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With the spread of COVID-19 across the world, a large amount of data on reported cases
has become available. We are studying here a potential bias induced by the daily number
of tests which may be insufficient or vary over time. Indeed, tests are hard to produce at
the early stage of the epidemic and can therefore be a limiting factor in the detection of
cases. Such a limitation may have a strong impact on the reported cases data. Indeed, some
cases may be missing from the official count because the number of tests was not sufficient
on a given day. In this work, we propose a new differential equation epidemic model
which uses the daily number of tests as an input. We obtain a good agreement between the
model simulations and the reported cases data coming from the state of New York. We also
explore the relationship between the dynamic of the number of tests and the dynamics of
the cases. We obtain a good match between the data and the outcome of the model.
Finally, by multiplying the number of tests by 2, 5, 10, and 100 we explore the conse-
quences for the number of reported cases.

© 2021 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The epidemic of novel coronavirus (COVID-19) infections began in China in December 2019 and rapidly spread worldwide
in 2020. Since the early beginning of the epidemic, mathematicians and epidemiologists have developed models to analyze
the data and characterize the spread of the virus, and attempt to project the future evolution of the epidemic. Many of those
models are based on the SIR or SEIR model which is classical in the context of epidemics. We refer to (Tang et al., 2020; Wu
et al., 2020) for the earliest articles devoted to such a question and to (Anderson &May 1991; Bailey, 1957; Brauer & Castillo-
Chavez, 2000; Brauer et al., 2008, 2019; Busenberg & Cooke, 1993; Diekmann et al., 2013; Hethcote, 2000; Keeling & Rohani,
2007; Murray, 1993; Thieme, 2003) for moremodels. In the course of the COVID-19 outbreak, it became clear for the scientific
community that covert cases (asymptomatic or unreported infectious case) play an important role. An early description of an
asymptomatic transmission in Germany was reported by Rothe et al. (Rotheet al., 2020). It was also observed on the Diamond
Princess cruise ship in Yokohama in Japan byMizumoto et al. (Mizumoto et al., 2020) that many of the passengers were tested
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positive to the virus, but never presented any symptoms. We also refer to Qiu (Qiu, 2020) for more information about this
problem. At the early stage of the COVID-19 outbreak, a new class of epidemic models was proposed in Liu et al. (Liu et al.,
2020a) to take into account the contamination of susceptible individuals by contact with unreported infectious. Actually, this
class of models was presented earlier in Arino et al. (Arino et al., 2006). In (Liu et al., 2020a) a newmethod to use the number
of reported cases in SIR models was also proposed. This method and model was extended in several directions by the same
group in (Liu et al., 2020b, 2020c, 2020d) to include non-constant transmission rates and a period of exposure. More recently
the method was extended and successfully applied to a Japanese age-structured dataset in (Griette et al., 2020). The method
was also extended to investigate the predictability of the outbreak in several countries including China, South Korea, Italy,
France, Germany and the United Kingdom in (Liu et al., 2021). The application of the Bayesian method was also considered in
(Cotta et al., 2020).

In parallel with these modeling ideas, Bayesian methods have been widely used to identify the parameters in the models
used for the COVID-19 pandemic (see e.g. Roques et al. (Roques, Klein, Papaix, Sar,& Soubeyrand, 2020a, 2020b; Roques et al.,
2020a, 2020b) where an estimate of the fatality ratio has been developed). A remarkable feature of those methods is to
provide mechanisms to correct some of the known biases in the observation of cases, such as the daily number of tests. Here
we embed the data for the daily number of tests into an epidemic model and compare the number of reported cases produced
by themodel and the data. Our goal is to understand the relationship between the data for the daily number of tests (which is
an input of our model) and the data for the daily number of reported cases (which is an output of our model).

The plan of the paper is the following. In Section 2, we present amodel involving the daily number of tests. In Section 3, we
apply the method presented in (Liu et al., 2020a) to our newmodel. In Section 4, we present some numerical simulations and
compare the model with the data. The last section is devoted to the discussion.

2. Epidemic with testing data

Let n(t) be the number of tests per unit of time. Throughout this paper, we use one day as the unit of time. Therefore n(t)
can be regarded as the daily number of tests at time t. The function n(t) is actually coming from a database for the New York
State (https://covidtracking.com). Let N(t) be the cumulative number of tests from the beginning of the epidemic. Then

N0ðtÞ ¼ nðtÞ; for t � t1 and Nðt1Þ ¼ N1: (2.1)
Remark 2.1. Section 4 is devoted to numerical simulations. We use n(t) as a piecewise constant function that varies day by
day. Each day, n(t) is equal to the number of tests that were performed that day. So n(t) should be understood as the black
curve in Fig. 4.

The model consists of the following ordinary differential equation

8>>>>>><
>>>>>>:

S0ðtÞ ¼ �tSðtÞ½IðtÞ þ UðtÞ þ DðtÞ�;
E0ðtÞ ¼ tSðtÞ½IðtÞ þ UðtÞ� þ DðtÞ � � aEðtÞ;

I0ðtÞ ¼ aEðtÞ � nIðtÞ;
U0ðtÞ ¼ n ð1� f Þ IðtÞ þ nðtÞ ð1� sÞ g DðtÞ � hUðtÞ;

D0ðtÞ ¼ n f IðtÞ � nðtÞ g DðtÞ � hDðtÞ;
R0ðtÞ ¼ nðtÞ s g DðtÞ � hRðtÞ:

(2.2)
This system is supplemented by initial data (which are all non negative)

Sðt1Þ ¼ S1; Eðt1Þ ¼ E1; Iðt1Þ ¼ I1; Uðt1Þ ¼ U1; Dðt1Þ ¼ D1 and Rðt1Þ ¼ R1: (2.3)
The time t1 corresponds to the timewhere the tests started to be used constantly. Therefore the epidemic started before t1.
Here t � t1 is the time in days. S(t) is the number of individuals susceptible to infection. E(t) is the number of exposed

individuals (i.e. who are incubating the disease but not infectious). I(t) is the number of individuals incubating the disease, but
already infectious. U(t) is the number of undetected infectious individuals (i.e. who are expressing mild or no symptoms), and
the infectious that have been tested with a false negative result, are therefore not candidates for testing. D(t) is the number of
individuals who express severe symptoms and are candidates for testing. R(t) is the number of individuals who have been
tested positive to the disease. The flux diagram of our model is presented in Fig. 1.

Susceptible individuals S(t) become infected by contact with an infectious individual I(t), U(t)D(t). When they get infected,
susceptibles are first classified as exposed individuals E(t), that is to say that they are incubating the disease but not yet
infectious. The average length of this exposed period (or noninfectious incubation period) is 1/a days.

After the exposure period, individuals are becoming asymptomatic infectious I(t). The average length of the asymptomatic
infectious period is 1/n days. After this period, individuals are becoming either mildly symptomatic individuals U(t) or in-
dividuals with severe symptoms D(t). The average length of this infectious period is 1/h days. Some of the U-individuals may
show no symptoms at all.
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Fig. 1. Flow chart of the epidemic model with tests (2.2). In this diagram n(t) is the daily number of tests at time t. We consider a fraction (1 � s) of false negative
tests and a fraction s of true positive tests. The parameter g reflects the fact that the tests are devoted not only to the symptomatic patients but also to a large
fraction of the population of New York state.
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In ourmodel, the transmission can occur between a S-individual and an I-,U- or R-individual. Transmissions of SARS-CoV-2
are described in the model by the term tS(t)[I(t) þ U(t) þ D(t)] where t is the transmission rate. Here, even though a
transmission from R-individuals to a S-individuals is possible in theory (e.g. if a tested patient infects its medical doctor), we
consider that such a case is rare and we neglect it.

The last part of the model is devoted to the testing. The parameter s is the fraction of true positive tests and (1 � s) is the
fraction of false negative tests. The quantity s has been estimated at s¼ 0.7 in the case of nasal or pharyngeal swabs for SARS-
CoV-2 (Wanget al., 2020).

Among the detectable infectious, we assume that only a fraction g are tested per unit of time. This fraction corresponds to
individuals with symptoms suggesting a potential infection to SARS-CoV-2. The fraction g is the frequency of testable in-
dividuals in the population of New York state. We can rewrite g as

g ¼ 1
kP

(2.4)

where P is the total number of individuals in the population of the state of New York and 0 � k � 1 is the fraction total
population with mild or sever symptoms that may induce a test.

Individuals who were tested positive R(t) are infectious on average during a period of 1/h days. But we assume that they
become immediately isolated and do not contribute to the epidemic anymore. In this model we focus on the testing of the D-
individuals. The quantity n(t) s g D is a flux of successfully tested D-individuals which become R-individuals. The flux of tested
D-individuals which are false negatives is n(t) (1 � s) g D which go from the class of D-individuals to the U-individuals. The
parameters of the model and the initial conditions of the model are listed in Table 1.

Before describing our method we list a few variables and parameters in Table 2. The cumulative number of reported cases
is obtained by using the following equation

CR0ðtÞ ¼ nðtÞ s g DðtÞ: (2.5)
The daily number of reported cases DR0(t) is given by

DRðtÞ0 ¼ nðtÞ s g DðtÞ � DRðtÞ: (2.6)
The cumulative number of detectable cases is given by
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Table 1
Parameters and initial conditions of the model.

Symbol Interpretation Method

t1 Date when the tests start to be used extensively fixed
S1 Number of susceptible at time t1 fixed
E1 Number of exposed at time t1 fitted
I1 Number of asymptomatic infectious at time t1 fitted
U1 Number of undetectable infectious at time t1 fitted
D1 Number of detectable infectious at time t1 fitted
R1 Number of reported (tested positive) cases at time t1 fitted
Τ Transmission rate fitted
n(t) Number of tests per unit of time fixed
1/a Average length of exposure fixed
1/n Average length of asymptomatic infectiousness fixed
1/h Average length of symptomatic infectiousness fixed
F Frequency of infectious with sever symptoms fixed
S Fraction of true positive tests fixed
G Frequency of testable individuals fixed

Table 2
Variables used in the model.

Symbol Interpretation Equation

T Time (in days)
S(t) Number of susceptible at time t (2.2)
E(t) Number of exposed at time t (2.2)
I(t) Number of asymptomatic infectious at time t (2.2)
U(t) Number of undetectable infectious at time t (2.2)
D(t) Number of detectable infectious at time t (2.2)
R(t) Number of reported (tested infectious) cases at time t (2.2)
CR(t) Cumulative number of reported (tested infectious) cases at time t (2.5)
DR(t) Daily number of reported (tested infectious) cases at time t (2.6)
CD(t) Cumulative number of detectable infectious at time t (2.7)
CU(t) Cumulative number of undetectable infectious at time t (2.8)
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CD0ðtÞ ¼ nfIðtÞ; (2.7)
and the cumulative number of undetectable cases is given by

CU0ðtÞ ¼ nð1� f ÞIðtÞ þ nðtÞð1� sÞgDðtÞ: (2.8)
3. Method to fit the cumulative number of reported cases

In order to deal with data, we need to understand how to set the parameters as well as some components of the initial
conditions (see Fig. 2). In order to do so, we extend the method presented first in (Liu et al., 2020a). The main novelty here
concerns the cumulative number of tests which is assumed to grow linearly at the beginning. This property is satisfied for the
New York State data as we can see in Fig. 3. The black curve in this figure is close to a line from March 15 to April 15. Fig. 4
Fig. 2. Key time periods of COVID-19 infection: the latent or exposed period before the onset of symptoms and transmissibility, the incubation period before
symptoms appear, the symptomatic period, and the transmissibility period, which may overlap the asymptomatic period.
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Fig. 3. In this figure, we plot the cumulative number of tests for the New York State. The black curve, orange curve, and blue curve correspond respectively to the
number of tests, the number of positive tests, and the number of negative tests. We can see that at the early beginning of the epidemic, the cumulative number of
tests (black curve) grows linearly from mid-March to mid-April.
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shows day-by-day fluctuations of the number of tests while in Fig. 3 the day-by-day fluctuations are not visible and the
cumulative data allow to understand the growth tendency of the number of tests.

Phenomenological models for the tests: We fit a line to the cumulative number of tests in a suitable interval of days [t1,
t2]. This means that we can find a pair of numbers a and b such that

NðtÞ ¼ a� ðt� t1Þ þ N1; for t1 � t � t2: (3.1)

where a the daily number of tests and N1 is the cumulative number of tests on day t1.
By using the fact that N(t)0 ¼ n(t) we deduce that

nðtÞ ¼ a; for t1 � t � t2: (3.2)
Remark 3.1. In the simulations we fit a line to the cumulative number of tests frommid-March tomid-April. Fig. 3 shows that
the linear growth assumption is reasonable for the New York State cumulative testing data.

Phenomenological models for the reported cases: At the early stage of the epidemic, we assume that all the infected
components of the system grow exponentially while the number of susceptible remains unchanged during a relatively short
period of time t X [t1, t2]. Therefore, we assume that

EðtÞ ¼ E1e
c2ðt�t1Þ; IðtÞ ¼ I1e

c2ðt�t1Þ;DðtÞ ¼ D1e
c2ðt�t1Þ and UðtÞ ¼ U1e

c2ðt�t1Þ: (3.3)
We deduce that the cumulative number of reported cases satisfies

CRðtÞ ¼ CRðt1Þ þ
Zt

t1

asgDðqÞdq (3.4)
hence by replacing D(t) by the exponential formula (3.3)

CRðtÞ ¼ CRðt1Þ þ
asg
c2

D1
�
ec2ðt�t1Þ � 1

�
(3.5)
and it makes sense to assume that CR(t) � CR(t1) has the following form

CRðtÞ � CRðt1Þ ¼ c1e
c2ðt�t1Þ � c3: (3.6)
By identifying (3.5) and (3.6) we deduce that

c1 ¼ c3 ¼ a s g
c2

D1: (3.7)
Moreover by using (3.2) and the fact that the number of susceptible S(t) remains constant equalling S1 on the time interval
t X [t1, t2], the E-equation, I-equation, U-equation and D-equation of the model (2.2) become
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Fig. 4. In this figure, we plot the daily number of tests for the New York State. The black curve, orange curve, and blue curve correspond respectively to the
number of tests, the number of positive tests, and the number of negative tests.
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8>><
>>:

E0ðtÞ ¼ tS1½IðtÞ þ UðtÞ þ DðtÞ� � aEðtÞ;
I0ðtÞ ¼ aEðtÞ � nIðtÞ;

U0ðtÞ ¼ n ð1� f Þ IðtÞ þ a ð1� sÞ g DðtÞ � hUðtÞ;
D0ðtÞ ¼ n f IðtÞ � a g DðtÞ � hDðtÞ:
By using (3.3) we obtain
8>><
>>:

c2E1 ¼ tS1½I1 þ U1 þ D1� � aE1;
c2I1 ¼ aE1 � nI1;

c2U1 ¼ n ð1� f Þ I1 þ a ð1� sÞ g D1 � hU1;
c2D1 ¼ n f I1 � a g D1 � hD1:
Computing further, we get

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

E1 ¼ t1S1ðI1 þ U1 þ D1Þ
c2 þ a

I1 ¼ aE1
c2 þ n

U1 ¼ nI1 þ a ð1� sÞ g D1

c2 þ h

D1 ¼ n f I1
c2 þ a g þ h

:

(3.8)
Finally by using (3.7)

D1 ¼ c2 c3
s a g

: (3.9)
and by using (3.8) we obtain

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

I1 ¼ c2 þ a g þ h

nf
D1 ¼ c2 þ a g þ h

n
� c2 c3
f s a g

U1 ¼ nI1 þ ð1� sÞ a g D1

c2 þ h
¼ ðc2 þ hþ ½1þ f ð1� sÞ� a g Þ

c2 þ h
� c2 c3
f s a g

E1 ¼ ðc2 þ nÞ
a

I1 ¼ ðc2 þ nÞ
a

� ðc2 þ a g þ hÞ
n

� c2 c3
f s a g

t1 ¼ ðc2 þ aÞ
S1ðI1 þ U1 þ D1Þ

E1

¼ ðc2 þ aÞðc2 þ nÞðc2 þ hÞðc2 þ a g þ hÞ
aS1ð½c2 þ a g þ hþ nðf þ 1Þ�ðc2 þ hÞ þ n½1þ f ð1� sÞ� a g Þ;

(3.10)
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where I1 is the number of incubating infectious individuals at time t1, U1 is the number of unreported infectious individuals at
time t1, E1 is the number of incubating non-infectious individuals at time t1 (see (3.3)), and finally t1 is the transmission rate at
time t1.
4. Numerical simulations

We assume that the transmission coefficient takes the form

tðtÞ ¼ t0ðð1�gÞexpð�mðt � TmÞþÞ þ gÞ; (4.1)

where t0 > 0 is the initial transmission coefficient, Tm > 0 is the time at which the social distancing starts in the population,
and m > 0 controls the speed at which this social distancing is taking place.

To take into account the effect of social distancing and public measures, we assume that the transmission coefficient t(t)
can be modulated by g. Indeed by closing schools and non-essential shops and by imposing social distancing in New York
State, the number of contacts per day is reduced. This effect was visible on the news during the first wave of the COVID-19
epidemic in New York city since the streets were almost empty at some point. The parameter g > 0 is the percentage of the
number of transmissions that remain after a transition period (depending on m), compared to a normal situation. A similar
non-constant transmission rate was considered by Chowell et al. (Chowell et al., 2004).

In Fig. 5 we consider a constant transmission rate t(t) ≡ t0 which corresponds to g ¼ 1 in (4.1). In order to evaluate the
distance between the model and the data, we compare the distance between the cumulative number of cases CR produced by
the model and the data (see the orange dots and orange curve in Fig. 5-(a)). In Fig. 5-(c) we observe that the cumulative
number of cases increases up more than 14 millions of people, which indeed is not realistic. Nevertheless by choosing the

parameter g ¼ 3:08� 10�7 ¼ 1=
�
S0
6

�
in Fig. 5-(d) we can see that the orange dots and the blue curve match very well.In the

rest of this section, we focus on the model with confinement (or social distancing) measures. We assume that such social
distancing measures have a strong impact on the transmission rate by assuming that g¼ 0.2 < 1. It means that only 20% of the
transmissions remain after a transition period.
Fig. 5. Best fit of the model without confinement (or social distancing) measures (i.e. g ¼ 1). Fitted parameters: The transmission rate t(t) ≡ t0 is constant
according to formula (4.1) with g ¼ 1 and t0 is fixed to the value t1 computed by using (3.10). Parameter values: S0 ¼ 19453561, a ¼ 1, n ¼ 1/6, h ¼ 1/7, s ¼ 0.7,
f ¼ 0.8 and g ¼ 6/S0 ¼ 3.08 � 10�7. t1 ¼ march 18, t2 ¼ march 29, a ¼ 1.4874 � 104, b ¼ �2.1781 �105, c1 ¼ 2.8814 � 104, c2 ¼ 0.1013, c3 ¼ 2.9969 � 104. In figure
(a) we plot the cumulative number of tests (black dots), the cumulative number of positive cases (red dots) for the state of New York and the cumulative number
of cases CD(t) (yellow curve) obtained by fitting the model to the data. In figures (b)e(c) we plot the number of cases obtained from the model. We observe that
most of the cases are unreported. In figure (d) we plot the daily number of tests (black dots), the daily number of positive cases (red dots) for the state of New
York and the daily number of cases DD(t) obtained from the data.
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Fig. 6. Best fit of the model with confinement (or social distancing) measures. Parameter values: Same as in Fig. 5, except the transmission coefficient which is
not constant in time with g ¼ 0.2, Tm ¼ 15 Mar (starting day of public measures), m ¼ 0.0251, g ¼ 10�5 and t0 is fixed at the value t1 computed by using (3.10). In
figure (a) we plot the cumulative number of tests (black dots), the cumulative number of positive cases (red dots) for the state of New York and the cumulative
number of cases CD(t) (yellow curve) obtained by fitting the model to the data. In figures (b)e(c) we plot the corresponding number of cases obtained from the
model. With this set of parameters we observe that most of the cases are unreported. In figure (d)we plot the daily number of tests (black dots), the daily number
of positive cases (red dots) for the state of New York and the daily number of cases DD(t) obtained from the data.

Fig. 7. In this figure we plot the curves of the number of reported cases as a function of the number of tests parametrized by the time. The top figures (a) and (b)
correspond to the daily number of cases and the bottom figures (c) and (d) correspond to the cumulative number of cases. On the left-hand side we plot the data
(a) and (c) while on the right-hand side we plot the model (b) and (d). Parameter values: Same as in Fig. 6. In figure (a) we plot the daily number of cases coming
from the data as a function of the daily number of tests. In figure (b) we plot the daily number of cases given by the model as a function of the daily number of
tests coming from the data. In figure (c) we plot the cumulative number of cases coming from the data as a function of the cumulative number of tests. In figure
(d) we plot the cumulative number of cases coming from the model as a function of the cumulative number of tests from the data.
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In Fig. 6-(c) we can observe that the cumulative number of cases increases up to 800 000 (blue curve) while the cumulative
number reported cases goes up to 350 000. In Fig. 6-(d) we can see that the orange dots and the blue curve match very well
again. In order to get this fit we fix the parameter g ¼ 10�5.

Fig. 7 (a) and (b), we aim at understanding the connection between the daily fluctuations of the number of reported cases
(epidemic dynamic) and the daily number of tests (testing dynamics). The combination of the testing dynamics and the
infection dynamics gives indeed a very complex curve parametrized by the time. It seems that the only reasonable com-
parison that we can make is between the cumulative number of reported cases and the cumulative number of tests. In Fig. 7
(c) and (d), the comparison of the model and the data gives a very decent fit. In Fig. 7, all the curves are time dependent
parametrized curves. The abscissa is the number of tests (horizontal axis) and the ordinate is the number of reported cases
(vertical axis). It corresponds (with our notations) to the parametric functions t / (ndata(t), DR(t)) in figures (a) and (b) and
their cumulative equivalent t/ (Ndata(t), CR(t)) in figures (c) and (d). In figures (a) and (c) we use only the data, that is to say
that we plot t/ (ndata(t), DRdata(t)) and t/ (Ndata(t), CRdata(t)). In figures (b) and (d) we use only themodel for the number of
reported cases, that is to say that we plot t / (ndata(t), DRmodel(t)) and t / (Ndata(t), CRmodel(t)).

In Fig. 8, our goal is to investigate the effect of a change in the testing policy in the New York State. We are particularly
interested in estimating the effect of an increase of the number of tests on the epidemic. Indeed increasing the number of tests
may be thought as beneficial to reduce the number of cases. Here we challenge this idea by comparing an increase in the
number of tests to the quantitative output of our model. In Fig. 8, we replace the daily number of tests ndata(t) (coming from
the data for New York’s state) in the model by either 2 � ndata(t), 5 � ndata(t), 10 � ndata(t) or 100 � ndata(t).

As expected, an increase of the number of tests is helping to reduce the number of cases at first. However, after increasing
10 times the number of tests, there is no significant difference (in the number of reported) between 10 times and 100 times
more tests. Therefore there must be an optimum between increasing the number of tests (which costs money and other
limited resources) and being efficient to slow down the epidemic.
5. Discussion

In this article, we proposed a new epidemic model involving the daily number of tests as an input of the model. The model
itself extends our previous models presented in (Griette et al., 2020; Liu et al., 2020a, 2020b, 2020c, 2020d, 2021). We
proposed a newmethod to use the data in such a context based on the fact that the cumulative number of tests grows linearly
at the early stage of the epidemic. Fig. 3 shows that this is a reasonable assumption for the New York State data from mid-
March to mid-April.
Fig. 8. Cumulative number of cases for different testing strategies: Original (blue curve), doubled (red curve), multiplied by 5 (yellow curve), multiplied by 10
(purple line) and multiplied by 100 (green curve). The transmission coefficient depends on the time, according to formula (4.1) with g ¼ 0.2, and t0 is fitted by
using (3.10). Parameter values: they are the same as in Fig. 6. In figure (a) we plot the cumulated number of cases CR(t) as a function of time. In figure (b) we plot
the cumulative number of undetectable cases CU(t) as a function of time. In figure (c) we plot the cumulative number of cases (including covert cases) CD(t) as a
function of time. Note that the total number of cases (including covert cases) is reduced by 35% when the number of tests is multiplied by 100.
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Our numerical simulations show a very good concordance between the number of reported cases produced by the model
and the data in two very different situations. Indeed, Figs. 5 and 6 correspond respectively to an epidemic without and with
public intervention to limit the number of transmissions. This is an important observation since this shows that testing data
and reported cases are not sufficient to evaluate the real amplitude of the epidemic. To solve this problem, the only solution
seems to include a different kind of data to the models. This could be done by studying statistically representative samples in
the population. Otherwise, biases can always be suspected. Such a question is of particular interest in order to evaluate the
fraction of the population that has been infected by the virus and their possible immunity.

In Fig. 7, we compared the testing dynamic (day to day variation in the number of tests) and the reported cases dynamic
(day to day variation in the number of reported). Indeed, the dynamics of daily cases is extremely complex, but we also obtain
a relatively robust curve for the cumulative numbers. Our model gives a good fit for this cumulative cases.

In Fig. 8, we compared multiple testing strategies. By increasing 2, 5, 10 and 100 times the number of tests, we can project
the efficiency of an increase in the daily number of tests.We observe that it is efficient to increase this number up to 10 but the
relative gain in absolute number of infected individuals rapidly drops after that. In particular, our projections do not show a
big difference between a 10-times increase in the number of tests and a 100-times increase. Therefore there is a balance to
find between the number of test and the efficiency in the evaluation of the number of cases, the optimal strategy being
dependent on other factors like the monetary cost of the tests.
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