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Abstract
In this work we describe a hyperbolic model with cell-cell repulsion with a dynamics in the population

of cells. More precisely, we consider a population of cells producing a field (which we call “pressure”) which
induces a motion of the cells following the opposite of the gradient. The field indicates the local density
of population and we assume that cells try to avoid crowded areas and prefer locally empty spaces which
are far away from the carrying capacity. We analyze the well-posedness property of the associated Cauchy
problem on the real line. We start from bounded initial conditions and we consider some invariant properties
of the initial conditions such as the continuity, smoothness and monotony. We also describe in detail the
behavior of the level sets near the propagating boundary of the solution and we find that an asymptotic
jump is formed on the solution for a natural class of initial conditions. Finally, we prove the existence of
sharp traveling waves for this model, which are particular solutions traveling at a constant speed, and argue
that sharp traveling waves are necessarily discontinuous. This analysis is confirmed by numerical simulations
of the PDE problem.

1 Introduction
In this article we are concerned with the following diffusion equation with logistic source:{

∂tu(t, x)− χ∂x
(
u(t, x)∂xp(t, x)

)
= u(t, x)(1− u(t, x)), t > 0, x ∈ R,

u(t = 0, x) = u0(x),
(1.1)

where χ > 0 is a sensing coefficient and p(t, x) is an external pressure. Model (1.1) describes the behavior of a
population of cells u(t, x) living in a one-dimensional habitat x ∈ R, which undergo a logistic birth and death
population dynamics, and in which individual cells follow the gradient of a field p. The constant χ characterizes
the response of the cells to the effective gradient px. In this work we will consider the case where p is itself
determined by the state of the population u(t, x) as

− σ2∂xxp(t, x) + p(t, x) = u(t, x), t > 0, x ∈ R. (1.2)

The above equation (1.2) corresponds to the limit of fast diffusion ε → 0 of the parabolic equation (1.8). It
corresponds to a scenario in which the field p(t, x) is produced by the cells, diffuses to the whole space with
diffusivity σ2 (for σ > 0), and vanishes at rate one. As a result cells are pushed away from crowded area to
emptier region.

A similar model has been successfully used in our recent work23 to describe the motion of cancer cells in a
Petri dish in the context of cell co-culture experiments of Pasquier et al.41 Pasquier et al.41 cultivated two types
of breast cancer cells to study the transfer of proteins between them in a study of multi-drug resistance. It was
observed that the two types of cancer cells form segregated clusters of cells of each kind after a 7-day co-culture
experiment (Figure 1 (a)). In a previous article,23 we studied the segregation property of a model similar to
(1.1)–(1.2), set in a circular domain in two spatial dimensions x ∈ R2 representing a Petri dish. Starting from
islet-like initial conditions representing cell clusters, it was numerically observed that the distribution of cells
converges to a segregated state in the long run.

One may observe that in such an experiment the cells are well fed. So there is no limitation for food. As
explained in Ducrot et al.,16 the limitations are due to space and the contact inhibition of growth is involved.
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Therefore the right hand side of (1.1), which is a logistic term (for simplicity), could possibly have the following
form

f(x) = βx

1 + αx
− µx

where β is the division rate and µ is the mortality rate. We believe that our results hold for such a non-linearity
and this is left for future work.

(a)
(b)

Figure 1: [23, Figure 1 and Figure 5 (b)]. (a) Direct immunodetection of P-gp transfers in co-cultures of
sensitive (MCF-7) and resistant (MCF-7/Doxo) variants of the human breast cancer cell line. (b) The temporal-
spatial evolution of the two species in the 1D model. One can check that a discontinuity is forming near the
front face of the green surface.

Strikingly, even before the two species come in contact, a sharp transition is formed between the space
occupied by one species and the empty space being invaded (Figure 1 (b)) and the distribution of cells looks
like a very sharp traveling front. In an attempt to better understand the spatial behavior of cell populations
growing in a Petri dish, in the present paper we investigate the mathematical properties of a simplified model
for a single species on the real line. We are particularly interested in showing the existence of a sharp traveling
front moving at a constant speed.

Our model can be included in the family of non-local advection models for cell-cell adhesion and repulsion.
As pointed out by many biologists, cell-cell interactions do not only exist in a local scope, but a long-range
interaction should be taken into account to guide the mathematical modeling. Armstrong, Painter and Sherratt1
in their early work proposed a model (APS model) in which a local diffusion is added to the non-local attraction
driven by the adhesion forces to describe the phenomenon of cell mixing, full/partial engulfment and complete
sorting in the cell sorting problem. Based on the APS model, Murakawa and Togashi39 thought that the
population pressure should come from the cell volume size instead of the linear diffusion. Therefore, the linear
diffusion was changed into a nonlinear diffusion in order to capture the sharp fronts and the segregation in cell
co-culture. Carrillo et al.9 recently proposed a new assumption on the adhesion velocity field and their model
showed a good agreement in the experiments in the work of Katsunuma et al.30 The idea of the long-range
attraction and short-range repulsion can also be seen in the work of Leverentz, Topaz and Bernoff.34 They
considered a non-local advection model to study the asymptotic behavior of the solution. By choosing a Morse-
type kernel which follows the attractive-repulsive interactions, they found that the solution can asymptotically
spread, contract (blow-up), or reach a steady-state. Burger, Fetecau and Huang6 considered a similar non-local
adhesion model with nonlinear diffusion, for which they investigated the well-posedness and proved the existence
of a compactly supported, non-constant steady state. Dyson et al.20 established the local existence of a classical
solution for a non-local cell-cell adhesion model in spaces of uniformly continuous functions. For Turing and
Turing-Hopf bifurcation due to the non-local effect, we refer to Ducrot et al.15 and Song et al.48 We also refer
to Mogliner et al.,37 Eftimie et al.,21 Ducrot and Magal,17 Ducrot and Manceau18 for more topics on non-local
advection equations. For the derivation of such models, we refer to the work of Bellomo et al.5 and Morale,
Capasso and Oelschläger.38

Since the pressure p(t, x) is a non-local function of the density u(t, x) in (1.2), the spatial derivative appears
as a non-local advection term in (1.1). In fact, our problem (1.1)–(1.2) can be rewritten as a transport equation
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in which the speed of particles is non-local in the density,{
∂tu(t, x)− χ∂x(u(t, x)∂x(ρ ? u)(t, x)) = u(t, x)(1− u(t, x)),
u(t = 0, x) = u0(x),

(1.3)

where
(ρ ? u) (x) =

∫
R
ρ(x− y)u(t, y)dy, ρ(x) = 1

2σ e
− |x|σ . (1.4)

Traveling waves for a similar diffusive equation with logistic reaction have been investigated for quite general
non-local kernels by Hamel and Henderson,26 who considered the model

ut + (u (K ? u))x = uxx + u(1− u), (1.5)

where K ∈ Lp(R) is odd and p ∈ [1,∞]. Notice that the attractive parabolic-elliptic Keller-Segel model (1.9) is
included in this framework by the particular choice

K(x) = −χ sign(x)e−|x|/
√
d/
(
2
√
d
)
.

They proved a spreading result for this equation (initially compactly supported solutions to the Cauchy problem
propagate to the whole space with constant speed) and explicit bounds on the speed of propagation. Diffusive
non-local advection also appears in the context of swarm formation.36 Pattern formation for a model similar to
(1.5) by Ducrot, Fu and Magal.15 Let us mention that the inviscid equation (1.3) has been studied in a periodic
cell by Ducrot and Magal.17 Other methods have been established for conservative systems of interacting
particles and their kinetic limit (Balagué et al.,4 Carrillo et al.10) based on gradient flows set on measure
spaces; those are difficult to adapt here because of the logistic term. There is also related literature regarding
traveling waves in nonlocal reaction-diffusion equations.12,19,22,25,50

Recall that a traveling wave is a special solution having the specific form

u(t, x) = U(x− ct), for a.e. (t, x) ∈ R2,

where the profile U has the following behavior at ±∞:

lim
z→−∞

U(z) = 1, lim
z→∞

U(z) = 0.

The goal of this article is to investigate sharp traveling waves namely

U(x) = 0, for all x > 0.

Moreover as it is represented in Figure 2-(a) we will obtain the existence of such a wave with a discontinuity at
x = 0 for the profile U . Discontinuous traveling waves in hyperbolic partial differential equations have appeared

discontinuous
traveling wave

(a)

smooth
traveling wave

(b)

Figure 2: An illustration of two types of traveling wave solutions.

in the literature of the recent few years. Travelling wave solutions with a shock or jump discontinuity have been
found e.g. in models of malignant tumor cells (Marchant, Norbury and Perumpanani,35 Harley et al.27 where
the existence of discontinuous waves is proved by means of geometric singular perturbation theory for ODEs) or
chemotaxis (Landman, Pettet and Newgreen33 where both smooth and discontinuous traveling waves are found
using phase plane analysis).

It can be noticed that, in the limit of slow diffusivity σ → 0 (and under the simplifying assumption that
χ = 1), we get u(t, x) ≡ p(t, x) and (1.1) is equivalent to an equation with porous medium-type diffusion and
logistic reaction

ut −
1
2(u2)xx = u(1− u). (1.6)
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We refer to the monograph of Vázquez49 for more result about porous medium equation. The propagation
dynamics for this kind of equation was first studied, to the extent of our knowledge, by Aronson,2 Atkinson,
Reuter and Ridler-Rowe,3 and later by de Pablo and Vázquez,14 in the more general context of nonlinear
diffusion

ut = (um)xx + u(1− u), with m > 1. (1.7)
In Section 3.3, we observe that the discontinuous sharp traveling obtained in the present article converge
(numerically) to the continuous profile described by Pablo and Vázquez.14

The particular relation between the pressure p(t, x) and the density u(t, x) in (1.2) strongly reminds the
celebrated model of chemotaxis studied by Patlak (1953) and Keller and Segel (1970)31,32,42 (parabolic-parabolic
Keller-Segel model) and, more specifically, the parabolic-elliptic Keller-Segel model which is derived from the
former by a quasi-stationary assumption on the diffusion of the chemical.29 Indeed Equation (1.2) can be
formally obtained as the quasistatic approximation of the following parabolic equation

ε∂tp(t, x) = χpxx(t, x) + u(t, x)− p(t, x), (1.8)

when ε → 0. A rigorous derivation of the limit has been achieved in the case of the Keller-Segel model by
Carrapatoso and Mischler.8 We also refer to de Mottoni and Rothe13 for such a result in the context of linear
parabolic equations. We refer to Calvez and Corrias,7 Hillen and Painter,28 Perthame and Dalibard43 and the
references therein for a mathematical introduction and biological applications. In these models, the field p(t, x)
is interpreted as the concentration of a chemical produced by the cells rather than a physical pressure. One of
the difficulties in attractive chemotaxis models is that two opposite forces compete to drive the behavior of the
equations: the diffusion due to the random motion of cells, on the one hand, and on the other hand the non-local
advection due to the attractive chemotaxis; the former tends to regularize and homogenize the solution, while
the latter promotes cell aggregation and may lead to the blow-up of the solution in finite time.11,29 At this point
let us mention that our study concerns repulsive cell-cell interaction with no diffusion, therefore no such blow-up
phenomenon is expected in our study; however the absence of diffusion adds to the mathematical complexity of
the study, because standard methods of reaction-diffusion equations cannot be employed here. Traveling waves
for the (attractive) parabolic-elliptic Keller-Segel model were studied by Nadin, Perthame and Ryzhik,40 who
constructed these traveling wave by a bounded interval approximation of the 1D system{

ut + χ (upx)x = uxx + u(1− u),
−d pxx + p = u,

(1.9)

set on the real line x ∈ R, when the strength of the advection is not too strong 0 < χ < min(1, d), and gave
estimates on the speed of such a traveling wave: 2 ≤ c∗ ≤ 2+χ

√
d/(d−χ). More recently, Salako and Shen44–46

and Salako, Shen and Xue47 published a series of articles concerning the asymptotic properties and spatial
dynamics of chemotaxis models.

In this paper we focus on the particular case of (1.1)–(1.2) with σ > 0 and χ > 0. The paper is organized as
follows. In Section 2, we present our main results. In Section 3 we present numerical simulations to illustrate
our theoretical results. In Section 4, we prove the propagation properties of the solution and describe the
local behavior near the propagating boundary (see Proposition 2.4 for definition), including the formation of a
discontinuity for time-dependent solutions. In Section 5 we prove the existence of sharp traveling waves. We
also prove that smooth traveling waves are necessarily positive, which shows that sharp traveling waves are
necessarily singular (in this case, discontinuous). In particular, a solution starting from a compactly supported
initial condition with polynomial behavior at the boundary can never catch such a smooth traveling wave.

2 Main results and comments
We begin by defining our notion of solution to equation (1.1).
Definition 2.1 (Integrated solutions). Let u0 ∈ L∞(R). A measurable function u(t, x) ∈ L∞([0, T ]× R) is an
integrated solution to (1.1) if the characteristic equation{

d
dth(t, x) = −χ(ρx ? u)(t, h(t, x))
h(t = 0, x) = x.

(2.1)

has a classical solution h(t, x) (i.e. for each x ∈ R fixed, the function t 7→ h(t, x) is in C1([0, T ],R) and satisfies
(2.1)), and for a.e. x ∈ R, the function t 7→ u(t, h(t, x)) is in C1([0, T ],R) and satisfies{

d
dtu(t, h(t, x)) = u(t, h(t, x))

(
1 + χ̂(ρ ? u)(t, h(t, x))− (1 + χ̂)u(t, h(t, x))

)
,

u(t = 0, x) = u0(x),
(2.2)

where χ̂ := χ
σ2 .
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We define weighted space L1
η(R) as follows

L1
η(R) :=

{
f : R→ R measurable

∣∣∣∣ ∫
R
|f(x)|e−η|x|dx <∞

}
.

L1
η(R) is a Banach space endowed with the norm

‖f‖L1
η

:= η

2

∫
R
|f(y)|e−η|y|dy.

We first recall some results concerning the existence of integrated solutions for equation (1.1) in Theorem 2.1,
Proposition 2.2 and Theorem 2.3. We prove those results in the companion paper.24

Theorem 2.1 (Well-posedness ). Let u0 ∈ L∞+ (R) and fix η > 0. There exists τ∗(u0) ∈ (0,+∞] such that for
all τ ∈ (0, τ∗(u0)), there exists a unique integrated solution u ∈ C0([0, τ ], L1

η(R)) to (1.1) which satisfies u(t =
0, x) = u0(x). Moreover u(t, ·) ∈ L∞(R) for each t ∈ [0, τ∗(u0)) and the map t ∈ [0, τ∗(u0)) 7→ Ttu0 := u(t, ·) is
a semigroup which is continuous for the L1

η(R)-topology. The map u0 ∈ L∞(R) 7→ Ttu0 ∈ L1
η(R) is continuous.

Finally, if 0 ≤ u0(x) ≤ 1, then τ∗(u0) = +∞ and 0 ≤ u(t, ·) ≤ 1 for all t > 0.

The next result concerns the preservation properties satisfied by the solutions of (1.1) (see [24, Proposition
2.2]).

Proposition 2.2 (Regularity of solutions). Let u(t, x) be an integrated solution to (1.1).

1. if u0(x) is continuous, then u(t, x) is continuous for each t > 0.

2. if u0(x) is monotone, then u(t, x) has the same monotony for each t > 0.

3. if u0(x) ∈ C1(R), then u ∈ C1([0, T ]× R) and u is then a classical solution to (1.1).

In this following theorem we consider the long-time behavior of some solutions to (1.1) (see [24, Theorem
2.3]).

Theorem 2.3 (Long-time behavior). Let 0 ≤ u0(x) ≤ 1 be a nontrivial non-negative initial condition and
u(t, x) be the corresponding integrated solution. Then 0 ≤ u(t, x) ≤ 1 for all t > 0 and x ∈ R. If moreover there
exists δ > 0 such that δ ≤ u0(x) ≤ 1 then

u(t, x)→ 1, as t→∞

and the convergence holds uniformly in x ∈ R.

We now arrive at the main interest of the paper, which is to describe the spatial dynamics of solutions to
(1.1)–(1.2). To get insight about the asymptotic propagation properties of the solutions, we focus on initial
conditions whose support is bounded towards +∞. If the behavior of the initial condition in a neighbourhood
of the boundary of the support is polynomial, we can establish a precise estimate of the location of the level sets
relative to the position of the rightmost positive point. Our first assumption requires that the initial condition
is supported in (−∞, 0].
Assumption 2.1 (Initial condition). We assume that u0(x) is a continuous function satisfying

0 ≤ u0(x) ≤ 1, for all x ∈ R,
u0(x) = 0, for all x ≥ 0,
u0(x) > 0, for all x ∈ (−δ0, 0),

for some δ0 > 0.
Under this assumption we show that u is propagating to the right.

Proposition 2.4 (The separatrix). Let u0(x) satisfy Assumption 2.1, and h∗(t) := h(t, 0) be the separatrix.
Then h∗(t) stays at the rightmost boundary of the support of u(t, ·), i.e.

(i) we have
u(t, x) = 0 for all x ≥ h∗(t), (2.3)

(ii) for each t > 0 there exists δ > 0 such that

u(t, x) > 0 for all x ∈
(
h∗(t)− δ, h∗(t)

)
. (2.4)
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Moreover, u is propagating to the right i.e.

d
dth

∗(t) > 0 for all t > 0.

We precise the behavior of the initial condition in a neighbourhood of 0 and estimate the steepness of u in
positive time.
Assumption 2.2 (Polynomial behavior near 0). In addition to Assumption 2.1, we require that there exists α ≥ 1
and γ > 0 such that

u0(x) ≥ γ|x|α, for all x ∈ (−δ, 0).

Theorem 2.5 (Formation of a discontinuity). Let u0(x) satisfy Assumptions 2.1 and 2.2 and u(t, x) solve (1.1)
with u(t = 0, x) = u0(x). For all δ > 0 we have

lim sup
t→+∞

sup
x∈(h∗(t)−δ,h∗(t))

u(t, x) ≥ 1
1 + χ̂+ αχ

> 0. (2.5)

More precisely, define the level set

ξ(t, β) := sup{x ∈ R |u(t, x) = β},

for all t > 0 and 0 < β < 1
1+χ̂+αχ . Then, for each 0 < β < 1

1+χ̂+αχ , the distance between ξ(t, β) and the
separatrix is decaying exponentially fast:

h∗(t)−
(
β

γ

) 1
α

e−
η

2α t ≤ ξ(t, β) ≤ h∗(t), (2.6)

where η ∈ (0, 1) is given in Proposition 4.5 and χ̂ = χ
σ2 .

h∗(t1) h∗(t2)

β

ξ(t1, β)

t = t1

ξ(t2, β)

t = t2

Figure 3: A cartoon for the formation of the discontinuity. Here we choose t1 < t2 and ξ(t, β), t = t1, t2 are the
level sets. Theorem 2.5 proves that when Assumptions 2.1 and 2.2 are satisfied, then the distance |ξ(t, β)−h∗(t)|
converges to 0 exponentially fast.

In particular, the profile u(t, x) forms a discontinuity near the boundary point h∗(t) as t → +∞. By
considering discontinuous integrated solutions, we are able to estimate the size of the jump for non increasing
profiles, which leads to an estimate of the asymptotic speed.

Proposition 2.6 (Asymptotic jump near the separatrix). Let u0 be a non increasing function satisfying
u0(−∞) ≤ 1, u0(0) > 0 and u0(x) = 0 for x > 0. Then

lim inf
t→+∞

u(t, h∗(t)) ≥ 2
2 + χ̂

, (2.7)

lim inf
t→+∞

d
dth

∗(t) ≥ σχ̂

2 + χ̂
, (2.8)

where χ̂ = χ
σ2 .

We finally turn to traveling wave solutions u(t, x) = U(x− ct), which are self-similar profiles traveling at a
constant speed.
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Definition 2.2 (Traveling wave solution). A traveling wave is a nonnegative solution u(t, x) to (1.1) such that
there exists a function U ∈ L∞(R) and a speed c ∈ R such that u(t, x) = U(x − ct) for a.e. (t, x) ∈ R2. By
convention, we also require that U has the following behavior at ±∞:

lim
z→−∞

U(z) = 1, lim
z→∞

U(z) = 0.

The function U is the profile of the traveling wave.

Under a technical assumption on χ̂ = χ
σ2 , we can prove the existence of sharp traveling waves which present

a jump at the vanishing point.
Assumption 2.3 (Bounds on χ̂). Let χ > 0 and σ > 0 be given and define χ̂ := χ

σ2 . We assume that 0 < χ̂ < χ̄,
where χ̄ is the unique root of the function

χ̂ 7→ ln
(

2− χ̂
χ̂

)
+ 2

2 + χ̂

(
χ̂

2 ln
(
χ̂

2

)
+ 1− χ̂

2

)
given in A.1.
Remark 2.1. It follows from A.1 that χ̂ = 1 satisfies Assumption 3. Actually, numerical evidence suggest that
χ̄ ≈ 1.045.

Theorem 2.7 (Existence of a sharp discontinuous traveling wave). Let Assumption 2.3 be satisfied. There
exists a traveling wave u(t, x) = U(x− ct) traveling at speed

c ∈
(

σχ̂

2 + χ̂
,
σχ̂

2

)
,

where χ̂ = χ
σ2

Moreover, the profile U satisfies the following properties (up to a shift in space):

(i) U is sharp in the sense that U(x) = 0 for all x ≥ 0; moreover, U has a discontinuity at x = 0 with
U(0−) ≥ 2

2+χ̂ .

(ii) U is continuously differentiable and strictly decreasing on (−∞, 0], and satisfies

−cU ′ − χ(UP ′)′ = U(1− U)

pointwise on (−∞, 0), where P (z) := (ρ ? U)(z).

Our proof is based on a fixed-point argument. Other methods could have been imagined, like a vanishing
viscosity argument. This method consists in adding a small elliptic regularization ε∂xxu in the right-hand side of
equation (1.1), prove the existence of a traveling wave for the regularized problem (similar to (1.5)), then let the
regularization vanish ε→ 0. With the appropriate estimates, it may then be possible to prove the existence of a
traveling front for the original equation. However, the implementation of this method is not without difficulties.
Firstly, the vanishing viscosity process ε → 0 requires a kind of compactness, which cannot be provided by
the Arzelà-Ascoli here because the limiting object is discontinuous. Secondly, the traveling wave problem (1.5)
is itself non-trivial. The existing constructions40,44 are only valid for a parameter range which prevents the
vanishing of the elliptic parameter. Overall the vanishing viscosity method may be as hard to implement as the
present argument. Connecting the solutions to (1.5) to the ones of (1.1)–(1.2) is still an interesting problem
and we plan to investigate it in a future work.

Finally, we show that continuous traveling waves cannot be sharp, i.e. are necessarily positive on R.

Proposition 2.8 (Smooth traveling waves). Let U(x) be the profile of a traveling wave solution to (1.1) and
assume that U is continuous. Then U ∈ C1(R), U is strictly positive and we have the estimate:

− χ(ρx ? U)(x) < c, for all x ∈ R. (2.9)

In particular, by Theorem 2.5, any solutions starting from an initial condition satisfying Assumption 2.2
may never catch such a traveling wave.

3 Numerical Simulations
We first describe the numerical framework of this study.

• The parameters σ and χ are fixed as σ = 1 and χ = 1.
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• We choose a bounded interval [−L,L] and an initial distribution of φ ∈ C([−L,L]);

• We solve numerically the following PDE using the upwind scheme (p being given)
∂tu(t, x)− ∂x

(
u(t, x)∂xp(t, x)

)
= u(t, x)(1− u(t, x)),

∇p(t, x) · ν = 0
u(0, x) = φ(x),

t > 0, x ∈ [−L,L]. (3.1)

• The pressure p is defined as

p(t, x) = (I −∆)−1
N u(t, x), t > 0, x ∈ [−L,L], (3.2)

where (I − ∆)−1
N is the Laplacian operator with Neumann boundary condition. Due to the Neumann

boundary condition of the pressure p, we do not need boundary condition on u (see our related article23).
Our numerical scheme is detailed in B.

3.1 Formation of a discontinuity
In this part, we use numerical simulations to verify the theoretical predictions in the previous sections. Firstly,
we choose the initial value φ ∈ C1([−L,L]) as follows

φ(x) = (x− x0)2

(L+ x0)21[−L,x0](x), L = 20, x0 = −15. (3.3)

Notice that this initial condition satisfies Assumptions 2.1 and 2.2. Due to Theorem 2.5, we should observe the
formation of a discontinuity in space for large time.

We plot the evolution of the solution u(t, x) starting from u(0, x) = φ(x) in Figure 4. We observe that

-20 -15 -10 -5 0 5 10
0

0.2

0.4

0.6

0.8

1

1.2

Figure 4: We plot the propagation of the traveling waves under system (3.1) with the initial value (3.3). We plot
the propagation profile at t = 0, 10, 25, 40 (resp. dashed lines, dotted-dashed lines, dotted lines and solid lines).

the jump is formed for large time and the height of the jump is greater than 2/3 which is in accordance with
Theorem 2.7.

Next, we study the propagation speed of different level sets, namely,
t 7−→ ξ(t, β) + L,

where ξ(t, β) := sup{x ∈ R |u(t, x) = β} and β = 0, 0.2, 2/3, 0.8. Note that the case β = 0 corresponds to the
rightmost characteristic.

We compute the propagation speed in the following way: for different β ∈ [0, 1], we choose t1 = 15 and
t2 = 40 where the propagation speed is almost stable after t = t1. Thus we can compute the mean propagation
speed as follows

Propagation speed at level β = ξ(t2, β)− ξ(t1, β)
t2 − t1

. (3.4)

Next we want to check whether the solutions of system (3.2) starting from two different initial values converge
to the same discontinuous traveling wave solution. To that aim, given two different initial profiles φ1 and φ2
with φ1 ≤ φ2 on [−L,L],

φ1(x) = −x+ 15
5 1[−20,−15](x), φ2(x) = 1[−20,−17.5](x)− x+ 15

10 1[−17.5,−15](x) (3.5)

We simulate the propagation of these two profiles in Figure 6.
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Figure 5: We plot the evolution of different level sets t 7−→ ξ(t, β)+L under system (3.1). Our initial distribution
is taken as (3.3). We plot the propagating speeds of the profile at β = 0, 0.2, 2/3, 0.8. The x-axis represents the
time and the y-axis is the relative distance ξ(t, β)+L. The velocity is calculated by (3.4) for t1 = 15 and t2 = 40.
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Figure 6: We plot the propagation of two profiles under system (3.1) with initial distributions are taken as (3.5).
The blue curves represent the profile with initial distribution φ1 while the red curves represent the profile with
initial distribution φ2. We plot the propagation profiles at t = 0, 15 and 30 (resp. dashed lines, dotted-dashed
lines and solid lines). The simulation shows that the two profiles converge to the same discontinuous traveling
wave solution.

3.2 Large speed traveling waves
As we know for porous medium equation, the existence of large speed c > c∗ traveling wave solutions is known14
and it can be observed numerically by taking the exponentially decreasing function as initial value. In this part,
instead of taking a compactly supported initial value, we set the initial value

φα(x) = 1
1 + eα(x−x0) , x0 = −15, (3.6)

where α ≥ 1 is a parameter introduced to describe the decaying rate of the initial value.
We compare the following three different scenarios with different parameters α = 1, 2, 5 in the initial value

(3.6). We observe the large speed traveling waves in Figure 7 when α = 1, 2. We note that as the parameter
α in (3.6) is increasing, the propagation speed is decreasing and c ≈ 1/α. When α = 5, the propagation of the
traveling waves is similar to the case in Figure 4 in which we started from the compactly supported initial value.
In other word, we can observe the formation of discontinuity and the critical speed c∗ ≈ 0.414 is reached.

3.3 Comparison with porous medium equations: the vanishing jump
In this part, we compare the non-local advection model with the porous medium equation by varying the
parameter σ

p(t, x) = (I − σ2∆)−1
N u(t, x) (3.7)

Thus if σ → 0 then formally we have p(t, x)→ u(t, x). Thus, the first equation of (3.1) becomes

ut −
1
2(u2)xx = u(1− u),

9
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Figure 7: We plot the propagation of the traveling waves under system (3.1) with the initial values (3.6) and the
corresponding evolution of different level sets t 7−→ ξ(t, β) + L. Figure (a) and (d) represent the evolution of
the traveling wave and its level sets when α = 1. Figure (b) and (e) correspond to the case when α = 2. Figure
(c) and (f) correspond to the case when α = 5.

which is the classical porous medium equation. It is well-known that this equation has the explicit traveling
wave solution U(z) = (1− ez/

√
2)+ with critical speed c∗ = 1/

√
2.

We consider the transition from the discontinuous traveling wave solution to the continuous sharp-type
traveling wave solution by letting σ → 0. Moreover, we want to see if the critical traveling speed of the
discontinuous wavefront c(σ) converges to c∗ = 1/

√
2 ≈ 0.707 as σ → 0. Our initial value is taken as 1/(1 +

exp(5 ∗ (x + 15))), x ∈ [−20, 20] in (3.6). We compare the following three different scenarios with different
parameters σ2 = 0.5, 0.1, 0.01 in kernel (3.7).

In Figure 8 we can observe that as σ → 0 in the kernel, the discontinuous jump is gradually vanishing
from (a) to (c). Moreover, the critical speed c(σ) is increasing as σ → 0 and is approaching the critical speed
c∗ = 1/

√
2 ≈ 0.707 for the porous medium case.

To explore more about the relationship between parameter σ2 and the critical speed c(σ), we plot Figure 9.

4 Properties of the time-dependent solutions
4.1 The separatrix
In this section we study the qualitative properties of solutions to (1.1) starting from an initial condition supported
in (−∞, 0].

Proposition 4.1 (The separatrix). Let u be a solution integrated along the characteristics to (1.1), starting
from u0(x) satisfying Assumption 2.1. Let h∗(t) := h(t, 0) be the separatrix (as in Proposition 2.4). Then h∗(t)
stays at the rightmost boundary of the support of u(t, ·), i.e.

(i) we have
u(t, x) = 0 for all x ≥ h∗(t). (4.1)
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Figure 8: We plot the propagation of the traveling waves for system (3.1) with the kernel (3.7) and the corre-
sponding evolution of different level sets t 7−→ ξ(t, β) + L. Figure (a) and (d) represent the evolution of the
traveling wave and its level sets when σ2 = 0.5. Figure (b) and (e) correspond to the case when σ2 = 0.1. Figure
(c) and (f) correspond to the case when σ2 = 0.01. Our initial value is taken as in (3.6) with α = 5.

(ii) for each t > 0 there exists δ > 0 such that

u(t, x) > 0 for all x ∈ (h∗(t)− δ, h∗(t)). (4.2)

Proof. By definition the characteristics are well-defined by (2.1) as the flow of an ODE. In particular, if x ≥
h∗(t) = h(t, 0) there exists x0 ≥ 0 such that x = h(t, x0). Since u0(x0) = 0 and in view of (2.2), we have indeed
u(t, x) = 0. This proves Item (i)

By Assumption 2.1, there exists δ0 > 0 such that u0(x) > 0 for x ∈ (−δ0, 0). We remark that

d
dtu(t, h(t, x)) = χ̂ u(t, h(t, x))

(
(ρ ∗ u)(t, h(t, x))− u(t, h(t, x))

)
+ u(t, h(t, x))

(
1− u(t, h(t, x))

)
≥ u(t, h(t, x))

(
1− (1 + χ̂)u(t, h(t, x))

)
.

By comparison with the solution to the ODE v′(t) = v(t)(1− (1 + χ̂)v(t)) starting from v(t = 0) = u0(x) > 0,
we deduce that u(t, x) ≥ v(t) > 0 for each x ∈ (h(t,−δ0), h∗(t)). Since h(t,−δ0) < h(t, 0) = h∗(t), this proves
Item (ii).

Next we investigate the propagation of u.

Proposition 4.2 (u is propagating). Let u0 satisfy Assumption 2.1 and let u be the solution integrated along
the characteristics to (1.1) starting from u(t = 0, x) = u0(x). Then u is propagating to the right, i.e.

d
dth

∗(t) > 0. (4.3)

Moreover, we have the estimate:
d
dth

∗(t) ≤ χ

2σ . (4.4)
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Figure 9: The relationship between parameter σ2 and the critical propagation speed c(σ) by numerical simula-
tions. Concerning the computation for the critical speed c, we take the speed on three level sets t→ ξ(t, β) + L
for β = 0.3, 0.5, 0.8 and we plot the mean value (the standard variation is negligible ≈ 10−3). As the critical
speed c(σ) is decreasing with respect to σ, the theoretical lower bound is obtained by setting χ = 1, σ0 = 0.5 in
Theorem 2.7.

Proof. We have the following estimates:

d
dth

∗(t) = −χ(ρx ∗ u)(t, h∗(t))

= −χ
∫ +∞

−∞
ρx(y)u(t, h∗(t)− y)dy

= χ

∫ +∞

−∞

sign(y)
2σ2 e−

|y|
σ u(t, h∗(t)− y)dy

= χ

σ

∫ +∞

0
ρ(y)u(t, h∗(t)− y)dy

> 0,

since u(t, x) = 0 for all x > h∗(t). (4.3) is proved.
Then, since 0 ≤ u ≤ 1, we have

d
dth

∗(t) = χ

σ

∫ +∞

0
ρ(y)u(t, h∗(t)− y)dy

≤ χ

σ

∫ +∞

0
ρ(y)dy = χ

2σ ,

which proves (4.4).

These first two propositions together yield a proof of Proposition 2.4.

Proof of Proposition 2.4. Items (i) and (ii) have been proved in Proposition 4.1, and the propagating property
follows from Proposition 4.2.

We continue with a technical lemma that will be used in the proof of Theorem 2.5.

Lemma 4.3 (Divergence speed near the separatrix). Let u0(x) satisfy Assumptions 2.1 and 2.2 and u(t, x) be
the corresponding solution to (1.1). Let h(t, x) be the characteristic flow of u and h∗(t) be the separatrix of u,
as defined in Proposition 2.4. For all t ≥ 0 and x < 0 we have

d
dt (h

∗(t)− h(t, x)) ≤ χ (h∗(t)− h(t, x)) sup
y∈(h(t,x),h∗(t))

u(t, y). (4.5)

Proof. Recall that, by Proposition 4.1, u(t, x) = 0 for each x ≥ h∗(t). For x < 0, we notice that:

d
dt
(
h∗(t)− h(t, x)

)
= −χ(ρx ? u)(t, h∗(t)) + χ(ρx ? u)(h(t, x))
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= χ

∫
R

(
ρx(h(t, x)− y)− ρx(h∗(t)− y)

)
u(t, y)dy

= χ

∫ h(t,x)

−∞

(
ρx(h(t, x)− y)− ρx(h∗(t)− y)

)
u(t, y)dy

+ χ

∫ h∗(t)

h(t,x)

(
ρx(h(t, x)− y)− ρx(h∗(t)− y)

)
u(t, y)dy.

Therefore,

d
dt (h

∗(t)− h(t, x)) ≤ χ
∫ h(t,x)

−∞

(
ρx(h(t, x)− y)− ρx(h∗(t)− y)

)
u(t, y)dy

+ χ(h∗(t)− h(t, x))× sup
y∈(h(t,x),h∗(t))

u(t, y).

Since ρx(y) = − 1
2σ2 sign(y)e−

|y|
σ is increasing on (0,+∞), we have

ρx(h(t, x)− y)− ρx(h∗(t)− y) ≤ 0

for each y ≤ h(t, x), which shows (4.5). Lemma 4.3 is proved.

Proposition 4.4 (Formation of a discontinuity). Let u0(x) satisfy Assumptions 2.1 and 2.2 and u(t, x) be the
corresponding solution to (1.1). For all δ > 0 we have

lim sup
t→+∞

sup
x∈(h∗(t,x)−δ,h∗(t))

u(t, x) ≥ 1
1 + χ̂+ αχ

> 0. (4.6)

Proof. We divide the proof in 2 steps.

Step 1: We show that for all δ > 0,

sup
t>0

sup
x∈(h∗(t)−δ,h∗(t))

u(t, x) ≥ 1
1 + χ̂+ αχ

. (4.7)

Assume by contradiction that there exists δ > 0 such that

for all t > 0, sup
x∈(h∗(t)−δ,h∗(t))

u(t, x) ≤ η < 1
1 + χ̂+ αχ

, (4.8)

where α ≥ 1 is the constant from Assumption 2.2.
We remark that the following inequality holds for x ∈ (h∗(t)− δ, h∗(t)).

d
dtu(t, h(t, x)) = χ̂ u(t, h(t, x))(ρ ? u)(t, h(t, x)) + u(t, h(t, x))

(
1− (1 + χ̂)u(t, h(t, x))

)
≥ u(t, h(t, x))

(
1− (1 + χ̂)u(t, h(t, x))

)
≥ u(t, h(t, x)) (1− (1 + χ̂)η) , (4.9)

therefore
u(t, h(t, x)) ≥ u(0, x) exp

((
1− (1 + χ̂)η

)
t
)
,

provided the characteristic h(t, x) does not leave the cylinder (h∗(s)− δ, h∗(s)) for any 0 ≤ s ≤ t.
Next by (4.5) and (4.8), we have

d
dt
(
h∗(t)− h(t, x)

)
≤ χ

(
h∗(t)− h(t, x)

)
× η,

for each x ∈ (h∗(t)− δ, h∗(t)). Hence by Grönwall’s Lemma(
h∗(t)− h(t, x)

)
≤ −xeηχt,

provided the characteristic h(t, x) does not leave the cylinder (h∗(s)− δ, h∗(s)) for any 0 ≤ s ≤ t. In particular
for 0 > − 1

2δe
−ηχt ≥ x ≥ −δe−ηχt, we find

u(t, h(t, x)) ≥ u(0, x) exp
((

1− 1 + χ̂

1 + χ̂+ αχ

)
t

)
≥ γ(−x)α exp

((
1− 1 + χ̂

1 + χ̂+ αχ

)
t

)
≥ 1

2α γδ
α exp

((
1− (1 + χ̂+ αχ)η

)
t
)
−−−−→
t→+∞

+∞,
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by our assumption that η < 1
1+χ̂+αχ . This is a contradiction.

Step 2: We show (4.6).
Assume by contradiction that there exists T > 0 and δ > 0 such that

sup
t≥T

sup
x∈[h∗(t)−δ,h∗(t)]

u(t, x) < 1
1 + χ̂+ αχ

.

Since the function u(t, x+ h∗(t)) is continuous on the compact set [0, T ]× [−δ, 0], it is uniformly continuous
on this set and hence (recall that u(t, h∗(t)) = 0) there exists 0 < δ0 ≤ δ such that

sup
t∈[0,T ],x∈[−δ0,0]

u(t, x+ h∗(t)) = sup
t∈[0,T ],x∈[−δ0,0]

(
u(t, x+ h∗(t))− u(t, h∗(t))

)
≤ 1

1 + χ̂+ αχ
.

Hence we conclude
sup

t>0,x∈[−δ0,0]
u(t, x− h∗(t)) ≤ 1

1 + χ̂+ αχ
.

This is in contradiction with Step 1. Proposition 4.4 is proved.

Proposition 4.5 (Refined estimate on the level sets). Let u0(x) satisfy Assumption 2.1 and 2.2. Define

ξ(t, β) := sup{x ∈ R |u(t, x) = β}

for any 0 < β < 1
1+χ̂+αχ . Then, the level set function ξ(t, β) converges exponentially fast to h∗(t)

h∗(t)−
(
β

γ

) 1
α

e−
η

2α t ≤ ξ(t, β) ≤ h∗(t), (4.10)

for each 0 < β < 1
1+χ̂+αχ , where η is given by

η := 1− 1 + χ̂+ αχ

β
∈ (0, 1).

Proof. Let η ∈ (0, 1) be given and set β∗ := 1−η
1+χ̂+αχ . Let us first remark that for any β ∈ (0, β∗), ξ(t, β) is well-

defined by the continuity of x 7→ u(t, x) and Assumption 2.2, that u(t, ξ(t, β)) = β and that supx∈(ξ(t,β),h∗(t)) u(t, x) ≤
β. Moreover ξ(0, β) < 0 and u0(ξ(0, β)) = β ≥ γ

∣∣ξ(0, β)
∣∣α, therefore

ξ(0, β) ≥ −
(
β

γ

) 1
α

(4.11)

for each 0 < β ≤ β∗ = 1−η
1+χ̂+αχ .

Step 1: We show that if u0 satisfies Assumption 2.1 and (4.11), then

ξ(t, β) ≥ h∗(t)−
(
β

γ

) 1
α

e
η

2α t, (4.12)

for all 0 ≤ t ≤ t∗ := 1
1+χ̂ ln

(
1 + η

2(1−η)

)
.

Let 0 < β ≤ β∗. We remark that, by Assumption 2.1, we have 0 ≤ u(t, x) ≤ 1 hence 0 ≤ (ρ ? u)(t, x) ≤ 1.
It follows that, for all t ≥ 0,

d
dtu(t, h(t, x)) = u(t, h(t, x))

(
1 + χ̂ρ ? u− (1 + χ̂)u(t, h(t, x))

)
≤ (1 + χ̂)u(t, h(t, x)).

In the remaining part of Step 1 we consider t ∈ [0, t∗]. Using (4.5) from Lemma 4.3 we establish the following
estimates on u and h for 0 ≤ t ≤ t∗ and ξ (0, β∗) ≤ x ≤ 0:
• Since d

dtu(t, h(t, x)) ≤ (1 + χ̂)u(t, h(t, x)) we have u(t, h(t, x)) ≤ u0(x)e(1+χ̂)t for all t ≤ t∗ and hence if
x ≥ ξ(0, β∗),

u(t, h(t, x)) ≤ β∗eln
(

1+ η
2(1−η)

)
= 1− η

1 + χ̂+ αχ

(
1 + η

2(1− η)

)
=

1− η
2

1 + χ̂+ αχ
. (4.13)

• Using (4.13) in the equation along the characteristic (2.2):

d
dtu(t, h(t, x)) = u(t, h(t, x))

(
1 + χ̂(ρ ? u)(t, h(t, x))− (1 + χ̂)u(t, h(t, x))

)
14



≥
(

1−
(1 + χ̂)(1− η

2 )
1 + χ̂+ αχ

)
u(t, h(t, x)),

we get

u(t, h(t, x)) ≥ u0(x) exp
[(

1−
(1 + χ̂)(1− η

2 )
1 + χ̂+ αχ

)
t

]
(4.14)

• For all x ∈ (ξ(0, β∗), 0), since

sup
y∈(h(t,x),h∗(t))

u(t, y) ≤ sup
y∈(h(t,ξ(0,β∗)),h∗(t)

u(t, y) ≤
1− η

2
1 + χ̂+ αχ

,

we have by (4.5):

h∗(t)− h(t, x) ≤ exp
( (1− η

2 )χ
1 + χ̂+ αχ

t

)
(h∗(0)− h(0, x)),

hence
h(t, x) ≥ h∗(t) + x exp

( (1− η
2 )χ

1 + χ̂+ αχ
t

)
. (4.15)

Since β ≤ β∗, we have ξ(0, β) ≥ ξ(0, β∗). Using (4.14) with x = ξ(0, β) we find that

u(t, h(t, ξ(0, β))) ≥ β exp
[(

1−
(1 + χ̂)(1− η

2 )
1 + χ̂+ αχ

)
t

]
,

which implies

ξ

(
t, β exp

[(
1−

(1 + χ̂)(1− η
2 )

1 + χ̂+ αχ

)
t

])
≥ h(t, ξ(0, β)).

Now by using x = ξ(0, β) in (4.15), we obtain

h(t, ξ(0, β)) ≥ h∗(t) + ξ(0, β) exp
( (1− η

2 )χ
1 + χ̂+ αχ

t

)
.

Using (4.11) we find that

ξ

(
0, β exp

[
−
(

1−
(1 + χ̂)(1− η

2 )
1 + χ̂+ αχ

)
t

])
≥ −

(
β

γ

) 1
α

exp
[
− 1
α

(
1−

(1 + χ̂)(1− η
2 )

1 + χ̂+ αχ

)
t

]
which leads to

ξ(t, β) ≥ h∗(t)−
(
β

γ

) 1
α

exp
[
− 1
α

(
1−

(1 + χ̂)(1− η
2 )

1 + χ̂+ αχ

)
t+

(1− η
2 )χ

1 + χ̂+ αχ
t

]
= h∗(t)−

(
β

γ

) 1
α

exp
[
− η

2αt
]

and this estimate holds for each 0 ≤ t ≤ t∗ and 0 < β ≤ β∗.
Step 2: We show that the estimate (4.12) can be extended by induction.

Define ū0(x) := u(t∗, x+ h(t∗)) and ξ̄(t, β) = ξ(t+ t∗, β)− h∗(t∗). We have for each 0 < β ≤ β∗

ξ̄(0, β) ≥ −
(
β

γ̄

) 1
α

,

where γ̄ = γe
η
2 t
∗ . In particular the inequality (4.11) is satisfied by ū0(x), as well as Assumption 2.1. We can

apply Step 1 and (4.12) gives

ξ̄(t, β) ≥ h̄∗(t)−
(
β

γ̄

) 1
α

e−
η

2α t = h(t, h∗(t))− h∗(t∗)−
(
β

γ

) 1
α

e−
η

2α (t+t∗)

= h∗(t+ t∗)−
(
β

γ

) 1
α

e−
η

2α (t+t∗),

which yields

ξ(t+ t∗, β) ≥ h∗(t+ t∗)−
(
β

γ

) 1
α

e−
η

2α (t+t∗).

The proof is completed.
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We are now in the position to prove Theorem 2.5

Proof of Theorem 2.5. The first part, equation 2.5, has been shown in Proposition 4.4, while the second part
(equation (2.6)) has been shown in Proposition 4.5.

We conclude this section by the proof of Proposition 2.6.

Proof of Proposition 2.6. Since x 7→ u(t, x) is nonincreasing, we have u(t, x) ≥ u(t, h∗(t)) for each x ≤ h∗(t).
Hence (ρ ? u)(t, h∗(t)) ≥ 1

2u(t, h∗(t)) and

d
dtu(t, h∗(t)) = u(t, h∗(t))

(
1 + χ̂ ρ ? u− (1 + χ̂)u(t, h∗(t))

)
≥ u(t, h∗(t))

(
1−

(
1 + χ̂

2

)
u(t, h∗(t))

)
.

This yields
u(t, h∗(t)) ≥ u0(0)(

1 + χ̂
2

)
u0(0) + e−t

(
1−

(
1 + χ̂

2

)
u0(0)

) −→
t→+∞

1
1 + χ̂

2
= 2

2 + χ̂
.

(2.7) is shown. Next, we have d
dth
∗(t) = −(ρx ? u)(t, h∗(t)) which gives

d
dth

∗(t) = χ

σ

∫ ∞
0

ρ(y)u
(
t, h∗(t)− y

)
dy ≥ u(t, h∗(t))× χ

2σ −→
t→+∞

σχ̂

2 + χ̂
.

This proves (2.8) and finishes the proof of Proposition 2.6.

5 Traveling wave solutions
In this section we investigate the existence of particular solutions which consist in a fixed profile traveling at a
constant speed c (traveling waves). We are particularly interested in profiles which connect the stationary state
1 near −∞ to the stationary solution 0 at a finite point of space, say, for any x ≥ 0.

5.1 Existence of sharp traveling waves
We study the traveling wave solutions of equation (1.1):∂tu(t, x)− χ∂x

(
u(t, x)∂xp(t, x)

)
= u(t, x)(1− u(t, x))

−σ2∂2
xp(t, x) + p(t, x) = u(t, x)

t > 0, x ∈ R.

Let us formally derive an equation for the traveling wave solutions to (1.1). We consider the traveling wave
solution U(x− c t) = u(t, x). By using the resolvent formula of the second equation of (1.1) formula we deduce
that

p(t, x) = 1
2σ

∫
R
e−
|x−y|
σ u(t, y)dy = 1

2σ

∫
R
e−
|x−ct−l|

σ U(l)dl = P (x− c t)

and the first equation in (1.1) becomes

− cU ′(x− c t)− χ∂x
(
U(x− c t) ∂xP (x− c t)

)
= U(x− c t)(1− U(x− c t)), t > 0, x ∈ R. (5.1)

By developing the derivative in (5.1) we obtain(
− c− χP ′(x− c t)

)
U ′(x− c t) = U(x− c t)(1 + χ̂P (x− c t)− (1 + χ̂)U(x− c t)),

for all t > 0 and x ∈ R, where χ̂ = χ
σ2 . Therefore, by letting z = x− c t, the traveling wave solutions of system

(1.1) satisfy the following equation(−c− χP ′(z))U ′(z) = U(z)
(
1 + χ̂P (z)− (1 + χ̂)U(z)

)
,

−σ2P ′′(z) + P (z) = U(z).
(5.2)

Let us finally remark that

P (z) = 1
2σ

∫
R
e−
|y|
σ U(z − y)dy = 1

2σ

∫
R
e−
|z−y|
σ U(y)dy. (5.3)
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In particular if U is non-constant and nonincreasing, then z 7→ P (z) is strictly decreasing.
The goal of this Section is to show that equation (5.2) can solved on the half-line (−∞, 0) which, as we will

see later, will give a proof of Theorem 2.7. We begin by defining a set of admissible profiles, which is the set
of function on which an appropriate fixed-point theorem will be used. The properties we impose are those who
we suspect will be satisfied by the real profile of the traveling wave.

Definition 5.1. We say that the profile U : R→ [0, 1] is admissible if

(i) U ∈ C((−∞, 0),R) and limz→0− U(z) exists and belongs to
[

2
2 + χ̂

, 1
]
;

(ii) 0 ≤ U(z) ≤ 1 for any z ∈ R;

(iii) the map z 7→ U(z) is non-increasing on R;

(iv) U(z) ≡ 0 for any z ≥ 0.

We denote A the set of all admissible functions.

Lemma 5.1. Let Assumption 2.3 hold and suppose that U is admissible (as in Definition 5.1). Then the
function P defined by P = (ρ ? U) satisfies

P ′(0) < P ′(z) ≤ 0, for all z ∈ R\{0}.

Moreover, this estimate is locally uniform in U on (−∞, 0) in the sense that for each L > 1 there is ε > 0
independent of U ∈ A such that

P ′(z)− P ′(0) ≥ ε > 0, for all z ∈
[
−L,− 1

L

]
.

Proof. We divide the proof in five steps.

Step 1. We prove P ′(0) < P ′(z) for any z > 0. Notice that, for z > 0, we have

P (z) = 1
2σ

∫ z

−∞
e−

z−y
σ U(y)dy + 1

2σ

∫ ∞
z

e
z−y
σ U(y)dy = 1

2σ e
− zσ
∫ 0

−∞
e
y
σU(y)dy.

Thus, taking derivative gives

P ′(z) = − 1
σ
e−

z
σ

1
2σ

∫ 0

−∞
eyU(y)dy = e−

z
σP ′(0),

and since U is strictly positive for negative values of z, we deduce that P ′(0) < P ′(z) for any z > 0.

Step 2. We prove that P ′(0) < P ′(z) for any −σ ln( χ̂2 ) < z < 0. In fact, we prove the stronger result

P ′′(z) < 0 if σ ln
(
χ̂

2

)
< z < 0.

For any z < 0, we have

P ′′(z) = 1
2σ3

∫ z

−∞
e−

z−y
σ U(y)dy + 1

2σ3

∫ ∞
z

e
z−y
σ U(y)dy − 1

σ2U(z)

= 1
2σ3

∫ z

−∞
e−

z−y
σ U(y)dy + 1

2σ3

∫ 0

z

e
z−y
σ U(y)dy − 1

σ2U(z).

Due to the assumption U ≤ 1 and the fact that U is decreasing we have

σ2P ′′(z) ≤ 1
2σ

∫ z

−∞
e−

z−y
σ dy + 1

2σ

∫ 0

z

e
z−y
σ U(y)dy − U(z)

= 1
2 + 1

2σ

∫ 0

z

e
z−y
σ U(y)dy − U(z) ≤ 1

2 + 1
2σ

∫ 0

z

e
z−y
σ dyU(z)− U(z)

= 1
2 −

1
2
(
1 + e

z
σ

)
U(z) ≤ 1

2
2 + χ̂− 2(1 + e

z
σ )

2 + χ̂
= χ̂− 2e zσ

2(2 + χ̂) < 0,
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provided z ∈ (σ ln(χ̂/2), 0). In particular

P ′(z)− P ′(0) = −
∫ 0

z

P ′′(y)dy ≥ 1
σ(2 + χ̂)

(
χ̂

2σ z + 1− e zσ
)
> 0. (5.4)

Step 3. We prove that P ′(0) < P ′(z) for any z < σ ln
(

1− χ̂
2

)
. For any z < 0, we have

σP ′(z) = − 1
2σ

∫ z

−∞
e−

z−y
σ U(y)dy + 1

2σ

∫ 0

z

e
z−y
σ U(y)dy,

σP ′(0) = − 1
2σ

∫ 0

−∞
e
y
σU(y)dy,

and
σ
(
P ′(z)− P ′(0)

)
= 1

2σ

∫ 0

−∞
e
y
σU(y)dy − 1

2σ

∫ z

−∞
e−

z−y
σ U(y)dy + 1

2σ

∫ 0

z

e
z−y
σ U(y)dy.

Since for any z ≤ 0, 2
2+χ̂ ≤ U(z) ≤ 1, we have the following estimate

σ
(
P ′(z)− P ′(0)

)
≥ 1

2σ

∫ 0

−∞
e
y
σ × 2

2 + χ̂
dy − 1

2σ

∫ z

−∞
e−

z−y
σ dy

+ 1
2σ

∫ 0

z

e
z−y
σ

2
2 + χ̂

dy

= 1
2 + χ̂

− 1
2 + 1

2 + χ̂

(
1− e zσ

)
= 1

2 + χ̂

(
2− e zσ − 1

2(2 + χ̂)
)

= 1
2 + χ̂

(
1− χ̂

2 − e
z
σ

)
. (5.5)

By our assumption z < σ ln
(

1− χ̂
2

)
, we deduce that P ′(z)− P ′(0) > 0.

Notice that, if χ̂ < 1, we have σ ln
(
χ̂
2

)
< σ ln

(
1− χ̂

2

)
and the estimate is done. If 1 ≤ χ̂ < 2 we still need

to fill a gap between the two bounds.

Step 4. We assume that χ̂ ≥ 1 and we prove that

P ′(z)− P ′(0) ≥ −
∫ 0

z

P ′′(y)dy

≥ z

2σ2 −
1

2σ ln
(
χ̂

2

)
+ 1
σ(2 + χ̂)

(
χ̂

2 ln
(
χ̂

2

)
+ 1− χ̂

2

)
> 0 (5.6)

for any z ∈
[
σ ln

(
χ̂
2

)
− σ

2+χ̂

(
χ̂
2 ln

(
χ̂
2

)
+ 1− χ̂

2

)
, σ ln

(
χ̂
2

)]
. Notice that

χ̂

2 ln
(
χ̂

2

)
+ 1− χ̂

2 > 0,

because x 7→ x ln(x) is strictly convex.
By Step 2 we have for all z ≤ 0:

P ′′(z) ≤ 1
2σ2 ,

therefore if z ∈
[
σ ln

(
χ̂
2

)
− σ

2+χ̂

(
χ̂
2 ln

(
χ̂
2

)
+ 1− χ̂

2

)
, σ ln

(
χ̂
2

)]
we have

P ′(z)− P ′(0) = P ′(z)− P ′
(
σ ln

(
χ̂

2

))
+ P ′

(
σ ln

(
χ̂

2

))
− P ′(0)

≥ −
∫ σ ln( χ̂2 )

z

P ′′(y)dy + 1
σ(2 + χ̂)

(
χ̂

2σσ ln
(
χ̂

2

)
+ 1− χ̂

2

)
≥ − 1

2σ2

(
σ ln

(
χ̂

2

)
− z
)

+ 1
σ(2 + χ̂)

(
χ̂

2 ln
(
χ̂

2

)
+ 1− χ̂

2

)

≥ z

2σ2 −
ln
(
χ̂
2

)
2σ + 1

σ(2 + χ̂)

(
χ̂

2 ln
(
χ̂

2

)
+ 1− χ̂

2

)
> 0.
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We have proved the desired estimate.

Step 5. We show the local uniformity. If χ̂ < 1 the local uniformity follows from Step 2 and Step 3 because
1− χ̂

2 <
χ̂
2 . If 1 ≤ χ̂ < 2, then

ln
(
χ̂

2

)
− 2

2 + χ̂

(
χ̂

2 ln
(
χ̂

2

)
+ 1− χ̂

2

)
< ln

(
1− χ̂

2

)
, (5.7)

because of Assumption 2.3 and A.1 (notice that (5.7) is equivalent to f(χ̂) < 0, where f is as defined in A.1).
By the estimates (5.4), (5.5) and (5.6) from Step 2, Step 3 and Step 4, we find that P ′(z)− P ′(0) > 0 on every
compact subset of (−∞, 0) and is bounded from below by a constant independent of U . This finishes the proof
of Lemma 5.1.

Before resuming to the proof, let us define the mapping T to which we want to apply a fixed-point theorem.
Fix U ∈ A, we define T (U) as

T (U)(z) := U(τ−1(z)) for all z < 0 (5.8)

and T (U)(z) ≡ 0 for all z ≥ 0, where τ : R 7→ (−∞, 0) is the solution of the following scalar ordinary differential
equation {

τ ′(t) = χ
(
P ′(0)− P ′(τ(t))

)
,

τ(0) = −1,
(5.9)

and
U(t) =

[
(1 + χ̂)

∫ t

−∞
exp

(
−
∫ t

l

1 + χ̂P (τ(s))ds
)

dl
]−1

, for all t ∈ R.

Lemma 5.2 (Stability of A). Let Assumption 2.3 be satisfied, let U be admissible in the sense of Definition
5.1 and T be the map defined by (5.8). Then the image of U by T has the following properties:

(i) 2
2 + χ̂

≤ T (U)(z) ≤ 1 for all z ≤ 0;

(ii) T (U) is strictly decreasing on (−∞, 0];

(iii) T (U) ∈ C1((−∞, 0),R) and T (U)(0−) = limz→0− T (U)(z) = 1 + χ̂P (0)
1 + χ̂

.

In particular, A is left stable by T
T (A) ⊂ A.

Proof. We divide the proof in three steps.

Step 1. We prove that 2
2 + χ̂

≤ T (U)(z) ≤ 1 for all z < 0. For any z ∈ R we have

P (z) =
∫ ∞
−∞

ρ(y)U(z − y)dy ≤
∫ +∞

−∞
ρ(y)dy = 1,

P (z) =
∫ ∞
−∞

ρ(y)U(z − y)dy ≥ 0.

Since 2
2 + χ̂

≤ U(z) ≤ 1 for all z < 0, we have for z < 0

P (z) ≥ 1
2σ

∫ +∞

z

exp
(
−|y|
σ

)
× 2

2 + χ̂
dy = 2

2 + χ̂

(
1− e

z
σ

2

)
≥ 1

2 + χ̂
.

Thus, for any z ≤ 0, we have 1
2 + χ̂

≤ P (z) ≤ 1. Since τ(t) is the solution of

{
τ ′(t) = χ

(
P ′(0)− P ′(τ(t))

)
τ(0) = −1,

and due to Lemma 5.1, t→ τ(t) is strictly decreasing, continuous and

lim
t→−∞

τ(t) = 0, lim
t→+∞

τ(t) = −∞.
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Therefore,
1

2 + χ̂
≤ P (τ(t)) ≤ 1, t ∈ R.

Since by definition U(t) =
[
(1 + χ̂)

∫ t
−∞ e

−
∫ t
l

1+χ̂P (τ(s))dsdl
]−1

, U is monotone with respect to P , and we
compute on the one hand

U(t) ≤
[
(1 + χ̂)

∫ t

−∞
e
−
∫ t
l

1+χ̂dsdl
]−1

=
[
(1 + χ̂)

∫ t

−∞
e−(1+χ̂)(t−l)dl

]−1
= 1.

On the other hand, we can see that

U(t) ≥
[
(1 + χ̂)

∫ t

−∞
exp

(
−
∫ t

l

1 + χ̂

2 + χ̂
ds
)

dl
]−1

=
[
(1 + χ̂)

∫ t

−∞
exp

(
−
(

1 + χ̂

2 + χ̂

)
(t− l)

)
dl
]−1

= 2
2 + χ̂

.

This implies 2
2+χ̂ ≤ U(t) ≤ 1, for all t ∈ R. Since τ−1 maps (−∞, 0) to R, for any z < 0 we have indeed

2
2 + χ̂

≤ T (U)(z) = U(τ−1(z)) ≤ 1.

Item (i) is proved.

Step 2. We prove that z 7→ T (U)(z) is strictly decreasing on (−∞, 0). First, we prove that t 7→ U(t) is strictly
increasing. Indeed U is differentiable and we have

U ′(t) = −1
1 + χ̂

×
1 +

∫ t

−∞
−
(
1 + χ̂P (τ(t))

)
e
−
∫ t
l

1+χ̂P (τ(s))dsdl[ ∫ t

−∞
exp

(
−
∫ t

l

1 + P (τ(s))ds
)

dl
]2 (5.10)

Moreover, for any l < t, we have τ(t) < τ(l). Since P is strictly decreasing, P (τ(l)) < P (τ(t)). We deduce∫ t

−∞
e
−
∫ t
l

1+χ̂P (τ(s))ds(1 + χ̂P (τ(t))
)
dl >

∫ t

−∞
e
−
∫ t
l

1+χ̂P (τ(s))ds(1 + χ̂P (τ(l))
)
dl

=
∫ t

−∞

d
dl

(
e
−
∫ t
l

1+χ̂P (τ(s))ds
)

= 1.

This implies U ′(t) > 0 and t 7→ U(t) is strictly increasing. Note that the inverse map z 7→ τ−1(z) is strictly
decreasing, therefore the composition of two mappings

z 7−→ T (U)(z) = U(τ−1(z))

is also strictly decreasing on (−∞, 0). Item (ii) is proved.

Step 3. We prove that T (U) ∈ C1((−∞, 0),R) and compute the limit of T (U) as z → 0−.
Since for any z < 0

σ2P ′′(z) = −U(z) + P (z) ∈ C((−∞, 0),R),

P belongs to C2((−∞, 0),R), which implies that t 7→ τ(t) belongs to C1(R, (−∞, 0)). By (5.10), the function
t 7→ U ′(t) is continuous and the inverse map z → τ−1(z) is also of class C1 from (−∞, 0) to R. Thus, the
function

z 7−→ T (U)(z) = U(τ−1(z))

is of class C1 from (−∞, 0) to R. Moreover, the map t 7→ U(t) is strictly decreasing and is bounded from below
by 2

2+χ̂ > 0, thus limt→−∞ U(t) exists. In particular

T (U)(0−) := lim
z→0−

U(τ−1(z)) = lim
t→−∞

U(t).
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By the definition of U

T (U)(0−) = lim
t→−∞

U(t)

= lim
t→−∞

[
(1 + χ̂)

∫ t

−∞
e
−
∫ t
l

1+χ̂P (τ(s))dsdl
]−1

= lim
t→−∞

e

∫ t
0

1+χ̂P (τ(s))ds

(1 + χ̂)
∫ t
−∞ e

∫ l
0

1+χ̂P (τ(s))dsdl
.

By employing L’Hôpital rule

T (U)(0−) = lim
t→−∞

e

∫ t
0

1+χ̂P (τ(s))ds

(1 + χ̂)
∫ t
−∞ e

∫ l
0

1+χ̂P (τ(s))dsdl

= lim
t→−∞

(
1 + χ̂P (τ(t))

)
e

∫ t
0

1+P (τ(s))ds

(1 + χ̂) e
∫ t

0
1+P (τ(s))ds

= 1 + χ̂P (0)
1 + χ̂

.

Therefore, T (U) ∈ C1((−∞, 0),R)∩C((−∞, 0],R) and T (U)(0) = (1 + χ̂P (0))/(1 + χ̂). This proves Item (iii)
and concludes the proof of Lemma 5.2.

Next we focus on the continuity of T for a particular topology.

Lemma 5.3 (Continuity of T ). Define the weighted norm

‖U‖η := sup
z∈(−∞,0)

α(z)|U(z)|, (5.11)

where
α(z) :=

√
−z eηz ≤ 1√

2eη , for all z ≤ 0,

with 0 < η < σ−1. If Assumption 2.3 is satisfied, then the map T is continuous on A for the distance induced
by ‖ · ‖η.

Proof. Let U ∈ A and ε ∈ (0, 2
√

2/ηe) be given. Let Ũ ∈ A be given and define the corresponding pressure
and rescaled variable P̃ := ρ ? Ũ and τ̃ as the solution to (5.9) with U replaced by Ũ . We remark that :

|T (U)(z)− T (Ũ)(z)| =

|T (U)(z)T (Ũ)(z)|
∣∣∣∣∣
∫ τ̃−1(z)

−∞
e
−
∫ τ̃−1(z)

l
1+χ̂P̃ (τ̃(s)dsdl −

∫ τ−1(z)

−∞
e
−
∫ τ−1(z)

l
1+χ̂P (τ(s)dsdl

∣∣∣∣∣
≤

∣∣∣∣∣
∫ τ̃−1(z)

−∞
e
−
∫ τ̃−1(z)

l
1+χ̂P̃ (τ̃(s))dsdl −

∫ τ−1(z)

−∞
e
−
∫ τ−1(z)

l
1+χ̂P (τ(s))dsdl

∣∣∣∣∣ ,
by Lemma 5.2. Define T−L(U) :=

∫ τ−1(z)
−L e

−
∫ τ−1(z)

l
1+χ̂P (τ(s))dsdl. We have T (U) = T−∞(U) and

|T−∞(U)− T−∞(Ũ)|
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≤

∣∣∣∣∣
∫ τ̃−1(z)−L

−∞
e
−
∫ τ̃−1(z)

l
1+χ̂P̃ (τ̃(s))dsdl −

∫ τ−1(z)−L

−∞
e
−
∫ τ−1(z)

l
1+χ̂P (τ(s))dsdl

∣∣∣∣∣
+
∣∣∣∣∣
∫ τ̃−1(z)

τ̃−1(z)−L
e
−
∫ τ̃−1(z)

l
1+χ̂P̃ (τ̃(s))dsdl −

∫ τ−1(z)

τ−1(z)−L
e
−
∫ τ−1(z)

l
1+χ̂P (τ(s))dsdl

∣∣∣∣∣
≤ e−L + e−L

+
∣∣∣∣∣
∫ τ̃−1(z)

τ̃−1(z)−L
e
−
∫ τ̃−1(z)

l
1+χ̂P (τ̃(s))dsdl −

∫ τ−1(z)

τ−1(z)−L
e
−
∫ τ−1(z)

l
1+χ̂P (τ(s))dsdl

∣∣∣∣∣
≤ ε

2
√

2ηe

+
∣∣∣∣∣
∫ τ̃−1(z)

τ̃−1(z)−L
e
−
∫ τ̃−1(z)

l
1+χ̂P̃ (τ̃(s))dsdl −

∫ τ−1(z)

τ−1(z)−L
e
−
∫ τ−1(z)

l
1+χ̂P (τ(s))dsdl

∣∣∣∣∣
= ε

2
√

2ηe+ |T−L(U)(z)− T−L(Ũ)(z)|,

for L := − ln
(
ε
2
√

eη
2
)
> 0.

Let z0 and z1 be respectively the smallest and the biggest negative root of the equation

ηz + 1
2 ln(−z) = ln

(ε
4

)
.

The choice of ε ensures that z0 and z1 exist. Then if z 6∈ [z0, z1] we have
√
−zeηz ≤ ε

4 and, since |T−L(U)| ≤ 1
we have

√
−zeηz|T−L(U)(z)| =

√
−zeηz

∣∣∣∣∣
∫ τ−1(z)

τ−1(z)−L
e
−
∫ τ−1(z)

l
1+χ̂P (τ(s))dsdl

∣∣∣∣∣
≤ ε

4

∫ τ−1(z)

τ−1(z)−L
e
−
∫ τ−1(z)

l
1dsdl = ε

4(1− e−L) ≤ ε

4 .

Similarly, we have √
−zeηz|T−L(Ũ)(z)| ≤ ε

4 .

We have shown
sup

z 6∈[z0,z1]

√
−zeηz|T (U)(z)− T (Ũ)(z)| ≤ ε.

There remains to estimate
√
−zeηz|T−L(U)(z)− T−L(Ũ)(z)| when z ∈ [z0, z1]. We have

|T−L(U)(z)− T−L(Ũ)(z)|

=
∣∣∣∣∣
∫ τ̃−1(z)

τ̃−1(z)−L
e
−
∫ τ̃−1(z)

l
1+χ̂P̃ (τ̃(s))dsdl −

∫ τ−1(z)

τ−1(z)−L
e
−
∫ τ−1(z)

l
1+χ̂P (τ(s))dsdl

∣∣∣∣∣
≤ 2|τ̃−1(z)− τ−1(z)|

+
∣∣∣∣∣
∫ τ−1(z)

τ−1(z)−L
e
−
∫ τ̃−1(z)

l
1+χ̂P̃ (τ̃(s))ds − e−

∫ τ−1(z)

l
1+χ̂P (τ(s))dsdl

∣∣∣∣∣
≤ 2|τ̃−1(z)− τ−1(z)|

+ L sup
l∈(τ−1(z)−L,τ−1(z))

∣∣∣∣e∫ τ−1(z)

l
1+χ̂P (τ(s))ds−

∫ τ̃−1(z)

l
1+χ̂P̃ (τ̃(s))ds − 1

∣∣∣∣ ,
and we remark that∣∣∣∣∣
∫ τ−1(z)

l

1 + χ̂P (τ(s))ds−
∫ τ̃−1(z)

l

1 + χ̂P̃ (τ̃(s))ds
∣∣∣∣∣

≤ 2|τ−1(z)− τ̃−1(z)|+ χ̂

∣∣∣∣∣
∫ τ−1(z)

l

P (τ(s))− P̃ (τ̃(s))ds
∣∣∣∣∣

≤ 2|τ−1(z)− τ̃−1(z)|+ χ̂L sup
s∈(τ−1(z)−L,τ−1(z))

|P (τ(s))− P (τ̃(s))|

+ χ̂L sup
s∈(τ−1(z)−L,τ−1(z))

|P (τ̃(s))− P̃ (τ̃(s))|.
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To conclude the proof of the continuity of T , we show that each of those three terms can be made arbitrarily
small (uniformly on [z0, z1]) by choosing Ũ sufficiently close to U in the ‖ · ‖η norm. We start with the second
one. We have for all z ≤ 0:

|P (z)− P̃ (z)| = 1
2σ

∣∣∣∣∫ 0

−∞
e−
|z−y|
σ (U(y)− Ũ(y))dy

∣∣∣∣
≤ 1

2σ

∫ z

−∞
e
y−z
σ |U(y)− Ũ(y)|dy + 1

2σ

∫ 0

z

e
z−y
σ |U(y)− Ũ(y)|dy

≤ 1
2σ

√
2η
e
e−

z
σ

∫ z

−∞

e(1−ση) yσ
√
−y

‖U − Ũ‖ηdy + 1
2

√
2η
e
e
z
σ

∫ 0

z

e−(1+ση) yσ
√
−y

‖U − Ũ‖ηdy

= σ−1
√

η

2e

[
e−

z
σ

∫ z

−∞

e(1−ση) yσ
√
−y

dy + e
z
σ

∫ 0

z

e−(1+ση) yσ
√
−y

dy
]
‖U − Ũ‖η

=: CP (z)‖U − Ũ‖η.

A similar computation shows that, for all z ≤ 0,

|P ′(z)− P̃ ′(z)| ≤ σ−2
√

η

2e

[
e−

z
σ

∫ z

−∞

e(1−ση) yσ
√
−y

dy + e
z
σ

∫ 0

z

e−(1+ση) yσ
√
−y

dy
]
‖U − Ũ‖η

= 1
σ
CP (z)‖U − Ũ‖η.

In particular for z = 0 we have

|P ′(0)− P̃ ′(0)| ≤ σ−2
√

η

2e

∫ 0

−∞

e(1−ση) yσ
√
−y

dy‖U − Ũ‖η,

and therefore P ′(0) and P̃ ′(0) can be chosen arbitrarily small. Next we show that τ(t) and τ̃(t) are uniformly
close for t ∈ [τ−1(z0)− L, τ−1(z1)]. Indeed, we compute:

|(τ − τ̃)(t)| = χ

∣∣∣∣∫ t

0
P ′(0)− P ′(τ(s))ds−

∫ t

0
P̃ ′(0)− P̃ ′(τ̃(s))ds

∣∣∣∣
≤ χ

∣∣∣∣t(P ′(0)− P̃ ′(0)) +
∫ t

0
P̃ ′(τ(s))− P ′(τ(s))ds

∣∣∣∣
+ χ

∣∣∣∣∫ t

0
P̃ ′(τ̃(s))− P̃ ′(τ(s))ds

∣∣∣∣
≤ χt[CP (0) + max

0≤s≤t
CP (τ(s))]‖U − Ũ‖η + χ̂

∫ t

0
|τ̃(s)− τ(s)|ds,

where we have used the fact that σ2|P ′′(z)| = |P (z)− U(z)| ≤ 1. By Grönwall’s Lemma, we have therefore

|τ(t)− τ̃(t)| ≤ χt
[
CP (0) + max

0≤s≤t
CP (τ(s))

]
‖U − Ũ‖ηeχ̂t,

and we have shown that τ and τ̃ can be made arbitrarily close by choosing ‖U − Ũ‖η sufficiently small. This
gives an arbitrary control on the term

sup
s∈(τ−1(z)−L,τ−1(z))

|P (τ(s))− P (τ̃(s))| ≤ |P ′(0)||τ(s)− τ̃(s)|,

since P ′(0) < P ′(z) ≤ 0 by Lemma 5.1, and on the term

sup
s∈(τ−1(z)−L,τ−1(z))

|P (τ̃(s))− P̃ (τ̃(s))| ≤
[

sup
s∈(τ−1(z)−L,τ−1(z))

CP (τ̃(s))
]
‖U − Ũ‖η.

Finally, we estimate τ−1(z)− τ̃−1(z) by the remark:

|τ−1(z)− τ̃−1(z)| =
∣∣∣∣∫ z

−1

1
τ ′(τ−1(y))dy −

∫ z

−1

1
τ̃ ′(τ̃−1(y))dy

∣∣∣∣
= 1
χ

∣∣∣∣∫ z

−1

1
P ′(0)− P ′(y) −

1
P̃ ′(0)− P̃ ′(y)

dy
∣∣∣∣
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≤ 1
χ

∫ z

−1

|P ′(0)− P̃ ′(0)|+ |P ′(y)− P̃ ′(y)|
|P ′(0)− P ′(y)||P̃ ′(0)− P̃ ′(y)|

dy,

recalling that we have a uniform lower bound for |P ′(0)− P ′(y)| and |P̃ ′(0)− P̃ ′(y)| by Lemma 5.1.
This finishes the proof of Lemma 5.3.

Lemma 5.4. Suppose U is admissible in the sense of Definition 5.1 and that Assumption 2.3 holds. Then
T (U) ∈ C1((−∞, 0],R) and

T (U)′(z) = T (U)(z)1 + χ̂P (z)− (1 + χ̂)T (U)(z)
χ
(
P ′(0)− P ′(z)

) , for all z < 0. (5.12)

Moreover
lim
z→0−

T (U)′(z) = P ′(0)
1 + χ̂

1 + χ̂P (0)
1 + χ̂U(0−) .

Proof. We divide the proof in two steps.
Step 1. We prove (5.12).

We observe that
τ ′(τ−1(z)) := χ

(
P ′(0)− P ′(z)

)
,

therefore T (U) is differentiable for each z < 0 and

T (U)′(z) = U ′(τ−1(z)) 1
τ ′(τ−1(z)) = U ′(τ−1(z)) 1

χ
(
P ′(0)− P ′(z)

) .
By Equation (5.10) in Lemma 5.2 we have

U ′(t) = 1
1 + χ̂

[ ∫ t

−∞
e
−
∫ t
l

1+χ̂P (τ(s))dsdl
]−2

×
(∫ t

−∞
e
−
∫ t
l

1+χ̂P (τ(s))ds(1 + χ̂P (τ(t))
)
dl − 1

)
=
[
(1 + χ̂)

∫ t

−∞
e
−
∫ t
l

1+χ̂P (τ(s))dsdl
]−2

×
(

(1 + χ̂)
∫ t

−∞
e
−
∫ t
l

1+χ̂P (τ(s))dsdl
(
1 + χ̂P (τ(t))

)
− (1 + χ̂)

)
= U2(t)

(
U−1(t)

(
1 + χ̂P (τ(t))

)
− (1 + χ̂)

)
= U(t)

(
1 + χ̂P (τ(t))− (1 + χ̂)U(t)

)
.

Therefore, we can rewrite T (U)′(z) as

T (U)′(z) = U ′(τ−1(z))
χ
(
P ′(0)− P ′(z)

)
= U(τ−1(z))1 + χ̂P (z)− (1 + χ̂)U(τ−1(z))

χ
(
P ′(0)− P ′(z)

)
= T (U)(z)1 + χ̂P (z)− (1 + χ̂)T (U)(z)

χ
(
P ′(0)− P ′(z)

) .

Equation (5.12) follows.
Step 2. Next we prove

lim
z→0−

T (U)′(z) = P ′(0)
1 + χ̂

1 + χ̂P (0)
1 + χ̂U(0) .

Recall that

T (U)(z) = U(τ−1(z)) = 1

(1 + χ̂)
∫ τ−1(z)
−∞ e

−
∫ τ−1(z)

l
1+χ̂P (τ(s))dsdl

= e

∫ τ−1(z)

0
1+χ̂P (τ(s))ds

(1 + χ̂)
∫ τ−1(z)
−∞ e

∫ l
0

1+χ̂P (τ(s))dsdl
.
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We have shown in Step 1 that for any z < 0

T (U)′(z) = T (U)(z)1 + χ̂P (z)− (1 + χ̂)T (U)(z)
χ
(
P ′(0)− P ′(z)

) , (5.13)

and by Lemma 5.2 we have
lim
z→0−

T (U)(z) = 1 + χ̂P (0)
1 + χ̂

.

Moreover,

1 + χ̂P (z)− (1 + χ̂)T (U)(z)
χ
(
P ′(0)− P ′(z)

)
=

(1 + χ̂P (z))
∫ τ−1(z)
−∞ e

∫ l
0

1+χ̂P (τ(s))dsdl − e
∫ τ−1(z)

0
1+χ̂P (τ(s))ds

χ(P ′(0)− P ′(z))
∫ τ−1(z)
−∞ e

∫ l
0

1+χ̂P (τ(s))ds
=: N(z)

D(z) ,

and

N ′(z)
D′(z) =

χ̂P ′(z)
∫ τ−1(z)
−∞ e

∫ l
0

1+χ̂P (τ(s))dsdl

−χP ′′(z)
∫ τ−1(z)
−∞ e

∫ l
0

1+χ̂P (τ(s))dsds+ χ
(
P ′(0)− P ′(z)

)
(τ−1)′(z)e

∫ τ−1(z)

0
1+χ̂P (τ(s))ds

= P ′(z)
χ̂(U(z)− P (z)) + (1 + χ̂)T (U)(z) −−−−→z→0−

P ′(0)
χ̂U(0−) + 1 .

Therefore, by using L’Hôpital’s rule, T (U)′(z) admits a limit when z → 0− and

lim
z→0−

T (U)′(z) = P ′(0)
1 + χ̂

1 + χ̂P (0)
1 + χ̂U(0−) .

Lemma 5.5 (Compactness of T ). Let Assumption 2.3 hold. The metric space A equipped with the distance
induced by the ‖ · ‖η norm (defined in (5.11)) is a complete metric space on which the map T : A → A is
compact.

Proof. Let us first briefly recall that the space A is complete. Let Bη be the set of all continuous functions
defined on (−∞, 0) with finite ‖ · ‖η norm:

Bη := {u ∈ C0((−∞, 0)
)
| ‖u‖η < +∞}.

It is classical that Bη equipped with the norm ‖ · ‖η is a Banach space. Therefore, in order to prove the
completeness ofA, it suffices to show thatA is closed in Bη. Let Un ∈ A, U ∈ Bη be such that lim ‖Un−U‖η = 0.
Then Un converges to U locally uniformly on (−∞, 0), and in particular we have

U(z) ∈
[

2
2 + χ̂

, 1
]

for all z ≤ 0,

U is non-increasing.

Therefore u ∈ A and the completeness is proved.
Let us show that T is a compact map of the metric space A. We have shown in Lemma 5.2 that T is

continuous on A and leaves A stable. Let Un ∈ A, then combining Equation (5.12) and the local uniform
lower bound of P ′(z)−P ′(0) from Lemma 5.1, the family T (Un)′|[−k,−1/k] is uniformly Lipschitz continuous on
[−k,−1/k] for each k ∈ N. Therefore the Ascoli-Arzelà applies and the set {T (Un)|[−k,−1/k]}n≥0 is relatively
compact for the uniform topology on [−k,−1/k] for each k ∈ N. Using a diagonal extraction process, there
exists a subsequence ϕ(n) and a continuous function U such that Uϕ(n) → U uniformly on every compact subset
of (−∞, 0). Let us show that ‖Uϕ(n) −U‖η → 0 as n→ +∞. Let ε > 0 be given, and let z0, z1 be respectively
the smallest and largest root of the equation:

ηz + 1
2 ln(−z) = ln

(ε
2

)
.

Then, on the one hand, for any z 6∈ [z0, z1], we have
√
−zeηz ≤ ε

2 and therefore
√
−zeηz|T (Uϕ(n))(z)− T (U)(z)| ≤

√
−zeηz(|Uϕ(n)(z)|+ |U(z)|) ≤ ε.
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On the other hand, since T (Uϕ(n)) converges locally uniformly to T (U), there is n0 ≥ 0 such that

sup
z∈[z0,z1]

√
−zeηz|T (Uϕ(n))(z)− T (U)(z)| ≤ ε, for all n ≥ n0.

We conclude that
‖T (Uϕ(n))− T (U)‖η ≤ ε,

for all n ≥ n0. The convergence is proved. This ends the proof of Lemma 5.5

We are now in the position to prove Theorem 2.7.

Proof of Theorem 2.7. We remark that the set of admissible functions A is a nonempty, closed, convex, bounded
subset of the Banach space Bη, and T is a continuous compact operator on A (Lemma 5.5). Therefore, a direct
application of the Schauder fixed-point Theorem (see e.g. [51, Theorem 2.A p. 57]) shows that T admits a fixed
point U in A:

T (U) = U.

Applying Lemma 5.2 and 5.4, U is strictly decreasing on (−∞, 0), U((−∞, 0)) ⊂ [ 2
2+χ̂ , 1], U is C1 on (−∞, 0]

and
lim
z→0−

U(z) = 1 + χ̂P (0)
1 + χ̂

and lim
z→0−

U ′(z) = P ′(0)
1 + χ̂

1 + χ̂P (0)
1 + χ̂U(0) .

Finally
U ′(z) = U(z)1 + χ̂P (z)− (1 + χ̂)U(z)

χ
(
P ′(0)− P ′(z)

) , for all z < 0, (5.14)

therefore
χP ′(0)U ′(z)− χP ′(z)U ′(z)− χU(z)P ′′(z) = U(z)(1− U(z)), for all z < 0,

and finally
χP ′(0)U ′(z)− χ(P ′(z)U(z))′ = U(z)(1− U(z)), for all z < 0.

We now prove that U(−∞) := limz→∞ U(z) = 1. Since U is monotone decreasing on (−∞, 0) and is bounded
by 1 from above, U(−∞) exists and, by a direct application of Lebesgue’s dominated convergence theorem, P
also converges to a limit near −∞, P (−∞) = U(−∞). Therefore U ′(z) → 0, P ′(z) → 0 and P ′′(z) → 0 as
z → −∞. We conclude that

lim
z→−∞

U(z)(1− U(z)) = 0,

which implies that U(−∞) = 1.
Let us define u(t, x) := U(x− ct), with c := −χP ′(0). The characteristics associated with u(t, x) are

d
dth(t, x) = −χ(ρx ? u)(t, h(t, x)) = χ(ρ ? U)(h(t, x)− ct) = −χP ′(h(t, x)− ct),

and u(t, x) satisfies for all x such that h(t, x)− ct < 0:

∂tu(t, h(t, x)) = ∂t(U(h(t, x)− ct)) =
(

d
dt (h(t, x)− ct)

)
U ′(h(t, x)− ct)

= χ(−P ′(h(t, x)− ct) + P ′(0))U ′(h(t, x)− ct)
= u(t, h(t, x))(1 + χ̂(ρ ? u)(t, h(t, x))− (1 + χ̂)u(t, h(t, x))).

If h(t, x)− ct > 0 then u(t, h(t, x)) = U(h(t, x)− ct) = 0 (locally in t) and therefore

∂tu(t, h(t, x)) = 0 = u(t, h(t, x))(1 + χ̂(ρ ? u)(t, h(t, x))− (1 + χ̂)u(t, h(t, x))).

Since {0} is a negligible set for the Lebesgue measure, we conclude that u(t, x) is a solution integrated along the
characteristics to (1.1) and thus U is a traveling wave profile with speed c = −P ′(0) > 0 as defined in Definition
2.2. Finally

c = −χP ′(0) = χ

2σ

∫ 0

−∞
eyU(y)dy ∈

(
χ

σ(2 + χ̂) ,
χ

2σ

)
=
(

σχ̂

2 + χ̂
,
σχ̂

2

)
.

This finishes the proof of Theorem 2.7
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5.2 Non-existence of continuous sharp traveling waves
Remark 5.1. This result tells us if U is a sharp traveling wave solution to (1.1), then it must be discontinuous.
This situation is very different from the porous medium case. However, it does not exclude the existence of
positive continuous traveling wave solutions which decay to zero near +∞. In fact, as we will show in the
numerical simulations in the later section, we can observe numerically large speed traveling wave solutions that
are smooth and strictly positive.

Proof of Proposition 2.8. We divide the proof in 3 steps.

Step 1: We show the estimate (2.9).
Assume by contradiction that there exists x ∈ R such that

− χ
∫
R
ρx(x− y)U(y)dy = c. (5.15)

We let P (x) := (ρ ?U)(x) =
∫
R ρ(x− y)U(y)dy. Since U ∈ C0(R), we have that P ∈ C2(R). Differentiating, we

find that

P ′(x) =
∫
R
ρx(x− y)U(y)dy = (ρ′ ? U)(x),

σ2P ′′(x) =
∫
R
ρ(x− y)U(y)dy − U(x) = P (x)− U(x).

Letting Y (x) := −χ(ρx ? U)(x)− c = −χP ′(x)− c, then Y ∈ C1(R) and we have

Y ′(x) = −χP ′′(x) = χ̂
(
U(x)− (ρ ? U)(x)

)
. (5.16)

Since limx→+∞ U(x) = 0, we have limx→+∞ Y (x) = −c < 0. Remark that by our assumption (5.15), Y has at
least one zero and therefore the largest root of Y is well-defined:

x∗ := inf{x | for all y > x, Y (y) < 0}.

We first remark that

d
dt
(
h(t, x)− ct

)
= d

dth(t, x)− c = −χ(ρx ? u)(t, h(t, x))− c = Y (h(t, x)− ct), (5.17)

where we recall that u(t, x) := U(x− ct) is a solution to (1.1). In particular since Y (x∗) = 0 by the continuity
of Y , we have h(t, x∗)− ct = x∗. Next by using (2.2) we have

d
dtu(t, h(t, x∗)) = u(t, h(t, x∗))

(
1 + χ̂(ρ ? u)(t, h(t, x∗))− (1 + χ̂)u(t, h(t, x∗))

)
= U(h(t, x∗)− ct)

(
1 + χ̂(ρ ? U)(h(t, x∗)− ct)

− (1 + χ̂)U(h(t, x∗)− ct)
)

= U(x∗)
(
1 + χ̂P (x∗)− (1 + χ̂)U(x∗)

)
,

and since u(t, h(t, x∗)) = U(h(t, x∗)− ct) = U(x∗) does not depend on t, this yields

0 = U(x∗)
(
1 + χ̂P (x∗)− (1 + χ̂)U(x∗)

)
.

We conclude that either U(x∗) = 0 or U(x∗) = 1+χ̂P (x∗)
1+χ̂ > 0. In the remaining part of this step we will show

that these two cases lead to contradiction.

Case 1: U(x∗) = 1+χ̂P (x∗)
1+χ̂ > 0. By (5.16) we have:

Y ′(x∗) = χ̂
(
U(x∗)− P (x∗)

)
= (1− P (x∗))

χ̂

1 + χ̂
,

however U(x) ∈ [0, 1], U(x) 6≡ 1 and thus P (x∗) = (ρ ? U)(x∗) < 1 which shows Y ′(x∗) > 0. Yet by definition
of x∗ we have Y (x∗) = 0 and Y (x) < 0 for all x > x∗, hence Y ′(x∗) ≤ 0, which is a contradiction.

Case 2: U(x∗) = 0. By (5.16) we have

Y ′(x∗) = 0− χ̂P (x∗) = −χ̂(ρ ? U)(x∗) < 0. (5.18)
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Hence by the continuity of Y , there exists a x0 < x∗ such that

Y (x) > 0, for all x ∈ [x0, x∗).

Recall that, by (5.17), we have for all t > 0

d
dt (h(t, x0)− ct) = Y (h(t, x0)− ct) > 0

as well as h(0, x0) − c × 0 = x0, therefore the function t 7→ h(t, x0) − ct is increasing and converges to x∗ as
t → +∞. In particular as t → +∞ we have u(t, h(t, x0)) = U(h(t, x0) − ct) → U(x∗) = 0. Let T > 0 be such
that 0 < u(t, h(t, x0)) ≤ 1

2(1+χ̂) for all t ≥ T . We have

d
dtu(t, h(t, x0)) = u(t, h(t, x0))

(
1 + χ̂(ρ ? u)(t, h(t, x0))− (1 + χ̂)u(t, h(t, x0))

)
≥ 1

2u(t, h(t, x0)),

hence u(t, h(t, x0)) ≥ u(T, h(T, x0))e t−T2 . In particular letting

t∗ := T − 2 ln
(
u(T, h(T, x0))

)
> T,

we have
u (t∗, h(t∗, x0)) ≥ 1 > 1

2(1 + χ̂) ,

which is a contradiction. Since both Case 1 and Case 2 lead to contradiction, we have shown (2.9).

Step 2: Regularity of u.
We have shown in Step 1 that for all x ∈ R the strict inequality:

Y (x) = −χP ′(x)− c < 0

holds. Let x ∈ R and t0 > 0. Then, there exists y ∈ R such that h(t0, y) = x, where h is the characteristic
semiflow defined by (2.1). Since

d
dt (h(t, y)− ct) = −χ(ρx ? u)(t, h(t, y))− c = Y (h(t, y)) 6= 0,

the mapping t 7→ h(t, y)− ct has a C1 inverse which we denote ϕ(z), i.e.

for all z | ∃t > 0, z = h(t, y)− ct, h(ϕ(z), y)− cϕ(z) = z.

Then we have
U(h(t, y)− ct) = u(t, h(t, y)) ⇔ U(z) = u(ϕ(z), h(ϕ(z), y)),

with z = h(t, y) in a neighbourhood of x. Since ϕ is C1 and the function t 7→ u(t, h(t, y)) is C1, we conclude
that U is C1 in a neighbourhood of x. The regularity is proved.

Step 3: We show that u is positive.
Combining Step 1 and 2, we know that u is a classical solution to the equation:

−cUx − χ((ρ ? U)xU)x = U(1− U)
(−c− χP ′)Ux = U(1 + χ̂P − (1 + χ̂)U)

Ux = U

Y
(1 + χ̂P − (1 + χ̂)U),

and since Y < 0, the right-hand side is a locally Lipschitz vector field in the variable U . In particular, the
classical Cauchy-Lipschitz Theorem applies and the only solution with U(x) = 0 for some x ∈ R is U ≡ 0. Since
U is non-trivial by assumption, U has to be positive.
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Appendix

A An nonlinear function
We study a function used in the proof of Lemma 5.1 and Assumption 2.3.

Lemma A.1. The function

f(x) := ln
(

2− x
x

)
+ 2

2 + x

(x
2 ln

(x
2

)
+ 1− x

2

)
defined for x ∈ (0, 2) is strictly decreasing and satisfies

lim
x→0+

f(x) = +∞, lim
x→2−

f(x) = −∞.

In particular f(x) has a unique root in (0, 2).
Finally, we have f(1) > 0.

Proof. The behavior of f at the boundary is standard. The strict monotony requires the computation of the
derivative:

f ′(x) =
(
−x− (2− x)

x2

)
× x

2− x + −2
(2 + x)2

(x
2 ln

(x
2

)
+ 1− x

2

)
+ 1

2 + x
ln
(x

2

)
.

Recalling that
χ̂

2 ln
(
χ̂

2

)
+ 1− χ̂

2 > 0, (A.1)

for each x ∈ (0, 2) because x 7→ x ln(x) is strictly convex, all three terms in the expression of f ′(x) are negative,
therefore

f ′(x) < 0

for all x ∈ (0, 2). The fact that f(1) > 0 can also be deduced from (A.1). Lemma A.1 is proved.

B Numerical scheme
Our numerical scheme for the travalling waves in Section 3 reads

un+1
i − uni

∆t + 1
∆x

(
G(uni+1, u

n
i )−G(uni , uni−1)

)
= uni (1− uni ),

i = 1, 2, . . . ,M, n = 0, 1, 2, . . .
u0 = 1, uM+1 = 0,

with G(uni+1, u
n
i ) defined as

G(uni+1, u
n
i ) = (vni+ 1

2
)+uni − (vni+ 1

2
)−uni+1 =

{
vn
i+ 1

2
uni , vn

i+ 1
2
≥ 0,

vn
i+ 1

2
uni+1, vn

i+ 1
2
< 0,

i = 1, . . . ,M.

Moreover, the velocity v is given by

vni+ 1
2

= −
pni+1 − pni

∆x , i = 0, 1, 2, · · · ,M,

where from (3.2) we define

Pn := (I −A)−1Un, Pn =
(
pni
)
M×1 Un =

(
uni
)
M×1.

where A = (ai,j)M×M is the usual linear diffusion matrix with Neumann boundary condition. Therefore, by
Neumann boundary condition p0 = p1 and pM+1 = pM , when i = 1,M we have

G(un1 , un0 ) = 0,
G(unM+1, u

n
M ) = 0,
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which gives

un+1
1 = un1 − d

∆t
∆xG(un2 , un1 ) + ∆t f(un1 ),

un+1
M = unM + d

∆t
∆xG(unM , unM−1) + ∆t f(unM ).

Owing to the boundary condition, we have the conservation of mass for Equation (3.1) when the reaction term
equals zero.
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