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The article is devoted to the parameters identification in the
SI model. We consider several methods, starting with an
exponential fit to the early cumulative data of SARS-CoV2 in
mainland China. The present methodology provides a way to
compute the parameters at the early stage of the epidemic.
Next, we establish an identifiability result. Then we use the
Bernoulli–Verhulst model as a phenomenological model to fit
the data and derive some results on the parameters
identification. The last part of the paper is devoted to some
numerical algorithms to fit a daily piecewise constant rate
of transmission.
1. Introduction
Estimating the average transmission rate is one of the most crucial
challenges in the epidemiology of communicable diseases. This
rate conditions the entry into the epidemic phase of the disease
and its return to the extinction phase, if it has diminished
sufficiently. It is the combination of three factors, one, the
coefficient of virulence, linked to the infectious agent (in the case
of infectious transmissible diseases), the other, the coefficient of
susceptibility, linked to the host (all summarized into the
probability of transmission), and also, the number of contacts per
unit of time between individuals [1]. The coefficient of virulence
may change over time due to mutation over the course of the
disease history. The second and third also, if mitigation measures
have been taken. This was the case in China from the start of
the pandemic [2]. Monitoring the decrease in the average
transmission rate is an excellent way to monitor the effectiveness
of these mitigation measures. Estimating the rate is therefore a
central problem in the fight against epidemics.

The goal of this article is to understand how to compare
the SI model to the reported epidemic data and therefore the
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model can be used to predict the future evolution of epidemic spread and to test various possible
scenarios of social mitigation measures. For t≥ t0, the SI model is the following:

S0(t) ¼ �t(t)S(t)I(t)
and I0(t) ¼ t(t)S(t)I(t)� nI(t),

�
(1:1)

where S(t) is the number of susceptible and I(t) the number of infectious at time t. This system is
supplemented by initial data

S(t0) ¼ S0 � 0 and I(t0) ¼ I0 � 0: (1:2)

In this model, the rate of transmission τ(t) combines the number of contacts per unit of time and the
probability of transmission. The transmission of the pathogen from the infectious to the susceptible
individuals is described by a mass action law τ(t) S(t) I(t) (which is also the flux of new infectious).

The quantity 1/ν is the average duration of the infectious period and νI(t) is the flux of recovering or
dying individuals. At the end of the infectious period, we assume that a fraction f∈ (0, 1] of the infectious
individuals is reported. Let CR(t) be the cumulative number of reported cases. We assume that

CR(t) ¼ CR0 þ n f CI(t), for t � t0, (1:3)

where

CI(t) ¼
ðt
t0
I(s) ds: (1:4)

Assumption 1.1. We assume that

— S0 > 0 the number of susceptible individuals at time t0 when we start to use the model;
— 1/ν > 0 the average duration of infectious period;
— f > 0 the fraction of reported individuals;

are known parameters.

Throughout this paper, the parameter S0 = 1.4 × 109 will be the entire population of mainland China
(since COVID-19 is a newly emerging disease). The actual number of susceptibles S0 can be smaller since
some individuals can be partially (or totally) immunized by previous infections or other factors. This is
also true for SARS-CoV2, even if COVID-19 is a newly emerging disease. In fact, for COVID-19 the level
of susceptibility may depend on blood group and genetic lineage. It is indeed suspected that the blood
group O is associated with a lower susceptibility to SARS-CoV2 while a gene cluster inherited from
Neanderthal has been identified as a risk factor for severe symptoms [3,4].

At the early beginning of the epidemic, the average duration of the infectious period 1/ν is unknown,
since the virus has never been investigated in the past. Therefore, at the early beginning of the COVID-19
epidemic, medical doctors and public health scientists used previously estimated average duration of the
infectious period to make some public health recommendations. Here we show that the average
infectious period is impossible to estimate by using only the time series of reported cases, and must
therefore be identified by other means. Actually, with the data of SARS-CoV2 in mainland China,
we will fit the cumulative number of the reported case almost perfectly for any non-negative value
1/ν < 3.3 days. In the literature, several estimations were obtained: 11 days in [5], 9.5 days in [6],
8 days in [7] and 3.5 days in [8]. The recent survey by Byrne et al. [9] focuses on this subject.
Result

In §3, our analysis shows that:

— It is hopeless to estimate the exact value of the duration of infectiousness by using SI models. Several values of the
average duration of the infectious period give the exact same fit to the data.

— We can estimate an upper bound for the duration of infectiousness by using SI models. In the case of SARS-CoV2 in
mainland China, this upper bound is 3.3 days.
In [10], it is reported that transmission of COVID-19 infection may occur from an infectious individual
who is not yet symptomatic. In [11], it is reported that COVID-19-infected individuals generally develop
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symptoms, including mild respiratory symptoms and fever, on average 5–6 days after the infection date
(with a confidence of 95%, range 1–14 days). In [12], it is reported that the median time prior to symptom
onset is 3 days, the shortest 1 day, and the longest 24 days. It is evident that these time periods play an
important role in understanding COVID-19 transmission dynamics. Here the fraction of reported
individuals f is unknown as well.
Result

In §3, our analysis shows that:

— It is hopeless to estimate the fraction of reported by using the SI models. Several values for the fraction of reported give
the exact same fit to the data.

— We can estimate a lower bound for the fraction of unreported. We obtain 3.83 × 10−5 < f≤ 1. This lower bound is not
significant. Therefore, we can say anything about the fraction of unreported from this class of models.

publishing.org/journal/rsos
R.Soc.Open

Sci.7:201878
As a consequence, the parameters 1/ν and f have to be estimated by another method, for instance by a
direct survey methodology that should be employed on an appropriated sample in the population in
order to evaluate the two parameters.

The goal of this article is to focus on the estimation of the two remaining parameters. Namely,
knowing the above-mentioned parameters, we plan to identify

— I0 the initial number of infectious at time t0;
— τ(t) the rate of transmission at time t.

This problem has already been considered in several articles. In the early 1970s, London & Yorke [13,14]
already discussed the time-dependent rate of transmission in the context of measles, chickenpox and
mumps. More recently, in Wang & Ruan [15] the question of reconstructing the rate of transmission
was considered for the 2002–2004 SARS outbreak in China. In Chowell et al. [16], a specific form was
chosen for the rate of transmission and applied to the Ebola outbreak in Congo. Another approach
was also proposed in Smirnova et al. [17].

In §2, we will explain how to apply the method introduced in Liu et al. [18] to fit the early cumulative
data of SARS-CoV2 in China. This method provides a way to compute I0 and τ0 = τ(t0) at the early stage of
the epidemic. In §3, we establish an identifiability result in the spirit of Hadeler [19].

In §4, we use the Bernoulli–Verhulst model as a phenomenological model to describe the data. As it
was observed in several articles, the data from mainland China (and other countries as well) can be fitted
very well by using this model. As a consequence, we will obtain an explicit formula for τ(t) and I0
expressed as a function of the parameters of the Bernoulli–Verhulst model and the remaining
parameters of the SI model. This approach gives a very good description of this set of data. The
disadvantage of this approach is that it requires an evaluation of the final size CR∞ from the early
beginning (or at least it requires an estimation of this quantity).

Therefore, in order to be predictive, we will explore in the remaining sections of the paper the
possibility of constructing a day-by-day rate of transmission. Here we should refer to Bakhta et al. [20]
where another novel forecasting method was proposed.

In §5, we will prove that the daily cumulative data can be approached perfectly by at most one
sequence of day-by-day piecewise constant transmission rates. In §6, we propose a numerical method
to compute such a (piecewise constant) rate of transmission. Section 7 is devoted to the discussion,
and we will present some figures showing the daily basic reproduction number for the COVID-19
outbreak in mainland China.
2. Estimating τ(t0) and I0 at the early stage of the epidemic
In this section, we apply the method presented in [21] to the SI model. At the early stage of the epidemic,
we can assume that S(t) is almost constant and equal to S0. We can also assume that τ(t) remains constant
equal to τ0 = τ(t0). Therefore, by replacing these parameters into the I-equation of system (1.1) we obtain

I0(t) ¼ (t0S0 � n)I(t):



25 000
95%
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Figure 1. In this figure, we plot the best fit of the exponential model to the cumulative number of reported cases of COVID-19
in mainland China between 19 February and 1 March. We obtain χ1 = 3.7366, χ2 = 0.2650 and χ3 = 615.41 with t0 = 19 Feb.
The parameter χ3 is obtained by minimizing the error between the best exponential fit and the data.
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Therefore,

I(t) ¼ I0 exp (x2(t� t0)),

where

x2 ¼ t0S0 � n: (2:1)

By using (1.3), we obtain

CR(t) ¼ CR0 þ n f I0
ex2(t�t0) � 1

x2
: (2:2)

We obtain a first phenomenological model for the cumulative number of reported cases (valid only at the
early stage of the epidemic)

CR(t) ¼ x1 e
x2 t � x3: (2:3)

In figure 1, we compare the model to the COVID-19 data for mainland China. The data used in the article
are taken from [22–24] and reported in appendix A. In order to estimate the parameter χ3, we minimize
the distance between CRData(t) + χ3 and the best exponential fit t ! x1e

x2 t (i.e. we use the Matlab function
fit(t, data,‘exp1’)).
The estimated initial number of infected and transmission rate

By using (1.3) and (2.3), we obtain

I0 ¼ CR0(t0)
n f

¼ x1 x2e
x2 t0

n f
, (2:4)

and by using (2.1)

t0 ¼ x2 þ n

S0
: (2:5)
Remark 2.1. Fixing f = 0.5 and ν = 0.2, we obtain

I0 ¼ 3:7366� 0:2650� exp (0:2650� 19)
(0:2� 0:5)

¼ 1521

and

t0 ¼ 0:2650þ 0:2
1:4� 109

¼ 3:3214� 10�10:
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The influence of the errors made in the estimations (at the early stage of the epidemic) has been
considered in the recent article by Roda et al. [25]. To understand this problem, let us first consider
the case of the rate of transmission τ(t) = τ0 in the model (1.1). In that case (1.1) becomes

S0(t) ¼ �t0S(t)I(t)
and I0(t) ¼ t0S(t)I(t)� nI(t):

�
(2:6)

By using the S-equation of model (2.6) we obtain

S(t) ¼ S0 exp �t0

ðt
t0
I(s)ds

� �
¼ S0 exp (�t0CI(t)),

where CI(t) is the cumulated number of infectious individuals. Substituting S(t) by this formula in the
I-equation of (2.6) we obtain

I0(t) ¼ S0 exp (�t0CI(t))t0CI0(t)� nI(t):

Therefore, by integrating the above equation between t and t0 we obtain

CI0(t) ¼ I0 þ S0[1� exp (�t0CI(t))]� nCI(t): (2:7)

Remarkably, equation (2.7) is monotone. We refer to Smith [26] for a comprehensive presentation on
monotone systems. By applying a comparison principle to (2.7), we are in a position to confirm the
intuition about epidemics SI models. Note that the monotone properties are only true for the
cumulative number of infectious (this is false for the number of infectious).

Theorem 2.2. Let t > t0 be fixed. The cumulative number of infectious CI(t) is strictly increasing with
respect to the following quantities

(i) I0 > 0 the initial number of infectious individuals;
(ii) S0 > 0 the initial number of susceptible individuals;
(iii) τ > 0 the transmission rate;
(iv) 1/ν > 0 the average duration of the infectiousness period.
Error in the estimated initial number of infected and transmission rate

Assume that the parameters χ1 and χ2 are estimated with a 95% confidence interval

x�1,95% � x1 � xþ1,95%
and

x�2,95% � x2 � xþ2,95%:
We obtain

I�0,95% :¼ x�1,95% x�2,95% ex
�
2,95% t0

n f
� I0 � Iþ0,95% :¼ xþ1,95% xþ2,95% ex

þ
2,95% t0

n f
(2:8)

and

t�0,95% :¼ x�2,95% þ n

S0
� t0 � tþ0,95% :¼ xþ2,95% þ n

S0
: (2:9)
Remark 2.3. By using the data for mainland China, we obtain

x�1,95% ¼ 1:57, xþ1,95% ¼ 5:89, x�2,95% ¼ 0:24, xþ2,95% ¼ 0:28: (2:10)

In figure 2, we plot the upper and lower solutions CR+(t) (obtained by using I0 ¼ Iþ0,95% and
t0 ¼ tþ0,95%) and CR−(t) (obtained by using I0 ¼ I�0,95% and t0 ¼ t�0,95%) corresponding to the blue region
and the black curve corresponds to the best estimated value I0 = 1521 and τ0 = 3.3214 × 10−10.

Recall that the final size of the epidemic corresponds to the positive equilibrium of (2.7)

0 ¼ I0 þ S0[1� exp (�t0CI1)]� nCI1: (2:11)

In figure 2, the changes in the parameters I0 and τ0 (in (2.8) and (2.9)) do not affect significantly the
final size.



6 × 108

5 × 108

4 × 108

3 × 108

2 × 108
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Mar Apr May
2020

Figure 2. In this figure, the black curve corresponds to the cumulative number of reported cases CR(t) obtained from the model
(2.6) with CR0(t) = νf I(t) by using the values I0 = 1521 and τ0 = 3.32 × 10−10 obtained from our method and the early data from
19 February to 1 March. The blue region corresponds to the 95% confidence interval when the rate of transmission τ(t) is constant
and equal to the estimated value τ0 = 3.32 × 10−10.
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3. Theoretical formula for τ(t)
By using the S-equation of model (1.1) we obtain

S(t) ¼ S0 exp �
ðt
t0
t(s) I(s) ds

� �
,

next by using the I-equation of model (1.1) we obtain

I0(t) ¼ S0 exp �
ðt
t0
t(s) I(s)ds

� �
t(t) I(t)� nI(t),

and by taking the integral between t and t0 we obtain a Volterra integral equation for the cumulative
number of infectious

CI0(t) ¼ I0 þ S0 1� exp �
ðt
t0
t(s) I(s) ds

� �� �
� nCI(t), (3:1)

which is equivalent to (by using (1.3))

CR0(t) ¼ n f I0 þ S0 1� exp � 1
n f

ðt
t0
t(s) CR0(s)ds

� �� �� �
þ nCR0 � nCR(t): (3:2)

The following result permits to obtain a perfect match between the SI model and the time-dependent rate
of transmission τ(t).

Theorem 3.1. Let S0, ν, f, I0 > 0 and CR0≥ 0 be given. Let t→ I(t) be the second component of system (1.1).
Let cCR:[t0, 1) ! R be a two times continuously differentiable function satisfying

cCR(t0) ¼ CR0, (3:3)

cCR0(t0) ¼ n f I0, (3:4)

cCR0(t) . 0, 8 t � t0 (3:5)

and nf(I0 þ S0)� cCR0(t)� n(cCR(t)� CR0) . 0, 8t � t0: (3:6)
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Then

cCR(t) ¼ CR0 þ nf
ðt
t0
I(s)ds, 8t � t0, (3:7)

if and only if

t(t) ¼ nf(cCR00(t)=cCR0(t)þ n)

nf(I0 þ S0)� cCR0(t)� n(cCR(t)� CR0)
: (3:8)

Proof. Assume first (3.7) is satisfied. Then by using equation (3.1) we deduce that

S0 exp �
ðt
t0
t(s)I(s)ds

� �
¼ I0 þ S0 � I(t)� nCI(t):

Therefore, ðt
t0
t(s)I(s) ds ¼ ln

S0
I0 þ S0 � I(t)� nCI(t)

� �
¼ ln (S0)� ln [I0 þ S0 � I(t)� nCI(t)]

therefore by taking the derivative on both sides

t(t)I(t) ¼ I0(t)þ nI(t)
I0 þ S0 � I(t)� nCI(t)

, t(t) ¼ (I0(t)=I(t))þ n

I0 þ S0 � I(t)� nCI(t)
(3:9)

and by using the fact that CR(t)−CR0 = νfCI(t) we obtain (3.8).
Conversely, assume that τ(t) is given by (3.8). Then if we define eI(t) ¼ cCR0(t)=nf andfCI(t) ¼ (cCR(t)� CR0)=nf , by using (3.3) we deduce that

fCI(t) ¼ ðt
t0

eI(s) ds,
and by using (3.4)

eI(t0) ¼ I0: (3:10)

Moreover from (3.8), we deduce that eI(t) satisfies (3.9). By using (3.10), we deduce that t !fCI(t) is a
solution of (3.1). By uniqueness of the solution of (3.1), we deduce that fCI(t) ¼ CI(t), 8t � t0 or
equivalently CR(t) ¼ CR0 þ nf

Ð t
t0
I(s)ds, 8t � t0. The proof is completed. ▪

Formula (3.8) was already obtained by Hadeler ([19], see corollary 2).
4. Explicit formula for τ(t) and I0
Many phenomenological models have been compared to the data during the first phase of the COVID-19
outbreak. We refer to the paper of Tsoularis & Wallace [27] for a nice survey on the generalized logistic
equations. Let us consider here for example, the Bernoulli–Verhulst equation

CR0(t) ¼ x2 CR(t) 1� CR(t)
CR1

� �u
 !

, 8 t � t0, (4:1)

supplemented with the initial data

CR(t0) ¼ CR0 � 0:

Let us recall the explicit formula for the solution of (4.1)

CR(t) ¼ ex2(t�t0)CR0

1þ (x2u=CR
u
1)
Ð t
t0
(ex2(s�t0)CR0)

u ds
h i1=u ¼ ex2(t�t0)CR0

[1þ (CRu
0=CR

u
1)(ex2u(t�t0) � 1)]1=u

: (4:2)

Assumption 4.1. We assume that the cumulative numbers of reported cases CRData(ti) are known for a
sequence of times t0 < t1 < · · · < tn+1 (see figure 3).
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Figure 3. In this figure, we plot the best fit of the Bernoulli–Verhulst model to the cumulative number of reported cases of COVID-
19 in China. We obtain χ2 = 0.66 and θ = 0.22. The black dots correspond to data for the cumulative number of reported cases and
the red curve corresponds to the model.

Estimated initial number of infected

By combining (1.3) and the Bernoulli–Verhulst equation (4.1) for t→CR(t), we deduce the initial
number of infected

I0 ¼ CR0(t0)
n f

¼ x2 CR0(1� (CR0=CR1)u)
n f

: (4:3)

royalsocietypublishing.org/journal/rsos
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Remark 4.2. We fix f = 0.5, from the COVID-19 data in mainland China and formula (4.3) (with
CR0 = 198), we obtain

I0 ¼ 1909 for n ¼ 0:1

and
I0 ¼ 954 for n ¼ 0:2:

By using (4.1), we deduce that

CR00(t) ¼ x2 CR
0(t) 1� CR(t)

CR1

� �u
 !

� x2u

CRu
1
CR(t)(CR(t))u�1CR0(t)

¼ x2 CR
0(t) 1� CR(t)

CR1

� �u
 !

� x2u

CRu
1
(CR(t))uCR0(t),

therefore

CR00(t) ¼ x2 CR
0(t) 1� (1þ u)

CR(t)
CR1

� �u
 !

: (4:4)
Estimated rate of transmission

By using the Bernoulli–Verhulst equation (4.1) and substituting (4.4) in (3.8), we obtain

t(t) ¼ n f(x2 (1� (1þ u)(CR(t)=CR1)u)þ n)
n f(I0 þ S0)þ nCR0 � CR(t)(x2(1� (CR(t)=CR1)u)þ n)

: (4:5)

This formula (4.5) combined with (4.2) gives an explicit formula for the rate of transmission.
Since CR(t) < CR∞, by considering the sign of the numerator and the denominator of (4.5), we obtain
the following proposition.



0
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–1

0

1
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× 10–10
(a) (b)

× 10–10

Figure 4. In this figure, we plot the rate of transmission obtained from formula (4.5) with f = 0.5, χ2 θ = 0.145 < ν = 0.2 (in (a))
and ν = 0.1 < χ2 θ = 0.145 (in (b)), χ2 = 0.66 and θ = 0.22, and CR∞ = 67 102, which is the latest value obtained from the
cumulative number of reported cases for China.
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Proposition 4.3. The rate of transmission τ(t) given by (4.5) is non-negative for all t≥ t0 if

n � x2 u (4:6)

and

f(I0 þ S0)þ nCR0 . CR1(x2 þ n): (4:7)
Compatibility of the model SI with the COVID-19 data for mainland China

The model SI is compatible with the data only when τ(t) stays positive for all t≥ t0. From our
estimation of the Chinese’s COVID-19 data, we obtain χ2 θ = 0.14. Therefore from (4.6), we
deduce that model is compatible with the data only when

1=n � 1
0:14

¼ 3:3 days: (4:8)

This means that the average duration of infectious period 1/ν must be shorter than 3.3 days.
Similarly, the condition (4.7) implies

f � CR1x2 þ (CR1 � CR0)n
S0 þ I0

� CR1x2 þ (CR1 � CR0)x2 u
S0 þ I0

and since we have CR0 = 198 and CR∞ = 67 102, we obtain

f � 67 102� 0:66þ (67 102� 198)� 0:14
1:4� 109

� 3:83� 10�5: (4:9)

So according to this estimation the fraction of unreported 0 < f≤ 1 can be almost as small as wewant.
Figure 4 illustrates proposition 4.3. We observe that the formula for the rate of transmission (4.5)
becomes negative whenever ν < χ2θ. In figure 5, we plot the numerical simulation obtained from (1.1)
to (1.3) when t→ τ(t) is replaced by the explicit formula (4.5). It is surprising that we can reproduce
perfectly the original Bernoulli–Verhulst even when τ(t) becomes negative (see figure 3). This was not
guaranteed at first, since the I-class of individuals is losing some individuals which are recovering.
5. Computing numerically a day-by-day piecewise constant rate
of transmission
Assumption 5.1. We assume that the rate of transmission τ(t) is piecewise constant and for each i = 0,…, n,

t(t) ¼ ti, whenever ti � t , tiþ1: (5:1)
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Figure 5. In this figure, we plot the number of reported cases by using model (1.1) and (1.3), with the rate of transmission
obtained in (4.5). The parameters values are f = 0.5, ν = 0.1 or ν = 0.2, χ2 = 0.66 and θ = 0.22, and CR∞ = 67 102 is
the latest value obtained from the cumulative number of reported cases for China. Furthermore, we use S0 = 1.4 × 109 for the
total population of China and I0 = 954 which is obtained from formula (4.3). The black dots correspond to observed data for
the cumulative number of reported cases and the blue curve corresponds to the model.
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For t∈ [ti−1, ti], we deduce by using assumption 5.1 thatðt
t0
t(s) CR0(s) ds ¼

Xi�2

j¼0

ðt jþ1

t j
t j CR0(s) dsþ

ðt
ti�1

ti�1 CR0(s) ds:

Therefore by using (3.2), for t∈ [ti−1, ti], we obtain

CR0(t) ¼ n f I0 þ S0 1�Pi�1 exp � ti�1

n f
[CR(t)� CR(ti�1)]

� �� �� �
þ nCR0 � nCR(t), (5:2)

where

Pi�1 ¼ exp �
Xi�2

j¼0

t j

n f
[CR(t jþ1)� CR(t j)]

0@ 1A: (5:3)

By fixing τi−1 = 0 on the right-hand side of (5.2), we get

CR0(t) � n f(I0 þ S0[1�Pi�1])þ nCR0 � nCR(t),

and when τi−1→∞ we obtain

CR0(t) � n f(I0 þ S0)þ nCR0 � nCR(t):

By using the theory of monotone ordinary differential equations [26], we deduce that the map τi→CR(ti)
is monotone increasing, and we get the following result.

Theorem 5.2. Let assumptions 1.1, 4.1 and 5.1 be satisfied. Let I0 be fixed. Then we can find a unique
sequence τ0, τ1,…, τn of non-negative numbers such that t→CR(t) the solution of (3.2) fits exactly the data at
any time ti, that is to say that

CR(ti) ¼ CRData(ti), 8i ¼ 1, . . . , nþ 1,

if and only if the following two conditions are satisfied for each i = 0, 1,…, n + 1,

CRData(ti) � e�n(ti�ti1 )CRData(ti�1)þ
ðti
ti�1

n e�n(ti�s) ds( f(I0 þ S0[1�PData
i�1 ])þ CR0), (5:4)

where

PData
i�1 ¼ exp �

Xi�2

j¼0

t j

n f
[CRData(t jþ1)� CRData(t j)]

0@ 1A (5:5)
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and

CRData(ti) � e�n(ti�ti1 )CRData(ti�1)þ
ðti
ti�1

n e�n(ti�s) ds(f(I0 þ S0)þ CR0): (5:6)

Remark 5.3. The above theorem means that the data are identifiable for this model SI if and only if
the conditions (5.4) and (5.6) are satisfied. Moreover, in that case, we can find a unique sequence of
transmission rates τi≥ 0 which gives a perfect fit to the data.
.org/journal/rsos
R.Soc.Open

Sci.7:201878
6. Numerical simulations
In this section, we propose a numerical method to fit the day-by-day rate of transmission. The goal is to
take advantage of the monotone property of CR(t) with respect to τi on the time interval [ti, ti+1]. Recently,
more sophisticated methods were proposed by Bakhta et al. [20] by using several types of approximation
methods for the rate of transmission.

We start with the simplest algorithm 1 in order to show the difficulties to identify the rate of
transmission.

Algorithm 1
Step 1: We fix S0 ¼ 1:4� 109, n ¼ 0:1 or n ¼ 0:2 and f ¼ 0:5. We consider the system

S0ðtÞ ¼ �tSðtÞIðtÞ;
I0ðtÞ ¼ tSðtÞIðtÞ � nIðtÞ

and CR0ðtÞ ¼ nfIðtÞ;

9>=>; (6:1)

on the interval of time t [ [t0, t1]. This system is supplemented by initial value S(t0) ¼ S0 and I(t0) ¼ I0 is given
by formula (2.4) (if we consider the data only at the early stage) or formula (4.3) (if we consider all the data) and
CR(t0) ¼ CRData(t0) is obtained from the data.

The map t ! CR(t1) being monotone increasing, we can apply a bisection method to find the unique value t0
solving

CRðt1Þ ¼ CRDataðt1Þ:

Then we proceed by induction.
Step i: For each integer i ¼ 1, . . . , n we consider the system

S0ðtÞ ¼ �tSðtÞIðtÞ;
I0ðtÞ ¼ tSðtÞIðtÞ � nIðtÞ

and CR0ðtÞ ¼ nfIðtÞ;

9>=>; (6:2)

on the interval of time t [ [ti,tiþ1]. This system is supplemented by initial values S(ti) and I(ti) obtained from the
previous iteration and with CR(ti) ¼ CRData(ti) obtained from the data.

The map t ! CR(ti) being monotone increasing, we can apply a bisection method to find the unique value ti
solving

CRðtiÞ ¼ CRDataðtiÞ:
In figure 6, we plot an example of such a perfect fit, which is the same for ν = 0.1 and ν = 0.2. In

figure 7, we plot the rate of transmission obtained numerically for ν = 0.2 in (a) and ν = 0.1 in (b). This
is an example of a negative rate of transmission. Figure 7 should be compared to figure 4 which gives
a similar result.

In figures 8–10, we use algorithm 1 and we plot the rate of transmission obtained by using the
reported cases of COVID-19 in China where the parameters are fixed as f = 0.5 and ν = 0.2. In
figures 8–10, we observe an oscillating rate of transmission which is alternately positive and negative
back and forth. These oscillations are due to the amplification of the error in the numerical method
itself. In figure 8, we run the same simulation as in figure 9 but during a shorter period. In figure 8,
we can see that the slope of CR(t) at the t = ti between 2 days (the black dots) is amplified 1 day to
the next.

In figure 10, we first smooth the original cumulative data by using the Matlab function CRData =
smoothdata(CRData,‘gaussian’,50) to regularize the data and we apply algorithm 1. Unfortunately,
smoothing the data does not help to solve the instability problem in figure 10.
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Figure 6. In this figure, we plot the perfect fit to the cumulative number of reported cases of COVID-19 in China. We fix the
parameters f = 0.5 and ν = 0.2 or ν = 0.1 and we apply our algorithm 1 to obtain the perfect fit. The black dots correspond
to data for the cumulative number of reported cases and the blue curve corresponds to the model.
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Figure 7. In this figure, we plot the rate of transmission obtained for the reported cases of COVID-19 in China with the parameters
f = 0.5 and ν = 0.2 in (a) and ν = 0.1 in (b). This rate of transmission corresponds to the perfect fit obtained in figure 6.
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Figure 8. In (a), we plot the cumulative number of reported cases obtained from the data (black dots) and the model (blue curve).
In (b), we plot the daily rate of transmission obtained by using algorithm 1. We see that we can fit the data perfectly. But the
method is very unstable. We obtain a rate of transmission that oscillates from positive to negative values back and forth.
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We need to introduce a correction when choosing the next initial value I(ti). In algorithm 1, the errors
are due to the following relationship:

CR0(t) ¼ nfI(t),

which is not respected at the points t = ti which should be reflected by the algorithm.
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Figure 9. In (a), we plot the cumulative number of reported cases obtained from the data (black dots) and themodel (blue curve) on a period six
times longer than in figure 8. In (b), we plot the daily rate of transmission obtained by using algorithm 1.We see that we can fit the data perfectly.
But the method is very unstable like on figure 8. We obtain a rate of transmission that oscillates from positive to negative values back and forth.
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Figure 10. We apply algorithm 1 to the regularized data. In (a), we plot the regularized cumulative number of reported cases
obtained from the data (black dots) and the model (blue curve). In (b), we plot the daily rate of transmission obtained by
using algorithm 1. We see that we can fit the data perfectly. But the method is very unstable. We obtain a rate of
transmission that oscillates from positive to negative values back and forth.
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Figure 11. In this figure, we plot the rate of transmission obtained by using the reported cases of COVID-19 in China with the
parameters f = 0.5 and ν = 0.2. We first regularize the data by applying the Matlab function CRData = smoothdata(CRData,
‘gaussian’,50). Then we apply algorithm 2 to the regularized data. In (a), we plot the regularized cumulative number of
reported cases obtained after smoothing (black dots) and the model (blue curve). In (b), we plot the daily rate of transmission
obtained by using algorithm 2. We see that we can fit the data perfectly and this time the rate of transmission is becoming
reasonable.
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In figure 11, we smooth the data first by using the Matlab function CRData = smoothdata(CRData,
0gaussian0,50), and we apply algorithm 2 by approximating equation (6.6) by

Ii ¼ [CRData(ti)� CRData(ti�1)]
(n� f)

: (6:3)

In figure 11, we no longer observe the oscillations of the rate of transmission.



1

2

3

4

5

6

×104

Bernoulli-Verhulst
rolling weekly
Gaussian weekly
data

0 5 10 15 20 25 30 35 40 45 50 0 10 20 30 40 50 60

1000

2000

3000

4000

5000
Bernoulli-Verhulst
rolling weekly
Gaussian weekly
data

(a) (b)

Figure 12. In this figure, we plot the cumulative number of reported cases (a) and the daily number of reported cases (b). The
black curves are obtained by applying the cubic spline Matlab function ‘spline(Days,DATA)’ to the cumulative data. The left-hand side
is obtained by using the cubic spline function and right-hand side is obtained by using the derivative of the cubic spline
interpolation. The blue curves are obtained by using cubic spline function to the day-by-day values of cumulative number of
cases obtained from the best fit of the Bernoulli–Verhulst model. The orange curves are obtained by computing the rolling
weekly daily number of cases (we use the Matlab function ‘smoothdata(DAILY,‘movmean’,7)’) and then by applying the cubic
spline function to the corresponding cumulative number of cases. The yellow curves are obtained by using the Gaussian weekly
smoothing to the daily number of cases (we use the Matlab function ‘smoothdata(DAILY,‘gaussian’,7)’) and then by applying
the cubic spline function to the corresponding cumulative number of cases.
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Algorithm 2
We fix S0 ¼ 1:4� 109, n ¼ 0:1 or n ¼ 0:2 and f ¼ 0:5. Then we fit the data by using the method described in §2 to
estimate the parameters x1, x2 and x3 from day 1 to 10. Then we use

S0 ¼ 1:40005� 109;

I0 ¼ x2 x1
½expðx2 ðt0 � 1ÞÞ�

ð f nÞ
and CR0 ¼ x1 expðx2 t0Þ � x3:

9>>>>=>>>>; (6:4)

For each integer i ¼ 0, . . . , n, we consider the system

S0ðtÞ ¼ �tSðtÞIðtÞ;
I0ðtÞ ¼ tSðtÞIðtÞ � nIðtÞ

and CR0ðtÞ ¼ nfIðtÞ;

9>=>; (6:5)

for t [ [ti,tiþ1]. Then the map t ! CR(tiþ1) being monotone increasing, we can apply a bisection method to find
the unique ti solving

CRðtiþ1Þ ¼ CRDataðtiþ1Þ:

The key idea of this new algorithm is the following correction on the I-component of the system. We start a new
step by using the value S(ti) obtained from the previous iteration and

Ii ¼ CR0
Data

ðtiÞ
ðn fÞ (6:6)

and

CRi ¼ CRDataðtiÞ: (6:7)

In figure 12, we plot several types of regularized cumulative data in (a) and several types of
regularized daily data in (b). Among the different regularization methods, an important one is the
Bernoulli–Verhulst best-fit approximation.

In figure 13, we plot the rate of transmission t→ τ(t) obtained by using algorithm 2. We can see that
the original data give a negative transmission rate while at the other extreme the Bernoulli–Verhulst
seems to give the most regularized transmission rate. In figure 13a, we observe that we now recover
almost perfectly the theoretical transmission rate obtained in §4. In figure 13b, the rolling weekly
average regularization and in figure 13c the Gaussian weekly average regularization still vary a lot
and in both cases, the transmission rate becomes negative after some time. In figure 13c, the original
data give a transmission rate that is negative from the beginning. We conclude that it is crucial to find
a ‘good’ regularization of the daily number of cases. So far the best regularization method is obtained
by using the best fit of the Bernoulli–Verhulst model.
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Figure 13. In this figure, we plot the transmission rates t→ τ(t) obtained by using algorithm 2 with the parameters f = 0.5 and
ν = 0.2. We use the cumulative data obtained by using (a) the Bernoulli–Verhulst regularization, (b) the rolling weekly average
regularization, (c) the Gaussian weekly average regularization and in (d ) we use the original cumulative data.

2020   

0

0.5

1.0

1.5

2.0

2.5

3.0

–2

–1

0

1

2

3

4

5

–1

0

1

2

3

19 Feb 26 Feb 04 Mar 11 Mar 18 Mar 25 Mar 01 Apr 08 Apr

2020   

19 Feb 26 Feb 04 Mar 11 Mar 18 Mar 25 Mar 01 Apr 08 Apr

2020   

19 Feb 26 Feb 04 Mar 11 Mar 18 Mar 25 Mar 01 Apr 08 Apr

2020   

19 Feb 26 Feb 04 Mar 11 Mar 18 Mar 25 Mar 01 Apr 08 Apr
–80

–60

–40

–20

0

20

(a)

(c)

(b)

(d)

Figure 14. In this figure, we plot the daily basic reproduction number t→ R0(t) = τ(t)S(t)/ν obtained by using algorithm 2 with
the parameters f = 0.5 and ν = 0.2. We use the cumulative data obtained by using (a) the Bernoulli–Verhulst regularization, (b) the
rolling weekly average regularization, (c) the Gaussian weekly average regularization and in (d ) we use the original cumulative data.
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Remark 6.1. For each simulation figure 13b,c, it is possible to obtain a transmission rate t→ τ(t)
that is non-negative for all time t by increasing sufficiently the parameter ν. Nevertheless, we do not
present these simulations here because the corresponding values of ν to obtain a non-negative τ(t) are
unrealistic.
In figure 14(a–d respectively), we plot the daily basic reproduction number corresponding to the
figure 13(a–d respectively). The red line corresponds to R0 = 1. We see some complex behaviour for
figure 14b,c,d is again unrealistic.
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Figure 15. In this figure we plot R0(t) = τ(t)S(t)/ν the daily basic reproduction number and we vary the parameter f (a) and ν (b).
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7. Discussion
Estimating the parameters of an epidemiological model is always difficult and generally requires strong
assumptions about their value and their consistency and constancy over time. Despite this, it is often
shown that many sets of parameter values are compatible with a good fit of the observed data. The
new approach developed in this article consists first of all in postulating a phenomenological model of
growth of infectious, based on the very classic model of Verhulst, proposed in demography in 1838
[28]. Then, obtaining explicit formulae for important parameter values such as the transmission rate or
the initial number of infected (or for lower and/or upper limits of these values), gives an estimate
allowing an almost perfect reconstruction of the observed dynamics.

The uses of phenomenological models can also be regarded as a way of smoothing the data. Indeed,
the errors concerning the observations of new infected cases are numerous:

— the census is rarely regular and many countries report late cases that occurred during the weekend
and at varying times over-add data from specific counts, such as those from homes for the elderly;

— the number of cases observed is still underestimated and the calculation of not-reported new cases of
infected is always a difficult problem [21];

— the raw data are sometimes reduced for medical reasons of poor diagnosis or lack of detection tools,
or for reasons of domestic policy of states.

For all these causes of error, it is important to choose the appropriate smoothing method (moving average,
spline, Gaussian kernel, auto-regression, generalized linear model, etc.). In this article, several methods
were used and the one which allowed the model to perfectly match the smoothed data was retained.

In this article, we developed several methods to understand how to reconstruct the rate of
transmission from the data. In §2, we reconsidered the method presented in [21] based on an
exponential fit to the early data. The approach gives a first estimation of I0 and τ0. In §3, we prove a
result to connect the time-dependent cumulative reported data and the transmission rate. In §4, we
compare the data to the Bernoulli–Verhulst model and we use this model as a phenomenological
model. The Bernoulli–Verhulst model fits the data for mainland China very well. Next by replacing
the data by the solution of the Bernoulli–Verhulst model, we obtain an explicit formula for the
transmission rate. So we derive some conditions on the parameters for the applicability of the SI
model to the data for mainland China. In §5, we discretized the rate of transmission and we observed
that given some daily cumulative data, we can get at most one perfect fit the data. Therefore, in §6,
we provide two algorithms to compute numerically the daily rates of transmission. Such numerical
questions turn out to be a delicate problem. This problem was previously considered by another
French group, Bakhta et al. [20]. Here we use some simple ideas to approach the derivative of the
cumulative reported cases combined with some smoothing method applied to the data.

To conclude this article, we plot the daily basic reproduction number

R0(t) ¼ t(t)S(t)
n

as a function of the time t and the parameters f or ν. The above simple formula for R0 is not the real basic
reproductive number in the sense of the number of newly infected produced by a single infectious. But
this is a simple formula which gives a tendency about the growth or decay of the number of infectious. In
figure 15a, the daily basic reproduction number is almost independent of f, while in figure 15b, R0(t) is
depending on ν mostly for the small value of ν. The red curve on each surface in figure 15 corresponds to
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the turning point (i.e. time t≥ t0 for which R0(t) = 1). We also see that turning point is not depending
much on these parameters.

Concerning contagious diseases, public health physicians are constantly facing four challenges. The
first concerns the estimation of the average transmission rate. Until now, no explicit formula had been
obtained in the case of the SIR model, according to the observed data of the epidemic, that is to say
the number of reported cases of infected patients. Here, from realistic simplifying assumptions, a
formula is provided (formula (4.5)), making it possible to accurately reconstruct theoretically the curve
of the observed cumulative cases. The second challenge concerns the estimation of the mean duration
of the infectious period for infected patients. As for the transmission rate, the same realistic
assumptions make it possible to obtain an upper limit to this duration (inequality (4.8)), which makes
it possible to better guide the individual quarantine measures decided by the authorities in charge of
public health. This upper bound also makes it possible to obtain a lower bound for the percentage
of unreported infected patients (inequality (4.8)), which gives an idea of the quality of the census of
cases of infected patients, which is the third challenge faced by epidemiologists, specialists
of contagious diseases. The fourth challenge is the estimation of the average transmission rate for each
day of the infectious period (dependent on the distribution of the transmission over the ‘ages’ of
infectivity), which will be the subject of further work and which poses formidable problems, in
particular those related to the age (biological age or civil age) class of the patients concerned. Another
interesting prospect is the extension of methods developed in the present paper to the contagious
non-infectious diseases (i.e. without causal infectious agent), such as social contagious diseases, the
best example being that of the pandemic linked to obesity [29–31], for which many concepts and
modelling methods remain available.
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Appendix A. Supplementary table
We use cumulative reported data from the National Health Commission of the People’s Republic of
China and the Chinese CDC for mainland China. Before 11 February, the data were based on
confirmed testing. From 11 February to 15 February, the data included cases that were not tested for
the virus, but were clinically diagnosed based on medical imaging showing signs of pneumonia.
There were 17 409 such cases from 10 February to 15 February. The data from 10 February to 15
February specified both types of reported cases. From 16 February, the data did not separate the two
types of reporting, but reported the sum of both types. We subtracted 17 409 cases from the
cumulative reported cases after 15 February to obtain the cumulative reported cases based only on
confirmed testing after 15 February. The data are given in table 1 with this adjustment.

https://en.wikipedia.org/wiki/COVID-19_pandemic_in_mainland_China
https://en.wikipedia.org/wiki/COVID-19_pandemic_in_mainland_China
http://www.nhc.gov.cn/yjb/pzhgli/new_list.shtml


Table 1. Cumulative data describing confirmed cases in mainland China from 20 January to 18 March 2020. The data are taken
from [22–24].

January

19 20 21 22 23 24 25

198 291 440 571 830 1287 1975

26 27 28 29 30 31

2744 4515 5974 7711 9692 11 791

February

1 2 3 4 5 6 7

14 380 17 205 20 438 24 324 28 018 31 161 34 546

8 9 10 11 12 13 14

37 198 40 171 42 638 44 653 46 472 48 467 49 970

15 16 17 18 19 20 21

51 091 70 548–17 409 72 436–17 409 74 185–17 409 75 002–17 409 75 891–17 409 76 288–17 409

22 23 24 25 26 27 28

76 936–17 409 77 150–17 409 77 658–17 409 78 064–17 409 78 497–17 409 78 824–17 409 79 251–17 409

29

79 824–17 409

March

1 2 3 4 5 6 7

79 824–17 409 79 824–17 409 79 824–17 409 80 409–17 409 80 552–17 409 80 651–17 409 80 695–17 409

8 9 10 11 12 13 14

80 735–17 409 80 754–17 409 80 778–17 409 80 793–17 409 80 813–17 409 80 824–17 409 80 844–17 409

15 16 17 18

80 860–17 409 80 881–17 409 80 894–17 409 80 928–17 409

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.7:201878
18

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

13
 J

ul
y 

20
21

 

References

1. Magal P, Ruan S. 2014 Susceptible-infectious-

recovered models revisited: from the individual
level to the population level. Math. Biosci. 250,
26–40. (doi:10.1016/j.mbs.2014.02.001)

2. Qiu Y, Chen X, Shi W. 2020 Impacts of social
and economic factors on the transmission of
coronavirus disease 2019 (COVID-19). China. J.
Popul. Econ. 33, 1127–1172. (doi:10.1007/
s00148-020-00778-2)

3. Zeberg H, Pääbo S. 2020 The major genetic risk
factor for severe COVID-19 is inherited from
Neanderthals. Nature. (doi:10.1038/s41586-020-
2818-3)

4. Guillon P, Clément M, Sébille V, Rivain JG, Chou
CF, Ruvoën-Clouet N, Le Pendu J. 2008
Inhibition of the interaction between the SARS-
CoV spike protein and its cellular receptor by
anti-histo-blood group antibodies. Glycobiology
18, 1085–1093. (doi:10.1093/glycob/cwn093)

5. Zhou F et al. 2020 Clinical course and risk
factors for mortality of adult inpatients with
COVID-19 in Wuhan, China: a retrospective
cohort study. Lancet 395, 1054–1062. (doi:10.
1016/S0140-6736(20)30566-3)

6. Hu Z et al. 2020 Clinical characteristics of 24
asymptomatic infections with COVID-19
screened among close contacts in Nanjing,
China. Sci. China Life Sci. 63, 706–711. (doi:10.
1007/s11427-020-1661-4)

7. Ma S, Zhang J, Zeng M, Yun Q, Guo W, Zheng Y,
Zhao S, Wang MH, Yang Z. 2020 Epidemiological
parameters of coronavirus disease 2019: a pooled
analysis of publicly reported individual data of
1155 cases from seven countries. medRxiv.
(doi:10.1101/2020.03.21.20040329)

8. Li R, Pei S, Chen B, Song Y, Zhang T, Yang W,
Shaman J. 2020 Substantial undocumented
infection facilitates the rapid dissemination of
novel coronavirus (SARS-CoV-2). Science 368,
489–493. (doi:10.1126/science.abb3221)

9. Byrne AW et al. 2020 Inferred duration of
infectious period of SARS-CoV-2: rapid scoping
review and analysis of available evidence for
asymptomatic and symptomatic COVID-19 cases.
BMJ Open 10, e039856. (doi:10.1136/bmjopen-
2020-039856)

10. Rothe C. 2020 Transmission of 2019-nCoV
Infection from an asymptomatic contact in
Germany. N. Engl. J. Med. 382, 970–971.
(doi:10.1056/NEJMc2001468)

11. Report of the WHO-China Joint Mission on
Coronavirus Disease 2019 (COVID-19). https://
www.who.int/docs/default-source/coronaviruse/
who-china-joint-mission-on-covid-19-final-
report.pdf.

12. Yang Z et al. 2020 Modified SEIR and AI
prediction of the epidemics trend of COVID-19 in
China under public health interventions.
J. Thoracic Dis. 12, 165–174. (doi:10.21037/jtd.
2020.02.64)

13. London WP, Yorke JA. 1973 Recurrent outbreaks
of measles, chickenpox and mumps: I. Seasonal
variation in contact rates. Am. J. Epidemiol. 98,
453–468. (doi:10.1093/oxfordjournals.aje.
a121575)

14. Yorke JA, London WP. 1973 Recurrent outbreaks
of measles, chickenpox and mumps: II.
Systematic differences in contact rates and
stochastic effects. Am. J. Epidemiol. 98,
469–482. (doi:10.1093/oxfordjournals.aje.
a121576)

15. Wang W, Ruan S. 2004 Simulating the SARS
outbreak in Beijing with limited data.
J. Theor. Biol. 227, 369–379. (doi:10.1016/j.jtbi.
2003.11.014)

16. Chowell G, Hengartner NW, Castillo-Chavez C,
Fenimore PW, Hyman JM. 2004 The basic
reproductive number of Ebola and the effects of

http://dx.doi.org/10.1016/j.mbs.2014.02.001
http://dx.doi.org/10.1007/s00148-020-00778-2
http://dx.doi.org/10.1007/s00148-020-00778-2
http://dx.doi.org/10.1038/s41586-020-2818-3
http://dx.doi.org/10.1038/s41586-020-2818-3
http://dx.doi.org/10.1093/glycob/cwn093
http://dx.doi.org/10.1016/S0140-6736(20)30566-3
http://dx.doi.org/10.1016/S0140-6736(20)30566-3
http://dx.doi.org/10.1007/s11427-020-1661-4
http://dx.doi.org/10.1007/s11427-020-1661-4
http://dx.doi.org/10.1101/2020.03.21.20040329
http://dx.doi.org/10.1126/science.abb3221
http://dx.doi.org/10.1136/bmjopen-2020-039856
http://dx.doi.org/10.1136/bmjopen-2020-039856
http://dx.doi.org/10.1056/NEJMc2001468
https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
http://dx.doi.org/10.21037/jtd.2020.02.64
http://dx.doi.org/10.21037/jtd.2020.02.64
http://dx.doi.org/10.1093/oxfordjournals.aje.a121575
http://dx.doi.org/10.1093/oxfordjournals.aje.a121575
http://dx.doi.org/10.1093/oxfordjournals.aje.a121576
http://dx.doi.org/10.1093/oxfordjournals.aje.a121576
http://dx.doi.org/10.1016/j.jtbi.2003.11.014
http://dx.doi.org/10.1016/j.jtbi.2003.11.014


royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.
19

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

13
 J

ul
y 

20
21

 

public health measures: the cases of Congo and
Uganda. J. Theor. Biol. 229, 119–126. (doi:10.
1016/j.jtbi.2004.03.006)

17. Smirnova A, deCamp L, Chowell G. 2019
Forecasting epidemics through nonparametric
estimation of time-dependent transmission rates
using the SEIR model. Bull. Math. Biol. 81,
4343–4365. (doi:10.1007/s11538-017-0284-3)

18. Liu Z, Magal P, Seydi O, Webb G. 2020
Predicting the cumulative number of cases for
the COVID-19 epidemic in China from early data.
Math. Biosci. Eng. 17, 3040–3051. (doi:10.3934/
mbe.2020172)

19. Hadeler KP. 2011 Parameter identification in
epidemic models. Math. Biosci. 229, 185–189.
(doi:10.1016/j.mbs.2010.12.004)

20. Bakhta A, Boiveau T, Maday Y, Mula O. 2020
Epidemiological short-term forecasting with
model reduction of parametric compartmental
models: application to the first pandemic wave
of COVID-19 in France. (http://arxiv.org/abs/
2009.09200)
21. Liu Z, Magal P, Seydi O, Webb G. 2020
Understanding unreported cases in the 2019-
nCov epidemic outbreak in Wuhan, China, and
the importance of major public health
interventions. MPDI Biol. 9, 50. (doi:10.3390/
biology9030050)

22. Data sourced Wikipedia who used from NHC
daily reports: https://en.wikipedia.org/wiki/
COVID-19_pandemic_in_mainland_China.

23. The National Health Commission of the People’s
Republic of China: http://www.nhc.gov.cn/yjb/
pzhgli/new_list.shtml.

24. Chinese Center for Disease Control and
Prevention: http://www.chinacdc.cn/jkzt/crb/zl/
szkb_11803/jszl_11809/.

25. Roda WC, Varughese MB, Han D, Li MY. 2020
Why is it difficult to accurately predict the
COVID-19 epidemic? Inf. Dis. Modell. 5,
271–281. (doi:10.1016/j.idm.2020.03.001)

26. Smith HL. 1995 Monotone dynamical systems,
an introduction to the theory of competitive and
cooperative systems. Math. Surveys and
Monographs, vol. 41. Providence, RI: American
Mathematical Society.

27. Tsoularis A, Wallace J. 2002 Analysis of logistic
growth models. Math. Biosci. 179, 21–55.
(doi:10.1016/S0025-5564(02)00096-2)

28. Verhulst P-F. 1838 Notice sur la loi que la
population pursuits dans son increase.
Correspondance mathématique et physique 10,
113–121.

29. Demongeot J, Taramasco C. 2014 Evolution of
social networks: the example of obesity.
Biogerontology 15, 611–626. (doi:10.1007/
s10522-014-9542-z)

30. Demongeot J, Hansen O, Taramasco C. 2015
Complex systems and contagious social diseases:
example of obesity. Virulence 7, 129–140.
(doi:10.1080/21505594.2015.1082708)

31. Demongeot J, Jelassi M, Taramasco C. 2017
From susceptibility to frailty in social networks:
the case of obesity. Math. Pop. Studies 24,
219–245. (doi:10.1080/08898480.2017.
1348718)
7:2
01878

http://dx.doi.org/10.1016/j.jtbi.2004.03.006
http://dx.doi.org/10.1016/j.jtbi.2004.03.006
http://dx.doi.org/10.1007/s11538-017-0284-3
http://dx.doi.org/10.3934/mbe.2020172
http://dx.doi.org/10.3934/mbe.2020172
http://dx.doi.org/10.1016/j.mbs.2010.12.004
http://arxiv.org/abs/2009.09200
http://arxiv.org/abs/2009.09200
http://arxiv.org/abs/2009.09200
http://dx.doi.org/10.3390/biology9030050
http://dx.doi.org/10.3390/biology9030050
https://en.wikipedia.org/wiki/COVID-19_pandemic_in_mainland_China
https://en.wikipedia.org/wiki/COVID-19_pandemic_in_mainland_China
http://www.nhc.gov.cn/yjb/pzhgli/new_list.shtml
http://www.nhc.gov.cn/yjb/pzhgli/new_list.shtml
http://www.chinacdc.cn/jkzt/crb/zl/szkb_11803/jszl_11809/
http://www.chinacdc.cn/jkzt/crb/zl/szkb_11803/jszl_11809/
http://dx.doi.org/10.1016/j.idm.2020.03.001
http://dx.doi.org/10.1016/S0025-5564(02)00096-2
http://dx.doi.org/10.1007/s10522-014-9542-z
http://dx.doi.org/10.1007/s10522-014-9542-z
http://dx.doi.org/10.1080/21505594.2015.1082708
http://dx.doi.org/10.1080/08898480.2017.1348718
http://dx.doi.org/10.1080/08898480.2017.1348718

	SI epidemic model applied to COVID-19 data in mainland China
	Introduction
	Estimating τ(t0) and I0 at the early stage of the epidemic
	Theoretical formula for τ(t)
	Explicit formula for τ(t) and I0
	Computing numerically a day-by-day piecewise constant rate of transmission
	Numerical simulations
	Discussion
	Data accessibility
	Authors' contributions
	Competing interests
	Funding
	Appendix A. Supplementary table
	References


