, y) = p(y) for some (x, y) ∈ (−l, l) × Ω, then
Lemma 5.5 applies and we have u = p in (−l, l)×Ω, which is again a contradiction. We conclude that the strict
inequality holds:

∀(x, y) ∈ (−l, l)× Ω, u(x, y) < p(y).

Step 2: We show that the solution u is unique. Here we use a sliding argument. Let u, v be two solutions
to (5.1), and define:

x̄ := inf{γ > 0 | ∀(x, y) ∈ (−l, l)× Ω, u(x+ γ, y) ≤ v(x, y)}.

Because of the boundary conditions satisfied by u and v, we have 0 ≤ x̄ < 2l. Assume by contradiction
that x̄ > 0. We remark that (x, y) 7→ u(x + x̄, y) is a subsolution to (5.10). By definition of x̄, there exists
(x0, y0) ∈ (−l, l − x̄)× Ω such that the equality u(x0 + x̄, y0) = v(x0, y0) holds. In view Lemma 5.5, this leads
to a contradiction. Thus x̄ ≤ 0 and u ≤ v. Exchanging the roles of u and v, we have in turn v ≤ u. This shows
the uniqueness of u.

Step 3: We show that x 7→ u(x, y) is decreasing. Repeating the sliding argument in Step 2 with u = v,
we have u(x + x̄, y) ≤ u(x, y) for any x̄ > 0, which shows that u is nonincreasing. Moreover, equality cannot
hold at an interior point in the above inequality, for Lemma 5.5 would lead to a contradiction. This shows that
x 7→ u(x, ·) is decreasing.

Step 4: We show that c 7→ u is decreasing. Let c̄ ≤ c, u (resp. v) be the solution to (5.1) associated with
the speed c (resp. c̄). Let also:

x̄ := inf{γ > 0 | ∀y ∈ Ω, u(x+ γ, y) ≤ v(x, y)}

and assume by contradiction that x̄ > 0. Then

−cvx − vxx − ε∆yv = µ(M ? v − v) + v(a−K ? u− βu) + (c̄− c)vx
≥ µ(M ? v − v) + v(a−K ? u− βu),

since, as shown above, vx ≤ 0. Then, v is a supersolution to (5.9) and Lemma 5.5 leads to a contradiction.
Thus c 7→ u is nonincreasing. Moreover if c̄ < c, then we deduce from the above argument that v > u. Hence
c 7→ u is in fact decreasing.

This ends the proof of Lemma 5.6.

In particular, we notice that:
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Corollary 5.7 (Existence of monotone fronts). Let β ≥ β0 = k∞ sup a
µm0

. Then the solution constructed in
Corollary 5.3 is decreasing in x.

The next results shows that if u is a traveling wave, then c ≥ c∗ε.

Lemma 5.8 (c∗ε is the minimal speed). Let Assumption 1 hold, ε > 0 be such that λε1 < 0, and u be a positive
solution to (5.7) with 0 ≤ c ≤ c∗ε and either

(i) β > 0 and limx→+∞ supy∈Ω u(x, y) = 0, or

(ii) β = 0 and limx→+∞
∫

Ω
u(x, y)dy = 0.

Then c = c∗ε.

Proof. It follows from our hypothesis (i) or (ii) that we can find arbitrary large intervals [x̄−L, x̄+L] on which

sup
(x,y)∈(x̄−L,x̄+L)×Ω

(∫
Ω

K(y, z)u(x, z)dz + βu(x, y)

)
≤ δ, (5.12)

for arbitrarily small δ > 0. Since equation (5.7) is invariant by translation in x, we may assume without loss of
generality that x̄ = 0.

Assume by contradiction that c < c∗ε. Let θ :=

√
(c∗ε)2−c2

8 , L := π
2θ , δ :=

−λε1
4 > 0, and ψ(x, y) :=

e−
c
2x cos(θx)ϕε(y), where ϕε is the principal eigenfunction solution to (3.3) satisfying supy∈Ω ϕ

ε = 1. ψ satisfies

−cψx − ψxx − ε∆yψ − µ(M ? ψ − ψ) = a(y)ψ +

(
c2

4
+ θ2 + λε1

)
ψ.

Since u is positive in [−L,L] × Ω, we can define α := sup{ζ > 0 | ζψ ≤ u}. By definition of α there exists
(x0, y0) ∈ [−L,L]× Ω such that αψ(x0, y0) = u(x0, y0). Because of the boundary conditions satisfied by u and
ψ, (x0, y0) cannot lie on the boundary of [−L,L]×Ω. Thus (x0, y0) belongs to (−L,L)×Ω and, since u satisfies
(5.12) we have

0 ≥ −ε∆y(u− αψ)(x0, y0)− (u− αψ)xx(x0, y0)

− µ
(
M ? (u− αψ)− (u− αψ)

)
(x0, y0)− a(y0)(u− αψ)(x0, y0)

≥ −δu(x0, y0)− α
(
c2

4
+ θ2 + λε1

)
ψ(x0, y0)

=

(
−δ − c2

8
− 3λε1

4

)
u(x0, y0) ≥

(
−δ − λε1

2

)
> 0,

since δ =
−λε1

4 . This is a contradiction.

Lemma 5.9 (Lower estimate on positive infima). Let Assumption 1 be satisfied, let 0 < ε ≤ ε0 and β ≥ 0, where
ε0 is as in Lemma 4.4. Assume λε1 < 0. Let u be a solution to (5.7) which satisfies inf(x,y)∈R×Ω u(x, y) > 0.
Then

inf
(x,y)∈R×Ω

u(x, y) ≥ ρmax(β,β0)

where ρβ is the constant from Lemma 4.4.

Proof. For any B ≥ 0, let pB be a nonnegative nontrivial solution to (4.1) (substituting β with B). Since
inf u > 0 and sup pB ≤ sup a

B (by the estimate in Lemma 4.2 item (ii)), there exists a constant β′ > 0 such that

β′ = inf{B > 0 | pB ≤ u}.

Assume by contradiction that β′ > max(β, β0). Then two cases may occur:
Case 1: Assume there exists (x0, y0) ∈ R× Ω such that u(x0, y0) = pβ

′
(y0). Assume by contradiction that

y0 ∈ ∂Ω. Then y0 is the minimum of u − pβ′ and, by applying Hopf’s Lemma, we have ∂(u−pβ
′
)

∂ν (x0, y0) < 0,

which contradicts the Neumann boundary conditions satisfied by u and pβ
′
. Thus y0 ∈ Ω.

Then, since β′ > β, pβ
′

is a subsolution to (5.7), u ≥ pβ′ and since β′ > β0 we have ‖pβ′‖Cb(Ω) <
µm0

k∞
. Thus

Lemma 5.5 applies and u = pβ
′
. Since β′ 6= β, this is a contradiction.

Case 2: If the latter does not hold, then by definition of β′ there exists a sequence (xn, yn) such that
u(xn, yn)− pβ′(yn)→ 0. Since Ω is bounded, up to an extraction we have yn → y0 ∈ Ω. Then u(xn, yn)→n→∞
pβ
′
(y0).
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Since equation (5.7) is invariant by translation in x, we consider the shifted functions un(x, y) := u(x+xn, y)
which also satisfy (5.7). Then from the standard elliptic estimates and up to an extraction, un converges locally
uniformly to u∞, which is a classical solution to (5.7) and also satisfies u∞(0, y0) = pβ

′
(y0) and ∀x, y, u∞(x, y) ≥

pβ
′
(y). Applying Case 1 to (u∞, pβ

′
) leads to a contradiction.

We have shown that either case leads to a contradiction if β′ > max(β, β0). Hence β′ ≤ max(β, β0) and we
conclude by the estimate in Lemma 4.4 that the inequality u ≥ ρmax(β,β0) holds.

Proof of Theorem 5.4. Let τ := 1
2 min ((k0|Ω|+ β)ρβ ,−λε1), where ρβ is the constant from Lemma 4.4, and u

be the corresponding solution to (5.7), i.e. a solution to (5.7) constructed in Corollary 5.3, which satisfies

sup
(x,y)∈(−l0,l0)×Ω

(∫
Ω

K(y, z)u(x, z)dz + βu(x, y)

)
= τ ≤ 1

2
(k0|Ω|+ β)ρβ . (5.13)

Recall that, as stated in Corollary 5.7, x 7→ u(x, y) is decreasing.
We divide the proof in three steps.
Step 1: We show that inf(x,y)∈R×Ω u(x, y) = 0.
Indeed, recalling (5.13), we have

(k0|Ω|+ β)u(0, 0) ≤ sup
(x,y)∈(−l0,l0)×Ω

∫
Ω

K(y, z)u(x, z)dz + βu(x, y)

≤ 1

2
(k0|Ω|+ β)ρβ ,

and thus u(0, 0) ≤ 1
2ρβ < ρβ . The contrapositive of Lemma 5.9 concludes.

Step 2: We show that limx→+∞ supy∈Ω u(x, y) = 0.

We proved in Step 1 that inf u = 0. Since u(x, y) > 0 for (x, y) ∈ R × Ω and u is decreasing in x, we must
then have limx→+∞ infy∈Ω u(x, y) = 0.

Let un(x, y) := u(x − n, y) and yn such that un(0, yn) = infy∈Ω u
n(0, y). Since Ω is bounded, up to the

extraction of a subsequence there exists y ∈ Ω such that yn → y0. It follows from the classical elliptic estimates
that we then extract from (un) a subsequence which converges locally uniformly on R × Ω to a limit function
u0, which is still a classical solution to (5.7).

Since u is decreasing, the equalities limx→+∞ supy∈Ω u(x, y) = supy∈Ω u
0(0, y) and 0 = limx→+∞ infy∈Ω u(x, y) =

infy∈Ω u
0(0, y) = u(0, y0) hold. If y0 ∈ ∂Ω and u0 6≡ 0, then it follows from Hopf’s Lemma that ∂u0

∂ν (y0) < 0,
which contradicts the Neumann boundary conditions satisfied by u0. If y ∈ Ω then the strong maximum
principle imposes u0 ≡ 0. In either case, we have u0 ≡ 0 and thus limx→+∞ supy∈Ω u(x, y) = 0.

Step 3: We show that limx→−∞ infy∈Ω u(x, y) ≥ ρβ .
Let un(x, y) := u(x + n, y). Using the classical elliptic estimates, we extract from (un) a subsequence that

converges locally uniformly on R× Ω to a limit function u0, which is still a classical solution to (5.7).
Since u is decreasing, we have limx→−∞ infy∈Ω u(x, y) = infy∈Ω,x∈R u

0(x, y). In particular, inf(x,y)∈R×Ω u
0(x, y) >

0. Applying Lemma 5.9, we conclude that the lower estimate limx→−∞ infy∈Ω u(x, y) = inf(x,y)∈R×Ω u
0(x, y) ≥

ρβ holds.
To conclude the proof of Theorem 5.4, we remark that Lemma 5.8 states that 0 ≤ c < c∗ε is incompatible

with limx→+∞ supy∈Ω u(x, y) = 0. This shows that c = c∗ε. This finishes the proof of Theorem 5.4.

5.3 Minimal speed traveling wave for β = 0

Here we construct traveling waves for our initial regularized problem{
−ε∆yu− uxx − cux = µ(M ? u− u) + u(a(y)−K ? u) in R× Ω
∂u
∂ν = 0 on R× ∂Ω.

(5.14)

Notice that (5.14) is exactly the equation (5.7) in the special case β = 0. In particular, our results obtained in
Corollary 5.3 and Lemmas 5.5, 5.8 and 5.9 still apply to the solutions of (5.14).

Our result is the following:

Theorem 5.10 (Regularized minimal speed traveling waves). Let Assumption 1 hold, 0 < ε ≤ ε0 (where ε0

is as in Lemma 4.4) and assume λε1 < 0. Then, there exists a nonnegative nontrivial traveling wave (c, u) for
(5.14) with c = c∗ε, i.e. a bounded classical solution which satisfies:

lim inf
x→−∞

inf
y∈Ω

u(x, y) > 0, lim sup
x→+∞

∫
Ω

u(x, y)dy = 0. (5.15)
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Moreover, c∗ε is the minimal speed for traveling waves in the sense that there exists no traveling wave for equation
(5.14) with 0 ≤ c < c∗ε.

Finally, u can be chosen so that supx∈R
∫

Ω
u(x, y)dy ≤ sup a

k0
and

lim inf
x→−∞

inf
y∈Ω

u(x, y) ≥ ρβ0
,

where β0 = k∞ sup a
µm0

and ρβ0
is given by Lemma 4.4.

Two key elements for the proof of Theorem 5.10 are the following Harnack-type inequality, and the following
Lemma 5.12, which states that infy∈Ω u(x, y) and

∫
Ω
u(x, y)dy are locally comparable.

Lemma 5.11 (Harnack inequality for the mass). Let Assumption 1 hold and ε > 0. Let c̄ > 0, R > 0 and
W > 0 be given. Let (c, u) be a solution to (5.14) with |c| ≤ c̄, u ≥ 0 and

∫
Ω
u(x, y)dy ≤ W for x ∈ (−R,R).

Then, there exists a constant H > 0 depending only on R, ‖a‖L∞ , W , k∞ and c̄ such that

sup
|x|≤R

∫
Ω

u(x, z)dz ≤ H inf
|x|≤R

∫
Ω

u(x, z)dz.

Proof. Let I(x) :=
∫

Ω
u(x, y)dy, then I solves

− cIx − Ixx =

∫
Ω

a(y)u(x, y)dy −
∫

Ω

(K ? u)(y)u(x, y)dy

=

(∫
Ω

a(y)
u(x, y)∫

Ω
u(x, z)dz

dy −
∫

Ω

K ? u(x, y)
u(x, y)∫

Ω
u(x, z)dz

dy

)
I.

Now we remark that
∣∣∣∫Ω a(y) u(x,y)∫

Ω
u(x,z)dz

dy
∣∣∣ ≤ ‖a‖L∞ and

0 ≤
∫

Ω

K ? u(x, y)
u(x, y)∫

Ω
u(x, z)dz

dy ≤ ‖K ? u‖L∞ ≤ k∞
∫

Ω

u(x, y)dy ≤ k∞W,

for any x ∈ R, so that the classical Harnack inequality [29, Corollary 9.25] applies.

Lemma 5.12 (Integral-infimum comparison). Let Assumption 1 hold and ε > 0. Let c̄ > 0, x0 ∈ R, κ > 0 and
W > 0 be given. Let (c, u) be a solution to (5.14) with |c| ≤ c̄, u ≥ 0 and

∫
Ω
u(x, y)dy ≤ W for |x − x0| ≤ 1.

Assume ∫
Ω

u(x0, y)dy ≥ κ.

Then, there exists a positive constant κ̄ depending only on ‖a‖L∞ , µ, m0, k∞, c̄, W and κ such that

inf
y∈Ω

u(x0, y) ≥ κ̄.

Proof. Since (5.14) is translation-invariant in x, we will assume without loss of generality that x0 = 0.
Step 1: We construct a local subsolution.
From Lemma 5.11 there exists a constant H > 0 such that

κ ≤ sup
x∈(−1,1)

∫
Ω

u(x, z)dz ≤ H inf
x∈(−1,1)

∫
Ω

u(x, z)dz ≤ Hκ.

Thus u satisfies:
−cux − uxx − ε∆yu ≥ µm0

κ

H
+
(

inf
Ω
a− µ− k∞W

)
u.

In particular there exists constants γ > 0 and α > 0 depending only on ‖a‖L∞ , µ, m0, k∞, W and κ such that

− cux − uxx − ε∆yu ≥ γ − αu (5.16)

We define, for θ := 2√
c2+4α

atanh
(

c√
c2+4α

)
,

fδ(x) :=
γ

α
− δe− c2 (x−θ) cosh

(
x− θ

2

√
c2 + 4α

)
.

Then fδ satisfies
−cfδx − fδxx = γ − αfδ.
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In particular, fδ satisfies the equality in (5.16). Moreover for any δ > 0, fδ has a unique maximum located at
0 and fδ → −∞ as x→ ±∞. Finally, the mapping δ 7→ fδ is decreasing.

Step 2: We identify δ0 such that u ≥ fδ0 .
Let δ0 := inf{δ > 0 | ∀x ∈ (−1, 1), fδ ≤ u}. We claim that we have either fδ0(1) ≥ 0 or fδ0(−1) ≥ 0. Indeed,

assume by contradiction that the inequalities fδ0(−1) < 0 and fδ0(1) < 0 hold. Then there exists x0 ∈ (−1, 1),

y0 ∈ Ω such that u(x0, y0) = fδ0(x0). If y0 ∈ ∂Ω, then it follows from Hopf’s Lemma that ∂(u−fδ0 )
∂ν (x0, y0) < 0

since 0 is a minimum for the function u− fδ0 . This contradicts the Neumann boundary condition satisfied by

u since ∂fδ0

∂ν (x0, y0) = 0. If y0 ∈ Ω, we have

− c(u− fδ0)x(x0, y0)− (u− fδ0)xx(x0, y0)− ε∆y(u− fδ0)(x0, y0)

≥
(
γ − αu(x0, y0)

)
−
(
γ − αfδ0(x0, y0)

)
= 0.

By a direct application of the strong maximum principle, we have then u = fδ0 in (−1, 1) × Ω, which is a
contradiction since fδ0 is not positive in (−1, 1).

Step 3: We show that δ0 is bounded by a constant depending only on c̄, α and γ.
Let us define δc1 := inf{δ > 0 | fδ(−1) < 0 and fδ(1) < 0}. δc1 is well-defined since limδ→+∞ fδ(±1) = −∞

and limδ→0 f
δ(±1) = γ

α > 0. Moreover, we have either fδ
c
1(1) = 0 or fδ

c
1(−1) = 0. Thus

δc1 =
γ

α
max

(
e
c
2 (1−θ)

cosh
(

1−θ
2

√
c2 + 2α

) , e
c
2 (−1−θ)

cosh
(−1−θ

2

√
c2 + 2α

)) .
Since θ depends continuously on c, the mapping c 7→ fδ

c
1(0) is continuous. Moreover for any |c| ≤ c̄, fδc1(0) > 0

since x = 0 is the strict maximum of fδ
c
1 . Finally δ0 ≤ δc1 since the mapping δ 7→ fδ is decreasing. We have

then
inf
y∈Ω

u(0, y) ≥ inf
|c|≤c̄

fδ
c
1(0) > 0

where the right-hand side depends only on c̄, α and γ. This finishes the proof of Lemma 5.12.

Lemma 5.13 (Infimum estimate on the left). Let Assumption 1 be satisfied, let 0 < ε ≤ ε0 be such that λε1 < 0
(where ε0 is given by Lemma 4.4), let finally β′ ≥ β0 = k∞ sup a

µm0
and u be a solution to (5.14) with 0 ≤ c ≤ c∗ε

and β = 0. Suppose

∀y ∈ Ω, u(0, y) ≥ 2
sup a

β′
.

Then,
∀x ≤ 0, y ∈ Ω, u(x, y) ≥ ρβ′

where ρβ′ is given by Lemma 4.4.

Proof. We divide the proof in two step.
Step 1: We show that infx≤0,y∈Ω u(x, y) > 0.
Let ϕε be a positive solution to (3.3), normalized so that

sup
y∈Ω

ϕε(y) =
1

2
min

(
inf
y∈Ω

u(0, y),
−λε1
|Ω|k∞

,
µm0

k∞

)
> 0.

We define α := inf{ζ > 0 | ∀x ∈ (−∞, 0), y ∈ Ω, (1 + ζx)ϕε(y) ≤ u(x, y)}. Remark that, since u is positive and
ϕε(y) < u(0, y) for any y ∈ R, α is well-defined.

Assume by contradiction that α > 0. Then by definition of α there exists a point (x0, y0) ∈
(
− 1
α , 0

)
× Ω

such that u(x0, y0) = (1+αx0)ϕε(y0). Because of the boundary conditions satisfied by u and (1+αx)ϕ, (x0, y0)
cannot be in the boundary of

[−1
α , 0

]
× Ω. Letting v(x, y) := (1 + αx)ϕε(y), we remark that, since x0 < 0, we

have

−cvx(x0, y0)− vxx(x0, y0)−ε∆yv(x0, y0)− µ(M ? v − v)(x0, y0)

−v
(
a(y0)−K ? v

)
(x0, y0) = −cαϕ(y0) + λε1v(x0, y0)

+ v(x0, y0)(K ? v)(x0, y0)

≤ λε1
2
< 0,

since v(x0, y0) ≤ −λε1
2|Ω|k∞ (recall that v is increasing in x). Hence v is a local subsolution to (5.10) near (x0, y0),

and Lemma 5.5 leads to u ≡ v, which is a contradiction.
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Thus α = 0 and we have shown that ∀x < 0, ϕε(y) ≤ u(x, y). In particular we have the lower estimate
infx<0,y∈Ω u(x, y) ≥ infy∈Ω ϕ

ε(y) > 0.

Step 2: We remove the dependency in ε.
Let v be a decreasing solution to (5.7) with c = c∗ε constructed in Theorem 5.4. Define ṽ(x, y) = v(−x, y).

Then ṽ satisfies:
c∗ε ṽx − ṽxx − ε∆y ṽ − µ(M ? ṽ − ṽ) = ṽ(a(y)−K ? ṽ − β′ṽ).

In particular,

−cṽx − ṽxx − ε∆y ṽ − µ(M ? ṽ − ṽ) =ṽ(a(y)−K ? ṽ − β′ṽ)− (c+ c∗ε)ṽx

≤ṽ(a(y)−K ? ṽ),

since ṽx ≥ 0. Moreover, sup v ≤ sup a
β′ by the estimate in Theorem 5.4. Using Lemma 5.5 will then allow us to

compare ṽ with u.
Since ṽ → 0 when x → −∞ and as a result of Step 1 above, there exists a positive shift ζ > 0 such that

ṽ(x + ζ, y) ≤ 1
2 inf x̄<0,ȳ∈Ω u(x̄, ȳ) for any (x, y) ∈ (−∞, 0) × Ω. Using a sliding argument simliar to the one in

Step 2 of Lemma 5.6, then for any ζ ∈ R, x < 0 and y ∈ Ω, we have u(x, y) ≥ ṽ(x + ζ, y). Taking the limit
ζ → +∞, we get that infx<0,y∈Ω u(x, y) ≥ limx→+∞ infy∈R ṽ(x, y) ≥ ρβ′ , by the estimate in Theorem 5.4.

This finishes the proof of Lemma 5.13.

We are now in a position to prove Theorem 5.10.

Proof of Theorem 5.10. We divide the proof in two steps.
Step 1: We construct a solution with lim supx→+∞

∫
Ω
u(x, y)dy = 0.

Let (c, u) be the solution constructed in Corollary 5.3 with β = 0 and the normalization τ = 1
2 min

(
ρβ0k0|Ω|, −λ

ε
1

2

)
,

where β0 = k∞ sup a
µm0

and ρβ0
is given by Lemma 4.4. Assume by contradiction that lim supx→+∞

∫
Ω
u(x, y)dy > 0.

Then by definition there exists a positive number κ > 0 and a sequence xn → +∞ such that
∫

Ω
u(xn, y)dy ≥

κ. By the estimate in Lemma 5.12, there exists κ̄ > 0 such that for any n ∈ N, infy∈Ω u(xn, y) ≥ κ̄.
Let β := max

(
2 sup a

κ , β0

)
, then a direct application of Lemma 5.13 shows that for any n ∈ N, we have

infx<xn,y∈Ω u(x, y) > ρβ > 0. In particular, taking the limit n → ∞, we get inf(x,y)∈R×Ω u(x, y) ≥ ρβ > 0. By
the estimate in Lemma 5.9, this shows inf(x,y)∈R×Ω u(x, y) ≥ ρβ0

. However, due to the normalization satisfied
by u (5.3), we have

k0|Ω|ρβ0
≤ (K ? u)(x, 0) ≤ 1

2
k0|Ω|ρβ0

,

which is a contradiction. We conclude that lim supx→+∞
∫

Ω
u(x, y)dy = 0.

Step 2: We show that u satisfies the other properties required by Theorem 5.10.
Since u is given by Corollary 5.3, u naturally satisfies

∫
Ω
u(x, y)dy ≤ sup a

k0
.

Let us show briefly that lim infx→−∞ infy∈Ω u(x, y) ≥ ρβ0
. Applying Lemma 5.13 we have lim infx→−∞ infy∈Ω u(x, y) >

0. Let (xn, yn) be a minimizing sequence. By the classical elliptic estimates, u(x + xn, ·) converges locally
uniformly to a solution ū of (5.14) with inf(x,y)∈R×Ω ū(x, y) > 0. Then by the estimate in Lemma 5.9,
inf(x,y)∈R×Ω ū(x, y) ≥ ρβ0

. We conclude by remarking that lim infx→−∞ infy∈Ω u(x, y) = inf(x,y)∈R ū(x, y) ≥ ρβ0
.

We finally remark that Lemma 5.8 item (ii) gives the minimality property of the speed c∗ε. In particular
c = c∗ε for the solution (c, u) constructed here.

This ends the proof of Theorem 5.10.

Next we prove an upper estimate on the limit of
∫

Ω
u(x, y)dy when x is in the vicinity of +∞, which is

independent of ε.

Lemma 5.14 (
∫

Ω
u(x, y)dy → 0 when x → +∞). Let Assumption 1 hold, and suppose λ1 < 0. There exists

ε̄ > 0, τ > 0 and a sequence (xn)n∈N independent from ε, such that if u solves (5.14) with 0 < ε ≤ ε̄, c = c∗ε
and satisfies

∫
Ω
u(x, z)dz ≤ τ for any x ≥ 0, then

∀n ∈ N,∀x ≥ xn,
∫

Ω

u(x, z)dz ≤ τ

2n
.

Proof. We divide the proof into three steps.
Step 1: Definition of auxiliary parameters.
Since a(0) = sup a, by the continuity of a and Assumption 1 item 6, there exists r > 0 such that for any

|y| ≤ r, a(y) − µ ≥ 3
4 (sup a − µ). In the rest of the proof we fix r > 0 such that this property holds and

Br(y) ⊂ Ω. Notice that for |y| ≤ r, we have a(y)− µ ≥ 3
4 (sup a− µ) > 0.
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We define ε̄ := min
(
ε0,

r2(sup a−µ)
2nπ2

)
, where ε0 > 0 is given by Lemma 4.4. We let τ := min

(
1
2ρβ0

k0|Ω|, sup a−µ
4k∞

)
,

where β0 = k∞ sup a
µm0

and ρβ0 is given by Lemma 4.4. In particular, arguing as in the proof of Theorem

5.10, any solution u to (5.14) with 0 < ε ≤ ε̄ which satisfies
∫

Ω
u(0, y)dy ≤ τ has limit 0 near +∞, i.e.∫

Ω
u(x, y)dy →x→+∞ 0.
By Lemma 5.12 and 5.13, there exists ρ > 0 such that if

∫
Ω
u(x, y)dy ≥ τ

2 holds, then for any x′ ≤ x we
have the estimate infy∈Ω u(x′, y) ≥ ρ.

We let α0 := max

(
τ∫

|y|≤r cos(π|y|2r )dy
, 2ρ

)
, γ := min

(
1,
(

sup a−µ
8(c∗ε
√
α0+1)ρ

)2
)

. Notice in particular that 2c∗ε
√
γα0+

2γ− sup a−µ
4 ρ ≤ 0. Finally we define x̄ :=

√
α0

γ . Remark that, since c∗ε → 2
√
−λ1 > 0 when ε→ 0 (by Theorem

3.4), x̄ is uniformly bounded when ε→ 0.
Since (5.14) is invariant by translation in x we will assume without loss of generality that

∫
Ω
u(x, y)dy ≤ τ

for x ≥ −x̄ instead of x ≥ 0.

Step 2: We show that if
∫

Ω
u(x, y)dy ≤ τ for x ≥ −x̄ then

∫
Ω
u(x̄, y)dy ≤ τ

2 .
Here we let u be a solution to (5.14) with 0 < ε ≤ ε̄, c = c∗ε and the upper estimate

∫
Ω
u(x, y) ≤ τ for

x ≥ −x̄. We assume by contradiction that
∫

Ω
u(x̄, y)dy > τ

2 . We will first use another proof by contradiction
to show that, in that case, the mass of u can be controlled from below.

Since u > 0 on (−x̄, x̄)× Ω, we define:

α := sup

{
ζ > 0 | ∀x ∈ (−x̄, x̄),∀|y| ≤ r, (ζ − γx2) cos

(
π|y|
2r

)
≤ u(x, y)

}
.

Assume by contradiction that α < α0. Then for any (x, y) ∈ [−x̄, x̄]×Ω we have (α− γx2) cos
(
π|y|
2r

)
≤ u(x, y),

and there exists a point x0 ∈ [−x̄, x̄] and y0 with |y0| ≤ r such that u(x0, y0) = (α − γx2
0) cos

(
π|y0|

2r

)
. Let

v := (α− γx2) cos
(
π|y|
2r

)
. We have:

0 ≤ −c∗ε(v − u)x(x0, y0)− (v − u)xx(x0, y0)− ε∆y(v − u)(x0, y0)

= 2c∗εγx0 + 2γ + nε
( π

2r

)2

v(x0, y0)− µ(M ? u)(x0, y0)

− u(x0, y0)
(
a(y0)− µ− (K ? u)(x0, y0)

)
< 2 (c∗ε

√
α0 +

√
γ)
√
γ + nε

( π
2r

)2

+ 0

−
(

3(sup a− µ)

4
− k∞

∫
Ω

u(x0, z)dz

)
u(x0, y0)

=

[
2 (c∗ε
√
α0 +

√
γ)
√
γ − sup a− µ

4
ρ

]
+

(
ε
( π

2r

)2

− sup a− µ
4

)
u(x0, y0)

≤ 0,

recalling that infy u(x0, y) ≥ ρ since x0 ≤ x̄.

Hence, we have a contradiction and α ≥ α0 ≥ τ∫
|y|≤r cos(π|y|2r )dy

. In particular, we have (α0−γx2) cos
(
π|y|
2r

)
≤

u(x, y) and

τ ≤ α0

∫
|y|≤r

cos

(
π|y|
2r

)
dy <

∫
Ω

u(0, y)dy,

where the strict inequality holds because u(0, y) > 0 on Ω\B(0, r). This contradicts our hypothesis
∫

Ω
u(x, y)dy ≤

τ when x ≥ −x̄. We conclude that
∫

Ω
u(x̄, y)dy ≤ τ

2 .

Step 3: Bootstrapping
In Step 2 we have shown that for a x̄ which is uniformly bounded in ε, we have(

∀x ≥ −x̄,
∫

Ω

u(x, y)dy ≤ τ
)
⇒
(∫

Ω

u(x̄, y)dy ≤ τ

2

)
.

Since (5.14) is invariant by translation, this implication still holds for u(x, y) replaced by u(x + δ, y) for any
δ > 0. In particular, (

∀x ≥ −x̄,
∫

Ω

u(x, y)dy ≤ τ
)
⇒
(
∀x ≥ x̄,

∫
Ω

u(x, y)dy ≤ τ

2

)
.

Thus we can reproduce Step 1 and 2 replacing τ by τ
2 and u(x, y) by its shift u(x + x̄, y). We thus find by an

elementary recursion a sequence of points xn such that for x ≥ xn,
∫

Ω
u(x, y)dy ≤ τ

2n .
This ends the proof of Lemma 5.14.
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5.4 Proof of Theorem 2.7

We are now in a position to let ε→ 0 and construct a traveling wave for equation (1.1), thus proving our main
result Theorem 2.7.

Proof of Theorem 2.7. We divide the proof in three steps.
Step 1: Construction of a converging sequence to a transition kernel.
Let εn be a decreasing sequence with lim εn = 0 and ε0 ≤ ε̄ (where ε̄ is given by Lemma 5.14) such that for

any 0 < ε ≤ ε0, λε1 < 0 (such a ε0 exists by Theorem 3.4). Since (5.14) is invariant by translations in x, for
each εn we can choose un given by Theorem 5.10 (with ε = εn), which satisfies moreover∫

Ω

un(0, y)dy = min
(ρβ0

2
, τ
)
, ∀x ≥ 0,

∫
Ω

un(x, y)dy ≤ τ, (5.17)

where τ is given by Lemma 5.14, β0 = k∞ sup a
µm0

and ρβ0 is given by Lemma 4.4.

For any k ≤ n, let unk be the restriction of un to the set [−k, k]×Ω. Then unk belongs to M1([−k, k]×Ω) =

(Cb([−k, k]× Ω))∗. Since
∫

Ω
un(x, y)dy ≤ sup a

k0
for x ∈ R, we have

∫ k
−k
∫

Ω
un(x, y)dydx ≤ 2k sup a

k0
, and thus the

sequence (unk )n>k is uniformly bounded in variation norm. Moreover [−k, k]×Ω is compact, and thus (unk )n>k is
uniformly tight. Applying Prokhorov’s Theorem [11, Theorem 8.6.2], the sequence (unk )n>k is relatively compact
in (Cb([−k, k]×Ω))∗. Then, by a classical diagonal extraction process, there exists a subsequence, still denoted
un, and a measure u ∈M1(R× Ω) such that un ⇀ u, in the sense that

∀ψ ∈ Cc(R× Ω),

∫
R×Ω

ψ(x, y)un(x, y)dydx→
∫
R×Ω

ψ(x, y)u(dx, dy). (5.18)

Finally, for a < b, by a classical result [11, Theorem 8.2.3], for any Borel set ω ⊂ Ω we have

u
(
(a, b)× ω

)
≤ u

(
(a, b)× Ω

)
≤ lim inf

n→∞

∫ b

a

∫
Ω

un(x, y)dydx ≤ |b− a| sup a

k0
.

Hence, Lemma A.3 applies and u is a transition kernel, satisfying the equation u(dx, dy) = u(x, dy)dx.
Let us stress at this point that the possibility to think of u as a transition kernel, i.e. a function which

takes values in a measure space, is important for the rest of the proof, as it allows us to consider M ? u(x, y) =∫
Ω
M(y, z)u(x, dz) and K ? u(x, y) =

∫
Ω
K(y, z)u(x, dz) as real functions of x and y, even for singular traveling

waves. Handling a term like
∫

Ω
M(y, z)u(dx, dy) would indeed be quite difficult, if ever possible – let aside

(K ? u)u, which would involve the product of two measures. Also, it is the only regularity that we can get on
the solution at the present time.

Step 2: We show that u satisfies the limit conditions (2.6) and (2.7) of Definition 2.6.
By construction, the function un satisfies

∫
Ω
un(0, y)dy = min

(
τ,

ρβ0

2

)
. Applying Lemma 5.12 and Lemma

5.13, there exists a positive constant ρ > 0 (independent from n) such that infy∈Ω u
n(x, y) ≥ ρ for any x ≤ 0.

In particular, taking the limit n→∞, we have for any positive ψ ∈ Cc
(
(−∞, 0)× Ω

)
∫
R×Ω

ψ(x, y)u(x, dy)dx = lim
n→∞

∫
R×Ω

ψ(x, y)un(x, y)dxdy

≥ ρ
∫
R×Ω

ψ(x, y)dxdy > 0.

Hence lim inf x̄→+∞
∫
R×Ω

ψ(x+ x̄, y)u(x, dy)dx ≥ ρ
∫
R×Ω

ψ(x, y)dxdy > 0, and u satisfies (2.6).
Let us show that u satisfies (2.7), i.e. vanishes near +∞. Applying Lemma 5.14, there exists a sequence

xk independent from n such that we have
∫

Ω
un(x, y)dy ≤ τ

2k
for any x ≥ xk. In particular for any positive

ψ ∈ Cc
(
(xk,+∞)× Ω

)
, we have∫
R×Ω

ψ(x− xk, y)u(x, dy)dx = lim
n→∞

∫
R×Ω

ψ(x− xk, y)un(x, y)dxdy

≤ τ

2k
diam supp ψ sup

(x,y)∈R×Ω

ψ(x, y),

where diam supp ψ = sup
{
d
(
(x, y), (x′, y′)

)
|ψ(x, y) > 0 and ψ(x′, y′) > 0

}
is the diameter of the support of ψ.

Thus

lim sup
x̄→+∞

∫
R×Ω

ψ(x− x̄, y)u(x, dy)dx = lim sup
k→+∞

∫
R×Ω

ψ(x− xk, y)u(x, dy)dx = 0,

and u satisfies indeed (2.7).
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Let us stress that, since u satisfies (2.6) and (2.7), u is neither 0 nor a nontrivial stationary state to (1.1).
Step 3: We show that u satisfies (2.5) in the sense of distributions.

Let F y0 :=
{
ψ ∈ C2

c (R× Ω) | ∀x ∈ R,∀y ∈ ∂Ω, ∂ψ∂ν (x, y) = 0
}

as in Lemma A.1. We fix ψ ∈ F y0 . Our goal

here is to show that

c∗
∫
R×Ω

ψxu(x, dy)dx−
∫
R×Ω

ψxxu(x, dy)dx

=

∫
R×Ω

∫
Ω

M(y, z)u(x, dz)ψ(x, y)dxdy +

∫
R×Ω

(a(y)− µ)ψ(x, y)u(x, dy)dx

−
∫
R×Ω

∫
Ω

ψ(x, y)K(y, z)u(x, dz)u(x, dy)dx, (5.19)

where c∗ = 2
√
−λ1. Multiplying (5.14) by ψ and integrating by parts, we have

c∗εn

∫
R×Ω

ψx(x, y)un(x, y)dxdy −
∫
R×Ω

ψxx(x, y)un(x, y)dxdy

= εn

∫
R×Ω

∆yψ(x, y)un(x, y)dxdy +

∫
R×Ω

(a(y)− µ)ψ(x, y)un(x, y)dxdy

+

∫
R×Ω

ψ(x, y)

∫
Ω

M(y, z)un(x, z)dzdxdy

−
∫
R×Ω

ψ(x, y)

∫
Ω

K(y, z)un(x, z)dzun(x, y)dxdy. (5.20)

Clearly, the difficulty here resides in the last two lines of equation (5.20) (recall the formula c∗ε = 2
√
−λε1 →

ε→0

2
√
−λ1 = c∗). Let us focus on those.

We first remark that∫
R×Ω

ψ(x, y)(M ? un)(x, y)dxdy =

∫
R×Ω

M̌ ? ψ(x, z)un(x, z)dxdz

−→
n→∞

∫
R×Ω

M̌ ? ψ(x, z)u(x, dz)dx =

∫
R×Ω

ψ(x, y)

∫
Ω

M(y, z)u(x, dz)dxdy,

where M̌(y, z) = M(z, y), since M̌ ? ψ(x, y) is a valid test function.

The convergence of the nonlinear term requires more work. For i ∈ N, let Ki(y, z) ∈ F 2
0 be such that

‖K −Ki‖Cb(Ω×Ω) ≤
1
i and ‖Ki‖Cα(Ω×Ω) ≤ C, where F 2

0 is the set of smooth kernels with null boundary flux

in z, and C is independent from i (see Lemma A.1 item (iii)). We want to complete, up to extractions, the
informal diagram

vni (x, y) :=
∫

Ω
Ki(y, z)un(x, z)dz

?−→
n→+∞

vi(x, y) :=
∫

Ω
Ki(y, z)u(x, z)dz

↓ i→∞ ↓ i→∞

vn(x, y) :=
∫

Ω
K(y, z)un(x, z)dz

?−→
n→+∞

v(x, y) :=
∫

Ω
K(y, z)u(x, z)dz.

We first show that vni (x, y) → vi(x, y) when n → ∞ in Cb
(
[−R,R] × Ω

)
for arbitrary R > 0. We fix R so

that supp ψ ⊂ [−R,R] × Ω. Substituting z to y, multiplying equation (5.14) by Ki and integrating in z, we
have

−c∗εn(vni )x − (vni )xx = Rn(x, y)

where Rn(x, y) is bounded in L∞ uniformly in n:

|Rn(x, y)| =
∣∣∣∣εn ∫

Ω

∆zK
i(y, z)un(x, z)dz + µ

∫
Ω

Ki(y, z)(M ? un)(x, z)dz

+

∫
Ω

Ki(y, z)(a(z)− µ−K ? un)un(x, z)dz

∣∣∣∣
≤ εn‖Ki‖Cb(Ω,C2(Ω))

sup a

k0
+ µm∞|Ω|

sup a

k0
‖Ki‖Cb(Ω×Ω)

+

(
sup a+ µ+ k∞

sup a

k0

)
sup a

k0
‖Ki‖Cb(Ω×Ω).
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For n large enough so that εn ≤ 1
‖Ki‖Cb(Ω,C2(Ω))

, by the estimate in [29, Theorem 9.11] and the classical Sobolev

embeddings, ‖vni (·, y)‖Cα([−R,R]) is uniformly bounded by a constant independent from n, i and y ∈ Ω. Since we

have Ki ∈ Cα(Ω×Ω) uniformly in i, vni is then uniformly Hölder in x and y and we have ‖vni ‖Cα([−R,R]×Ω) ≤ CR
with CR independent from n and i. In particular, there exists an extraction ϕi(n) such that

– ‖vϕ
i(n)

i ‖Cα([−R,R]×Ω) ≤ CR, and

–‖vϕ
i(n)

i − ṽi‖Cα/2([−R,R]×Ω) →n→∞ 0,

for a function ṽi(x, z) ∈ Cα/2
(
[−R,R]×Ω

)
. Notice that we can assume without loss of generality that ϕi(n) is

extracted from ϕi−1(n). Finally, for any test function ξ(x) ∈ Cc
(
[−R,R]

)
, we have∫ R

−R
ξ(x)v

ϕi(n)
i (x, y)dx =

∫ R

−R

∫
Ω

ξ(x)Ki(y, z)uϕ
i(n)(x, z)dzdx

→n→∞

∫ R

−R

∫
Ω

ξ(x)Ki(y, z)u(x, dz)dx =

∫ R

−R
ξ(x)vi(x, z)dx,

since un converges to u in the sense of measures. This shows ṽi(x, y) = vi(x, y) for almost every x ∈ [−R,R].
Moreover since ‖vi‖Cα/2([−R,R]×Ω) ≤ C ′R, there exists an extraction ζ such that vζ(i) converges in Cb

(
[−R,R]×

Ω
)

to v(x, y) =
∫

Ω
K(y, z)u(x, dy), which shows a C0 regularity on v.

We can then construct an extraction ϕ(i) such that

– ‖vϕ(i)
ζ(i) − vζ(i)‖Cb([−R,R]×Ω) →i→∞ 0, and

– ‖vζ(i) − v‖Cb([−R,R]×Ω) →i→∞ 0.
Along this subsequence, we have then:∣∣∣∣∫

Ω

K(y, z)uϕ(i)(x, y)dxdy −
∫

Ω

K(y, z)u(x, dy)

∣∣∣∣
≤
∣∣∣∣∫

Ω

(
K(y, z)−Kζ(n)(y, z)

)
uϕ(i)(x, y)dxdy

∣∣∣∣+
∥∥∥vϕ(i)
ζ(i) − vζ(i)

∥∥∥
Cb([−R,R]×Ω)

+ ‖vζ(i) − v‖Cb([−R,R]×Ω)

≤ ‖K −Kζ(i)‖Cb(Ω×Ω)

sup a

k0
+ oi→∞(1)

which shows that
∫

Ω
K(y, z)uϕ(i)(x, y)dy →

∫
Ω
K(y, z)u(x, dy) in Cb([−R,R]× Ω).

We are now in a position to handle the nonlinear term, by using the previously constructed subsequence.
We write ∫

R×Ω×Ω

ψ(x, y)K(y, z)uϕ(n)(x, z)uϕ(n)(x, y)dxdydz

=

∫
R×Ω

ψ(x, y)

∫
Ω

K(y, z)u(x, dz)uϕ(n)(x, y)dxdy

+

∫
R×Ω

ψ(x, y)

(∫
Ω

K(y, z)uϕ(n)(x, z)dz −
∫

Ω

K(y, z)u(x, dz)

)
× uϕ(n)(x, y)dxdy

=

∫
R×Ω

ψ(x, y)

∫
Ω

K(y, z)u(x, dz)uϕ(n)(x, y)dxdy

+O
(
‖vϕ(n)(x, y)− v(x, y)‖Cb([−R,R]×Ω)

)
,

where vϕ(n)(x, y) =
∫

Ω
K(y, z)uϕ(n)(x, z)dz and v(x, y) =

∫
Ω
K(y, z)u(x, dz). Since ψ(x, y)

∫
Ω
K(y, z)u(x, dz) is

a continuous, compactly supported function, we have shown that∫
R×Ω×Ω

ψ(x, y)K(y, z)uϕ(n)(x, z)uϕ(n)(x, y)dxdydz

→n→∞

∫
R×Ω×Ω

ψ(x, y)K(y, z)u(x, dz)u(x, dy)dx.

Finally we can take the limit in (5.20) along the subsequence ϕ(n). This shows that u satisfies (2.5) in a
weak sense, where the test functions are taken in F y0 . Since F y0 is dense in C2

c

(
R, Cb(Ω)

)
, equation (5.19) holds

for test functions ψ taken in C2
c (R, Cb(Ω)). In particular, u satisfies (2.5) in the sense of distributions.

This ends the proof of Theorem 2.7.
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A Appendix

A.1 Density of the space of functions with null boundary flux

Here we prove elementary results that are crucial to our proofs of Theorem 3.4, Theorem 2.4 and Theorem 2.7.

Lemma A.1 (Density of spaces of functions with null boundary flux). Let Ω ⊂ Rn be a bounded open set with
C3 boundary.

(i) The function space

F0 :=

{
ψ ∈ C2(Ω) | ∀y ∈ ∂Ω,

∂ψ

∂ν
(y) = 0

}
is dense in Cb(Ω).

(ii) The function space

F y0 :=

{
ψ ∈ C2

c (R× Ω) | ∀x ∈ R,∀y ∈ ∂Ω,
∂ψ

∂ν
(x, y) = 0

}
is dense in C2

c (R, Cb(Ω)).

(iii) The function space

F 2
0 :=

{
ψ ∈ C2(Ω× Ω) | ∀(y, z) ∈ Ω× ∂Ω,

∂ψ

∂νz
(y, z) = 0

}
is dense in Cb(Ω×Ω). Moreover for any α ∈ (0, 1) and any function ψ ∈ C2(Ω×Ω) there exists a constant
C and a sequence ψr → ψ such that we have ‖ψr‖Cα(Ω×Ω) ≤ C‖ψ‖Cα(Ω×Ω).

Proof. Let us denote d(y) := infz∈∂Ω |y − z| the distance function. We recall that there exists R > 0 such that
y 7→ d(y, ∂Ω) is C3 in the tubular neighbourhood ΩR := {y ∈ Ω | d(y, ∂Ω) < R} [24]. We fix a smooth function
θ : R → R such that θ(x) = 0 for x ≤ 0, θ(1) = 1 for x ≥ 1, and ∀k > 0, θ(k)(0) = θ(k)(1) = 0. Finally for
y ∈ Ω, we let P (y) be the projection of y on ∂Ω, which is well-defined and C2 on ΩR.

With these notations, establishing Item (i) and (ii) is elementary by considering (for 0 < r < R) ψr(y) :=(
1− θ

(
d(y)
r

))
ψ(P (y)) + θ

(
d(y)
r

)
ψ(y) and similarly ψr(x, y) :=

(
1− θ

(
d(y)
r

))
ψ
(
x, P (y)

)
+ θ

(
d(y)
r

)
ψ(x, y)

for a function ψ ∈ C2(Ω) and ψ ∈ C2(R× Ω), respectively. We turn to the proof of Item (iii)

Let ψ ∈ C2(Ω × Ω). Let ψr(y, z) :=
(

1− θ
(
d(z)
r

))
ψ
(
y, P (z)

)
+ θ

(
d(z)
r

)
ψ(y, z) for 0 < r < R

2 . Clearly,

ψr ∈ F 2
0 and ψr → ψ in Cb(Ω). Moreover, for each (y, z) ∈ Ω× Ω we have∣∣∣(ψr(y, z)− ψ(y, z)

)
−
(
ψr(y, z′)− ψ(y, z′)

)∣∣∣
|z − z′|α

≤

∣∣∣θ (d(z)
r

)
− θ

(
d(z′)
r

)∣∣∣
|z − z′|α

(
ψ(y, P (z))− ψ(y, z)

)
+

∣∣∣∣1− θ(d(z′)

r

)∣∣∣∣ ( |ψ(y, P (z))− ψ(y, P (z′))|
|z − z′|α

+
|ψ(y, z)− ψ(y, z′)|

|z − z′|α

)
≤ ‖θ‖Cα([0,1])‖d‖αC0,1(ΩR/2)‖ψ‖Cα(Ω×Ω) + 2‖ψ‖Cα(Ω×Ω),

since |ψ(y, P (z))− ψ(y, z)| ≤ rα‖ψ‖Cα(Ω×Ω). This shows item (iii).

A.2 A topological theorem

For the sake of completeness, let us recall a result that we proved in a joint work with M. Alfaro [5], and that
we use in the construction of stationary states.
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Theorem A.2 (Bifurcation under Krein-Rutman assumption). Let E be a Banach space. Let C ⊂ E be a
closed convex cone with nonempty interior IntC 6= ∅ and of vertex 0, i.e. such that C ∩ −C = {0}. Let F be
a continuous and compact operator R× E −→ E. Let us define

S := {(α, x) ∈ R× E\{0} |F (α, x) = x}

the closure of the set of nontrivial fixed points of F , and

PRS := {α ∈ R | ∃x ∈ C\{0}, (α, x) ∈ S}

the set of nontrivial solutions in C.
Let us assume the following.

1. ∀α ∈ R, F (α, 0) = 0.

2. F is Fréchet differentiable near R × {0} with derivative αT locally uniformly with respect to α, i.e. for
any α1 < α2 and ε > 0 there exists δ > 0 such that

∀α ∈ (α1, α2), ‖x‖ ≤ δ ⇒ ‖F (α, x)− αTx‖ ≤ ε‖x‖.

3. T satisfies the hypotheses of the Krein-Rutman Theorem. We denote by λ1(T ) > 0 its principal eigenvalue.

4. S ∩ ({α} × C) is bounded locally uniformly with respect to α ∈ R.

5. S ∩ (R× (∂C\{0})) = ∅, i.e. there is no fixed point on the boundary of C.

Then, either
(
−∞, 1

λ1(T )

)
⊂ PRS or

(
1

λ1(T ) ,+∞
)
⊂ PRS.

The proof can be found in [5].

A.3 Existence of a transition kernel

Our final lemma is crucial for the construction of traveling waves.

Lemma A.3 (Existence of a transition kernel). Let Ω be an open domain Ω ⊂ Rd, and let µ be a nonnegative
measure defined on B(R× Ω). Assume there exists a constant C ≥ 0 such that

∀a < b,∀ω ∈ B(Ω), µ([a, b]× ω) ≤ C|b− a|.

Then there exists a function ν : R× B(Ω) −→ R+ such that
1. for almost every x ∈ R, ω 7→ ν(x, ω) is a nonnegative finite measure on B(Ω)
2. for every ω ∈ B(Ω), x 7→ ν(x, ω) is a Lebesgue-measurable function in L1

loc(R)
3. µ(dx, dy) = ν(x, dy)dx, in the sense that

∀ϕ ∈ Cc(R× Ω),

∫
R×Ω

ϕ(x, y)µ(dx, dy) =

∫
R×Ω

ϕ(x, y)ν(x, dy)dx.

Finally ν is unique up to a Lebesgue negligible set, and satisfies

ν(x,Ω) ≤ C a.e.

Proof. We divide the proof in four steps.
Step 1: We construct a density for µ(A× ω), ω ∈ B(Ω).

Let us take ω ∈ B(Ω), and define A ∈ B(R)
µω7→ µ(A×ω). Then µω is a nonnegative Borel-regular measure on

B(R). Indeed µω is clearly well-defined on B(R), satisfies the σ-additivity property and is finite on any compact
set. Then, for any open set U ⊂ R, we have µω(U) ≤ CL(U). Indeed we can write U =

⋃
n∈N

Kn where Kn is

an increasing sequence of compact sets of the form Kn =
mn⊔
i=0

[ani , b
n
i ] (with ani < bni < ani+1...), for which the

property holds by assumption. Thus

µω(U) = lim
n→+∞

µω(Kn) ≤ C lim
n→+∞

L(Kn) = CL(U)

Finally, µω � L, where L is the Lebesgue measure on R. Indeed, let us take E ⊂ R bounded such that
L(E) = 0. Then by the regularity of µω [44, Theorem 2.18], we have

µω(E) = inf
U open,U⊃E

µω(U) ≤ C inf
U open,U⊃E

L(E) = 0.
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Applying the Radon-Nikodym Theorem [44, Theorem 6.10], there exists then a unique measurable function
hω ∈ L1

loc(R) such that
µω = hωL = hωdx.

Step 2: We show that the density hω is well-defined up to a negligible set independent from ω.
Let ωn be an enumeration of the sets of the form

Ω ∩
d∏
i=1

[ai, bi]

where ai, bi ∈ Q. Clearly, ωn is stable by finite intersections, and the associated monotone class is B(Ω). We
let hn := hωn ∈ L1

loc(R) be the previously constructed density associated with µωn . Then hn is well-defined
on a set Dn satisfying L(R\Dn) = 0. We let D =

⋂
n∈N
Dn, then L(R\D) = 0 and by construction, every hn is

well-defined on D.
We take ω ∈ B(Ω) and show that, up to a redefinition on a negligible set, the function hω is well-defined on

D. If ω is open, then we can write ω =
⊔
n∈N

ω′n for a well-chosen extraction ω′n of ωn. Thus for any A ∈ B(R), we

have the formula µω(A) = µ(A× ω) =
∑
n∈N

µ(A× ω′n) and by the uniqueness in the Radon-Nikodym Theorem,

we have:
hω =

∑
n∈N

hω′n L − a.e.

In the general case we have µ(A×ω) = infU open,U⊃ω µ(A×U) for A ∈ B(R) because of the Borel regularity of
µ, which shows that hω is well-defined on D.

Step 3: We verify that the constructed family of functions form a nonnegative measure on Ω for L-a.e.
x ∈ R.

Let wn ∈ B(Ω) be a countable collection of Borel sets with wi ∩ wj = ∅ if i 6= j. Then

µ(A×
⊔
n∈N

wn) =
∑
n∈N

µ(A× wn)

for any A ∈ B(R), and by the uniqueness in the Radon-Nikodym theorem we have

h ⊔
n∈N

wn =
∑
n∈N

hwn L − a.e.

Thus, for any x ∈ D, the function ω 7→ hω(x) is σ-additive. Since hω is nonnegative by construction, ω 7→ hω(x)
is a nonnegative measure on B(Ω).

We define ν(x, ω) := hω(x). Then ν matches the definition of a transition kernel (Definition 2.1).

Step 4: Conclusion.
Since ν(x, dy)dx coincides with µ on the monotone class A × ωn, where A ∈ B(R), we have µ(dx, dy) =

ν(x, dy)dx on B(R× Ω).
Finally, since x 7→ ν(x,Ω) is in L1

loc(R), then almost every point of ν(x,Ω) is a Lebesgue point (see Rudin
[44, Theorem 7.7]) and thus:

ν(x0,Ω) = lim
r→0

1

2r

∫ x0+r

x0−r
ν(x0 + s,Ω)ds ≤ 1

2r
(2rC) = C

for L-a.e. x0 ∈ R.
This finishes the proof of Lemma A.3
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