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Abstract: The COVID-19 outbreak, which started in late December 2019 and rapidly spread around
the world, has been accompanied by an unprecedented release of data on reported cases. Our objective
is to offer a fresh look at these data by coupling a phenomenological description to the epidemiological
dynamics. We use a phenomenological model to describe and regularize the reported cases data. This
phenomenological model is combined with an epidemic model having a time-dependent transmission
rate. The time-dependent rate of transmission involves changes in social interactions between people
as well as changes in host-pathogen interactions. Our method is applied to cumulative data of reported
cases for eight different geographic areas. In the eight geographic areas considered, successive
epidemic waves are matched with a phenomenological model and are connected to each other. We
find a single epidemic model that coincides with the best fit to the data of the phenomenological
model. By reconstructing the transmission rate from the data, we can understand the contributions of
the changes in social interactions (contacts between individuals) on the one hand and the contributions
of the epidemiological dynamics on the other hand. Our study provides a new method to compute
the instantaneous reproduction number that turns out to stay below 3.5 from the early beginning of
the epidemic. We deduce from the comparison of several instantaneous reproduction numbers that the
social effects are the most important factor in understanding the epidemic wave dynamics for COVID-
19. The instantaneous reproduction number stays below 3.5, which implies that it is sufficient to
vaccinate 71% of the population in each state or country considered in our study. Therefore, assuming
the vaccines will remain efficient against the new variants and adjusting for higher confidence, it is
sufficient to vaccinate 75 − 80% to eliminate COVID-19 in each state or country.
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1. Introduction

Since the first cases occurred in early December 2019, the COVID-19 crisis has been accompanied
by unprecedented data release. The first cluster of cases was reported on December 31, 2019, by
WHO (World Health Organization) [1]. Chinese authorities confirmed on January 7 that this cluster
was caused by a novel coronavirus [2]. The disease then rapidly spread throughout the world; a case
was identified in the U.S.A. as early as January 19, 2020, for instance [3]. According to the WHO
database [4], the first cases in Japan date back to January 14, in Italy to January 29 (even though the
cluster of cases was announced on January 21, 2020 [5]), in France to January 24, 2020, etc. The
spread of the epidemic across countries was monitored, and the data was made publicly available at
the international level by recognized scientific institutions such as WHO [4] and the Johns Hopkins
University [6], who collected data provided by national health agencies. To the best of our knowledge,
this is the first time in history that such detailed epidemiological data have been made publicly available
on a global scale; this opens up new questions and new challenges for the scientific community.

Modeling efforts in order to analyze and predict the dynamics of the epidemics were initiated from
the start [7–9]. Forecasting the propagation of the epidemic is, in particular, a key challenge in
infectious disease epidemiology. It has quickly become clear to medical doctors and epidemiologists
that covert cases (asymptomatic or unreported infectious cases) play an important role in the spread of
the COVID-19. An early description of an asymptomatic transmission in Germany was reported by
Rothe et al. [10]. It was also observed on the Diamond Princess cruise ship in Yokohama in
Japan [11] that many of the passengers were tested positive for the virus but never presented any
symptoms. On the French aircraft carrier Charles de Gaulle, clinical and biological data for all 1739
crew members were collected on arrival at the Toulon harbor and during quarantine: 1121 crew
members (64%) were tested positive for COVID-19 using RT-PCR, and among these, 24% were
asymptomatic [12]. The importance of covert cases in the silent propagation of the epidemic was
highlighted by Qiu [13]. Models accounting for asymptomatic transmission, which agree with
reported cases data, have been used from the start of the epidemic [7, 14–16]. The implementation of
such models depends, however, on the a priori knowledge of some characteristic parameters of the
host-pathogen interaction, among which is the ascertainment rate. Nishiura and collaborators [17]
estimated this ascertainment rate as 9.2% on a 7.5-days detection window, based on testing data of
repatriated Japanese nationals from Wuhan. This was corrected later to 44% for non-severe
cases [18]. An early review of SARS-CoV-2 facts can be found in the work of Bar-On et al. [19].

To describe the spread of COVID-19 mathematically, Liu et al. [7] first took into account the
infection of susceptible individuals by contacts with unreported infectious individuals. A new method
using the number of reported cases in SIR models was also proposed in the same work. This method
and the model were extended in several directions by the same group [14–16, 20] to include
non-constant transmission rates and a period of exposure. More recently, the method was extended
and successfully applied to a Japanese age-structured dataset by Griette, Magal, and Seydi [21]. The
method was also extended to investigate the predictability of the outbreak in several countries,
including China, South Korea, Italy, France, Germany, and the United Kingdom by Liu, Magal, and
Webb [20].

Phenomenological models were extensively used in the literature even before the SARS-CoV-2
pandemic to describe reported cases data, see e.g., [22, 23] for the 2003 SARS outbreak, and also
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[24, 25], to cite a few. In the case of the SARS-CoV-2 epidemic, articles related to phenomenological
models are particularly numerous, see e.g., [26–35]. More precisely, Castro et al. [27] investigate the
possibility of predicting the turning point of an epidemic wave. Many studies use phenomenological
models to issue short-term predictions on the epidemic [30,32–34]. But these models can also be used
to reconstruct the evolution of the epidemic a posteriori [26, 28, 35].

In previous works [7, 14–16], we have replaced the data with the phenomenological model, and we
use this continuous description as the output of the epidemic model. This allows us to understand how
to express part of the initial distribution and some parameters (e.g., the transmission rate) from the data
and the given parameters of the model. By using this approach, we obtain an explicit formula for the
time-dependent transmission rate expressed by using some given parameters of the model and some
parameters of the phenomenological model. In [36], we used a Bernoulli-Verhulst phenomenological
model to describe a single epidemic wave and compute a time-dependent transmission rate.

There are many potential phenomenological models to represent a single epidemic wave [24,26,28].
However, except in the case of the logistic equation, there is usually no explicit formula for the solution.
The explicit formula in the case considered here permits to develop a comprehensive statistical analysis.
Phenomenological models also serve to regularize the data, which is a complex question. Indeed the
idea is to get rid of the stochastic oscillations (due for example to the way the data are collected,
or the stochastic nature of the contact between individuals). Some phenomenological models also
redistribute the reported cases to dampen the fluctuations in the data. Let us stress here the fact that
some oscillations in cases data may not be random and might correspond to complex transmission
dynamics (delayed infection, peak in contact numbers during the day, etc.) This highlights one of the
drawbacks of phenomenological models: while they allow a precise description of epidemic waves,
they might also hide some valuable information on how the disease is transmitted in the population.

A key parameter in understanding the dynamics of the COVID-19 epidemic is the transmission
rate, defined as the fraction of all possible contacts between susceptible and infected individuals that
effectively result in a new infection per unit of time. Estimating the average transmission rate is one of
the most crucial challenges in the epidemiology of communicable diseases. In practice, many factors
can influence the actual transmission rate, (i) the coefficient of susceptibility; (ii) the coefficient of
virulence; (iii) the number of contacts per unit of time [37]; (iv) the environmental conductivity [38].
Let us remark that the rate of contacts per units of time can also be investigated by agent models [39].

Epidemic models with time-dependent transmission rates have been considered in several articles
in the literature. The classical approach is to fix a function of time that depends on some parameters
and to fix these parameters by using the best fit to the data. In Chowell et al. [40] a specific form
was chosen for the rate of transmission and applied to the Ebola outbreak in Congo. Huo et al [41]
used a predefined transmission rate which is a Legendre polynomial depending on a tunable number of
parameters. Let us also mention that kinetic model idea has been used to understand this problem in the
paper by Dimarco et al. [42]. Here we are going the other way around. We reconstruct the transmission
rate from the data by using the model without choosing a predefined function for the transmission rate.
Such an approach was used in the early 70s by London and Yorke [43, 44] who used a discrete-time
model and discussed the time-dependent rate of transmission in the context of measles, chickenpox,
and mumps. More recently, several authors [36, 45, 46] used both an explicit formula and algorithms
to reconstruct the transmission rate. These studies allow us to understand that the regularization of the
data is a complex problem and is crucial in order to rebuild a meaningful time-dependent transmission
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rate.
In the present paper, we apply a new method to compute the transmission rate from cumulative

reported cases data. While the use of a predefined transmission rate τ(t) as a function of time can lead to
very good fits of the data, here we are looking for a more intrinsic relationship between the data and the
transmission rate. Therefore we propose a different approach and use a two-step procedure. Firstly, we
use a phenomenological model to describe the data and extract the general trend of the epidemiological
dynamics while removing the insignificant noise. Secondly, we derive an explicit relationship between
the phenomenological model and the transmission rate. In other words, we compute the transmission
rate directly from the data. As a result, we can reconstruct an estimation of the state of the population
at each time, including covert cases. Our method also provides new indicators for the epidemiological
dynamics that are related to the reproductive number.

2. Methods

2.1. COVID-19 data and phenomenological model

We regularized the time series of cumulative reported cases by fitting standard curves to the data to
reconstruct the time-dependent transmission rate. We first identified the epidemic waves for each of
the eight geographic areas. A Bernoulli–Verhulst curve was then fitted to each epidemic wave using
the Levenberg–Marquardt algorithm [47]. We reported the detailed output of the algorithm in the
supplementary material, including confidence bounds on the parameters. The model was completed by
filling the time windows between two waves with straight lines. Finally, we applied a Gaussian filter
with a standard deviation of 7 days to the curve to obtain a smooth model.

2.1.1. Data sources

We used reported cases data for 8 different geographic areas, namely California, France, India,
Israel, Japan, Peru, Spain, and the UK. Apart from California State, for which we used data from the
COVID tracking project [48], the reported cases data were taken from the WHO database [4].

2.1.2. Phenomenological model used for multiple epidemic waves

To represent the data, we used a phenomenological model to fit the curve of cumulative rate cases.
Such an idea is not new since it was already proposed by Bernoulli [49] in 1760 in the context of the
smallpox epidemic. Here we used the so-called Bernoulli–Verhulst [50] model to describe the epidemic
phase. Bernoulli [49] investigated an epidemic phase followed by an endemic phase. This appears
clearly in Figures 9 and 10 of the paper by Dietz, and Heesterbeek [51] who revisited the original
article of Bernoulli. We also refer to Blower [52] for another article revisiting the original work of
Bernoulli. Several works comparing cumulative reported cases data and the Bernoulli–Verhulst model
appear in the literature (see [22, 24, 25]). The Bernoulli–Verhulst model is sometimes called Richard’s
model, although Richard’s work came much later in 1959.

The phenomenological model deals with data series of new infectious cases decomposed into two
successive phases: 1) endemic phases followed by 2) epidemic phases.

Endemic phase: During the endemic phase, the dynamics of new cases appears to fluctuate around
an average value independently of the number of cases. Therefore the average cumulative number of
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cases is given by
CR(t) = N0 + (t − t0) × a, for t ∈ [t0, t1], (2.1)

where t0 denotes the beginning of the endemic phase, and a is the average value of the daily number of
new cases.

We assume that the average daily number of new cases is constant. Therefore the daily number of
new cases is given by

CR′(t) = a. (2.2)

Epidemic phase: In the epidemic phase, the new cases are contributing to produce secondary cases.

Therefore the daily number of new cases is no longer constant, but varies with time as follows

CR(t) = Nbase +
eχ(t−t0)N0[

1 +
Nθ

0

Nθ
∞

(
eχθ(t−t0) − 1

)]1/θ , for t ∈ [t0, t1]. (2.3)

In other words, the daily number of new cases follows the Bernoulli–Verhulst [49, 50] equation.
Namely, by setting

N(t) = CR(t) − Nbase, (2.4)

we obtain

N′(t) = χN(t)
1 − (

N(t)
N∞

)θ , (2.5)

completed with the initial value
N(t0) = N0.

In the model, Nbase + N0 corresponds to the value CR(t0) of the cumulative number of cases at time
t = t0. The parameter N∞ + Nbase is the maximal value of the cumulative reported cases after the time
t = t0. χ > 0 is a Malthusian growth parameter, and θ regulates the speed at which CR(t) increases to
N∞ + Nbase.

Regularize the junction between the epidemic phases: Because the formula for τ(t) involves
derivatives of the phenomenological model regularizing CR(t) (see Eqs (2.12)–(2.15)), we need to
connect the phenomenological models of the different phases as smoothly as possible. Let t0, . . . , tn

denote the n + 1 breaking points of the model, that is, the times at which there is a transition between
one phase and the next one. We let C̃R(t) be the global model obtained by placing the
phenomenological models of the different phases side by side.

More precisely, C̃R(t) is defined by Eq (2.3) during an epidemic phase [ti, ti+1], or during the initial
phase (−∞, t0] or the last phase [tn,+∞). During an endemic phase, C̃R(t) is defined by Eq (2.1). The
parameters are chosen so that the resulting global model C̃R is continuous. We define the regularized
model by using the convolution formula:

CR(t) =

∫ +∞

−∞

G(t − s) × C̃R(s)ds = (G ∗ C̃R)(t), (2.6)

where
G(t) :=

1

σ
√

2π
e−

t2

2σ2
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is the Gaussian function with mean 0 and variance σ2. The parameter σ controls the trade-off between
smoothness and precision: increasing σ reduces the variations in CR(t) and reducing σ reduces the
distance between CR(t) and C̃R(t). In any case the resulting function CR(t) is very smooth (as well
as its derivatives) and close to the original model C̃R(t) when σ is not too large. In the results section
(Section 3), we fix σ = 7 days.

Numerically, we will need to compute some t → CR(t) derivatives. Therefore it is convenient to
take advantage of the convolution Eq (2.6) and deduce that

dnCR(t)
dtn =

∫ +∞

−∞

dnG(t − s)
dtn × C̃R(s)ds, (2.7)

for n = 1, 2, 3.

2.2. Epidemic model

To reconstruct the transmission rate, we used the underlying mathematical model described by the
flowchart presented in Figure 1.

(S)usceptibles (E)xposed (I)nfectious

(R)eported

(U)nreported

Immunized or dead

Asymptomatic Symptomatic

Figure 1. Flowchart for the model.

The model itself includes five parameters whose values were taken from the literature: the average
length of the noninfectious incubation period (1 day, (E)xposed); the average length of the infectious
incubation period (3 days, (I)nfectious); the average length of the symptomatic period (7 days,
(R)eported or (U)nreported); the ascertainment rate (0.8). Additional parameters appear in the initial
condition and could not be computed from the initial number of unreported individuals. The
transmission rate was computed from the regularized data and the assumed parameters according to a
methodology adapted from Demongeot et al. [36].

Many epidemiological models are based on the SIR or SEIR model, which is classical in epidemic
modelling. We refer to [53, 54] for the earliest articles devoted to such a question and to [55–65] for
more models. In this chapter, we will compare the following SEIUR model to the cumulative reported
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cases data 

S ′(t) = −τ(t)
[
I(t) + κU(t)

]
S (t),

E′(t) = τ(t)
[
I(t) + κU(t)

]
S (t) − α E(t),

I′(t) = α E(t) − ν I(t),
U′(t) = ν (1 − f ) I(t) − ηU(t),
R′(t) = ν f I(t) − ηR(t),

(2.8)

where at time t, S (t) is the number of susceptible, E(t) the number of exposed (not yet capable of
transmitting the pathogen), I(t) the number of asymptomatic infectious, R(t) the number of reported
symptomatic infectious and U(t) the number of unreported symptomatic infectious. This system is
supplemented by initial data

S (t0) = S 0, E(t0) = E0, I(t0) = I0, U(t0) = U0, and R(t0) = R0. (2.9)

In this model, τ(t) is the rate of transmission, 1/α is the average duration of the exposure period, 1/ν is
the average duration of the asymptomatic infectious period, and for simplicity, we subdivide the class
of symptomatic patients into the fraction 0 ≤ f ≤ 1 of patients showing some severe symptoms, and the
fraction 1 − f of patients showing some mild symptoms assumed to be not detected. The quantity 1/η
is the average duration of the symptomatic infectious period. In the model, we assume that the average
time of infection is the same for Reported and Unreported infectious individuals. We refer to [66, 67]
for more information about this topic. Finally, we assume that reported symptomatic individuals do
not contribute significantly to the transmission of the virus.

The cumulative number of reported cases CR(t) is connected to the epidemic model by the following
relationship

CR(t) = CR0 + ν f CI(t), for t ≥ t0, (2.10)

where

CI(t) =

∫ t

t0
I(σ)dσ. (2.11)

Given and estimated parameters

We assume that the following parameters of the model are known

S 0,U0,R0, f , κ, α, ν, η.

The goal of our method is to focus on the estimation of the three remaining parameters. Namely,
knowing the parameters mentioned above, we plan to identify

E0, I0, τ(t).
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Computation of the rate of transmission

The transmission rate is fully determined by the parameters κ, α, ν, η, f , S 0, E0, I0,U0, and the
data that are represented by the function t → CR(t), by using the three following equations

τ(t) =
1

I(t) + κU(t)
×

CE′′(t) + αCE′(t)
E0 + S 0 − CE′(t) − αCE(t)

, (2.12)

where
I(t) =

CR′(t)
ν f

, (2.13)

CE(t) =
1

α ν f
[
CR′(t) − ν f I0 + ν (CR(t) − CR0)

]
, (2.14)

U(t) = e−η(t−t0)U0 +

∫ t

t0
e−η(t−s) (1 − f )

f
CR′(s)ds. (2.15)

2.2.1. Instantaneous reproduction number computed for COVID-19 data

We have only a single epidemic phase in the standard SI epidemic model because the epidemic
exhausts the susceptible population. Here, the changes of regimes (epidemic phase versus endemic
phase) are partly due to the decay in the number of susceptible. But these changes are also influenced
by the changes in the transmission rate. These changes in the transmission rate are due to the limitation
of contacts between individuals or to changes in climate (in summer) or other factors influencing
transmissions.

In this section, we will observe that the main factors for the changes in the epidemic regimes are
the changes in the transmission rate. To investigate this for the COVID-19 data, we use our method to
compute the transmission rate, and we consider the instantaneous reproduction number

Re(t) =
τ(t)S (t)
ην

(η + ν(1 − f )), (2.16)

and the quasi-instantaneous reproduction number

R0
e(t) =

τ(t)S 0

ην
(η + ν(1 − f )), (2.17)

in which the transmission varies, but the size of the susceptible population remains constant equal to
S 0. We refer to subsection S8 for detailed computations to obtain the Eq (2.16).

The comparison between Re(t) and R0
e(t) permits us to understand the contribution of the decay of the

susceptible population in the variations of Re(t). Another interesting aspect is that R0
e(t) is proportional

to the transmission rate τ(t). Therefore plotting R0
e(t) permits us to visualize the variation of t → τ(t)

only.

2.2.2. Computation of the initial value of the epidemic model

Based on Eq (2.4), we can recover the initial number of asymptomatic infectious I0 = I(t0) and the
initial number of exposed E0 = E(t0) for an epidemic phase starting at time t0. Indeed by definition,
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we have CR′(t) = ν f I(t) and therefore

I0 =
CR′(t0)
ν f

=

χN0

(
1 −

(
N0
N∞

)θ)
ν f

.

Estimated initial number of infected

The initial number of asymptomatic infectious is given by

I0 =
CR′(t0)
ν f

. (2.18)

In the special case of the Bernoulli–Verhulst model we obtain

I0 =
χ

ν f
N0

1 − (
N0

N∞

)θ . (2.19)

By differentiating Eq (2.5) we deduce that

N′′(t) = χN′(t)
1 − (

N(t)
N∞

)θ − χθ

Nθ
∞

N(t) (N(t))θ−1 N′(t)

= χN′(t)
1 − (

N(t)
N∞

)θ − χθ

Nθ
∞

(N(t))θ N′(t),

therefore

CR′′(t) = N′′(t) = χ2 N(t)
1 − (

N(t)
N∞

)θ 1 − (1 + θ)
(

N(t)
N∞

)θ .
By using the third equation in Eq (2.8) we obtain

E0 =
I′(t0) + νI(t0)

α
=

CR′′(t0) + νCR′(t0)
α

=
N′′(t0) + νN′(t0)

α
.

Estimated initial number of exposed

The initial number of exposed is given by

E0 =
CR′′(t0) + νCR′(t0)

α
. (2.20)

In the special case of the Bernoulli–Verhulst model, we obtain

E0 =
χ

α ν f
N0

1 − (
N0

N∞

)θ χ + ν − χ (1 + θ)
(

N0

N∞

)θ . (2.21)

2.2.3. Theoretical formula for τ(t)

We first remark that the S -equation of model (2.8) can be written as

d
dt

ln(S (t)) =
S ′(t)
S (t)

= −τ(t)
[
I(t) + κU(t)

]
,
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therefore by integrating between t0 and t we get

S (t) = S 0 exp
(
−

∫ t

t0
τ(σ) [I(σ) + κU(σ)] dσ

)
.

Next we plug the above formula for S (t) into the E-equation of model (2.8) and obtain

E′(t) = S 0 exp
(
−

∫ t

t0
τ(σ) [I(σ) + κU(σ)] dσ

)
τ(t) [I(t) + κU(t)] − α E(t)

= −S 0
d
dt

(
−

∫ t

t0
τ(σ) [I(σ) + κU(σ)] dσ

)
exp

(
−

∫ t

t0
τ(σ) [I(σ) + κU(σ)] dσ

)
− α E(t),

and by integrating this equation between t0 and t we obtain

E(t) = E0 + S 0

[
1 − exp

(
−

∫ t

t0
τ(σ) [I(σ) + κU(σ)] dσ

)]
− α

∫ t

t0
E(σ)dσ. (2.22)

Define the cumulative numbers of exposed, infectious and unreported individuals by

CE(t) :=
∫ t

t0
E(σ)dσ, CI(t) :=

∫ t

t0
I(σ)dσ, and CU(t) :=

∫ t

t0
U(σ)dσ,

and note that CE′(t) = E(t). We can rewrite the Eq (2.22) as

S 0 exp
(
−

∫ t

t0
τ(σ) [I(σ) + κU(σ)] dσ

)
= E0 + S 0 − CE′(t) − αCE(t).

By taking the logarithm of both sides we obtain∫ t

t0
τ(σ) [I(σ) + κU(σ)] dσ = ln(S 0) − ln

(
E0 + S 0 − CE′(t) − αCE(t)

)
,

and by differentiating with respect to t:

τ(t) =
1

I(t) + κU(t)
×

CE′′(t) + αCE′(t)
E0 + S 0 − CE′(t) − αCE(t)

. (2.23)

Therefore we have an explicit formula giving τ(t) as a function of I(t), U(t) and CE(t) and its
derivatives. Next we explain how to identify those three remaining unknowns as a function of CR(t)
and its derivatives. We first recall that, from Eq (2.10), we have

CR(t) = CR(t0) + ν f CI(t).

The I-equation of model (2.8) can be rewritten as

αE(t) = I′(t) + νI(t),
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and by integrating this equation between t0 and t we obtain

αCE(t) = CI′(t) − I0 + νCI(t) =
1
ν f

(CR′(t) + νCR(t) − νCR(t0)). (2.24)

Finally, by applying the variation of constants formula to the U-equation of system (2.8) we obtain

U(t) = e−η(t−t0)U0 +

∫ t

t0
e−η(t−s)ν (1 − f ) I(s)ds

= e−η(t−t0)U0 +

∫ t

t0
e−η(t−s) 1 − f

f
CR′(s)ds. (2.25)

From these computations we deduce that τ(t) can be computed thanks to Eq (2.23) from CR(t), α, ν, η,
κ, f and U0. The following theorem is a precise statement of this result.

Theorem 2.1. Let S 0 > 0, E0 > 0, I0 > 0, U0 > 0, CR0 ≥ 0, α, ν, η and f > 0 be given. Let
t 7→ τ(t) ≥ 0 be a given continuous function and t → I(t) be the second component of system (2.8). Let
ĈR : [t0,∞)→ R be a twice continuously differentiable function. Then

ĈR(t) = CR0 + ν f
∫ t

t0
I (s) ds,∀t ≥ t0, (2.26)

if and only if ĈR satisfies
ĈR(t0) = CR0, (2.27)

ĈR
′

(t0) = ν f I0, (2.28)

ĈR
′′

(t0) + νĈR
′

(t0) = α ν f E0, (2.29)

ĈR
′

(t) > 0,∀t ≥ t0, (2.30)

ν f (E0 + S 0) −
[
ĈR

′′

(t) + νĈR
′

(t)
]
− α

[
ĈR

′

(t) − ν f I0 + νĈR(t)
]
> 0,∀t ≥ t0, (2.31)

and τ(t) is given by

τ(t) =
1

Î(t) + κÛ(t)
×

ĈE
′′

(t) + αĈE
′

(t)

E0 + S 0 − ĈE
′

(t) − αĈE(t)
, (2.32)

where

Î(t) :=
ĈR

′

(t)
ν f

, (2.33)

ĈI(t) :=
1
ν f

[
ĈR(t) − ĈR(t0)

]
, (2.34)

ĈE(t) :=
1
α

[
ĈI
′

(t) − I0 + ν ĈI(t)
]

=
1

α ν f

[
ĈR

′

(t) − ν f I0 + ν
(
ĈR(t) − CR0

)]
, (2.35)

Û(t) := e−η(t−t0)U0 +

∫ t

t0
e−η(t−s) (1 − f )

f
ĈR

′

(s)ds. (2.36)
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Proof. Assume first that ĈR(t) satisfies Eq (2.26). Then by using the first equation of system (2.8) we
deduce that

S 0 exp
(
−

∫ t

t0
τ(σ) [I(σ) + κU(σ)] dσ

)
= E0 + S 0 − E(t) − αCE(t). (2.37)

Therefore ∫ t

t0
τ(σ) [I(σ) + κU(σ)] dσ = ln

[
S 0

E0 + S 0 − E(t) − αCE(t)

]
= ln (S 0) − ln [E0 + S 0 − E(t) − αCE(t)] ,

and by taking the derivative of both sides we obtain

τ(t) [I(t) + κU(t)] =
E′(t) + αE(t)

E0 + S 0 − E(t) − αCE(t)
,

which is equivalent to

τ(t) =
E(t)

I(t) + κU(t)
×

E′(t)
E(t)

+ α

E0 + S 0 − E(t) − αCE(t)
.

By using the fact that E(t) = CE′(t) and I = CR′(t)/(ν f ), we deduce Eq (2.32). By differentiating Eq
(2.26), we get Eqs (2.28) and (2.30). Equation (2.29) is a consequence of the E-component of Eq (2.8).
We get Eq (2.31) by combining Eqs (2.37) and (2.35) (since ĈE(t) = CE(t)).

Conversely, assume that τ(t) is given by Eq (2.31) and all the Eqs (2.27)–(2.36) hold. We define
Î(t) = ĈR

′

(t)/ν f and ĈI(t) =
(
ĈR(t) − CR0

)
/ν f . Then, by using Eq (2.27), we deduce that

ĈI(t) =

∫ t

t0
Î(σ)dσ, (2.38)

and by using Eq (2.28), we deduce
Î(t0) = I0. (2.39)

Moreover, from Eq (2.31) and Î(t) = ĈR
′

(t)/ν f we deduce that

τ(t) =
1

Î(t) + κÛ(t)
×

ĈE
′′

(t) + αĈE
′

(t)

E0 + S 0 − ĈE
′

(t) − αĈE(t)
. (2.40)

Multiplying Eq (2.40) by Î(t) + κÛ(t) and integrating, we obtain∫ t

t0
τ(σ)

[
Î(σ) + κÛ(σ)

]
dσ = ln

(
E0 + S 0 − ĈE

′

(t0) − αĈE(t0)
)

− ln
(
E0 + S 0 − ĈE

′

(t) − αĈE(t)
)
,

(2.41)

where the right-hand side is well defined thanks to Eq (2.31). By combining Eqs (2.27), (2.28) and
(2.35) we obtain

ĈE(t0) = 0, (2.42)
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and by taking the derivative in Eq (2.35) we obtain

ĈE
′

(t0) =
1

α ν f

[
ĈR

′′

(t) + νĈR
′

(t)
]

therefore by using Eq (2.29) we deduce that

ĈE
′

(t0) = E0. (2.43)

In particular, E0 + S 0 − ĈE
′

(t0) − αĈE(t0) = S 0 and, by taking the exponential of Eq (2.41), we obtain

S 0e−
∫ t

t0
τ(σ)

[
Î(σ)+κÛ(σ)

]
dσ

= E0 + S 0 − ĈE
′

(t) − αĈE(t),

which, differentiating both sides, yields

−S 0e−
∫ t

t0
τ(σ)

[
Î(σ)+κÛ(σ)

]
dσ
τ(t)

[
Î(t) + κÛ(t)

]
= −ĈE

′′

(t) − αĈE
′

(t)

= −Ê′(t) − αÊ(t),

and therefore
Ê′(t) = τ(t)Ŝ (t)

[
Î(t) + κÛ(t)

]
− αÊ(t), (2.44)

where Ê(t) := ĈE
′

(t) and Ŝ (t) := S 0e−
∫ t

t0
τ(σ)

[
Î(σ)+κÛ(σ)

]
dσ. Differentiating the definition of Ŝ (t), we get

Ŝ ′(t) = −
[
Î(t) + κÛ(t)

]
Ŝ (t). (2.45)

Next the derivative of Eq (2.35) can be rewritten as

Î′(t) =
1
ν f

ĈR
′′

(t) = αĈE
′

(t) − ν
1
ν f

ĈR
′

(t) = αÊ(t) − νÎ(t). (2.46)

Finally, differentiating Eq (2.36) yields

Û′(t) = ν (1 − f ) Î(t) − ηÛ(t). (2.47)

By combining Eqs (2.44)–(2.47) we see that
(
Ŝ (t), Ê(t), Î(t), Û(t)

)
satisfies Eq (2.8) with the initial

condition
(
Ŝ (t0), Ê(t0), Î(t0), Û(t0)

)
= (S 0, E0, I0,U0). By the uniqueness of the solutions of Eq (2.8) for

a given initial condition, we conclude that
(
Ŝ (t), Ê(t), Î(t), Û(t)

)
=

(
S (t), E(t), I(t),U(t)

)
. In particular,

CR(t) satisfies Eq (2.26). The proof is completed. �

Remark 2.2. The condition Eq (2.31) is equivalent to

E0 + S 0 − ĈE
′

(t) − αĈE(t) > 0, ∀t ≥ t0.

Remark 2.3. The present computations have been previously done, in a different context, by Hadeler
[68].
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2.3. Computing the explicit formula for τ(t) during an epidemic phase

In this section, we assume that the curve of cumulative reported cases is given by the Bernoulli–
Verhulst formula

N(t) := CR(t) − Nbase =
eχ(t−t0)N0[

1 +
Nθ

0

Nθ
∞

(
eχθ(t−t0) − 1

)]1/θ , for t ∈ [t0, t1],

and we recall that

N′(t) = χN(t)
1 − (

N(t)
N∞

)θ .
Then we can compute an explicit formula for the components of the system (2.8). By definition we
have

I(t) =
CR′(t)
ν f

=
χ

ν f
N(t)

1 − (
N(t)
N∞

)θ , (2.48)

which gives

I′(t) =
CR′′(t)
ν f

=
χ2

ν f
N(t)

1 − (
N(t)
N∞

)θ 1 − (1 + θ)
(

N(t)
N∞

)θ ,
so that by using the I-component in the system (2.8) we get

E(t) =
1
α

(
I′(t) + νI(t)

)
=

1
αν f

(
CR′′(t) + νCR′(t)

)
.

By integration, we get

CE(t) =
1

α ν f
[(

CR′(t) − CR′0
)

+ ν [CR(t) − CR(t0)]
]
,

=
1

α ν f

[
χN(t)

(
1 −

(
N(t)
N∞

)θ)
− ν f I0 + ν [N(t) − N0]

]
,

=
1

α ν f

N(t)
χ + ν − χ

(
N(t)
N∞

)θ − ν f I0 − νN0

 ,
and since

ν f I0 = CR′(t0) = N′(t0) = χN0

1 − (
N0

N∞

)θ ,
we obtain

CE(t) =
1

α ν f

N(t)
χ + ν − χ

(
N(t)
N∞

)θ − N0

χ + ν − χ

(
N0

N∞

)θ .
Note also that we have explicit formulas for E(t) = CE′(t) and E′(t) = CE′′(t),

E(t) = CE′(t) =
χ

αν f

N(t)
1 − (

N(t)
N∞

)θ χ + ν − χ(1 + θ)
(

N(t)
N∞

)θ (2.49)

and
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E′(t) = CE′′(t) =
χ2

αν f
N(t)

1 − (
N(t)
N∞

)θ
×

χ + ν − (χ(2 + θ) + ν)(1 + θ)
(

N(t)
N∞

)θ
+ χ(1 + θ)(1 + 2θ)

(
N(t)
N∞

)2θ .
Next, recall the U-equation of Eq (2.8), that is,

U′(t) = ν(1 − f )I(t) − ηU(t),

therefore by the variation of constant formula we have

U(t) = e−η(t−t0)U(t0) +

∫ t

t0
e−η(t−s)(1 − f )νI(s)ds

= e−η(t−t0U0 +

∫ t

t0
e−η(t−s) 1 − f

f
CR′(s)ds. (2.50)

Explicit formula for the transmission rate during an epidemic phase

The transmission rate τ(t) can be computed as

τ(t) =

χN(t)
(
1 −

(
N(t)
N∞

)θ)
I(t) + κU(t)

×

[
A

(
N(t)
N∞

)2θ
− B

(
N(t)
N∞

)θ
+ C

]
E0 + S 0 − E(t) − αCE(t)

, (2.51)

where

N(t) =
eχ(t−t0)N0[

1 +
Nθ

0

Nθ
∞

(
eχθ(t−t0) − 1

)]1/θ , for t ≥ t0, (2.52)

and

A := χ2(1 + θ)(1 + 2θ), (2.53)
B := χ(1 + θ)

[
χ(2 + θ) + ν + α

]
, (2.54)

C := (α + χ)(χ + ν), (2.55)

and I(t) is given by Eq (2.48), E(t) by Eq (2.49) and U(t) by Eq (2.50).

2.3.1. Compatibility conditions for the positivity of the transmission rate

Recall from Eq (2.51):

τ(t) =

χN(t)
(
1 −

(
N(t)
N∞

)θ)
I(t) + κU(t)

×

[
A

(
N(t)
N∞

)2θ
− B

(
N(t)
N∞

)θ
+ C

]
E0 + S 0 − E(t) − αCE(t)

.

Here we require that the numerator and the denominator of the last fraction stay positive for all times.
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Positivity of the numerator: The model is compatible with the data if the transmission rate τ(t) stays
positive for all times t ∈ R. The numerator

p(N) := AN2 − BN + C

is a second-order polynomial with N ∈ (0, 1). Let ∆ := B2 − 4AC be the discriminant of p(N). Since
p′(0) = −B < 0 and

p′(N) = 0⇔ N =
B

2A

we have two cases: 1)
B

2A
≥ 1; or 2) 0 <

B
2A

< 1.

Case 1: If
B

2A
≥ 1, p(N) is non-negative for all N ∈ [0, 1] if and only if

p(1) > 0⇔ A + C − B > 0. (2.56)

Substituting A, B, C by their expression, we get

A + C − B = χ2(1 + θ)(1 + 2θ) + (α + χ)(χ + ν) − χ(1 + θ)(χ(2 + θ) + α + ν)
= χ2 + 2χ2θ + χ2θ + 2χ2θ2 + αχ + αν + χ2 + χν

− 2χ2 − χθ − 2χ2θ − χ2θ2 − αχ − νχ − αχθ − νχθ

= χ2θ2 + αν − αχθ − νχθ

= (α − χθ)(ν − χθ).

Case 2: If
B

2A
< 1, p(N) is non-negative for all N ∈ [0, 1] if and only if

p
( B
2A

)
(1) > 0⇔ ∆ < 0⇔ B2 − 4AC < 0. (2.57)

Lemma 2.4. ∆ < 0⇒ A + C − B > 0.

Proof. We have

∆ < 0⇒ B2 − 4AC ≤ (B − 2A)2
⇔ B2 − 4AC ≤ B2 − 4AB + 4A2

and after simplifying the result follows. �

Positivity of the denominator: Next we turn to the denominator in the expression of τ, i.e., we want
to ensure

E0 + S 0 − E(t) − αCE(t) > 0 for all t ∈ R. (2.58)

We let Y :=
N(t)
N∞

and observe that E(t) + αCE(t) can be written as

E(t) + αCE(t) =
1
αν f

[
χN∞Y(1 − Yθ)(χ + ν − χ(1 + θ)Yθ)

+ αN∞Y(χ + ν − χYθ) − αN∞Y0(χ + ν − Yθ
0)
]

Mathematical Biosciences and Engineering Volume 19, Issue 1, 537–594.



553

=
N∞
αν f

Y
[
(χ + α)(χ + ν) − χ(α + ν + χ(2 + θ))Yθ + χ2(1 + θ)Y2θ]

−
N0

ν f

(
χ + ν − Yθ

0

)
,

since we know that A > 0. Therefore Eq (2.58) becomes

Y
[
(χ + α)(χ + ν) − χ(χ + ν + χ(1 + θ) + α)Yθ + χ2(1 + θ)Y2θ]

≤
αν f
N∞

E0 + S 0 +
N0

ν f

χ + ν −

(
N0

N∞

)θ .
We let

g(Y) := Y
[
(χ + α)(χ + ν) − χ(α + ν + χ(2 + θ))Yθ + χ2(1 + θ)Y2θ]

and notice that

g′(Y) = (χ + α)(χ + ν) − χ(1 + θ)(α + ν + χ(2 + θ))Yθ + χ2(1 + 2θ)(1 + θ)Y2θ,

is exactly p(N) := AN2 − BN + C.
Therefore, assuming that A + C − B > 0, the derivative g′(Y) is positive and g is strictly increasing.

So we only have to check the final value g(1). We get

αν f
N∞

S 0 + E0 +
N0

ν f

χ + ν −

(
N0

N∞

)θ
≥ (χ + α)(χ + ν) − χ(α + ν − χ(2 + θ)) + χ2(1 + θ)
= χ2 + αν + αχ + νχ + χ2 + χ2θ − αχ − νχ − 2χ2 − χ2θ

= αν.

Compatibility for the positivity

The SEIUR model is compatible with the data only when τ(t) stays positive for all t ≥ t0.
Therefore the following two conditions should be met:

(ν − χθ)(α − χθ) ≥ 0 (2.59)

and

f +
1
ν

N0

S 0 + E0

χ + ν −

(
N0

N∞

)θ ≥ N∞
S 0 + E0

. (2.60)

2.3.2. Computing the explicit formula for τ(t) during an endemic phase

Recall that during an endemic phase, the cumulative number of cases is assumed to be a line.
Therefore,

CR(t) = A (t − t0) + B

and
CR′(t) = A and CR′′(t) = 0.

Mathematical Biosciences and Engineering Volume 19, Issue 1, 537–594.



554

Therefore

I(t) =
CR′(t)
ν f

=
A
ν f

(2.61)

and
E(t) =

I′(t) + νI(t)
α

=
A
α f

. (2.62)

Hence
CE(t) =

A
α f

(t − t0) . (2.63)

Moreover

U(t) = e−η(t−t0)U0 +

∫ t

t0
e−η(t−s)ν(1 − f )I(s)ds,

and we obtain
U(t) = e−η(t−t0)U0 +

(1 − f )A
η f

(
1 − e−η(t−t0)

)
. (2.64)

By combining Eqs (2.12) and (2.61)–(2.64) we obtain the following explicit formula.

Explicit formula for the transmission rate during an endemic phase

The transmission rate τ(t) can be computed as

τ(t) =
1

A
ν f + κ

(
e−η(t−t0)U0 +

1 − f
η f

A
(
1 − e−η(t−t0))) × A

f S 0 − A (t − t0)
, (2.65)

with the compatibility condition

t0 ≤ t <
f S 0

A
+ t0.

Remark 2.5. The above transmission rate corresponds to a constant number of daily infected A.
Therefore it is impossible to maintain such a constant flux of new infected whenever the number of

susceptible individuals is finite. The time t =
f S 0

A
+ t0 corresponds to the maximal time starting from

t0 during which we can maintain such a regime.

3. Results

3.1. Phenomenological model applied to COVID-19 data

Our method to regularize the data was applied to the eight geographic areas. The resulting curves
are presented in Figure 2. The blue background color regions correspond to epidemic phases, and
the yellow background color regions to endemic phases. We added a plot of the daily number of
cases (black dots) and the derivative of the regularized model for comparison, even though the daily
number of cases is not used in the fitting procedure. The figures show in general, an extremely good
agreement between the time series of reported cases (top row, black dots) and the regularized model
(top row, blue curve). The match between the daily number of cases (bottom row, black dots) and
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the derivative of the regularized model (bottom row, blue curve) is also excellent, even though it is
not a part of the optimization process. Of course, we lose some of the information like the extremal
values (“peaks”) of the daily number of cases. This is because we focus on an averaged value of the
number of cases. More information could be retrieved by studying statistically the variation around the
phenomenological model. However, we leave such a study for future work. The relative error between
the regularized curve and the data may be relatively high at the beginning of the epidemic because of
the stochastic nature of the infection process and the small number of infected individuals but quickly
drops below 1% (see the supplementary material for more details).
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Figure 2. In the top rows, we plot the cumulative number of reported cases (black dots)
and the best fit of the phenomenological model (blue curve). In the bottom rows, we plot the
daily number of reported cases (black dots) and the first derivative of the phenomenological
model (blue curve).

3.2. Bounds for the value of non-identifiable parameters

Even if some parameters of the mathematical model are not identifiable, we were able to gain
some information on possible values for those parameters. Indeed, a mathematical model with a
negative transmission rate τ(t) cannot be consistent with the real phenomenon. Therefore, parameter
values which produce such negative transmission rates cannot be compatible with the data. Using this
argument, we found that the average incubation period cannot exceed eight days. The actual value of
the upper bound is highly variable across countries and epidemic waves. We report the values of the
upper bound in Section 11 of the supplementary material.
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3.3. Instantaneous reproduction number computed for COVID-19 data

Our analysis allows us to compute the instantaneous transmission rate τ(t). We use this
transmission rate to compute two different indicators of the epidemiological dynamics for each
geographic area, the instantaneous reproduction number and the quasi-instantaneous reproduction
number. Both coincide with the basic reproduction number R0 on the first day of the epidemic. The
instantaneous reproduction number at time t, Re(t), is the basic reproduction number corresponding to
an epidemic starting at time t with a constant transmission rate equal to τ(t) and with an initial
population of susceptibles composed of S (t) individuals (the number of susceptible individuals
remaining in the population). The quasi-instantaneous reproduction number at time t, R0

e(t), is the
basic reproduction number corresponding to an epidemic starting at time t with a constant
transmission rate equal to τ(t) and with an initial population of susceptibles composed of S 0

individuals (the number of susceptible individuals at the start of the epidemic). The two indicators are
represented for each geographic area in the top row of Figure 3 (black curve: instantaneous
reproduction number; green curve: quasi-instantaneous reproduction number).

There is one interpretation for Re(t) and another for R0
e(t). The instantaneous reproduction number

indicates if, given the current state of the population, the epidemic tends to persist or die out in the
long term (note that our model assumes that recovered individuals are perfectly immunized). The
quasi-instantaneous reproduction number indicates if the epidemic tends to persist or die out in the
long term, provided the number of susceptible is the total population. In other words, we forget about
the immunity already obtained by recovered individuals. Also, it is directly proportional to the
transmission rate and therefore allows monitoring of its changes. Note that the value of R0

e(t) changed
drastically between epidemic phases, revealing that τ(t) is far from constant. In any case, the
difference between the two values starts to be visible in the figures one year after the start of the
epidemic.

We also computed the reproduction number by using the method described in Cori et al. [69], which
we denote Rc

e(t). The precise implementation is described in the supplementary material. It is plotted
in the bottom row of Figure 3 (green curve), along with the instantaneous reproduction number Re(t)
(green curve).

Remark 3.1. In the bottom of Figure 3, we compare the instantaneous reproduction numbers obtained
by our method in black and the classical method of Cori et al. [69] in green. We observe that the two
approaches are not the same at the beginning. This is because the method of Cori et al. [69] does not
take into account the initial values I0 and E0 while we do. Indeed the method of Cori et al. [69] assumes
that I0 and E0 are close to 0 at the beginning when it is viewed as a Volterra equation reformulation of
the Bernoulli–Kermack–McKendrick model with the age of infection. Our method, on the other hand,
does not require such an assumption since it provides a way to compute the initial states I0 and E0.

Remark 3.2. It is essential to “regularize” the data to obtain a comprehensive outcome from SIR
epidemic models. In general, the rate of transmission in the SIR model (applying identification
methods) is not very noisy and meaningless. For example, at the beginning of the first epidemic wave,
the transmission rate should be decreasing since peoples tend to have less and less contact while to
epidemic growth. The standard regularization methods (like, for example, the rolling weekly average
method) have been tested for COVID-19 data in Demongeot, Griette, and Magal [36]. The outcome
in terms of transmission rate is very noisy and even negative transmission (which is impossible).
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Regularizing the data is not an easy task, and the method used is very important in order to obtain a
meaningful outcome for the models. Here, we tried several approaches to link an epidemic phase to
the next endemic phase. So far, this regularization procedure is the best one.
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Figure 3. In the top rows, we plot the instantaneous reproduction number Re(t) (in black) and
the quasi instantaneous reproduction number R0

e(t) (in green). In the bottom rows, we plot
the instantaneous reproduction number Re(t) (in black) and the one obtained by the standard
method [69, 70] Rc

e(t) (in green).

3.4. Consequences for vaccination

It is essential to ”regularize” the data to obtain a comprehensive outcome from SIR epidemic
models. In general, the rate of transmission in the SIR model (applying identification methods) is not
very noisy and meaningless. For example, at the beginning of the first epidemic wave, the
transmission rate should be decreasing since peoples tend to have less and less contact while to
epidemic growth. The standard regularization methods (like, for example, the rolling weekly average
method) have been tested for COVID-19 data in Demongeot, Griette, and Magal [36]. The outcome in
terms of transmission rate is very noisy and even negative transmission (which is impossible).
Regularizing the data is not an easy task, and the method used is critical in order to obtain a
meaningful outcome for the models. Here, we tried several approaches to link an epidemic phase to
the next endemic phase. So far, this regularization procedure is the best one we tested.
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4. Discussion

In this article, we presented a new phenomenological model to describe cumulative reported cases
data. This model allows us to handle multiple epidemic waves and fits the data for the eight
geographic areas considered very well. The use of Bernoulli-Verhulst curves to fit an epidemic wave
is not necessary. We expect that a number of different phenomenological models could be employed
for the same purpose; however, our method has the advantage of involving a limited number of
parameters. Moreover, the Bernoulli-Verhulst model leads to an explicit algebraic formula for the
compatibility conditions of non-identifiable parameters. It is far from obvious that the same
computations can be carried out with other models. Our method also provides a very smooth curve
with controlled upper bound for the first (four) derivatives, and we use the regularity obtained to
compute the transmission rate. We refer to Demongeot, Griette, and Magal [36] for several examples
of problems that may occur when using other methods to regularize the data (rolling weekly average,
etc.).

The first goal of the article was to understand how to connect successive epidemic waves. As far as
we know, this is new compared to the existing literature. A succession of epidemic waves separated by
a short period of time with random transmissions is regularly observed in the COVID-19 epidemic data.
But several consecutive epidemic phases may happen without endemic transition. An illustration of
this situation is provided by the case of Japan, where the parameters of the Bernoulli-Verhulst model
changed three times during the last epidemic phases (without endemic interruption). Therefore we
subdivide this last epidemic wave into three epidemic phases.

Another advantage of our method is the connection with an epidemiological model. Our study
provides a way to explain the data by using a single epidemic model with a time-dependent
transmission rate. More precisely, we find that there exists precisely one model that matches the best
fit to the data. The fact that the transmission rate corresponding to the data is not constant is,
therefore, meaningful. This means that the depletion of susceptible hosts due to natural
epidemiological dynamics is not sufficient to explain the reduction in the epidemic spread. Indeed,
due to the social changes involving the distancing between individuals, the transmission rate should
vary to take into account the changes in the number of contacts per unit of time. The variations in the
observed dynamics of the number of cases mainly result from the modification of people’s behavior.
In other words, the social changes in the population have a stronger impact on the propagation of the
disease than the pure epidemiological dynamics. By computing the transmission rate and the
associated reproduction numbers, we propose a new method to quantify those social changes. Other
factors may also influence the dynamics of the COVID-19 outbreak (temperature, humidity, etc.) and
should be taken into account. However, the correlation between the dates of the waves and the
mitigation measures imposed by local governments suggests that the former phenomenon takes a
more significant role in the epidemiological dynamics.

Precisely because it involves an epidemiological model, our method provides an alternative, robust
way to compute indicators for the future behavior of the epidemic: the instantaneous and
quasi-instantaneous reproductive numbers Re(t) and R0

e(t). It is natural to compare them to an
alternative in the literature, sometimes called “effective reproductive number”. The method of Cori et
al. [69] is a popular framework to estimate its value. Compared with this standard method, our
indicators perform better near the beginning of the epidemic and close to the last data point and are
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less variable in time. That we require an a priori definition of epidemic waves can be considered as an
advantage and a drawback. It is a drawback because the computed value of the indicator may slightly
depend on the choice of the dates of the epidemic waves. On the other hand, this flexibility also
allows testing different scenarios for the future evolution of the epidemic. Thanks to the explicit
formula for Re(t) expressed in function of the parameters, we can also explore the dependency to the
parameters (see supplementary material Section S6).

It appears from our results that the instantaneous reproduction number in almost every geographic
area considered is less than 3.5. Therefore, an efficient policy to eliminate the COVID-19 would be
to vaccinate a fraction of 75 − 80% of the population. Once this threshold is reached, the situation
should go back to normal in all the geographic areas considered in this study. This proportion can
even be reduced at the expense of partially maintaining the social distancing and the other anti-COVID
measures for a sufficiently long period of time.

With a few modifications, our method could also include several other features. It is likely, for
instance, that the vaccination of a large part of the population has an impact on the epidemiological
dynamics, and this impact is not taken into account for the time being. Different distributions of serial
intervals could be taken into account by replacing the mathematical model of ordinary differential
equations with integral equations. What we have shown is that the coupling of a phenomenological
model to describe the data, with an epidemiological model to take into account the nature of the
underlying phenomenon, should provide us with a new, untapped source of information on the
epidemic.

Conflict of interest

The authors declare there is no conflict of interest.

References

1. WHO, Disease Outbreak News. Pneumonia of unknown cause–China, January 5, 2020. Available
from: https://www.who.int/emergencies/disease-outbreak-news/item/2020-DON229 (Accessed
on 30 Jun 2021).

2. WHO, Disease Outbreak News. Novel coronavirus–China, January 12, 2020. Available from:
https://www.who.int/emergencies/disease-outbreak-news/item/2020-DON233 (Accessed on 30
Jun 2021).

3. M. L. Holshue, C. DeBolt, S. Lindquist, K. H. Lofy, J. Wiesman, H. Bruce, et al, First case
of 2019 novel Coronavirus in the United States, New Engl. J. Med., 382 (2020), 929–936. doi:
10.1056/NEJMoa2001191.

4. Data from WHO. Available from: https://covid19.who.int/WHO-COVID-19-global-data.csv
(Accessed on 30 Jun 2021).

5. E. Anzolin, A. Amante, First Italian dies of coronavirus as outbreak flares in north, Reuters, 2020.

6. E. Dong, H. Du, L. Gardner, An interactive web-based dashboard to track COVID-19 in real time,
Lancet Infect. Dis., 20 (2020), 533–534. doi: 10.1007/s00285-021-01630-1.

Mathematical Biosciences and Engineering Volume 19, Issue 1, 537–594.



560

7. Z. Liu, P. Magal, O. Seydi, G. F. Webb, Understanding unreported cases in the COVID-19
epidemic outbreak in Wuhan, China, and the importance of major public health interventions,
Biology, 9 (2020), 50. doi: 10.3390/biology9030050.

8. A. J. Kucharski, T. W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, et al., Early dynamics
of transmission and control of COVID-19: a mathematical modelling study, Lancet Infect. Dis.,
20 (2020), 553–558. doi: 10.1016/S1473-3099(20)30144-4.

9. G. T. Patrick, C. W. Walker, W. Oliver, The global impact of COVID-19 and strategies for
mitigation and suppression, Imperial Rep., 2020.

10. C. Rothe, M. Schunk, P. Sothmann, G. Bretzel, G. Froeschl, C. Wallrauch, et al., Transmission of
2019-nCoV infection from an asymptomatic contact in Germany, New Engl. J. Med., 382 (2020),
970–971. doi : 10.1056/NEJMc2001468.

11. K. Mizumoto, K. Kagaya, A. Zarebski, G. Chowell, Estimating the asymptomatic proportion
of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise
ship, Yokohama, Japan, 2020, Eurosurveillance, 25 (2020), 2000180. doi: 10.2807/1560-
7917.ES.2020.25.10.2000180.

12. O. Bylicki, N. Paleiron, F. Janvier, An Outbreak of Covid-19 on an Aircraft Carrier, New Engl. J.
Med., 384 (2021), 976–977. doi: 10.1056/NEJMoa2019375.

13. J. Qiu, Covert coronavirus infections could be seeding new outbreaks, Nature (Lond.), 2020. doi:
10.1038/d41586-020-00822-x.

14. Z. Liu, P. Magal, O. Seydi, G. F. Webb, Predicting the cumulative number of cases for the
COVID-19 epidemic in China from early data, Math. Biosci. Eng., 17 (2020), 3040–3051. doi:
10.3934/mbe.2020172.

15. Z. Liu, P. Magal, O. Seydi, G. F. Webb, A COVID-19 epidemic model with latency period, Infect.
Dis. Model.,5 (2020), 323–337. doi: 10.1016/j.idm.2020.03.003.

16. Z. Liu, P. Magal, O. Seydi, G. F. Webb, A model to predict COVID-19 epidemics with applications
to South Korea, Italy, and Spain, SIAM News, 53 (2020).

17. H. Nishiura, T. Kobayashi, Y. Yang, K. Hayashi, T. Miyama, R. Kinoshita, et al., The rate
of underascertainment of novel coronavirus (2019-nCoV) infection: estimation using Japanese
passengers data on evacuation flights, J. Clin. Med., 2020. doi: 10.3390/jcm9020419.

18. R. Omori, K. Mizumoto, H. Nishiura, Ascertainment rate of novel coronavirus disease (COVID-
19) in Japan, Int. J. Infect. Dis., 96 (2020), 673–675. doi: 10.1016/j.ijid.2020.04.080.

19. Y. M. Bar-On, A. Flamholz, R. Phillips, R. Milo, Science Forum: SARS-CoV-2 (COVID-19) by
the numbers, eLife, 9 (2020), e57309. doi: 10.7554/eLife.57309.

20. Z. Liu, P. Magal, G. F. Webb, Predicting the number of reported and unreported cases for the
COVID-19 epidemics in China, South Korea, Italy, France, Germany and United Kingdom, J.
Theor. Biol., 509 (2021), 110501. doi: 10.1016/j.jtbi.2020.110501.

21. Q. Griette, P. Magal, O. Seydi, Unreported cases for age dependent COVID-19 outbreak in Japan,
Biology, 9 (2020), 132. doi: 10.3390/biology9060132.

22. G. Zhou, G. Yan, Severe acute respiratory syndrome epidemic in Asia, Emerg. Infect. Dis., 9
(2003), 1608–1610. doi: 10.3201/eid0912.030382.

Mathematical Biosciences and Engineering Volume 19, Issue 1, 537–594.



561

23. Y. Hsieh, G. Yan, H. Chang, J. Lee, SARS epidemiology modeling, Emerg. Infect. Dis., 10 (2004),
1165–1167. doi: 10.3201/eid1006.031023.

24. X. S. Wang, J. Wu, Y. Yang, Richards model revisited: validation by and application to infection
dynamics, J. Theoret. Biol., 313 (20212), 12–19. doi: 10.1016/j.jtbi.2012.07.024.

25. Y. H. Hsieh, Richards model: a simple procedure for real-time prediction of outbreak severity, in
Modeling and dynamics of infectious diseases, (2009), 216–236.

26. A. Attanayake, S. Perera, S. Jayasinghe, Phenomenological Modelling of COVID-19 Epidemics
in Sri Lanka, Italy, the United States, and Hebei Province of China, Comp. Math. Meth. Med.,
(2020), 6397063. doi:10.1155/2020/6397063.

27. M. Castro, S. Ares, J. Cuesta, S. Manrubia, The turning point and end of an expanding
epidemic cannot be precisely forecast, Proc. Natl. Acad. Sci., 117 (2020), 26190–26196. doi:
10.1073/pnas.2007868117.
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Supplementary Material

S1. Table of estimated parameters for the phenomenological model

S1.1. California

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase
Mar 26, 2020 - Jun 11, 2020

N0 = 7.34 × 103

Nbase = 1.14 × 10−5

N∞ = 3.24 × 105

χ = 4.14 × 104

θ = 4.62 × 10−7

fitted
fitted
fitted
fitted
fitted

N0 ∈ [4.16 × 103, 1.05 × 104]
Nbase ∈ [−4.33 × 103, 4.33 × 103]
N∞ ∈ [2.52 × 105, 3.96 × 105]
χ ∈ [7.74 × 102, 8.20 × 104]
θ ∈ [2.39 × 10−8, 9.00 × 10−7]

Period 2: Endemic phase
Jun 11, 2020 - Jun 23, 2020

a = 3.81 × 103

N0 = 1.36 × 105

computed
computed

Period 3: Epidemic phase
Jun 23, 2020 - Sep 20, 2020

N0 = 1.57 × 105

Nbase = 2.45 × 104

N∞ = 8.22 × 105

χ = 5.54 × 10−2

θ = 7.18 × 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [5.96 × 104, 2.55 × 105]
Nbase ∈ [−7.58 × 104, 1.25 × 105]
N∞ ∈ [7.36 × 105, 9.08 × 105]
χ ∈ [5.32 × 10−3, 1.05 × 10−1]
θ ∈ [−3.59 × 10−2, 1.47]

Period 4: Endemic phase
Sep 20, 2020 - Nov 01, 2020

a = 3.66 × 103

N0 = 7.76 × 105

computed
computed

Period 5: Epidemic phase
Nov 01, 2020 - Feb 25, 2021

N0 = 6.27 × 104

Nbase = 8.67 × 105

N∞ = 2.66 × 106

χ = 6.36 × 10−2

θ = 1.02

fitted
fitted
fitted
fitted
fitted

N0 ∈ [4.95 × 104, 7.59 × 104]
Nbase ∈ [8.45 × 105, 8.88 × 105]
N∞ ∈ [2.64 × 106, 2.67 × 106]
χ ∈ [5.73 × 10−2, 6.98 × 10−2]
θ ∈ [8.79 × 10−1, 1.16]

Table S1. In this table we list the parameters of the phenomenological model which gives
the best fit to the cumulative number of cases data in California from January 03 2020 to
February 25 2021.

Mathematical Biosciences and Engineering Volume 19, Issue 1, 537–594.



566

S1.2. France

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase
Feb 27, 2020 - May 17, 2020

N0 = 3.61 × 10−4

Nbase = 0.00
N∞ = 1.43 × 105

χ = 1.17 × 102

θ = 7.29 × 10−4

fitted
fixed
fitted
fitted
fitted

N0 ∈ [−3.77, 3.77]

N∞ ∈ [−1.58 × 104, 3.01 × 105]
χ ∈ [−1.09 × 107, 1.09 × 107]
θ ∈ [−6.84 × 101, 6.84 × 101]

Period 2: Endemic phase
May 17, 2020 - Jul 05, 2020

a = 3.14 × 102

N0 = 1.39 × 105

computed
computed

Period 3: Epidemic phase
Jul 05, 2020 - Nov 26, 2020

N0 = 1.50 × 104

Nbase = 1.40 × 105

N∞ = 1.99 × 106

χ = 3.68 × 10−2

θ = 6.55

fitted
fitted
fitted
fitted
fitted

N0 ∈ [1.36 × 104, 1.65 × 104]
Nbase ∈ [1.33 × 105, 1.46 × 105]
N∞ ∈ [1.97 × 106, 2.01 × 106]
χ ∈ [3.60 × 10−2, 3.76 × 10−2]
θ ∈ [5.52, 7.58]

Period 4: Endemic phase
Nov 26, 2020 - Dec 20, 2020

a = 1.28 × 104

N0 = 2.11 × 106

computed
computed

Period 5: Epidemic phase
Dec 20, 2020 - Feb 25, 2021

N0 = 2.73 × 105

Nbase = 2.15 × 106

N∞ = 2.13 × 106

χ = 5.88 × 10−2

θ = 5.47 × 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [−2.43 × 103, 5.48 × 105]
Nbase ∈ [1.86 × 106, 2.43 × 106]
N∞ ∈ [1.88 × 106, 2.39 × 106]
χ ∈ [−6.11 × 10−2, 1.79 × 10−1]
θ ∈ [−9.19 × 10−1, 2.01]

Table S2. In this table we list the parameters of the phenomenological model which gives the
best fit to the cumulative number of cases data in France from January 03 2020 to February
25 2021.

S1.3. India

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase
Feb 01, 2020 - Feb 25, 2021

N0 = 5.83 × 102

Nbase = 1.97 × 104

N∞ = 1.10 × 107

χ = 4.89 × 10−2

θ = 5.12 × 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [3.45 × 102, 8.20 × 102]
Nbase ∈ [5.36 × 103, 3.39 × 104]
N∞ ∈ [1.10 × 107, 1.11 × 107]
χ ∈ [4.59 × 10−2, 5.20 × 10−2]
θ ∈ [4.71 × 10−1, 5.54 × 10−1]

Table S3. In this table we list the parameters of the phenomenological model which gives
the best fit to the cumulative number of cases data in India from January 03 2020 to February
25 2021.

Mathematical Biosciences and Engineering Volume 19, Issue 1, 537–594.



567

S1.4. Israel

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase
Feb 27, 2020 - Jun 01, 2020

N0 = 1.08 × 10−2

Nbase = 4.27 × 101

N∞ = 1.71 × 104

χ = 9.18 × 10−1

θ = 1.05 × 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [−3.85 × 10−2, 6.02 × 10−2]
Nbase ∈ [−3.36 × 101, 1.19 × 102]
N∞ ∈ [1.70 × 104, 1.72 × 104]
χ ∈ [1.71 × 10−1, 1.67]
θ ∈ [1.55 × 10−2, 1.94 × 10−1]

Period 2: Endemic phase
Jun 01, 2020 - Jun 25, 2020

a = 2.04 × 102

N0 = 1.70 × 104

computed
computed

Period 3: Epidemic phase
Jun 25, 2020 - Aug 08, 2020

N0 = 2.48 × 103

Nbase = 1.95 × 104

N∞ = 8.66 × 104

χ = 2.93 × 10−1

θ = 2.04 × 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [3.43 × 102, 4.61 × 103]
Nbase ∈ [1.70 × 104, 2.20 × 104]
N∞ ∈ [7.78 × 104, 9.55 × 104]
χ ∈ [−2.61 × 10−1, 8.48 × 10−1]
θ ∈ [−2.43 × 10−1, 6.50 × 10−1]

Period 4: Endemic phase
Aug 08, 2020 - Sep 03, 2020

a = 1.54 × 103

N0 = 7.97 × 104

computed
computed

Period 5: Epidemic phase
Sep 03, 2020 - Oct 20, 2020

N0 = 4.59 × 104

Nbase = 7.38 × 104

N∞ = 2.35 × 105

χ = 5.05 × 10−2

θ = 3.45

fitted
fitted
fitted
fitted
fitted

N0 ∈ [2.88 × 104, 6.31 × 104]
Nbase ∈ [5.53 × 104, 9.23 × 104]
N∞ ∈ [2.19 × 105, 2.52 × 105]
χ ∈ [3.77 × 10−2, 6.34 × 10−2]
θ ∈ [1.96, 4.93]

Period 6: Endemic phase
Oct 20, 2020 - Nov 14, 2020

a = 8.90 × 102

N0 = 3.04 × 105

computed
computed

Period 7: Epidemic phase
Nov 14, 2020 - Feb 25, 2021

N0 = 3.16 × 103

Nbase = 3.23 × 105

N∞ = 4.87 × 105

χ = 8.28 × 10−2

θ = 7.06 × 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [2.16 × 103, 4.17 × 103]
Nbase ∈ [3.21 × 105, 3.25 × 105]
N∞ ∈ [4.79 × 105, 4.95 × 105]
χ ∈ [7.22 × 10−2, 9.34 × 10−2]
θ ∈ [5.69 × 10−1, 8.43 × 10−1]

Table S4. In this table we list the parameters of the phenomenological model which gives
the best fit to the cumulative number of cases data in Israel from January 03 2020 to February
25 2021.
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S1.5. Japan

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase
Feb 20, 2020 - May 27, 2020

N0 = 5.83
Nbase = 3.25 × 102

N∞ = 1.63 × 104

χ = 1.48 × 10−1

θ = 8.29 × 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [1.91, 9.74]
Nbase ∈ [2.55 × 102, 3.95 × 102]
N∞ ∈ [1.62 × 104, 1.64 × 104]
χ ∈ [1.30 × 10−1, 1.65 × 10−1]
θ ∈ [6.88 × 10−1, 9.70 × 10−1]

Period 2: Endemic phase
May 27, 2020 - Jun 13, 2020

a = 7.07 × 101

N0 = 1.65 × 104

computed
computed

Period 3: Epidemic phase
Jun 13, 2020 - Sep 10, 2020

N0 = 1.49 × 102

Nbase = 1.75 × 104

N∞ = 6.02 × 104

χ = 1.19 × 10−1

θ = 6.28 × 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [8.52 × 101, 2.13 × 102]
Nbase ∈ [1.73 × 104, 1.78 × 104]
N∞ ∈ [5.93 × 104, 6.10 × 104]
χ ∈ [1.03 × 10−1, 1.35 × 10−1]
θ ∈ [5.04 × 10−1, 7.52 × 10−1]

Period 4: Endemic phase
Sep 10, 2020 - Oct 18, 2020

a = 5.36 × 102

N0 = 7.27 × 104

computed
computed

Period 5: Epidemic phase
Oct 18, 2020 - Dec 05, 2020

N0 = 6.33 × 103

Nbase = 8.68 × 104

N∞ = 9.10 × 104

χ = 5.60 × 10−2

θ = 2.58

fitted
fitted
fitted
fitted
fitted

N0 ∈ [4.64 × 103, 8.01 × 103]
Nbase ∈ [8.48 × 104, 8.88 × 104]
N∞ ∈ [7.75 × 104, 1.05 × 105]
χ ∈ [4.74 × 10−2, 6.46 × 10−2]
θ ∈ [1.00, 4.16]

Period 6: Epidemic phase
Dec 05, 2020 - Dec 30, 2020

N0 = 1.23 × 105

Nbase = 3.43 × 104

N∞ = 3.49 × 105

χ = 1.78 × 10−2

θ = 7.84

fitted
fitted
fitted
fitted
fitted

N0 ∈ [−2.43 × 105, 4.90 × 105]
Nbase ∈ [−3.33 × 105, 4.01 × 105]
N∞ ∈ [−2.92 × 107, 2.99 × 107]
χ ∈ [−3.59 × 10−2, 7.15 × 10−2]
θ ∈ [−1.28 × 103, 1.30 × 103]

Period 7: Epidemic phase
Dec 30, 2020 - Feb 25, 2021

N0 = 2.00 × 104

Nbase = 2.05 × 105

N∞ = 2.29 × 105

χ = 7.98 × 10−1

θ = 9.61 × 10−2

fitted
fitted
fitted
fitted
fitted

N0 ∈ [1.59 × 103, 3.84 × 104]
Nbase ∈ [1.85 × 105, 2.25 × 105]
N∞ ∈ [2.11 × 105, 2.47 × 105]
χ ∈ [−2.54, 4.13]
θ ∈ [−3.15 × 10−1, 5.07 × 10−1]

Table S5. In this table we list the parameters of the phenomenological model which gives the
best fit to the cumulative number of cases data in Japan from January 03 2020 to February
25 2021.
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S1.6. Peru

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase
Mar 20, 2020 - Jul 01, 2020

N0 = 8.36 × 102

Nbase = 3.00 × 10−5

N∞ = 3.61 × 105

χ = 1.08 × 10−1

θ = 4.20 × 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [2.63 × 102, 1.41 × 103]
Nbase ∈ [−1.74 × 103, 1.74 × 103]
N∞ ∈ [3.44 × 105, 3.79 × 105]
χ ∈ [7.59 × 10−2, 1.41 × 10−1]
θ ∈ [2.41 × 10−1, 5.98 × 10−1]

Period 2: Endemic phase
Jul 01, 2020 - Jul 30, 2020

a = 3.67 × 103

N0 = 2.83 × 105

computed
computed

Period 3: Epidemic phase
Jul 30, 2020 - Nov 10, 2020

N0 = 1.86 × 105

Nbase = 2.03 × 105

N∞ = 7.69 × 105

χ = 4.84 × 10−1

θ = 5.95 × 10−2

fitted
fitted
fitted
fitted
fitted

N0 ∈ [−2.61 × 104, 3.98 × 105]
Nbase ∈ [−1.11 × 104, 4.18 × 105]
N∞ ∈ [5.65 × 105, 9.72 × 105]
χ ∈ [−6.23, 7.20]
θ ∈ [−7.74 × 10−1, 8.93 × 10−1]

Period 4: Endemic phase
Nov 10, 2020 - Jan 11, 2021

a = 1.80 × 103

N0 = 9.16 × 105

computed
computed

Period 5: Epidemic phase
Jan 11, 2021 - Feb 25, 2021

N0 = 3.23 × 105

Nbase = 7.04 × 105

N∞ = 7.00 × 106

χ = 1.36 × 10−2

θ = 3.67 × 101

fitted
fitted
fitted
fitted
fitted

Table S6. In this table we list the parameters of the phenomenological model which gives
the best fit to the cumulative number of cases data in Peru from January 03 2020 to February
25 2021.
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S1.7. Spain

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase
Feb 15, 2020 - May 10, 2020

N0 = 5.19 × 10−4

Nbase = 5.77 × 102

N∞ = 2.32 × 105

χ = 9.80 × 10−1

θ = 9.75 × 10−2

fitted
fitted
fitted
fitted
fitted

N0 ∈ [−5.00 × 10−3, 6.04 × 10−3]
Nbase ∈ [−4.50 × 102, 1.60 × 103]
N∞ ∈ [2.30 × 105, 2.34 × 105]
χ ∈ [−1.26 × 10−1, 2.09]
θ ∈ [−1.83 × 10−2, 2.13 × 10−1]

Period 2: Endemic phase
May 10, 2020 - Jun 22, 2020

a = 5.67 × 102

N0 = 2.28 × 105

computed
computed

Period 3: Epidemic phase
Jun 22, 2020 - Oct 02, 2020

N0 = 2.38 × 103

Nbase = 2.50 × 105

N∞ = 9.89 × 105

χ = 9.29 × 10−2

θ = 3.84 × 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [1.39 × 103, 3.36 × 103]
Nbase ∈ [2.48 × 105, 2.53 × 105]
N∞ ∈ [9.02 × 105, 1.08 × 106]
χ ∈ [7.07 × 10−2, 1.15 × 10−1]
θ ∈ [2.38 × 10−1, 5.29 × 10−1]

Period 4: Endemic phase
Oct 02, 2020 - Oct 18, 2020

a = 1.09 × 104

N0 = 8.14 × 105

computed
computed

Period 5: Epidemic phase
Oct 18, 2020 - Dec 06, 2020

N0 = 1.68 × 105

Nbase = 8.20 × 105

N∞ = 9.85 × 105

χ = 3.15 × 10−1

θ = 2.02 × 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [−3.50 × 104, 3.72 × 105]
Nbase ∈ [6.12 × 105, 1.03 × 106]
N∞ ∈ [8.01 × 105, 1.17 × 106]
χ ∈ [−1.05, 1.68]
θ ∈ [−7.15 × 10−1, 1.12]

Period 6: Endemic phase
Dec 06, 2020 - Dec 26, 2020

a = 9.15 × 103

N0 = 1.72 × 106

computed
computed

Period 7: Epidemic phase
Dec 26, 2020 - Feb 25, 2021

N0 = 5.94 × 104

Nbase = 1.84 × 106

N∞ = 1.30 × 106

χ = 1.30 × 10−1

θ = 7.84 × 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [3.86 × 104, 8.02 × 104]
Nbase ∈ [1.81 × 106, 1.87 × 106]
N∞ ∈ [1.28 × 106, 1.32 × 106]
χ ∈ [9.90 × 10−2, 1.60 × 10−1]
θ ∈ [5.50 × 10−1, 1.02]

Table S7. In this table we list the parameters of the phenomenological model which gives the
best fit to the cumulative number of cases data in Spain from January 03 2020 to February
01 2021.
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S1.8. United Kingdom

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase
Feb 15, 2020 - Jun 15, 2020

N0 = 2.65 × 10−2

Nbase = 1.12 × 102

N∞ = 2.86 × 105

χ = 1.76
θ = 2.76 × 10−2

fitted
fitted
fitted
fitted
fitted

N0 ∈ [−8.82 × 10−2, 1.41 × 10−1]
Nbase ∈ [−4.82 × 102, 7.06 × 102]
N∞ ∈ [2.84 × 105, 2.88 × 105]
χ ∈ [−1.46, 4.98]
θ ∈ [−2.38 × 10−2, 7.90 × 10−2]

Period 2: Endemic phase
Jun 15, 2020 - Sep 01, 2020

a = 9.43 × 102

N0 = 2.70 × 105

computed
computed

Period 3: Epidemic phase
Sep 01, 2020 - Nov 20, 2020

N0 = 7.85 × 103

Nbase = 3.36 × 105

N∞ = 2.14 × 106

χ = 2.41 × 10−1

θ = 1.32 × 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [3.63 × 103, 1.21 × 104]
Nbase ∈ [3.28 × 105, 3.43 × 105]
N∞ ∈ [1.93 × 106, 2.36 × 106]
χ ∈ [2.16 × 10−2, 4.60 × 10−1]
θ ∈ [−9.25 × 10−3, 2.74 × 10−1]

Period 4: Endemic phase
Nov 20, 2020 - Dec 10, 2020

a = 1.61 × 104

N0 = 1.48 × 106

computed
computed

Period 5: Epidemic phase
Dec 10, 2020 - Feb 01, 2021

N0 = 2.26 × 105

Nbase = 1.58 × 106

N∞ = 2.42 × 106

χ = 8.57 × 10−2

θ = 1.08

fitted
fitted
fitted
fitted
fitted

N0 ∈ [1.16 × 105, 3.35 × 105]
Nbase ∈ [1.46 × 106, 1.70 × 106]
N∞ ∈ [2.34 × 106, 2.51 × 106]
χ ∈ [5.14 × 10−2, 1.20 × 10−1]
θ ∈ [4.85 × 10−1, 1.68]

Table S8. In this table we list the parameters of the phenomenological model which gives
the best fit to the cumulative number of cases data in United Kingdom from January 03 2020
to February 01 2021.

S2. Plot of the multiple Bernoulli–Verhulst models fitted to each epidemic phase

In Figure S1, we present the details of the fit of the Bernoulli–Verhulst models to the successive
epidemic waves in the 8 geographic areas considered. Each epidemic wave is associated with a different
color.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure S1. In this figure, we plot the cumulative number of cases (black dots) and the best
fit of Bernoulli–Verhulst for each epidemic wave for (a) California; (b) France; (c) India; (d)
Israel; (e) Japan; (f) Peru; (g) Spain; (h) United Kingdom.
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S3. Relative error of the fitted curve compared to the data in each geographic area

S3.1. California
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Figure S2. Relative error between the data and the model for California State, expressed in
percent.

S3.2. France
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Figure S3. Relative error between the data and the model for France, expressed in percent.

S3.3. India
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Figure S4. Relative error between the data and the model for India, expressed in percent.
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S3.4. Israel
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Figure S5. Relative error between the data and the model for Israel, expressed in percent.

S3.5. Japan
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Figure S6. Relative error between the data and the model for Japan, expressed in percent.

S3.6. Peru
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Figure S7. Relative error between the data and the model for Peru, expressed in percent.
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S3.7. Spain
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Figure S8. Relative error between the data and the model for Spain, expressed in percent.

S3.8. United Kingdom
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Figure S9. Relative error between the data and the model for UK, expressed in percent.

S4. Table of estimated parameters for the phenomenological model
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S4.1. California

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase
Mar 26, 2020 - Jun 11, 2020

N0 = 7.34 × 103

Nbase = 1.14 × 10−5

N∞ = 3.24 × 105

χ = 4.14 × 104

θ = 4.62 × 10−7

fitted
fitted
fitted
fitted
fitted

N0 ∈ [4.16 × 103, 1.05 × 104]
Nbase ∈ [−4.33 × 103, 4.33 × 103]
N∞ ∈ [2.52 × 105, 3.96 × 105]
χ ∈ [7.74 × 102, 8.20 × 104]
θ ∈ [2.39 × 10−8, 9.00 × 10−7]

Period 2: Endemic phase
Jun 11, 2020 - Jun 23, 2020

a = 3.81 × 103

N0 = 1.36 × 105

computed
computed

Period 3: Epidemic phase
Jun 23, 2020 - Sep 20, 2020

N0 = 1.57 × 105

Nbase = 2.45 × 104

N∞ = 8.22 × 105

χ = 5.54 × 10−2

θ = 7.18 × 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [5.96 × 104, 2.55 × 105]
Nbase ∈ [−7.58 × 104, 1.25 × 105]
N∞ ∈ [7.36 × 105, 9.08 × 105]
χ ∈ [5.32 × 10−3, 1.05 × 10−1]
θ ∈ [−3.59 × 10−2, 1.47]

Period 4: Endemic phase
Sep 20, 2020 - Nov 01, 2020

a = 3.66 × 103

N0 = 7.76 × 105

computed
computed

Period 5: Epidemic phase
Nov 01, 2020 - Feb 25, 2021

N0 = 6.27 × 104

Nbase = 8.67 × 105

N∞ = 2.66 × 106

χ = 6.36 × 10−2

θ = 1.02

fitted
fitted
fitted
fitted
fitted

N0 ∈ [4.95 × 104, 7.59 × 104]
Nbase ∈ [8.45 × 105, 8.88 × 105]
N∞ ∈ [2.64 × 106, 2.67 × 106]
χ ∈ [5.73 × 10−2, 6.98 × 10−2]
θ ∈ [8.79 × 10−1, 1.16]

Table S9. In this table we list the values of the parameters of the phenomenological model
which give the best fit to the cumulative number of cases data in California from January 03
2020 to February 25 2021.
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S4.2. France

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase
Feb 27, 2020 - May 17, 2020

N0 = 3.61 × 10−4

Nbase = 0.00
N∞ = 1.43 × 105

χ = 1.17 × 102

θ = 7.29 × 10−4

fitted
fixed
fitted
fitted
fitted

N0 ∈ [−3.77, 3.77]

N∞ ∈ [−1.58 × 104, 3.01 × 105]
χ ∈ [−1.09 × 107, 1.09 × 107]
θ ∈ [−6.84 × 101, 6.84 × 101]

Period 2: Endemic phase
May 17, 2020 - Jul 05, 2020

a = 3.14 × 102

N0 = 1.39 × 105

computed
computed

Period 3: Epidemic phase
Jul 05, 2020 - Nov 26, 2020

N0 = 1.50 × 104

Nbase = 1.40 × 105

N∞ = 1.99 × 106

χ = 3.68 × 10−2

θ = 6.55

fitted
fitted
fitted
fitted
fitted

N0 ∈ [1.36 × 104, 1.65 × 104]
Nbase ∈ [1.33 × 105, 1.46 × 105]
N∞ ∈ [1.97 × 106, 2.01 × 106]
χ ∈ [3.60 × 10−2, 3.76 × 10−2]
θ ∈ [5.52, 7.58]

Period 4: Endemic phase
Nov 26, 2020 - Dec 20, 2020

a = 1.28 × 104

N0 = 2.11 × 106

computed
computed

Period 5: Epidemic phase
Dec 20, 2020 - Feb 25, 2021

N0 = 2.73 × 105

Nbase = 2.15 × 106

N∞ = 2.13 × 106

χ = 5.88 × 10−2

θ = 5.47 × 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [−2.43 × 103, 5.48 × 105]
Nbase ∈ [1.86 × 106, 2.43 × 106]
N∞ ∈ [1.88 × 106, 2.39 × 106]
χ ∈ [−6.11 × 10−2, 1.79 × 10−1]
θ ∈ [−9.19 × 10−1, 2.01]

Table S10. In this table we list the values of the parameters of the phenomenological model
which give the best fit to the cumulative number of cases data in France from January 03
2020 to February 25 2021.

S4.3. India

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase
Feb 01, 2020 - Feb 25, 2021

N0 = 5.83 × 102

Nbase = 1.97 × 104

N∞ = 1.10 × 107

χ = 4.89 × 10−2

θ = 5.12 × 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [3.45 × 102, 8.20 × 102]
Nbase ∈ [5.36 × 103, 3.39 × 104]
N∞ ∈ [1.10 × 107, 1.11 × 107]
χ ∈ [4.59 × 10−2, 5.20 × 10−2]
θ ∈ [4.71 × 10−1, 5.54 × 10−1]

Table S11. In this table we list the values of the parameters of the phenomenological model
which give the best fit to the cumulative number of cases data in India from January 03 2020
to February 25 2021.
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S4.4. Israel

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase
Feb 27, 2020 - Jun 01, 2020

N0 = 1.08 × 10−2

Nbase = 4.27 × 101

N∞ = 1.71 × 104

χ = 9.18 × 10−1

θ = 1.05 × 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [−3.85 × 10−2, 6.02 × 10−2]
Nbase ∈ [−3.36 × 101, 1.19 × 102]
N∞ ∈ [1.70 × 104, 1.72 × 104]
χ ∈ [1.71 × 10−1, 1.67]
θ ∈ [1.55 × 10−2, 1.94 × 10−1]

Period 2: Endemic phase
Jun 01, 2020 - Jun 25, 2020

a = 2.04 × 102

N0 = 1.70 × 104

computed
computed

Period 3: Epidemic phase
Jun 25, 2020 - Aug 08, 2020

N0 = 2.48 × 103

Nbase = 1.95 × 104

N∞ = 8.66 × 104

χ = 2.93 × 10−1

θ = 2.04 × 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [3.43 × 102, 4.61 × 103]
Nbase ∈ [1.70 × 104, 2.20 × 104]
N∞ ∈ [7.78 × 104, 9.55 × 104]
χ ∈ [−2.61 × 10−1, 8.48 × 10−1]
θ ∈ [−2.43 × 10−1, 6.50 × 10−1]

Period 4: Endemic phase
Aug 08, 2020 - Sep 03, 2020

a = 1.54 × 103

N0 = 7.97 × 104

computed
computed

Period 5: Epidemic phase
Sep 03, 2020 - Oct 20, 2020

N0 = 4.59 × 104

Nbase = 7.38 × 104

N∞ = 2.35 × 105

χ = 5.05 × 10−2

θ = 3.45

fitted
fitted
fitted
fitted
fitted

N0 ∈ [2.88 × 104, 6.31 × 104]
Nbase ∈ [5.53 × 104, 9.23 × 104]
N∞ ∈ [2.19 × 105, 2.52 × 105]
χ ∈ [3.77 × 10−2, 6.34 × 10−2]
θ ∈ [1.96, 4.93]

Period 6: Endemic phase
Oct 20, 2020 - Nov 14, 2020

a = 8.90 × 102

N0 = 3.04 × 105

computed
computed

Period 7: Epidemic phase
Nov 14, 2020 - Feb 25, 2021

N0 = 3.16 × 103

Nbase = 3.23 × 105

N∞ = 4.87 × 105

χ = 8.28 × 10−2

θ = 7.06 × 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [2.16 × 103, 4.17 × 103]
Nbase ∈ [3.21 × 105, 3.25 × 105]
N∞ ∈ [4.79 × 105, 4.95 × 105]
χ ∈ [7.22 × 10−2, 9.34 × 10−2]
θ ∈ [5.69 × 10−1, 8.43 × 10−1]

Table S12. In this table we list the values of the parameters of the phenomenological model
which give the best fit to the cumulative number of cases data in Israel from January 03 2020
to February 25 2021.
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S4.5. Japan

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase
Feb 20, 2020 - May 27, 2020

N0 = 5.83
Nbase = 3.25 × 102

N∞ = 1.63 × 104

χ = 1.48 × 10−1

θ = 8.29 × 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [1.91, 9.74]
Nbase ∈ [2.55 × 102, 3.95 × 102]
N∞ ∈ [1.62 × 104, 1.64 × 104]
χ ∈ [1.30 × 10−1, 1.65 × 10−1]
θ ∈ [6.88 × 10−1, 9.70 × 10−1]

Period 2: Endemic phase
May 27, 2020 - Jun 13, 2020

a = 7.07 × 101

N0 = 1.65 × 104

computed
computed

Period 3: Epidemic phase
Jun 13, 2020 - Sep 10, 2020

N0 = 1.49 × 102

Nbase = 1.75 × 104

N∞ = 6.02 × 104

χ = 1.19 × 10−1

θ = 6.28 × 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [8.52 × 101, 2.13 × 102]
Nbase ∈ [1.73 × 104, 1.78 × 104]
N∞ ∈ [5.93 × 104, 6.10 × 104]
χ ∈ [1.03 × 10−1, 1.35 × 10−1]
θ ∈ [5.04 × 10−1, 7.52 × 10−1]

Period 4: Endemic phase
Sep 10, 2020 - Oct 18, 2020

a = 5.36 × 102

N0 = 7.27 × 104

computed
computed

Period 5: Epidemic phase
Oct 18, 2020 - Dec 05, 2020

N0 = 6.33 × 103

Nbase = 8.68 × 104

N∞ = 9.10 × 104

χ = 5.60 × 10−2

θ = 2.58

fitted
fitted
fitted
fitted
fitted

N0 ∈ [4.64 × 103, 8.01 × 103]
Nbase ∈ [8.48 × 104, 8.88 × 104]
N∞ ∈ [7.75 × 104, 1.05 × 105]
χ ∈ [4.74 × 10−2, 6.46 × 10−2]
θ ∈ [1.00, 4.16]

Period 6: Epidemic phase
Dec 05, 2020 - Dec 30, 2020

N0 = 1.23 × 105

Nbase = 3.43 × 104

N∞ = 3.49 × 105

χ = 1.78 × 10−2

θ = 7.84

fitted
fitted
fitted
fitted
fitted

N0 ∈ [−2.43 × 105, 4.90 × 105]
Nbase ∈ [−3.33 × 105, 4.01 × 105]
N∞ ∈ [−2.92 × 107, 2.99 × 107]
χ ∈ [−3.59 × 10−2, 7.15 × 10−2]
θ ∈ [−1.28 × 103, 1.30 × 103]

Period 7: Epidemic phase
Dec 30, 2020 - Feb 25, 2021

N0 = 2.00 × 104

Nbase = 2.05 × 105

N∞ = 2.29 × 105

χ = 7.98 × 10−1

θ = 9.61 × 10−2

fitted
fitted
fitted
fitted
fitted

N0 ∈ [1.59 × 103, 3.84 × 104]
Nbase ∈ [1.85 × 105, 2.25 × 105]
N∞ ∈ [2.11 × 105, 2.47 × 105]
χ ∈ [−2.54, 4.13]
θ ∈ [−3.15 × 10−1, 5.07 × 10−1]

Table S13. In this table we list the values of the parameters of the phenomenological model
which give the best fit to the cumulative number of cases data in Japan from January 03 2020
to February 25 2021.
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S4.6. Peru

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase
Mar 20, 2020 - Jul 01, 2020

N0 = 8.36 × 102

Nbase = 3.00 × 10−5

N∞ = 3.61 × 105

χ = 1.08 × 10−1

θ = 4.20 × 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [2.63 × 102, 1.41 × 103]
Nbase ∈ [−1.74 × 103, 1.74 × 103]
N∞ ∈ [3.44 × 105, 3.79 × 105]
χ ∈ [7.59 × 10−2, 1.41 × 10−1]
θ ∈ [2.41 × 10−1, 5.98 × 10−1]

Period 2: Endemic phase
Jul 01, 2020 - Jul 30, 2020

a = 3.67 × 103

N0 = 2.83 × 105

computed
computed

Period 3: Epidemic phase
Jul 30, 2020 - Nov 10, 2020

N0 = 1.86 × 105

Nbase = 2.03 × 105

N∞ = 7.69 × 105

χ = 4.84 × 10−1

θ = 5.95 × 10−2

fitted
fitted
fitted
fitted
fitted

N0 ∈ [−2.61 × 104, 3.98 × 105]
Nbase ∈ [−1.11 × 104, 4.18 × 105]
N∞ ∈ [5.65 × 105, 9.72 × 105]
χ ∈ [−6.23, 7.20]
θ ∈ [−7.74 × 10−1, 8.93 × 10−1]

Period 4: Endemic phase
Nov 10, 2020 - Jan 11, 2021

a = 1.80 × 103

N0 = 9.16 × 105

computed
computed

Period 5: Epidemic phase
Jan 11, 2021 - Feb 25, 2021

N0 = 3.23 × 105

Nbase = 7.04 × 105

N∞ = 7.00 × 106

χ = 1.36 × 10−2

θ = 3.67 × 101

fitted
fitted
fitted
fitted
fitted

Table S14. In this table we list the values of the parameters of the phenomenological model
which give the best fit to the cumulative number of cases data in Peru from January 03 2020
to February 25 2021.
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S4.7. Spain

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase
Feb 15, 2020 - May 10, 2020

N0 = 5.19 × 10−4

Nbase = 5.77 × 102

N∞ = 2.32 × 105

χ = 9.80 × 10−1

θ = 9.75 × 10−2

fitted
fitted
fitted
fitted
fitted

N0 ∈ [−5.00 × 10−3, 6.04 × 10−3]
Nbase ∈ [−4.50 × 102, 1.60 × 103]
N∞ ∈ [2.30 × 105, 2.34 × 105]
χ ∈ [−1.26 × 10−1, 2.09]
θ ∈ [−1.83 × 10−2, 2.13 × 10−1]

Period 2: Endemic phase
May 10, 2020 - Jun 22, 2020

a = 5.67 × 102

N0 = 2.28 × 105

computed
computed

Period 3: Epidemic phase
Jun 22, 2020 - Oct 02, 2020

N0 = 2.38 × 103

Nbase = 2.50 × 105

N∞ = 9.89 × 105

χ = 9.29 × 10−2

θ = 3.84 × 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [1.39 × 103, 3.36 × 103]
Nbase ∈ [2.48 × 105, 2.53 × 105]
N∞ ∈ [9.02 × 105, 1.08 × 106]
χ ∈ [7.07 × 10−2, 1.15 × 10−1]
θ ∈ [2.38 × 10−1, 5.29 × 10−1]

Period 4: Endemic phase
Oct 02, 2020 - Oct 18, 2020

a = 1.09 × 104

N0 = 8.14 × 105

computed
computed

Period 5: Epidemic phase
Oct 18, 2020 - Dec 06, 2020

N0 = 1.68 × 105

Nbase = 8.20 × 105

N∞ = 9.85 × 105

χ = 3.15 × 10−1

θ = 2.02 × 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [−3.50 × 104, 3.72 × 105]
Nbase ∈ [6.12 × 105, 1.03 × 106]
N∞ ∈ [8.01 × 105, 1.17 × 106]
χ ∈ [−1.05, 1.68]
θ ∈ [−7.15 × 10−1, 1.12]

Period 6: Endemic phase
Dec 06, 2020 - Dec 26, 2020

a = 9.15 × 103

N0 = 1.72 × 106

computed
computed

Period 7: Epidemic phase
Dec 26, 2020 - Feb 25, 2021

N0 = 5.94 × 104

Nbase = 1.84 × 106

N∞ = 1.30 × 106

χ = 1.30 × 10−1

θ = 7.84 × 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [3.86 × 104, 8.02 × 104]
Nbase ∈ [1.81 × 106, 1.87 × 106]
N∞ ∈ [1.28 × 106, 1.32 × 106]
χ ∈ [9.90 × 10−2, 1.60 × 10−1]
θ ∈ [5.50 × 10−1, 1.02]

Table S15. In this table we list the values of the parameters of the phenomenological model
which give the best fit to the cumulative number of cases data in Spain from January 03 2020
to February 01 2021.
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S4.8. United Kingdom

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase
Feb 15, 2020 - Jun 15, 2020

N0 = 2.65 × 10−2

Nbase = 1.12 × 102

N∞ = 2.86 × 105

χ = 1.76
θ = 2.76 × 10−2

fitted
fitted
fitted
fitted
fitted

N0 ∈ [−8.82 × 10−2, 1.41 × 10−1]
Nbase ∈ [−4.82 × 102, 7.06 × 102]
N∞ ∈ [2.84 × 105, 2.88 × 105]
χ ∈ [−1.46, 4.98]
θ ∈ [−2.38 × 10−2, 7.90 × 10−2]

Period 2: Endemic phase
Jun 15, 2020 - Sep 01, 2020

a = 9.43 × 102

N0 = 2.70 × 105

computed
computed

Period 3: Epidemic phase
Sep 01, 2020 - Nov 20, 2020

N0 = 7.85 × 103

Nbase = 3.36 × 105

N∞ = 2.14 × 106

χ = 2.41 × 10−1

θ = 1.32 × 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [3.63 × 103, 1.21 × 104]
Nbase ∈ [3.28 × 105, 3.43 × 105]
N∞ ∈ [1.93 × 106, 2.36 × 106]
χ ∈ [2.16 × 10−2, 4.60 × 10−1]
θ ∈ [−9.25 × 10−3, 2.74 × 10−1]

Period 4: Endemic phase
Nov 20, 2020 - Dec 10, 2020

a = 1.61 × 104

N0 = 1.48 × 106

computed
computed

Period 5: Epidemic phase
Dec 10, 2020 - Feb 01, 2021

N0 = 2.26 × 105

Nbase = 1.58 × 106

N∞ = 2.42 × 106

χ = 8.57 × 10−2

θ = 1.08

fitted
fitted
fitted
fitted
fitted

N0 ∈ [1.16 × 105, 3.35 × 105]
Nbase ∈ [1.46 × 106, 1.70 × 106]
N∞ ∈ [2.34 × 106, 2.51 × 106]
χ ∈ [5.14 × 10−2, 1.20 × 10−1]
θ ∈ [4.85 × 10−1, 1.68]

Table S16. In this table we list the values of the parameters of the phenomenological model
which give the best fit to the cumulative number of cases data in United Kingdom from
January 03 2020 to February 01 2021.

S5. Additional information for the results section

Period Interpretation Parameters value Method
U0 Number of unreported symptomatic infectious at time t0 1 Fixed
R0 Number of reported symptomatic infectious at time t0 0 Fixed
τ(t) Transmission rate Eqs (2.27)–(2.32) Computed

f Fraction of reported symptomatic infectious 0.8 Fixed

κ
Fraction of unreported symptomatic infectious

capable to transmit the pathogen
1 Fixed

1/α Average duration of the exposed period 1 days Fixed
1/ν Average duration of the asymptomatic infectious period 3 days Fixed
1/η Average duration of the symptomatic infectious period 7 days Fixed

Table S17. In this table we list the values of the parameters of the epidemic model used for
the simulations.
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S5.1. California

Period Interpretation Parameters value Method
t0 Time at which we started the epidemic model Mar 26, 2020 Fixed

S 0 Number of susceptibles at time t0 3.95 × 107 Fixed

E0 Number of exposed at time t0 7.91 × 102 Computed

I0 Number of asymptomatic infectious at time t0 2.06 × 103 Computed

Table S18. In this table we list the values of the parameters of the epidemic model used for
the simulations.

Compatibility condition between data and epidemic model

By using the Californian data for the first, the second and the third epidemic waves, we get from Eqs (2.59) and
(2.60) the following estimates for the average duration of the exposed and asymptomatic infectious periods and the
fraction of reported cases

First epidemic wave 1
α

and 1
ν
≤ 1

χθ
= 5.23 × 101 days f ≥ N∞

S 0
= 8.21 × 10−3

Second epidemic wave 1
α

and 1
ν
≤ 1

χθ
= 2.52 × 101 days f ≥ N∞

S 0
= 2.08 × 10−2

Third epidemic wave 1
α

and 1
ν
≤ 1

χθ
= 1.54 × 101 days f ≥ N∞

S 0
= 6.72 × 10−2

S5.2. France

Period Interpretation Parameters value Method
t0 Time at which we started the epidemic model Feb 27, 2020 Fixed

S 0 Number of susceptibles at time t0 6.50 × 107 Fixed

E0 Number of exposed at time t0 4.27 × 101 Computed

I0 Number of asymptomatic infectious at time t0 6.30 × 101 Computed

Table S19. In this table we list the values of the parameters of the epidemic model used for
the simulations.
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Compatibility condition between data and epidemic model

By using the French data for the first, the second and the third epidemic waves, we get from Eqs (2.59) and (2.60)
the following estimates for the average duration of the exposed and asymptomatic infectious periods and the fraction
of reported cases

First epidemic wave 1
α

and 1
ν
≤ 1

χθ
= 1.17 × 101 days f ≥ N∞

S 0
= 2.19 × 10−3

Second epidemic wave 1
α

and 1
ν
≤ 1

χθ
= 4.15 days f ≥ N∞

S 0
= 3.06 × 10−2

Third epidemic wave 1
α

and 1
ν
≤ 1

χθ
= 3.11 × 101 days f ≥ N∞

S 0
= 3.28 × 10−2

S5.3. India

Figure 4 of the main text is devoted to the reproduction number of the model. The instantaneous
reproduction number t → Re(t) is decreasing from February 01, 2020 until February 25, 2021.

Period Interpretation Parameters value Method
t0 Time at which we started the epidemic model Feb 01, 2020 Fixed

S 0 Number of susceptibles at time t0 1.39 × 109 Fixed

E0 Number of exposed at time t0 4.29 × 101 Computed

I0 Number of asymptomatic infectious at time t0 1.12 × 102 Computed

Table S20. In this table we list the values of the parameters of the epidemic model used for
the simulations.

Compatibility condition between data and epidemic model

By using the Indian data for the first single wave, we get from Eqs (2.59) and (2.60) the following estimates for the
average duration of the exposed and asymptomatic infectious periods and the fraction of reported cases

First epidemic wave 1
α

and 1
ν
≤ 1

χθ
= 3.99 × 101 days f ≥ N∞

S 0
= 7.93 × 10−3

S5.4. Israel

Period Interpretation Parameters value Method
t0 Time at which we started the epidemic model Feb 27, 2020 Fixed

S 0 Number of susceptibles at time t0 8.74 × 106 Fixed

E0 Number of exposed at time t0 4.16 Computed

I0 Number of asymptomatic infectious at time t0 6.25 Computed

Table S21. In this table we list the values of the parameters of the epidemic model used for
the simulations.
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Compatibility condition between data and epidemic model

By using the Israeli data for the first, the second, the third and the fourth epidemic waves, we get from Eqs (2.59)
and (2.60) the following estimates for the average duration of the exposed and asymptomatic infectious periods and
the fraction of reported cases

First epidemic wave 1
α

and 1
ν
≤ 1

χθ
= 1.04 × 101 days f ≥ N∞

S 0
= 1.95 × 10−3

Second epidemic wave 1
α

and 1
ν
≤ 1

χθ
= 1.67 × 101 days f ≥ N∞

S 0
= 9.91 × 10−3

Third epidemic wave 1
α

and 1
ν
≤ 1

χθ
= 5.74 days f ≥ N∞

S 0
= 2.69 × 10−2

Fourth epidemic wave 1
α

and 1
ν
≤ 1

χθ
= 1.71 × 101 days f ≥ N∞

S 0
= 5.57 × 10−2

S5.5. Japan

Period Interpretation Parameters value Method
t0 Time at which we started the epidemic model Feb 20, 2020 Fixed

S 0 Number of susceptibles at time t0 1.26 × 108 Fixed

E0 Number of exposed at time t0 2.61 Computed

I0 Number of asymptomatic infectious at time t0 5.45 Computed

Table S22. In this table we list the values of the parameters of the epidemic model used for
the simulations.

Compatibility condition between data and epidemic model

By using the Japanese data for the first, the second, the third, the fourth and the fifth epidemic waves, we get from
Eqs (2.59) and (2.60) the following estimates for the average duration of the exposed and asymptomatic infectious
periods and the fraction of reported cases

First epidemic wave 1
α

and 1
ν
≤ 1

χθ
= 8.18 days f ≥ N∞

S 0
= 1.29 × 10−4

Second epidemic wave 1
α

and 1
ν
≤ 1

χθ
= 1.34 × 101 days f ≥ N∞

S 0
= 4.77 × 10−4

Third epidemic wave 1
α

and 1
ν
≤ 1

χθ
= 6.92 days f ≥ N∞

S 0
= 7.22 × 10−4

Fourth epidemic wave 1
α

and 1
ν
≤ 1

χθ
= 7.17 days f ≥ N∞

S 0
= 2.77 × 10−3

Fifth epidemic wave 1
α

and 1
ν
≤ 1

χθ
= 1.30 × 101 days f ≥ N∞

S 0
= 1.82 × 10−3
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S5.6. Peru

Period Interpretation Parameters value Method
t0 Time at which we started the epidemic model Mar 20, 2020 Fixed

S 0 Number of susceptibles at time t0 3.32 × 107 Fixed

E0 Number of exposed at time t0 1.64 × 102 Computed

I0 Number of asymptomatic infectious at time t0 3.85 × 102 Computed

Table S23. In this table we list the values of the parameters of the epidemic model used for
the simulations.

Compatibility condition between data and epidemic model

By using the Peruvian data for the first, the second and the third epidemic waves, we get from Eqs (2.59) and
(2.60) the following estimates for the average duration of the exposed and asymptomatic infectious periods and the
fraction of reported cases

First epidemic wave 1
α

and 1
ν
≤ 1

χθ
= 2.20 × 101 days f ≥ N∞

S 0
= 1.09 × 10−2

Second epidemic wave 1
α

and 1
ν
≤ 1

χθ
= 3.47 × 101 days f ≥ N∞

S 0
= 2.32 × 10−2

Third epidemic wave 1
α

and 1
ν
≤ 1

χθ
= 2.01 days f ≥ N∞

S 0
= 2.11 × 10−1

S5.7. Spain

Period Interpretation Parameters value Method
t0 Time at which we started the epidemic model Feb 15, 2020 Fixed

S 0 Number of susceptibles at time t0 3.95 × 107 Fixed

E0 Number of exposed at time t0 5.10 Computed

I0 Number of asymptomatic infectious at time t0 6.87 Computed

Table S24. In this table we list the values of the parameters of the epidemic model used for
the simulations.
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Compatibility condition between data and epidemic model

By using the Spanish data for the first, the second, the third and the fourth epidemic waves, we get from Eqs (2.59)
and (2.60) the following estimates for the average duration of the exposed and asymptomatic infectious periods and
the fraction of reported cases

First epidemic wave 1
α

and 1
ν
≤ 1

χθ
= 1.05 × 101 days f ≥ N∞

S 0
= 5.87 × 10−3

Second epidemic wave 1
α

and 1
ν
≤ 1

χθ
= 2.81 × 101 days f ≥ N∞

S 0
= 2.50 × 10−2

Third epidemic wave 1
α

and 1
ν
≤ 1

χθ
= 1.58 × 101 days f ≥ N∞

S 0
= 2.49 × 10−2

Fourth epidemic wave 1
α

and 1
ν
≤ 1

χθ
= 9.84 days f ≥ N∞

S 0
= 3.29 × 10−2

S5.8. United Kingdom

Period Interpretation Parameters value Method
t0 Time at which we started the epidemic model Feb 15, 2020 Fixed

S 0 Number of susceptibles at time t0 6.81 × 107 Fixed

E0 Number of exposed at time t0 3.41 Computed

I0 Number of asymptomatic infectious at time t0 5.15 Computed

Table S25. In this table we list the values of the parameters of the epidemic model used for
the simulations.

Compatibility condition between data and epidemic model

By using the data from Great Britain for the first, the second and the third epidemic waves, we get from Eqs (2.59)
and (2.60) the following estimates for the average duration of the exposed and asymptomatic infectious periods and
the fraction of reported cases

First epidemic wave 1
α

and 1
ν
≤ 1

χθ
= 2.06 × 101 days f ≥ N∞

S 0
= 4.20 × 10−3

Second epidemic wave 1
α

and 1
ν
≤ 1

χθ
= 3.14 × 101 days f ≥ N∞

S 0
= 3.15 × 10−2

Third epidemic wave 1
α

and 1
ν
≤ 1

χθ
= 1.08 × 101 days f ≥ N∞

S 0
= 3.56 × 10−2

S6. Dependency with respect to the parameters for the French data

Influence of f on basic reproduction number:
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Figure S10. In this figure we plot (t, f ) → Re(t) when t varies from January 03 2020 to
January 04 2021 and f varies from 0.1 to 1.
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Figure S11. In this figure we explore the influence of the parameter f on the solution of
model. The figure (a) corresponds to f = 0.1 and figure (b) corresponds to f = 1. The
remaining parameters are unchanged.

Influence of κ on basic reproduction number:

Figure S12. In this figure we plot (t, κ) → Re(t) when t varies from January 03 2020 to
January 04 2021 and κ varies from 0.1 to 3.
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Figure S13. In this figure we explore the influence of the parameter f on the solution of
model. The figure (a) corresponds to κ = 0.1 and figure (b) corresponds to κ = 3. The
remaining parameters are unchanged.

Influence of ν on basic reproduction number:

Figure S14. In this figure we plot (t, ν) → Re(t) when t varies from January 03 2020 to
January 04 2021 and ν varies from 0.1 to 1 (or equivalently 1/ν varies from 10 days to 1
day).
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Figure S15. In this figure we explore the influence of the parameter 1/ν on the solution of
model. The figure (a) corresponds to 1/ν = 1 and figure (b) corresponds to 1/ν = 10. The
remaining parameters are unchanged.
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Influence of η on basic reproduction number:

Figure S16. In this figure we plot (t, η) → Re(t) when t varies from January 03 2020 to
January 04 2021 and η varies from 0.1 to 1 (or equivalently 1/η varies from 10 days to 1
day).
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Figure S17. In this figure we explore the influence of the parameter f on the solution of
model. The figure (a) corresponds to 1/η = 1 days and figure (b) corresponds to 1/η = 10
days. The remaining parameters are unchanged.

Influence of α on basic reproduction number:

Figure S18. In this figure we plot (t, α) → Re(t) when t varies from January 03 2020 to
January 04 2021 and α varies from 0.1 to 1 (or equivalently 1/α varies from 10 days to 1
day).
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Figure S19. In this figure we explore the influence of the parameter f on the solution of
model. The figure (a) corresponds to 1/α = 1 days and figure (b) corresponds to 1/α = 10
days. The remaining parameters are unchanged.

S7. Upper bound of the duration for the exposed period and the asymptomatic infectious period

Let us finally mention that for each country and each epidemic wave we evaluated the parameter
1/(χ θ). In Figure S20 we plot the histogram of its estimated value and obtain a median value be 15.61
days. Therefore the length of exposure and the length asymptomatic infectious period should smaller
than 15.61 days.

Figure S20. In this Figure we plot the histogram for the estimated values 1/(χ θ) (see
Appendix E). The red vertical line is mean value which is equal to 21 days. The yellow
vertical line is median value which is equal to 15.61 days.

In this section, we plot the estimated values of the parameter 1/(χ θ) for each epidemic period
and each country consider in this study. The parameter corresponds to the upper bound of the length
of the exposed period and asymptomatic infectious period. Indeed from the section devoted to the
compatibility condition we know that the average duration of the exposed period should satisfy

1/ν ≤ 1/(χ θ),

and the average duration of the asymptomatic infectious period should should satisfy

1/α ≤ 1/(χ θ).
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Figure S21. In this figure we plot the values of the parameter 1/(χ θ) estimated for each
epidemic wave and for California (a), France (b), India (c), Israel (d). This parameter
represents the maximal length of the incubation period. In each figure, we plot this parameter
for each epidemic wave and for each country.
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Figure S22. In this figure we plot the values of the parameter 1/(χ θ) estimated for each
epidemic wave and for Japan (e), Peru (f), Spain (g) and United Kingdom (h). This parameter
represents the maximal length of the incubation period. In each figure, we plot this parameter
for each epidemic wave and for each country.
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S8. Computing R0

The basic reproduction number R0 can be computed for the SEIUR model by the formula (see
[71, 72])

R0 = ρ(FV−1),

where F is the matrix containing new infections and V contains the rates of transfer between classes:

F :=


0 τS τκS 0
0 0 0 0
0 0 0 0
0 0 0 0

 , V :=


α 0 0 0
−α ν 0 0
0 −ν(1 − f ) η 0
0 ν(1 − f ) 0 η

 ,
see [71] and [72] for details. Therefore

V−1 =


1/α 0 0 0
1/ν 1/ν 0 0

(1 − f )/η (1 − f )/η 1/η 0
f /η f /η 0 1/η

 ,

FV−1 =
τS
ην


η + κν(1 − f ) η + κν(1 − f ) κν 0

0 0 0 0
0 0 0 0
0 0 0 0

 .
It follows that

R0 =
τS
ην

(
η + κν(1 − f )

)
.

S9. Stochastic approach to effective reproductive ratio

In numerical applications, we also present the results obtained by applying the method described
in the paper of Cori et al. [69]. Let us summarize the principle of the method. We consider that
the incidence data (i.e., the daily number of new reported cases) correspond to infection events that
have occurred in the past. For each new reported case, we reconstruct the time the infectious period
started by sampling a Gamma distribution (i.e. the time from the infection to the moment at which the
individual is reported follows a Gamma distribution). The parameters of this Gamma distribution are
computed to match the differential equation framework. In numerical application, 1/µ = 10 days, we
took the average for the average of the Gamma distribution as well as its standard deviation. We denote
It the resulting number of individuals that begin their infectious period on the day t. As described
in [69], we use a smoothing window of τ days (τ = 14 days in numerical applications). The resulting
effective reproductive ratio Rt is then computed as

Rt =

a +

t∑
s=t−τ+1

Is

1
b +

∑t
s=t−τ+1 Λs

,
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where a and b are a prior distribution on Rt (we took a = 1 and b = 5, as in [69]) and Λs is computed
by the formula

Λs =

t∑
s=1

It−sws,

where ws is the average infectiousness profile after time s. In numerical applications, and following [69,
Web Appendix 11], we used the following formula for ws

ws = sFΓ,α,β(s) + (s − 2)FΓ,α,β(s − 2) − 2(s − 1)FΓ,α,β(s − 1)
+ αβ(2FΓ,α+1,β(s − 1) − FΓ,α+1,β(s − 2) − FΓ,α+1,β(s)),

where FΓ,α,β(s) is the cumulative density of a Gamma distribution of parameters (α, β):

FΓ,α,β(t) =

∫ t

0

1
Γ(α)βα

sα−1e−
s
β ds.

The parameters α and β are computed to match the Gamma distribution of the serial intervals which,
in our case, have mean value 1/µ = 10 days and standard deviation as well of 1/µ, so that α = 1/µ and
β = 1/µ.

Because of the sampling of random numbers involved in the computation of Rt, the procedure
described above was repeated 100 times (each time drawing a new sequence of Is from the daily
number of new cases) and the final value of Rt presented in Figure 4 of the main text (green curves) is
the average of the values obtained during these 100 simulations.
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