

a closed subset, which does not contain the generic point, by the hypothesis that $H^0(X, \omega_{X/S}) \neq 0$. Let E be an exceptional divisor. By Proposition 3.10, $\deg \omega_{X/S}|_E < 0$. It follows that $H^0(E, \omega_{X/S}|_E) = 0$. It immediately follows from this that $E \subseteq \mathcal{B}$. As \mathcal{B} is a proper closed subset of X , the lemma is proven.

Let us now suppose $H^0(X, \omega_{X/S}) = 0$. Let $X \rightarrow S' \rightarrow S$ be the decomposition as in Proposition 8.3.8. It suffices to show that the fibers of $X \rightarrow S'$ are irreducible, except for a finite number of them. By hypothesis, $H^0(X_K, \omega_{X_K/K}) = H^0(X, \omega_{X/S}) \otimes_{\mathcal{O}_K} K = 0$. By duality (Remark 6.4.21), we have $H^1(X_K, \mathcal{O}_{X_K}) = 0$. Let $L = K(S')$. By Proposition 3.16(c), X_K is smooth over L or purely inseparable over \mathbb{P}_L^1 . The smooth case was seen at the beginning of the proof. Let us therefore suppose that there exists a finite purely inseparable morphism $\pi_L : X_K \rightarrow \mathbb{P}_L^1$. Replacing S by a dense open subscheme if necessary, π_L extends to a finite purely inseparable morphism $\pi : X \rightarrow \mathbb{P}_{\mathcal{O}_L}^1$. In particular, it is a homeomorphism (Exercise 5.3.9(a)). Therefore the fibers of $X \rightarrow \text{Spec } \mathcal{O}_L$ are irreducible. \square

Remark 3.18. We can also show Lemma 3.17 with the help of the following result: *Let $f : X \rightarrow Y$ be a morphism of finite type of locally Noetherian irreducible schemes. Let us suppose that the generic fiber X_η is non-empty and geometrically irreducible. Then X_y is (geometrically) irreducible for every point y of a dense open subscheme of Y ([42], Proposition IV.9.7.8).*

Proposition 3.19. *Let $f : X \rightarrow S$ be an arithmetic surface. Then there exists a birational morphism $X \rightarrow Y$ of arithmetic surfaces over S , with Y relatively minimal.*

Proof Let $X_0 = X \rightarrow X_1 \rightarrow \dots \rightarrow X_n \rightarrow \dots$ be a sequence of contractions of exceptional divisors. We must show that the sequence is necessarily finite. Let B_n be the (finite) set of points $s \in S$ such that $(X_n)_s$ contains an exceptional divisor. Then $B_{n+1} \subseteq B_n$. Moreover, the total number of irreducible components contained in the fibers $(X_n)_s$, $s \in B_n$, decreases strictly with n . Therefore the sequence is finite. \square

9.3.3 Existence of the minimal regular model

We are going to show the existence of minimal models (Definition 3.14) for arithmetic surfaces whose generic fibers have arithmetic genus $p_a \geq 1$. We will also show that the minimal model is compatible with étale base change (Proposition 3.28).

Lemma 3.20. *Let $X \rightarrow S$ be an arithmetic surface.*

- (1) *Suppose that two distinct exceptional divisors E_1, E_2 on X meet each other. Then $p_a(X_\eta) \leq 0$ and $E_1 \cup E_2$ is a connected component of a closed fiber X_s .*
- (2) *Let $f : Z \dashrightarrow X$ be a birational map of arithmetic surfaces over S . Let $x_0 \in X$ be a closed point where f^{-1} is not defined. Then the total*

transform (Definition 8.3.21) of x_0 by f^{-1} contains either an exceptional divisor or a connected component of Z_s . In the second case, $p_a(X_\eta) \leq 0$.

Proof (1) We first reduce to the case when $X \rightarrow S$ has connected fibers. As usual, we can decompose $\pi : X \rightarrow S$ into $X \rightarrow T \rightarrow S$ where $T = \text{Spec } \pi_* \mathcal{O}_X$ is a Dedekind scheme of dimension 1, finite and flat over S , and $X \rightarrow T$ has connected fibers. Let s be the image of E_i in S . Then X_s is the disjoint union of the connected fibers X_t , $t \in T \times_S \text{Spec } k(s)$. Let ξ (resp. η) be the generic point of T (resp. S). Then $X_\eta = X_\xi$, and $p_a(X_\eta) \leq 0$ (as $k(\eta)$ -scheme) if and only if $H^1(X_\eta, \mathcal{O}_{X_\eta}) = 0$, which is equivalent to $p_a(X_\xi) \leq 0$. Finally, if E is a vertical prime divisor on X , it does not make difference for E being an exceptional divisor on X as S -scheme or as T -scheme (use Castelnuovo's criterion 3.8). Therefore we can suppose that $T = S$ and X_s is connected.

Let $k = k(s)$, $x \in E_1 \cap E_2$ and let $k_i = H^0(E_i, \mathcal{O}_{E_i})$. Then $k_i \subseteq k(x)$, and

$$(E_1 + E_2)^2 = -[k_1 : k] - [k_2 : k] + 2E_1 E_2 \geq -[k_1 : k] - [k_2 : k] + 2[k(x) : k] \geq 0.$$

By Theorem 1.23, this implies that $E_1 \cup E_2 = X_s$. Let $K_{X/S}$ be a canonical divisor on X and let d_i be the multiplicity of E_i in X_s . Then

$$2p_a(X_\eta) - 2 = K_{X/S} \cdot X_s = d_1 K_{X/S} \cdot E_1 + d_2 K_{X/S} \cdot E_2 \leq -d_1 - d_2 \leq -2$$

(Propositions 1.35 and 3.10(a)). Hence $p_a(X_\eta) \leq 0$.

(2) By Theorem 2.7, there exists a morphism $g : \tilde{Z} \rightarrow Z$ made of a finite sequence of blowing-ups of closed points

$$g : \tilde{Z} = Z_n \rightarrow Z_{n-1} \rightarrow \cdots \rightarrow Z_0 = Z$$

and a morphism $h : \tilde{Z} \rightarrow X$ with the commutative diagram

$$\begin{array}{ccc} \tilde{Z} & & \\ g \downarrow & \searrow h & \\ Z & \dashrightarrow f & X \end{array}$$

As f^{-1} is not defined at x_0 , $h^{-1}(x_0)$ has dimension 1. As h is an isomorphism above $V \setminus \{x_0\}$ for some open neighborhood V of x_0 , it is easy to see that $h^{-1}(x_0)$ contains an exceptional divisor E on \tilde{Z} . Let $\Gamma_i \subset Z_i$ be the exceptional locus of $Z_i \rightarrow Z_{i-1}$. This is an exceptional divisor by definition of $Z_i \rightarrow Z_{i-1}$. If $\Gamma_n \cap E = \emptyset$, then the image of E in Z_{n-1} is an exceptional divisor that we still denote by E . Let $m \leq n$ be the smallest positive integer such that $E \cap \Gamma_n = \cdots = E \cap \Gamma_m = \emptyset$. If $m = 1$, then E is an exceptional divisor on Z contained in the total transform $g(h^{-1}(x_0))$ of x_0 . If $m \geq 2$, as E and Γ_{m-1} are exceptional divisors on Z_{m-1} with non-empty intersection, it follows from (1) that $E \cap \Gamma_{m-1}$ is a connected component of $(Z_{m-1})_s$ and $p_a(X_\eta) \leq 0$. The image of E in Z_{m-2} is a connected component of $(Z_{m-2})_s$. The same is then true in Z_s . This proves (2). \square

Theorem 3.21. *Let $X \rightarrow S$ be an arithmetic surface with generic fiber of genus $p_a(X_\eta) \geq 1$. Then X admits a unique minimal model over S , up to unique isomorphism.*

Proof The uniqueness of a minimal model (up to unique isomorphism) follows from the definition. We already know that X admits relatively minimal models (Proposition 3.19). The existence of the minimal model is equivalent to saying that two relatively minimal models X_1, X_2 of X are isomorphic. Let us suppose that this is not the case. Then $X_1 \dashrightarrow X_2$ is not defined at some closed point of X_1 . By Lemma 3.20, this implies that X_2 contains an exceptional divisor. Contradiction. \square

Remark 3.22. This theorem was first proven by Lichtenbaum and Shafarevich. See the references in Remark 3.9.

Remark 3.23. Theorem 3.21 is false without the $p_a(X_\eta) \geq 1$ hypothesis. Indeed, and let us take $X_1 = \mathbb{P}_S^1$, let X be the blowing-up of X_1 with center a closed point $x \in X_1(k(s))$. In X_s , the strict transform E of $(X_1)_s$ is an exceptional divisor. Let $X \rightarrow X_2$ be the contraction of E . Then the models X_1 and X_2 of X are relatively minimal, but not isomorphic as models of X (more precisely, the birational map $X_1 \dashrightarrow X_2$ induced by the identity on the generic fiber does not extend to a morphism because the generic points of the fibers $(X_1)_s$ and $(X_2)_s$ induce distinct valuations in $K(X)$, even if, abstractly, we have $X_1 \simeq X_2 \simeq \mathbb{P}_S^1$). See also Exercise 3.1.

Corollary 3.24. *Let $X \rightarrow S$ be a relatively minimal arithmetic surface, with generic fiber X_η verifying $p_a(X_\eta) \geq 1$. Then X is minimal.*

Proof This is an immediate consequence of Theorem 3.21 and of the definition of a relatively minimal surface. \square

Definition 3.25. Let D be a divisor on a regular fibered surface $X \rightarrow S$. We say that D is *numerically effective* if $D \cdot C \geq 0$ for every vertical prime divisor C . For example, an ample divisor is numerically effective by Proposition 7.5.5 and the fact that the restriction of an ample divisor to a closed subscheme remains ample.

Corollary 3.26. *Let $X \rightarrow S$ be an arithmetic surface with $p_a(X_\eta) \geq 1$. Let $K_{X/S}$ be a canonical divisor. Then $X \rightarrow S$ is minimal if and only if $K_{X/S}$ is numerically effective.*

Proof Indeed, by Proposition 3.10(b), $K_{X/S}$ is numerically effective if and only if X is relatively minimal, which, in turn, is equivalent to X being minimal by Corollary 3.24. \square

Corollary 3.27. *Let $\pi : X \rightarrow S$ be a minimal arithmetic surface whose generic fiber is an elliptic curve. Then $\pi_* \omega_{X/S}$ is an invertible sheaf on S , and the canonical homomorphism $\pi^* \pi_* \omega_{X/S} \rightarrow \omega_{X/S}$ is an isomorphism.*