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a closed subset, which does not contain the generic point, by the hypothesis
that H0(X, ωX/S) 6= 0. Let E be an exceptional divisor. By Proposition 3.10,
deg ωX/S |E < 0. It follows that H0(E, ωX/S |E) = 0. It immediately follows from
this that E ⊆ B. As B is a proper closed subset of X, the lemma is proven.

Let us now suppose H0(X, ωX/S) = 0. Let X → S′ → S be the decomposition
as in Proposition 8.3.8. It suffices to show that the fibers of X → S′ are irre-
ducible, except for a finite number of them. By hypothesis, H0(XK , ωXK/K) =
H0(X, ωX/S)⊗OK

K = 0. By duality (Remark 6.4.21), we have H1(XK ,OXK
) =

0. Let L = K(S′). By Proposition 3.16(c), XK is smooth over L or purely
inseparable over P1

L. The smooth case was seen at the beginning of the proof.
Let us therefore suppose that there exists a finite purely inseparable morphism
πL : XK → P1

L. Replacing S by a dense open subscheme if necessary, πL extends
to a finite purely inseparable morphism π : X → P1

OL
. In particular, it is a

homeomorphism (Exercise 5.3.9(a)). Therefore the fibers of X → SpecOL are
irreducible.

Remark 3.18. We can also show Lemma 3.17 with the help of the following
result: Let f : X → Y be a morphism of finite type of locally Noetherian irre-
ducible schemes. Let us suppose that the generic fiber Xη is non-empty and
geometrically irreducible. Then Xy is (geometrically) irreducible for every point
y of a dense open subscheme of Y ([42], Proposition IV.9.7.8).

Proposition 3.19. Let f : X → S be an arithmetic surface. Then there exists
a birational morphism X → Y of arithmetic surfaces over S, with Y relatively
minimal.

Proof Let X0 = X → X1 → . . . → Xn → . . . be a sequence of contractions of
exceptional divisors. We must show that the sequence is necessarily finite. Let
Bn be the (finite) set of points s ∈ S such that (Xn)s contains an exceptional
divisor. Then Bn+1 ⊆ Bn. Moreover, the total number of irreducible components
contained in the fibers (Xn)s, s ∈ Bn, decreases strictly with n. Therefore the
sequence is finite.

9.3.3 Existence of the minimal regular model

We are going to show the existence of minimal models (Definition 3.14) for
arithmetic surfaces whose generic fibers have arithmetic genus pa ≥ 1. We
will also show that the minimal model is compatible with étale base change
(Proposition 3.28).

Lemma 3.20. Let X → S be an arithmetic surface.

(1) Suppose that two distinct exceptional divisors E1, E2 on X meet each
other. Then pa(Xη) ≤ 0 and E1 ∪ E2 is a connected component of a
closed fiber Xs.

(2) Let f : Z 99K X be a birational map of arithmetic surfaces over S.
Let x0 ∈ X be a closed point where f−1 is not defined. Then the total
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transform (Definition 8.3.21) of x0 by f−1 contains either an exceptional
divisor or a connected component of Zs. In the second case, pa(Xη) ≤ 0.

Proof (1) We first reduce to the case when X → S has connected fibers. As
usual, we can decompose π : X → S into X → T → S where T = Spec π∗OX

is a Dedekind scheme of dimension 1, finite and flat over S, and X → T has
connected fibers. Let s be the image of Ei in S. Then Xs is the disjoint union of
the connected fibers Xt, t ∈ T ×S Spec k(s). Let ξ (resp. η) be the generic point
of T (resp. S). Then Xη = Xξ, and pa(Xη) ≤ 0 (as k(η)-scheme) if and only if
H1(Xη,OXη

) = 0, which is equivalent to pa(Xξ) ≤ 0. Finally, if E is a vertical
prime divisor on X, it does not make difference for E being an exceptional divisor
on X as S-scheme or as T -scheme (use Castelnuovo’s criterion 3.8). Therefore
we can suppose that T = S and Xs is connected.

Let k = k(s), x ∈ E1 ∩ E2 and let ki = H0(Ei,OEi
). Then ki ⊆ k(x), and

(E1 + E2)2 = −[k1 : k]− [k2 : k] + 2E1E2 ≥ −[k1 : k]− [k2 : k] + 2[k(x) : k] ≥ 0.

By Theorem 1.23, this implies that E1 ∪ E2 = Xs. Let KX/S be a canonical
divisor on X and let di be the multiplicity of Ei in Xs. Then

2pa(Xη)− 2 = KX/S ·Xs = d1KX/S · E1 + d2KX/S · E2 ≤ −d1 − d2 ≤ −2

(Propositions 1.35 and 3.10(a)). Hence pa(Xη) ≤ 0.
(2) By Theorem 2.7, there exists a morphism g : Z̃ → Z made of a finite

sequence of blowing-ups of closed points

g : Z̃ = Zn → Zn−1 → · · · → Z0 = Z

and a morphism h : Z̃ → X with the commutative diagram

Z̃4
4
446h

u
g

Z wf
X

As f−1 is not defined at x0, h−1(x0) has dimension 1. As h is an isomorphism
above V \ {x0} for some open neighborhood V of x0, it is easy to see that
h−1(x0) contains an exceptional divisor E on Z̃. Let Γi ⊂ Zi be the exceptional
locus of Zi → Zi−1. This is an exceptional divisor by definition of Zi → Zi−1.
If Γn ∩ E = ∅, then the image of E in Zn−1 is an exceptional divisor that
we still denote by E. Let m ≤ n be the smallest positive integer such that
E ∩ Γn = · · · = E ∩ Γm = ∅. If m = 1, then E is an exceptional divisor on Z
contained in the total transform g(h−1(x0)) of x0. If m ≥ 2, as E and Γm−1

are exceptional divisors on Zm−1 with non-empty intersection, it follows from
(1) that E ∩ Γm−1 is a connected component of (Zm−1)s and pa(Xη) ≤ 0. The
image of E in Zm−2 is a connected component of (Zm−2)s. The same is then
true in Zs. This proves (2).
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Theorem 3.21. Let X → S be an arithmetic surface with generic fiber of
genus pa(Xη) ≥ 1. Then X admits a unique minimal model over S, up to unique
isomorphism.

Proof The uniqueness of a minimal model (up to unique isomorphism) follows
from the definition. We already know that X admits relatively minimal models
(Proposition 3.19). The existence of the minimal model is equivalent to saying
that two relatively minimal models X1, X2 of X are isomorphic. Let us suppose
that this is not the case. Then X1 99K X2 is not defined at some closed point
of X1. By Lemma 3.20, this implies that X2 contains an exceptional divisor.
Contradiction.

Remark 3.22. This theorem was first proven by Lichtenbaum and Shafarevich.
See the references in Remark 3.9.

Remark 3.23. Theorem 3.21 is false without the pa(Xη) ≥ 1 hypothesis.
Indeed, and let us take X1 = P1

S , let X be the blowing-up of X1 with cen-
ter a closed point x ∈ X1(k(s)). In Xs, the strict transform E of (X1)s is an
exceptional divisor. Let X → X2 be the contraction of E. Then the models X1

and X2 of X are relatively minimal, but not isomorphic as models of X (more
precisely, the birational map X1 99K X2 induced by the identity on the generic
fiber does not extend to a morphism because the generic points of the fibers
(X1)s and (X2)s induce distinct valuations in K(X), even if, abstractly, we have
X1 ' X2 ' P1

S). See also Exercise 3.1.

Corollary 3.24. Let X → S be a relatively minimal arithmetic surface, with
generic fiber Xη verifying pa(Xη) ≥ 1. Then X is minimal.

Proof This is an immediate consequence of Theorem 3.21 and of the definition
of a relatively minimal surface.

Definition 3.25. Let D be a divisor on a regular fibered surface X → S. We
say that D is numerically effective if D ·C ≥ 0 for every vertical prime divisor C.
For example, an ample divisor is numerically effective by Proposition 7.5.5 and
the fact that the restriction of an ample divisor to a closed subscheme remains
ample.

Corollary 3.26. Let X → S be an arithmetic surface with pa(Xη) ≥ 1. Let
KX/S be a canonical divisor. Then X → S is minimal if and only if KX/S is
numerically effective.

Proof Indeed, by Proposition 3.10(b), KX/S is numerically effective if and only
if X is relatively minimal, which, in turn, is equivalent to X being minimal by
Corollary 3.24.

Corollary 3.27. Let π : X → S be a minimal arithmetic surface whose generic
fiber is an elliptic curve. Then π∗ωX/S is an invertible sheaf on S, and the
canonical homomorphism π∗π∗ωX/S → ωX/S is an isomorphism.


