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Chapitre 1

Rappels et compléments
d’algébre commutative.

Tous les anneaux considérés dans ce cours sont commutatifs unitaires. Les
homomorphismes d’anneaux A — B envoient 1,4 sur 1 par définition.

1.1 Anneaux et modules noethériens
Soit A un anneau (commutatif unitaire).

Définition 1.1.1 Un A-module M est de type fini s’il est engendré par une
famille finie. Il est noethérien si tous ses sous-modules sont de type fini. En
particulier M lui-méme est de type fini. On dira que A est noethérien s’il est
noethérien en tant que A-module (équivalent : tout idéal est de type fini).

Concrétement, M est de type fini s’il existe x1,...,2, € M tels que M
soit engendré par les ;. Cela revient a dire que tout x € M s’écrit comme
r = ayri + -+ + a,r, pour certains ai,...,a, € A. Quand cela est le cas, on
écrit aussi

M= Az, + -+ Ax,.

Exemple 1.1.2 1. Un corps est toujours noethérien. Un espace vectoriel sur
un corps K est noethérien si et seulement s’il est de dimension finie.

2. L’anneau Z (ou plus généralement un anneau principal) est noethérien
puisque tout idéal est principal.

3. Q est un anneau noethérien, mais comme Z-module il n’est pas noethérien.

4. L’anneau des polyndmes a coefficients dans un corps et a une infinité de
variables n’est pas noethérien.

5. L’ensemble des fonctions (resp. fonctions continues; resp. fonctions C°°)
de R dans R est un anneau non noethérien.
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La proposition suivante nécessite I'axiome du choix.

Proposition 1.1.3. Les propriétés suivantes sont équivalentes :
(i) M est noethérien ;
(ii) toute suite croissante de sous-modules de M est stationnaire ;

(iii) tout ensemble non vide de sous-modules de M admet un élément mazimal
(pour Uinclusion).

Démonstration. (i) = (ii). La réunion est un sous-module, de type fini, donc
égal & un des sous-modules.

(ii) = (iii) Soit F' un tel ensemble. S’il n’a pas d’élément maximal, alors on
peut construire une suite strictement croissante infinie avec des sous-modules
appartenant a F'.

(iii) = (i). Soit N un sous-module. Soit F' I’ensemble des sous-modules de
N de type fini. Alors F' est non vide car il contient {0}. Soit Ny un élément
maximal de F'. Pour tout x € N, Ng+zA € F, donc x € Ny et N = Ny est de
type fini. O

En restant dans les axiomatiques ZF (sans I’axiome du choix donc), (i) n’im-
plique pas (iii). Il est alors possible de définir les modules noethériens avec la
propriété (iii) qui est plus forte que (i). Avec cette définition, les énoncés de
ce paragraphe restent vrais. Les anneaux qu’on rencontrera dans ce cours sont
noethériens dans le sens fort (iii).

Proposition 1.1.4. La classe des A-modules noethériens est stable par sous-
module, quotient, extension (suite exacte) et somme directe finie.

Démonstration. Pour M & N : utiliser la projection dans N. O

Corollaire 1.1.5. Soit A un anneau noethérien. Alors M est noethérien si et
seulement si M est de type fini.

Le théoréme suivant ne sera pas montré en cours.

Theorem 1.1.6. (Théoréme de Transfert de Hilbert) Si A est noethérien, alors
Panneau des polynomes A[X] est noethérien.

Démonstration. Soit I un idéal de A[X]. Pour tout d > 0, posons
Ji={acA|FF(X)=aX+aq 1 X'+ ... 4aecl}

C’est ’ensemble des coefficients dominants des polynémes de degré d dans I
union {0}. C’est un idéal de A et on a Jy C J441 pour tout d > 0. On a donc
une suite croissante d’idéaux dans A. D’aprés la proposition 1.1.3, la suite est
stationnaire et donc il existe N > 0 tel que J; = J441 pour tout d > N. Pour
tout d < N, on prend un systéme de générateurs {aqn, ..., dd,my; de Jq (c’est-
a~dire que Jy est engendré par {aq1, ..., @d,m, }). Pour tout j < myg, on fixe un
élément
Fy;(X)=a4,; X%+ {termes de degré <d —1} € I.
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Montrons que I est engendré par I'ensemble S = {Fy;(X)|0<d < N,1<j <
mq}. Ce qui impliquera que I est de type fini et donc que A[X] est noethérien.

Soit I’ 'idéal de A[X] engendré par S. Alors I’ C I car S C I. Supposons que
I # I’ et montrons qu'’il y a une contradiction. Soit P(X) = aX¥+...4+ag € I\I'
de degré d minimal parmi les polynomes de I \ I’. On a a € J;. Supposons
d’abord d < N. Alors J; = Jy. Il existe donc ¢y 1,...,cnmy € A tels que
a =3 1<j<m, CN,jan,;. Considérons

QX):=P(X)— >  eniFn(X)xN.

1<j<mn

Alors Q(X) € I'\ I, deg Q(X) < d. Impossible.
Supposons maintenant d < N. Comme pour Jy, il existe c41,...,C4,m, tels
que a =), iz, Cd,jaa,j. Considérons

QX)=P(X)- > caiFa;(X).

1<j<mgq
Alors Q(X) € I\TI', degQ(X) < d—1. On a de nouveau une contradiction. [

Définition 1.1.7 Soit A un anneau. Une A-algébre est un anneau B muni d’un
homomorphisme d’anneaux ¢ : A — B.

Les exemples typiques sont les anneaux quotients de A, les anneaux de po-
lyndomes a coefficients dans A (la structure d’algébre est donnée par a — a
polynéme constant), et les anneaux quotients de ces derniers. Tout anneau B
contenant A comme sous-anneau est naturelement une A-algébre.

Une extension de corps L/K correspond a une K-algébre L qui est un corps,
I’homomorphisme K — L qui définit la structure étant 'inclusion.

Soient ¢ : A — B et ¢p : A — C des A-algébres. Un homomorphisme de
A-algébres f : B — C est un homomorphisme d’anneaux tel que f o ¢ = 1.
Lorsque ¢, sont des inclusions, cela veut dire que f|4 est égal a l'identité.

Soit ¢ : A — B une A-algébre. On a alors naturellement une structure de
A-module sur B en posant pour la multiplication externe a x b = ¢(a)b pour
tout a € A et pour tout b € B. Une A-algébre finie est une A-algébre qui est de
type fini en tant que A-module (avec la structure décrite ci-avant). On dit que
B est une A-algébre de type fini si B est isomorphe, en tant que A-algébre, a
un quotient d’un anneau de polynomes A[T1,...,Ty].

Soit
F(Ty,...\Ty) = Y a,dy" Ty € A[Th,..., ).
veNn»
Soient b1,...,b, € B. On note

F(br, .o bn) = Y ¢lay)by’ b € B.
veN™

C’est une “expression polynomiale” en les by, ..., b,. On note A[by,...,b,] 'en-
semble de ces expressions polynomiales quand F (T4, ..., T, ) parcourt 'ensemble



8 CHAPITRE 1. ALGEBRE COMMUTATIVE

A[Ty,...,T,]. Cest une sous-A-algebre de B. Avec cette notation, on a B finie
sur A s’il existe by,...,b, € B tels que

B = Ab; +--- 4 Ab,.
Tandis que B est de type fini sur A §’il existe by, ...,b, € B tels que
B = Alby,...,b,).
Ce qui est une condition plus faible qu’étre finie.
Exemple 1.1.8 Tout anneau admet une unique structure de Z-algébre.

Corollaire 1.1.9. Si A est noethérien (par exemple si c¢’est un corps ou un
anneau principal), alors toute A-algébre de type fini est un anneau noethérien.

Exemple 1.1.10 L’anneau des polynomes A[T] est naturellement une A-alge-
bre, de type fini par définition, mais pas finie. En effet, si A[T] était engendré
par Pi(T),..., P,(T) en tant que A-module, alors tout élément de A[T] serait
de la forme )7, .., a;P;(T) avec a; € A, et serait de degré < max;{P;(T)}.
Absurde.

Exemple 1.1.11 Soit P(T) = T% 4+ aq_ 1Tt + -+ a;T + ag € A[T]. Alors
B = A[T]/(P(T)A[T]) est une A-algebre finie. En effet en utilisant la division
euclidienne par P(T) dans A[T], ce qui est possible car P(T') est unitaire, on

voit que B est engendré comme A-module par la famille {1,¢,...,t "1} out € B
est la classe de T' modulo P(T)A[T].

Exercice 1.1.12 Soit F(T) = aqT% +aq_ 1T+ -+ ayT + agA[T] un poly-
nome. Supposons que B = A[T|/(F(T)A[T]) soit fini sur A. Notons ¢ la classe
de T' dans 'anneau quotient B.

1. Montrer qu’il existe n > 0 tel que {1,¢,...,t" 1} soit une famille généra-
trice de B comme A-module. En déduire qu’il existe un polyndme unitaire
P(T) € A[T] de degré n tel que P(t) = 0.

2. Supposons de plus que A est intégre. Montrer que F(T) est unitaire.

Soit B une A-algébre et soit M un B-module. Alors M a naturellement une

structure de A-module. Le produit externe étant défini par a x z = ¢(a)z si
¢ : A — B définit la structure de A-algébre sur B.

Proposition 1.1.13. (Transitivité) Soit B une A-algébre finie et soit M un
B-module de type de fini. Alors M, en tant que A-module, est de type fini. En
particuliére, une algébre finie sur B est une algébre finie sur A.

Démonstration. Soit M =3, _,., Bxiet B=3,_,.,, Ab;. Alors
1<isnil<j<m

O

Corollaire 1.1.14. Sous les hypothéses de la proposition, toute B-algébre finie
est aussi une A-algébre finie.
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1.2 Modules sur un anneau principal

Rappelons qu’un anneau A est principal s’il est intégre, et si tout idéal de
A est engendré par un élément. En général on convient implicitement que A
n’est pas un corps. Exemples usuels : Z, K[z], Z[i]. On en verra quelques autres.
Mais parmi les anneaux d’entiers, il n’en existe pas beaucoup. Une fagon de
montrer qu'un anneau A est principal est de montrer qu’il est euclidien, c’est-a-
dire qu’on a une division euclidienne sur 'anneau (c’est le cas des trois exemples
précédents). Mais un anneau principal n’est pas nécessairement euclidien.

Les modules sur un anneau sont des généralisations des espaces vectoriels
sur un corps. Mais contrairement aux espaces vectoriels, un module n’admet pas
nécessairement une base. Par exemple Z/2Z vu comme Z-module est non nul,
mais n’a aucune famille libre (tout vecteur x est “tué par 2” : 2z = 0). Cependant,
sur un anneau principal, la structure des modules est particuliérement simple.
Soit A un anneau principal. Soit M un A-module. L’ensemble

M; = UaeA,a;éO{x eM | ar = O}

est un sous-module de A, appelé la torsion de M. Si A = Z, cela correspond aux
éléments d’ordre fini dans le groupe abélien M. On dit que M est sans torsion si
M, = {0}. Les deux théorémes qui suivent ont été vus au semestre d’automne.

Theorem 1.2.1. Supposons A principal. Soit M un module de type fini sur A.
Alors M /My est libre de rang fini, My est de type fini, et M est isomorphe (non
canoniquement) & la somme directe

En particulier, M est libre si et seulement s’il est sans torsion sur A.

Theorem 1.2.2. (Base adaptée) Soit M un module libre de rang fini m sur A.
Soit N un sous-module de M. Alors N est libre de rang n < m. De plus il existe
une base {e1,...,es,...€m} de M et des éléments ay,...,a, € A non nuls tels
que

N = ®1<i<naie;A, ailaz]|--|an.

La suite décroissante des idéaur a1 A D -+ D a, A est unique.

Remarque 1.2.3 Le théoréme dit qu’un sous-module N C M posséde toujours
une base de la forme {ajes,...,amen}t pour un choix convenable des e;. En
revanche il est faux en générale qu'une base de N se compléte en une base
de M de cette facon, méme & homothétie prés. Prenons par exemple M = Z3
avec la base canonique €7, ¢€g,€3. Soit N le sous-module de M engendré par
f1 := €1, fa := €1 + 2e5 + 2e3. Ces derniers forment une base de N. Mais il
n’existe pas de base e, e, e3 de M et des a; € Z tels que f1 = ajeq, fo = ases.
C’est-a-dire qu’on ne peut pas imposer une base de N dans le théoréme.
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1.3 Rappel sur le lemme de Gauss dans les an-
neaux factoriels

On se donne un anneau factoriel A, de corps de fractions K.

Proposition 1.3.1. (Lemme de Gauss) Soit A factoriel de corps des fractions
K.

(1) Soient F,G € A[X] non nuls. Alors
cont(F(X)G(X)) = cont(F(X))cont(G(X))

(a association pres).
(2) Soit f(X) € K[X] non nul. Alors cont(f(X)) € K* est défini a multiplica-
tion par une unité de A pres, et cont(fg) = cont(f)cont(g).

(3) Si f(X) € K[X] est unitaire, alors
cont(f(X)) € A~ :={1/a|a € A\ {0}},

et on a cont(f(X)) =1 si et seulement si f(X) € A[X].

(4) L’anneau A[X)] est factoriel. Ses éléments irréductibles sont les irréductibles
de A et les polynomes F(X) € A[X] non constants irréductibles dans K[X]
et de contenu 1.

Démonstration. (3) Attention, le contenu d’un polynome est défini & multipli-
cation par un élément inversible de A prés. On écrit

FX) =Xy oyt By X0
a a a
avec a,a; € A et a # 0. Alors

cont(af) _ pged{a,an_1,...,a0}
a a

cont(f) =

Donc 1/cont(f) € A. Sicont(f) = 1, alors pged{a, an—1,...,a0} = a,donca | a;
pour tout ¢ et f(X) € A[X].
O



Chapitre 2

Extensions entiéres

2.1 Eléments entiers

Soient A un anneau intégre, sous-anneau d’un anneau intégre B. On peut
donc considérer B comme une A-algébre.

Définition 2.1.1 On dit qu'un élément b € B est entier sur A s’il existe un
polynome unitaire P(X) € A[X] tel que P(b) = 0. Autrement dit, s’il existe
ag,...,a4—1 € A (d > 1) tels que

bd+ad_1bd71 +---+ayp=0.

L’équation ci-dessus définit une relation entiére de b sur A. Tout élément de A
est entier sur A. On dit que B est entier sur A si tous ses éléments sont entiers
sur A. On dira aussi que B est une extension entiére de A.

Exemple 2.1.2 Les éléments v/2,i = /—1,v/2 + i, (v/5 +1)/2 sont entiers sur
Z : ce sont des zéros respectivement des polynomes

X2 -2 X% 41, X*—2X%+9, X2 - X -1ecZ[X].

Par contre \@/2 = 1/\/§ n’est pas entier sur Z. Cela se montre directement en
considérant une relation entiére sur Z. Voir aussi 2.1.4.

Lorsque A, B sont des corps, les éléments entiers sont les éléments algé-
briques. Mais lorsque A n’est pas un corps, il ne suffit pas que b soit zéro d’un
polynéme non nul, car on ne peut pas rendre unitaire un polynéme non nul en
divisant par le coefficient dominant.

Tout élément de B entier sur A est algébrique sur Frac(A). Réciproquement,
quels sont les éléments de Frac(B) entiers sur A ?

Proposition 2.1.3. Soit A un anneau factoriel de corps de fractions K. Soit
L/K une extension de corps. Alors b € L est entier sur A si et seulement si son
polynome minimal m(X) appartient o A[X].

11
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Démonstration. Supposons que b € L soit entier sur A. Il existe un polynéme
unitaire F(X) € A[X] qui annule b. On a F(X) = m(X)g(X) pour un certain
g(X) € K[X] unitaire. Or cont(m(X)),cont(g(X)) € A~! et leur produit vaut
1, donc cont(m(X)) =1 et m(X) € A[X] (proposition 1.3.1(3)).

La réciproque est immédiate.

Exemple 2.1.4 Le polynéme minimal de v/2/2 est X? — 1/4 ¢ Z[X]. Donc
V/2/2 n’est pas entier sur Z.

Exercice 2.1.5 Trouver I'ensemble des éléments entiers sur Z dans Q[v/d] ot
d € Z est sans facteur carré (c’est Z[(vd + 1)/2] ou Z[V/d] selon que d = 1
mod 4 ou non).

On sait que dans les extensions de corps, les éléments algébriques sont stables
par addition et multiplication. Nous allons montrer la méme propriété pour les
éléments entiers.

Proposition 2.1.6. Soient A C B des anneaux intégres. Soit b € B. Les condi-
tions suivantes sont équivalentes :
(i) b est entier sur A;

(ii) La sous-A-algébre
Alp] == {F(b) | F(X) € A[X]}

de B est finie sur A ;

(iil) Il existe un sous-A-module M # 0 de B de type fini sur A et stable par la
multiplication par b.

Démonstration. (i) = (ii). Soit P(X) € A[X] un polynéme unitaire que annule
b. Par division euclidienne par P(X), on est ramené & ne considérer que les F(b)
avec deg F'(X) < d := deg P(X). Donc A[b] est engendré par {1,b,...,b% 1}
(ii) = (iii). Prendre E = A[b)].
(iii) = (i). Soient z1,...,x, une famille génératrice de E en tant que A-
module. Il existe une matrice N = (a;;)1<i j<n € My (A) telle que

bxy,...,20)" = N.(z1,...,2,)"
Donc
D.(Il, NN 71'n)t =0
ou D =bl, — N € M,(B). 1l suit que

tcom(D).D.(21,...,2,) =0

pour la comatrice de D (vues dans M, (Frac(B)), voir aussi §2.3.1). Donc det D €
A satisfait (det D)z = 0 pour tout € E. Comme F # 0 et B est un anneau
intégre, on en déduit que det D = 0. Autrement dit, le polynéme caractéristique
de D, élément de Frac(A)[T], s’annule en b. Mais ce polyndme caractéristique
est unitaire et, par sa construction, est a coefficients dans A. Il suit que b est
entier sur A. O
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Remarque 2.1.7 L’équivalence entre (i) et (ii) ci-dessus est vraie pour toute
A-algébre B, sans hypothése d’intégrité. Mais on a alors besoin d’une version
de Cayley-Hamilton pour les modules sur un anneau quelconque. D’autre part,
cette équivalence peut se démontrer directement sans passer par (iii). En effet
si A[b] est de type fini comme A-module, engendré par P;(b),..., P.(b), alors
A[b] est engendré par 1,b,...,b° comme A-module, ot § = max;{deg P;(X)}.
En écrivant b°T! comme une combinaison linéaire des puissances inférieures on
voit que b est entier sur A.

L’utilité de (iii) est essentiellement pour le corollaire suivant quand A n’est
pas noethérien.

Corollaire 2.1.8. Soit A C B comme avant. Si B est fini sur A, alors il est
entier sur A.

Démonstration. Cela résulte de 2.1.6(iii) en prenant M = B. O

Corollaire 2.1.9. Soient A C B C C des anneauz intégres.
(1) Soient by,...,b, € B entiers sur A. Alors

A[bl,...,bn] = {F(bl,,bn) | F(Xh...,Xn) EA[Xl,...,Xn]}

est fini (donc entier) sur A.

(2) L’ensemble By des éléments de B entiers sur A forment une sous-A-algébre
entiére de B.

(3) (Transitivité) Supposons C entier sur B et B entier sur A. Alors C est
entier sur A.

Démonstration. (1) On a A[by] fini sur A. Comme b, est entier sur A donc
entier sur Afby,...,by_1], on a Afby,...,by] fini sur Afby,...,b,—1]. On conclut
par récurrence sur n en utilisant le corollaire 1.1.14.

(2) Resulte de (1). En effet il est clair que A C By. Si by,by € B, alors
by + by, b1by € A[by,bs] sont entiers sur A, donc appartiennent & By.

(3) Si ¢ € C est entier sur B, on a une relation entiére

" F by 4 by =0, b €B.

Alors c est entier sur Afby, . ..,b,—1], donc Afbg,...,by,_1,c] est fini sur A et ¢
est entier sur A. O

Exemple 2.1.10 Les nombres 1/2,v/3 sont évidemment entiers sur Z. Mais
V2 + /3 aussi, ce qui est moins évident a priori.

Exercice 2.1.11 Une preuve plus directe de 2.1.9. Soit b € B (B intégre) entier
sur A. Soit P(X) € A[X] un polynéme unitaire qui s’annule en b.

1. Soient f1,..., 8, € Q les racines de P(X) dans une cloture algébrique
de K = Frac(A). Alors s1(B1,...,8n)s- s $n(B1y- -, 0n), ot les s1,..., 8,
sont les polynomes symétriques élémentaires, appartiennent a A.
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2. En déduire que pour tout F(Xy,...,X,) € A[Xy,...,X,] symétrique,
F(B,...,0,) € A.
3. Soit H(X1,...,Xn) € A[X1,...,X,] et considérons

f(T) = H (T - H(Bd(l)a v 750(n))) € Q[T]

O'ESn

Montrer que les coefficients de f(T") sont de polyndmes symétriques en les
Biy...,Pn. En déduire que f(T) € A[T] et que H(S1,...,[B,) est entier
sur A.

Définition 2.1.12 Soient K le corps des fractions de A, L/K une extension de
corps. On appelle cloture intégrale de A dans L U'ensemble des éléments de L
entiers sur A.C’est un sous-anneau de L contenant A et entier sur A.

Définition 2.1.13 Soit L un corps de nombres (extension finie de Q). La cloture
intégrale de Z dans L est appelée l’anneau des entiers de L et notée, dans ce
cours, Of.

Exemple 2.1.14 1. L’anneau des entiers de Z est Z lui-méme. En effet si
r € Q est entier sur Z, comme son polynéme minimal sur Q est X —r, on
a r € Z par la proposition 2.1.3.

2. Soit L = Q[i] avec i2 = —1. Si  +yi € Q[i] est entier sur Z, son polynome
minimal X2 — 22X + (22 + 3?) doit appartenir & Z[X]. Donc z et par
suite y appartiennent & %Z. On écrit x = k/2,y = £/2 avec k, £ € Z. Alors
k2 + 0% € 4Z. Cela implique que 1'un des k, £ est pair, et aussi que 'autre
est pair, donc z,y € Z. Inversement Z[i] est fini sur Z donc ses éléments
sont entiers sur Z. On voit ainsi que O, = Z[i] 'anneau des entiers de
Gauss.

Définition 2.1.15 On dit qu’'un anneau intégre A est intégralement clos si sa
cloture intégrale dans Frac(A) est égale est a A lui-méme.

Exemple 2.1.16 L’anneau A := Z[\/5] n’est pas intégralement clos. En effet,
(1 ++/5)/2 € Frac(A) est entier sur Z, donc entier sur A, mais il n’appartient
pas & A.

Proposition 2.1.17. Soit L une extension de Frac(A). Alors la cloture intégrale
de A dans L est un anneau intégralement clos.

Démonstration. Soit B la cloture intégrale de A dans L. Soit ¢ € Frac(B) C L
entier sur B. Alors ¢ est entier sur A d’aprés 2.1.9(3). Donc ¢ € B. O

Proposition 2.1.18. Tout anneau factoriel (en particulier tout anneaw princi-
pal) est intégralement clos.
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Démonstration. Soit € K un élément entier sur A et non nul. On écrit z = u/v
avec u, v premiers entre eux. Soit une relation entiére

"+ ap 12" P4 4ay=0, a; € A.

Alors
u" + ap_1o(u™ 4 Fagu™ ) = 0.

Si p est un diviseur premier de v, alors p | u", donc p | u. Ce qui est contraire a
I’hypothése u, v premiers entre eux. Il suit que v n’a pas de diviseur premier et
donc v € A*. D’ou x € A. O

Remarque 2.1.19 1l existe des anneaux intégralement clos qui ne sont pas
factoriels. Cest le cas par exemple de 'anneau Q[z,y, 2]/(zy — 2?). Un anneau
des entiers d’un corps de nombres O n’est presque jamais factoriel. On peut
montrer qu’il est factoriel si et seulement s’il est principal. Ce qui est rarement
vrai.

Nous avons une généralisation de la proposition 2.1.3 :

Proposition 2.1.20. Soit A un anneau intégralement clos. Soient L/K une
extension algébrique et b € L de polyndome minimal my(X) € K[X]. Alors b est
entier sur A si et seulement si my(X) € A[X].

Démonstration. Supposons b entier sur A. Soient by, ..., b, les racines de my(X)
dans une cléture algébrique €2 de K. Pour tout ¢ < n, par 'unicité du corps de
rupture, il existe un K-ismorphisme o : K[b] — K|[b;] qui envoie b sur b;. Cet
isomorphisme transforme une relation entiére de b sur A en une relation entiére
de b; sur A. Donc b; est aussi entier sur A. Il suit de 2.1.9(2) que les coefficients
mp(X) = [[,(X — b;) € K[X] sont entiers sur A, donc appartiennent 4 A. O

2.2 Norme, trace, discriminant

Dans ce paragraphe nous allons associer des invariants & des éléments entiers
et aux extensions entiéres libres. Le but est de définir des invariants des corps
de nombres qui permettent de les classifier.

2.2.1 Interlude sur les polyndmes symétriques

Soient K un corps et n > 1. Un polynéme P(Xy,...,X,) € K[X1,...,X,]
est dit symétrique s’il est invariant par permutation des variables :

P(X:ay, . Xrm)) = P(X1,...,X,), pour tout 7 € S,
(groupe symétrique). Par exemples, pour tout 1 < i < n, les polyndmes
Si(Xl,...,Xn): Z le...in
1<j1<g2<...<ji<n

sont symétriques et appelés les polynomes symétriques élémentaires.
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Théoréme 2.2.1. L’ensemble des polynémes symétriques dans K[ Xy, ..., X,]
est égal & la sous-K-algébre K[s1(X1,...,Xn),- -, 50(X1,..., X,)]. Autrement
dit, tout polyndme symétrique est une combinaison K -linéaire de produits de
polynémes symétriques élémentaires.

Sur un corps de caractéristique nulle, ’anneau des polynémes symétrique est
également engendré par les polynémes de Newton >, ., T}, i =1,2,....n.

Proposition 2.2.2. Dans K[Xy,...,X,][Y], on a

[T =X =v"—siY" oo (1), Y 4 (=1)"s,

1<i<n

(ou il faut comprendre s;(X1,...,X,) pour s;.)

Corollaire 2.2.3 (Relations entre racines et coefficients). Soit
PX)=X"4a,1 X" '+ +a1 X + a9 € K[X].

Soient x1,...,x, les racines de P(X) dans une cloture algébrique de K, comp-
tées avec multiplicité. Alors

si(x1, .., 0) = (=D fan_g, i=1,...,n.

En particulier, x1 + ++ + xp = —ap—1 et x1 -+ -z, = (—1)"ap.

2.2.2 Le cas des extensions finies de corps

Dans ce sous-paragraphe et le suivant, nous allons donner des formules aussi
simples que possibles pour le calcul de la trace et de la norme.

Proposition 2.2.4. Soient L/K une extension finie, x € L et
me(X) = X" +an 1 X" '+ Fag € K[X]

son polynoéme minimal. Alors

(1)
Trie)/k(®) = —an—1, Ngp)/x(®)=(=1)"ao.

(2)
Trpk(z) = [L: K[2]|Trgpa/r(2),  Npjg(@) = N, g (@) B

Démonstration. (1) La matrice de lapplication K-linéaire K[z] — K[z] mul-

tiplication par x, dans la base {1,,...,2" 1}, est la matrice compagnon de
0 0 O —ag
1 0 0 —ai
M =

0 . 1 —Aan—-1
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Cela permet de conclure que Trg(y)/x(2) = Tr(M) = —an_1, Ngp/x(z) =
det(M) = (—=1)"*(—ap) = (=1)"ap.
(2) Soit ey, . .., e, une base de L/ K[x]. Comme {1, z,...,2" '} est une base

de K[z]/K, on obtient une base

{e1,zeq,. .. gr”flel} U {eq, zea, ... ,x"fleg} U U{em,zem,. .. ,x"flem}

de L/K. La matrice dans cette base de la multiplication par z dans L est la
matrice diagonale par blocs

M 0 0 0
0 M 0 0
o . . .. M
Cela implique immeédiatement (2). O

Remarque 2.2.5 (Transitivité des traces et normes) La proposition 2.2.4 est
un cas particulier du résultat suivant. Soient L/F, F'/K des extensions finies de
corps. Soit & € L, alors on a

Trp k(7)) = Trp/x(Trr rp(2), Npjg(z) =Np/gk(Np/p(r)).

L’égalité sur les traces se démontre relativement aisément. Pour la norme, c’est
une autre paire de manches. Voir Bourbaki : Algébre 1, III, §9, n°4, Prop 6.

Définition 2.2.6 Soit x € L algébrique sur K. On fixe une cloture algébrique
K. Un conjugué de = dans K est une racine dans K du polyndéme minimal
my(X) € K[X]. Un élément y € K est un conjugué de x si et seulement s'il
existe K[r] — K qui envoie z sur y.

Corollaire 2.2.7. Soient x1,...,x, les conjugués de x dans K (comptés avec
multiplicité). Alors

Cela résulte de la proposition 2.2.4 et des relations entre les racines et les
coefficients de m,(X).

Exemple 2.2.8 Soit K = Q, p > 3 premier et L = Q[(,] un corps cyclotomique,
ot ¢, € C est une racine primitive p-iéme de I'unité. Le polynéme minimal de
(p sur Q est

(XP—1)/(X-1)=XP 14 . 4 X +1
Ce dernier est aussi le polynéme minimal de Cﬁ pour tous 1 < £ < p—1. Donc
TrL/Q((ﬁ) = —1. D’ou une formule générale pour tous les éléments de L :

Trr /o Z agg“f;):(p—l)ao— Z ag.

0<f<p—2 1<t<p—2



18 CHAPITRE 2. EXTENSIONS ENTIERES

Contrairement a la trace, la norme est en général moins aisée a calculer. On
a Np/o(¢) = (—1)?~! = 1. Le polynéme minimal de ¢, — 1 est

(X+1D)P '+ (X +D)+1=XP"" 4 4.

Donc Nz, /o(¢p —1) = p. On peut calculer similairement N, q(al, +0b) pour tous
nombres rationnels a,b € Q.

2.2.3 Le cas des extensions séparables

On fixe un corps K et une cloture algébrique K. Rappelons qu’un élément
algébrique x € L est séparable sur K si son polyndome minimal est séparable (i.e.
sans racine multiple dans K). Une extension finie est dite séparable si tous ses
éléments sont séparables. On sait que x séparable implique que K|[z] séparable.
Sur un corps de caractéristique nulle, toute extension algébrique est séparable. Si
L/F et F/K sont des extensions finies, alors L/K est séparable si et seulement
si L/F et F/K sont séparables.

Soit L/K une extension finie. Les K-isomorphismes de L dans K s’appellent
les plongements de L dans K. On note Isomg (L, K) I’ensemble de ces plonge-
ments. Rappelons aussi :

Theorem 2.2.9. Soit L/K une extension finie.

(1) Si F/L est une extension finie, alors la restriction
Isomg (F, K) — Isomg (L, K)

est une application surjective. Autrement dit, tout T € Isomg (L, K) s’étend
(ou se reléve) en un o € Isomg (F, K).

(2) Supposons de plus que L/K est séparable de degré n.
(a) (Théoréme de ’élément primitif) Il existe 0 € L tel que L = K[0].

(b) Il existe evactement n plongements de L dans K, et on a une bijection
Isomg (L, K) = {01,...,0,}, 7~ 7(0)
avec Uensemble 01, .. .,0, des conjugués de 0 dans K.

Lemme 2.2.10. Soient F'/K une extension finie galoisienne et L/ K une sous-
extension. Considérons la restriction

r: Gal(F/K) = Isomg (F, K) — Isomg (L, K).
Alors pour tout T € Isomy (L, K), r=1(7) est de cardinal [F : L].

Démonstration. On sait que r est surjective par 2.2.9(3). Si 01, 02 € Gal(F/K),
on a r(o;) = r(02) si et seulement si (o] 'o9)|z = Idr, ou de fagon équivalente,
o7 oy € Gal(F/L). Tl suit que r~'(7) est en bijection avec Gal(F/L) qui a
[F: L] éléments. O
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Theorem 2.2.11. Soit L/K une extension séparable de degré n. Alors pour
tout x € L, on a

Trr/x(x) = Z m(z), Np/x(z)= H 7(z).
T€lsomg (L,K) T€lsomg (L,K)
Démonstration. Supposons d’abord L/K galoisienne. On a

Y, ol)= > (> ol2)=

c€Gal(L/K) T€lsomk (K[z],K) 0|k[]=T

= > [L: Kla]]r(z) = [L : K[z][Trg(e) k() = Trp i (2)
T€lsom g (K[z],K)

d’aprés 2.2.10, 2.2.7 et 2.2.4(2).
Dans le cas général, on considére la cloture galoisienne F/K de L/K. Soit

x € L. Alors
Yo o =[F:L] Y T

c€Gal(F/K) T€lsomk (L,K)

en utilisant 2.2.10. De plus, d’aprés le cas galoisien, on a

Z o(x) = Trp/(z) = [F: K[2]|Trg 5k ()
c€Gal(F/K)

et, par (2.2.4(2)),
Trp x(z) = [L: Kz]]Trgpm k().

11 suit que

Trp k(x) = Trp g (x)/[F: L] = Z ().
T€lsomg (L,K)

L’égalité sur la norme se montre de la méme facon. O

2.2.4 Discriminant

On fixe un corps K. Soit
p:VxV-oK

une forme bilinéaire symétrique sur un K-espace vectoriel V de dimension finie.
Pour toute base € = {ej,...,e,} de V, on définit le discriminant

disc(p, e) = det(Mat(yp, ) := det(p(e;, e5)) € K.

On a ¢ non-dégénérée si et seulement si disc(p,e) # 0. Si €’ est une famille de
n vecteurs dans V', on a une matrice de passage U qui décrit les coordonnées de
¢’ dans la base . Alors

Mat(ip, ') = U.Mat(ip,¢)."U.
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Par conséquent,
disc(p, &) = det(U)*disc(p, €). (2.1)

Supposons que ¢ soit non-dégénérée, donc disc(p,e) € K*. De I'égalité ci-
dessus on déduit alors deux informations. D’abord, la famille ¢’ est une base si
et seulement si det(p(e;, €})) € K*, et que si c’est le cas, alors disc(p, ') différe
de disc(¢p, €) par un facteur multiplicatif qui est un carré de K*. En particulier,
si K CR, alors le signe de disc(yp, ¢) est indépendant du choix de la base.

Nous allons maintenant considérer une forme bilinéaire trés concréte. Soit
L/K une extension finie. On a une forme bilinéaire symétrique canonique

Tkt Lx L— K, (z,y) = Trp r(zy).
Pour toute base ¢ de L/K, on pose

DL/K(E) = diSC(TI‘L/K,FJ) c K.

Remarque 2.2.12 La forme bilinéaire Try /x (-, -) induit une application K-
linéaire L — LY (le dual comme K-espace vectoriel), définie par x +— Trp /g (2, -).
Le forme est non-dégénérée si et seulement si L — LV est injective. Soit x € L
non nul. Alors z appartient au noyau de L — LV si et seulement si et seulement
si Trr k (zy) = 0 pour tout y € L. Ce qui revient & Trz/x(2) = 0 pour tout
z € L. Donc si car(K) = 0 ou si car(K) = p > 0 est premier a [L : K], alors car
Trp k(1) = [L: K] # 0 € K et la forme bilinéaire trace est non-dégénérée.

Nous allons voir plus bas (théoréme 2.2.14 (2)) que cette forme est non-
dégénérée dés que L/K est séparable. On peut montrer que cette condition est
aussi nécessaire pour la non-dégénérescence.

L’ensemble App(X, K) des applications d'un ensemble X donné dans K
est naturellement un espace vectoriel sur K. Lorsque X = L, on a le résultat
suivant.

Lemme 2.2.13. (Dedekind) Soit L/K une extension finie. Soient o1, ...,0p €
Isomg (L, K) deuz a deux distincts. Soient \q,..., N, des éléments de K tels
que

Z Xioi(z) =0, VrelL.

1<i<n

Alors A\i = 0 pour tout © < n. Autrement dit, la famille des o; est libre dans
App(L, K).

Démonstration. Raisonnons par ’absurde. On peut supposer qu’il existe des
M, ..., A\m dans K, non tous nuls, tels que Y i<iem Aioi = 0 et que m soit
minimal pour cette propriété. Cela entraine que \; # 0 pour tout s < m. Fixons
y € L. Pour tout x € L, on a

D Aooi(a) =0, DY Now(y)oi(x) =0

1<i<m 1<i<m
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(car o;(y)oi(x) = 0;(yx)). Donc

3 X(or(y) - oi(y))os(a) = 0.

2<i<m

11 suit de la minimalité de m que o1(y) — 0;(y) = 0 pour tout i < m et tout
y € L. Donc m = 1. Mais alors A\; = 0. Absurde. O

Theorem 2.2.14. Soit L/K une extension finie séparable. Soit € = {e;}1<i<n
une base de L en tant que K -espace vectoriel et notons {o1,...,0,} les éléments
de Isomg (L, K). On a

(1) Dryx(e) = (det(oi(e;))i )? et
(2) Dk (e) #0. Autrement dit, la forme trace Try g est non-dégénérée.

Démonstration. (1) Soit {o1,...,0,} les plongements de L dans K. On a
TI‘(EZ'E]‘) = Z Uk(EiEj) = Z Uk(Ei)O'k(€j).
1<k<n 1<k<n

Si M = (0k(€i))ki € Mpxn(K), alors (Tr(gse5))i; = M'.M. Ce qui implique
(1).

(2) Si Dy, sk = 0, alors les vecteurs ligne de la matrice M ci-dessus sont liées.
Comme ¢ est une base de L/K, il existe A1,..., A, € K, non tous nuls, tels que
> <n Aio; = 0. Ce qui contredit le lemme de Dedekind ci-dessus. O

Remarque 2.2.15 En général det(o;(¢;)); ; ¢ K méme si son carré appartient
a K*.

Corollaire 2.2.16. Soient x1,...,2, € L. Alors det(Tr(z;x;))i; # 0 si et
seulement si {x1,...,2,} est une base de L/K.

Nous allons donner des moyens de calculer concrétement le discriminant pour
certains types de bases.

Définition 2.2.17 Soit P(X) € K[X] un polynome unitaire de degré n. Soient
a1, ..., qp ses racines dans une cloture algébrique de K (comptées avec leurs
multiplicités). Alors le discriminant de P(X) est

disc(P) = H (o — aj)? = (=1)n(n=1)/2 H (o — aj).

1<i<j<n 1<i#j<n

C’est une fonction symétrique des racines de P(X), donc disc(P) € K par le
théoréme fondamental des polynoémes symétriques (théoréme 2.2.1). De plus,
disc(P) # 0 si et seulement si P(X) est séparable.

Lemme 2.2.18. Soit P(X) € K[X] comme ci-dessus. Alors

disc(P) = (=1)"0"=D72 T P'(w).

1<i<n
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Preuve: On a P'(X) = >3, ic, [1;4,(X — ;). Done P'(e;) = [[,(ci — ;).

D’ou
HP/(OQ') = H (Oéi — Oéj) = (—1)n(n_1)/2diSC(P).

1<i,5<n,i#j

Exemple 2.2.19 Le discriminant de X2 + aX + b est a? — 4b. En effet, (a; —
az)? = (a1 + a2)? — dajag = (—a)? — 4b.

Exemple 2.2.20 Soit K un corps de caractéristique nulle et Soit P(X) = X" —
1 € K[X]. Soit , C K I'ensemble des racines n-iémes de 1. Alors P'(¢) = n¢"™!
pour tout ¢ € ,. Donc

(_1)n(n—1)/2disc(Xn _ 1) — H (ngn—l) — nn( H Cn—l) — (_1)n2—1nn

€ n ¢e n
et disc(X™ —1) = (—1)(”2“’”*2)/2”7@.
Exemple 2.2.21 Soit P(X) = X" 4+ aX + b € K[X] un polyndme. Alors
disc(P(X)) = (=1)""" D2 (6" 4 (=1)"H(n = 1) ")

On retrouve les formules connues pour n = 2, 3. Montrons cette formule. Le cas
a = 0 se traite comme dans l’exemple précédent. Supposons donc a # 0.

Notons que si P(X) = [, <;<,, (X —a;) est sa décomposition dans une cloture
algébrique de K, alors pourt € K*,b € K, on a

P 'X —t7'0) = [ (¢7'X —t7'b) — i)
1<i<n
et donc que
t"PE ' X —t7'0) = [ (X = (tai +1)).
1<i<n
En évaluant en X = 0, on obtient
[[(tai +b) = (—1)"t"P(—t"b). (2.2)

7

On a

P'(a;) = nal ' +a = a; ' (n(—aa; — b) + ac;) = —a; *((n — 1)ac; + b)

et donc

[P/ ()= (0" ([T o) " T((n = Daai + ).
La formule désirée résulte alors du lemme 2.2.18 et de 1'égalité (2.2) ci-dessus.

Proposition 2.2.22. Soit L = K[a] une extension séparable. Soit mq(X) le
polynome minimal de o. Alors € := {1, c,...,a" "1} est une base de L/K et on
a

Dy i (e) = disc(ma (X)) = (=1)" " DV/ENL i (m, ().

Démonstration. La premiére égalité résulte du théoréme 2.2.14(1) et de Vander-
monde. La seconde égalité résulte du lemme précédent et du théoréme 2.2.11. [
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2.2.5 Plongements réels et imaginaires

Soit L un corps de nombres. Par I'égalité (2.1), le signe du discriminant
Dy, q(e) est indépendant de la base ¢. Nous allons déterminer ce signe.

Définition 2.2.23 Un plongement o € Isomg(L, Q) est dit réel si o(L) C R, et
imaginaire sinon. On dit que L est totalement réel si tous les plongements sont
réels et totalement imaginaire si tous les plongements sont imaginaires.

Proposition 2.2.24. Soit n = [L : Q]. Soient r1 (resp. r5) le nombre de plon-
gements réels (resp. imaginairs). St L = Qla], alors r1 est le nombre de racines
réelles du polynéme minimal mq(X), et rh = 2ry est le nombre de racines ima-
ginaires (non réelles) avec ro € N. Et on a

n =ry+ 2rs.

Démonstration. Soit o un plongement. Alors o(«) est une racine de mq(X) et
o(L) = Qlo(e)]. Donc o est réel si et seulement si o(«) € R. On compte ensuite
le nombre de racines réelles et imaginaires de mq(X). O

Notons que les nombres 71, 79 sont invariants par isomorphismes de Q-extensions.

Exemple 2.2.25 1. Q[i] est totalement imaginaire; Q[v/2] est totalement
réel.

2. Sin > 3, alors Q[(,] est totalement imaginaire.

3. Soit L = Q[a], olt « est une racine d'un polynéme X2 + aX + b € Q[X]
supposé irréductible. Un plongement o est déterminé par o(a). Il y en
a un qui est réel et deux qui sont imaginaires ou bien trois réels. Si le
discriminant —(4a® + 27b%) > 0, on sait que les trois racines sont réelles,
et donc que L est totalement réel. Si le discriminant est < 0, la formule
de Cardan montre qu’il existe une racine rélle et deux imaginaires, donc
TN =Ty = 1.

Exercice 2.2.26 Si L/Q est galoisien, alors L est totalement réel ou totalement
imaginaire.

Proposition 2.2.27. Le signe de Dy q(c) est (—1).
Démonstration. Ecrivons L = Q[a]. Soient
Qp,. .. ,arlaarlJrlv C_VT1+1, ceey ar1+r2a arlJer

les racines du polynéme minimal m(X) de «, ordonnées de cette maniére. On a

disc(m(X)) = ¢? H (Ctryti — Oy 4i)?

1<i<ry
avec un ¢ € R*. En effet,

Oéi—OéjER, sil<i<j<nr
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(ai_aT1+j)(ai_aT1+j) €R, sii<r,j<r

et

(ry i = 0y 1) (O i = Oy 4), (O i = Oy ) (O s — Oy 45) €R

sil<i<jg<ro.

Or (v +i—0r,+i)% € R est strictement négatif. Donc le signe du discriminant
Dr/k({1,a,...,a" '}) est (—1)™. Cela reste vrai pour toute base de L/Q par
le théoréme 2.2.14 (1). O

2.3 Applications aux extensions entiéres

Soit A un anneau intégre, B la cloture intégrale de A dans une extension
L de K = Frac(A). Nous allons étudier la structure de B comme A-module
(surtout quand L/K est séparable).

2.3.1 Généralités d’algébre linéaire

Soit A un anneau (commutatif unitaire) et M € M, (A) une matrice carrée
d’ordre n a coefficients dans A. On définit

Tr(M) = Z a; €A, det M = Z e(Y)ayy1 - Aynyn € A

1<i<n ~ES.,

ou S, désigne le groupe symétrique de n éléments. Une fois le déterminant défini,
on peut définir la comatrice com(M).

Soit ¢ : A — B un homomorphisme d’anneaux. Alors on a un homo-
morphisme d’anneaux (non-commutatifs!) ¢ : M,(A) — M,(B) défini par
@ ¢ (aij)ij — ((ai;))i; 1 est alors clair que Tr(¢(M)) = ¢(Tr(M)) et que
det(@p(M)) = p(det(M)). De plus @(com(M)) = com(p(M)).

Proposition 2.3.1. Soit A un anneau Soient M, N € M, (A).
(1) Pour tout a € A, on a Tr(aM + N) = aTr(M) + Tr(N).
(2) On a det(MN) = det(M)det(N) et

M.com(M) = tcom(M).M = det(M)I,.

(3) Une matrice U € M, (A) est inversible si et seulement si det(U) € A*.
(4) SiU € M,(A) est inversible, alors

det(UMU™) =det M, Tr(UMU™') = Tr(M).

Démonstration. (1) est une vérification directe. (2) Cela peut se vérifier directe-
ment a la main. Une autre méthode est de se ramener au cas connu des matrices &
coefficients dans un corps. Considérons I'anneau R = Z[S;;, Tjj]1<q, j<n des po-
lynomes a 2n? variables. Ecrivons M = (a;;) et N = (b;;). Soit ¢ : R — A
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I’homomorphisme d’anneaux défini par ¢(S;;) = ai; et o(T;;) = b;;. Soit
M = (S;;)ijs N = (T;j)ij € Mp(R). Alors $(M) = M, p(N) = N. Pour vérifier
les égalités de (2), il suffit de les vérifiers pour les matrices M, N dans M, (R).
Or R est un sous-anneau de son corps des fractions Frac(R). Les égalités désirées
sont valides dans M, (Frac(R)), donc valides dans M, (R) C M, (Frac(R)).

(3) Utiliser la comatrice.

(4) La formule sur le déterminant résulte de (2). Pour la trace, on procéde
comme dans (2). O

Corollaire 2.3.2. Si M est libre de rang fini sur A, alors Tr et det sont définis
pour les endomorphismes linéaires de M .

Définition 2.3.3 Soient A C B des anneaux intégres avec B libre de rang
n > 1 sur A. Pour tout b € B, la multiplication par b sur B, notée [b] est
un endomorphisme linéaire de B. On définit Trp,4(b) et Np/4(b) comme étant
Tr([b]) et det([b]) respectivement. Il faut noter que la définition dépend de B/A.

Exemple 2.3.4 1. Trp,4(a) = na,Np,4(a) = a” pour tout a € A.

2. Si A=2Z et B =2Z[i]. Pour tous k, ¢ € Z, Trp 4 (k + i) = 2k, Np 4 (k +
¢i) = k? + £? (on utilise la base {1,i} de B sur A.

2.3.2 Finitude de la cloture intégrale

Proposition 2.3.5. Soient A un anneau intégre, L une extension algébrique
de K = Frac(A).

(1) Soit C la cloture intégrale de A dans L. Alors
c
L_{a | aeA\{O},xeC}.

En particulier L = Frac(C).
(2) Soit A C B C L avec B anneau libre de rang n sur A et L = Frac(B).

Alors n = [L : K|. De plus toute famille libre & n éléments de B (en tant
que A-module) est une base de L comme K -espace vectoriel.

Démonstration. (1) Soit 5 € L. Soit
B +tp 1" 4+t =0, €K

une relation algébrique de § sur K. Soit a € A non nul tel que at; € A pour
tout ¢ < n—1 (un dénominateur commun des ¢;). Alors ¢ := aff € B et § = ¢/a.

(2) Soit o € L. Montrons d’abord que « peut s’écrire comme une fraction
avec dénominateur dans A. On a a = ¢/b avec b,c € B et b # 0. Soit

bm+am,1bm_1+-~-+a1b+ao:O7 a; € A
une relation entiére de degré m minimal. Alors ag # 0. Il suit que

c_ c(—ay — = Apy_1b™2 =M

b ap
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est une fraction avec dénominateur dans A et numérateur dans B.

Soit by, ..., b, une base de B sur A. Il suit immédiatement de ce qui précéde
que pour tout o € L, il existe @ € A non nul et ay,...,a, € A tels que
ac =Y, c,, @ib; et donc

a= Z (aiafl)bi, aa ! e K.

1<i<m

Donc {b1,...,b,} est une famille génératrice de L/K. Elle est libre sur K car
toute relation linéaire entre les b; sur K induit une relation linéaire sur A en
multipliant par un dénominateur commun des coefficients. Donc les b; forment
une base de L/K. Toute famille libre a n éléments de B est libre dans L/K
comme on vient de voir. Elle est donc une base de L/K. O

Corollaire 2.3.6. Sous les hypothéses de 2.3.5(8), pour tout b € B, on a
TI‘L/K(b):TI‘B/A(b), NL/K(b):NB/A(b).

Démonstration. Soit by, ..., b, une base de B sur A. D’aprés la proposition 2.3.5
ci-dessus, c’est aussi une base de L sur K. Les endomorphismes [b]p et B et [b]L,
de L ont la méme matrice dans la base des b;. Donc ils ont la méme trace et le
méme déterminant. O

Le corollaire ci-dessus exige que B soit libre sur A. Cependant lorsque A est
intégralement clos, on peut relaxer cette condition.

Proposition 2.3.7. Soit A un anneau intégralement clos. Soit B la cloture
intégrale de A dans L. Alors pour tout b € B, Trp,k(b),Np,k(b) € A. De plus,
b€ B* si et seulement si N, /i (b) € A*.

Démonstration. La premiére partie résulte de la proposition 2.1.20. Supposons
b€ B*, d'inverse c € B. Alors Nz k(b), Ny k(c) € A avec Ny /i (b)Np/x(c) =
NL/K(bC) = 1. Donc NL/K(b) € A*.

Inversement, supposons Ny, x (b) € A*. Soit

X"+ an 1 X"+ 4 ag € A[X]
le polynéme minimal de b sur K. Alors ag = (—=1)"Np,x(b) € A* et la relation
b+ an 10" 4 Far) = —ap
implique que b € B*. O
Exemple 2.3.8 Les unités de Z[i] sont 1, +i. En revanche, les unités d’une
extension entiére aussi simple que Z[/2] sont déja plus compliquées a déter-

minées : il faut résoudre une équation de Pell-Fermat : 22 — 2y?> = £1. On y
reviendra au chapitre 5 (exemple 5.1.6).
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Theorem 2.3.9. Soit A un anneau intégre, noethérien et intégralement clos,
soit L/K une extension finie séparable et soit B la cloture intégrale de A dans
L. Alors B est finie sur A. En particulier, B est noethérien.

Démonstration. Par 2.3.5, il existe une base ey, ..., e, de L/K constituée d’élé-
ments e; € B. Par 2.2.14, la forme trace Try, /i est non-dégénrée. Il existe donc
une base duale eY,...,e’ € L :

’»En
TYL/K(&;@}/) = 5ij7 ]. S 27] S n.

(En général, e/ ¢ B.) Pour tout b € B, il existe A\j,...,\, € K tels que

(3

b= A€y + -+ Aey. Donc \j = Trp k(be;) € A (proposition 2.3.7). Donc
B C Aelv+~-~Aex.

Le membre de droite est un A-module de type fini. Comme A est noethérien, ce
module est noethérien, donc B B est de type fini comme A-module (par suite
c’est un A-module noethérien).

Tout idéal de B est un sous-A-module de B, donc de type fini sur A4 et a
fortiori de type fini sur B. Ce qui implique que B est un anneau noethérien. [

Remarque 2.3.10 Le théoréme 2.3.9 est faux sans I’hypothése L/ K séparable
ou sans ’hypothése A intégralement clos.

Corollaire 2.3.11. Soit L un corps de nombres. Alors l'anneau des entiers Of,
(2.1.13) de L est noethérien, intégralement clos, libre de rang [L : Q] sur Z.

2.3.3 Discriminant des extensions entiéres

Définition 2.3.12 Soit L un corps de nombres. Une base de Op sur Z est
appelée une base d’entiers de L.

Tout comme les bases des espaces vectoriels, les bases d’entiers sont extréme-
ment utiles pour I’étude des anneaux d’entiers. Etant donné L, comment trouver
une base d’entiers ? Dans ce qui suit, nous verrons quelques conditions suffisantes
pour qu’'une famille soit une base.

Soit B un anneau intégre, libre de rang n sur un sous-anneau A. Soit € une
base de B. Posons

Dpya(e) = det(Trp a(gic)))ij-

Si ¢’ est une famille de n éléments dans B, et si U € M, (A) est la matrice des
coordonnées des £} dans ¢, alors comme pour les extensions de corps, on a

Dpja(e') = (detU)*Dp a(e)

(ot Dpa(€’) est défini de méme fagon que Dp/a(€)). Si Dpya(e) # 0, alors &’
est une base de B si et seulement si det U € A*.
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Remarque 2.3.13 Sous les hypothéses ci-dessous, £ est aussi une base de
L := Frac(B) sur K (2.3.5(3)). Pour tout élément b € B, Trp 4 (b) = Trp, k()
(corollaire 2.3.6) et donc Dy, x(e) = Dpya(e). En particulier, Dp/a(e) # 0 si
L/K est séparable.

Corollaire 2.3.14. Soit L un corps de nombres. Alors Do, jz(¢) € Z est indé-
pendant du choiz d’une base €.

L'entier Do, /z := Do, /z(¢) s’appelle le discriminant de L. 11 est invariant
par Q-isomorphismes. On le note parfois Dy /o ou méme d; dans les moments
de grande paresse.

Proposition 2.3.15. Soit L un corps de nombres. Soit b = {b,...,b,} une
famille den = [L : Q| éléments de Or. Si Dy q(b) € Z est non nul, sans facteur
carré, alors b est une base de Oy, sur Z.

Démonstration. En effet, si U € M,,(Z) est la matrice qui exprime b en fonction
d’une base ¢, on a
Do, jz(b) = det(U)*Do, /7.

Donc det(U) = +1 et U est inversible dans M, (Z). O

Exemple 2.3.16 Soit d un entier relatif sans facteur carré et différent de 1.
Soit L = Q[v/d]. Si d = 1 mod 4. On écrit d = 4m + 1. Soit o = (v/d — 1)/2.
Le polynoéme minimal de o sur Q est X2 + X — m. Il suit que Do, ;z({1,a}) =
disc(X? 4+ X —m) = d est sans facteur carré. Donc O, = Z[a] et Do, jz = d.

Exemple 2.3.17 Soit L = Q[a] avec o € C une racine de X — X — 1 (dont on
prouve lirréductibilité directement en partant d’une décomposition (X2 +aX +
b) (X3 — aX? + c¢X — b) dans Z[X]). Soit b = {1,q,...,a*}. Alors Dy o(b) =
(—=1)0disc(X® — X — 1) = 19.151 (exemple 2.2.21 ou utiliser le logiciel pari,
commande poldisc sous gp). Cela montrer que b est une base de Of, et donc
aussi Of, = Z[a].

Exemple 2.3.18 Soit A = Z, B = Z[(,] avec p > 2 premier. Considérons la
base € = {1,(p,..., (272} de B sur A. Alors

Dpz(e) = (=1) " V0"D2No 1 /0(@(G))-
Ona (X —1)®,(X)=X?—1, donc
(X = DB(X) + B, (X) = px7!

et
p—1

P
Cp - 17
(exemple 2.2.8). Notons que p — 2 étant impair et (p — 1)/2 € N, le signe de
Dqpc,1/q est (—1)®=1/2_ Par ailleurs, tous les conjugués de (p sont des nombres

,(¢) =p Noie,1/0(®,(Gp)) =pP~ 1= =pP 2

"=
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imaginaires. Donc Q[(,] est totalement imaginaire, de degré (p — 1)/2 sur Q.
Cela confirme la proposition 2.2.27.

On montrera (proposition 5.2.7) que Z[(,] est égal & Panneau des entiers de
Q[¢p)- I suit que

Do, jz = (—1)P~D/2pp=2

si L = Q[(p)-

Le cas complémentaire a exemple 2.3.16, c’est-a-dire le cas de Q[v/d] avec
d = 2,3 mod 4 sera traité avec la proposition qui suit.

Proposition 2.3.19. (Stickelberger) Soit L un corps de nombres. Alors on a
Do, /z=0 oul mod 4.

Démonstration. Soit €1,...,&, une base de Of, sur Z. Soient o1, ...,0, les élé-
ments de Isomg(L,Q). Notons N la cloture galoisienne de L dans Q. Alors
Do, jz = (det M)? ou M = (04(¢;))i,; € Myp(N). On peut écrire det M = P —1
ot P est la somme des termes (lorsque 1'on développe le déterminant, voir le
début du §2.3.1) correspondant aux permutations de signature 1 et I les autres.
Concrétement,

P = Z H O',y(i)(eii), I = Z H O’y(i)(Ei)-

YEA, 1<i<n vesy 1<i<n
ou S,, désigne les permutations de signature —1. Alors
(det M)?> = (P —I)> = (P +I)*> — 4PI.

II suffit de montrer que P + I, PI € Z, ou méme que P + I, PI € Q car ce sont
des éléments de On et on a Oy NQ = Z.
Pour tout 7 € Gal(N/Q), l'application

Isomg(L,Q) — Isomg(L,Q), o+ Too

est une bijection. Fixons 7 € Gal(N/Q). 1l existe donc v, € S,, dépendant de
7, tel que To; = 0, (;) pour tout i < n. Alors ou bien 7(P) = P,7(I) = I (si
~vr € Sy, est de signature 1), ou bien 7(P) = I,7(I) = P (si 7, est de signature
—1). En effet,

T(P) = Z H Oy ov(8i) = Z H oy (i)

yEA, 1<i<n Y EvrAp 1<i<n

= > [ ov

Ve, sy 1Sisn

et

Dans les deux cas, P + I, PI sont invariants par 7. Ils appartiennent donc a

Q. O
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Corollaire 2.3.20. Si [L : Q] = n et si une famille de n éléments dans O,
a son discriminant égal & 4d avec d un entier mon nul sans facteur carré et
d=2,3 mod 4, alors cette famille est une base de Oyp,.

Démonstration. Sinon, le discriminant de cette famille est égal & a®?Dep, /z pour
un carré a®> > 1. Donc a = 2 et Do,z = d. Ce qui est impossible d’apres
Stickelberger. O

Exemple 2.3.21 Si d # 0 est un entier sans facteur carré, congru a 2 ou 3 mod
4, et L =Q[Vd], on a
DOL/Z({:l? \/g}) = 4d.

Donc Of, = Z[\/&] Cela peut cependant se montrer par un calcul simple. Notons
que toute extension quadratique de Q est de la forme Q[\/;i] pour un entier d # 0
sans facteur carré.

En général c’est une question difficile de trouver une base d’entier d’un an-
neau d’entiers. Pour des calculs concréts, on peut utiliser par exemple le logiciel
pari ou Sage.



Chapitre 3

Anneaux de Dedekind

Les anneaux de Dedekind sont des généralisations des anneaux d’entiers de
corps de nombres. Cette notion est plus souple que celle des anneaux d’entiers.
Elle inclut en particulier les localisations des anneaux d’entiers. Elle inclut aussi
des anneaux qui proviennent de la géométrie algébrique. Il est souvent plus
agréable de travailler dans ce cadre plus général.

3.1 Deécomposition des idéaux

3.1.1 Anneaux de Dedekind, définition et exemples

Définition 3.1.1 Un anneau intégre A est un anneau de Dedekind s’il est
1. noethérien et intégralement clos,

2. de dimension de Krull1 : les idéaux premiers non nuls de A sont maximaux
et A n’est pas un corps (ce qui équivaut a 'existence d’un idéal maximal
non nul).

Exemple 3.1.2 Tout anneau principal A qui n’est pas un corps (e.g. Z) est un
anneau de Dedekind. En effet, tout idéal premier non nul est engendré par un
élément irréductible f. Si fA C I = f'A, alors f’ | f, donc f est inversible ou
associé a f, donc I = A ou fA. Ce qui montre que fA est maximal.

La proposition suivante donne une méthode générale pour construire des
anneaux de Dedekind.

Proposition 3.1.3. Soient A un anneau de Dedekind, L une extension finie
séparable de A et B la cloture intégale de A dans L. Alors B est un anneau de
Dedekind. En particulier, les anneaux d’entiers sont des anneaux de Dedekind.

De plus pour tout idéal mazimal q de B, lintersection q N A est un idéal
mazximal de A.

Démonstration. Par construction, B est intégralement clos. On a vu dans 2.3.9
que B est noethérien et fini sur A. Soit q un idéal premier non nul de B. Alors

31
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p:=qN A est un idéal premier de A. Montrons qu’il est non nul. Soit b € ¢ non
nul. Il vérifie une relation entiére

b 4+ ap 10" ab+ag =0

avec a; € A. On peut supposer ag 7% 0 car sinon on peut simplier ’égalité par
b et en obtenir une nouvelle de degré n — 1. Il suit alors que ag € qN A et est
non nul. Par suite p est un idéal maximal de A. L’homomorphisme canonique
A/p — B/q est injectif et fini, et fait donc de B/q un anneau intégre fini sur un
corps. C’est donc un corps (voir le lemme ci-aprés), et ¢ est maximal.

Il reste & montrer que B n’est pas un corps. Comme A n’en est pas un,
il existe @ € A non nul et non inversible. Si B était un corps, alors 1/a € B
et serait entier sur A, donc 1/a € A puisque A est intégralement clos et donc
a € A*, contradiction. O

Lemme 3.1.4. Soit C un anneau intégre contenant un corps K. Supposons que
C soit de dimension finie en tant que K-espace vectoriel. Alors C est un corps.

Démonstration. Soit ¢ € C' non nul. Alors 'application [¢] : C — C, z — cx
est K-linéaire et injective, c’est donc un isomorphisme. L’antécédent de 1o par
cette application est I'inverse de ¢. Donc C' est un corps. O

Corollaire 3.1.5. L’anneau d’entiers O, d’un corps de nombres est un anneau
de Dedekind.

La classe des anneaux principaux qui ne sont pas des corps est contenue dans
celle des anneaux de Dedekind. Nous allons voir que cette inclusion est stricte.

Exemple 3.1.6 Soit L = Q[v/—5]. Montrons que 2 est irréductible mais pas
premier dans Op. Comme —5 =3 mod 4, on a O, = Z[\/—5] (exemple 2.3.21).
Montrons que 2 est un élément irréductible de O . Soit

2 = (a+bV/=5)(c+dvV-=5), a,bc,dcZ.
En prenant la norme sur Z, on obtient
4 = (a* + 5b%)(c* 4 5d?).
Comme 5 >1,onab=d=0et2==ac. Il suit que a+ by/—5 ou c+dy/—5 est
égal & £1 et est inversible. Cela montre que 2 est irréductible dans Op. On a
(1++v/-5)(1—+v/=5) =6 €20y,

mais 1 4++/=5, 1 — /=5 & 20, = 2Z 4+ 2Z[/—5]. Donc 20, n’est pas un idéal
premier et 2 n’est pas premier. On conclut que Op, n’est pas factoriel, et donc
a fortiori pas principal.

Exemple 3.1.7 Il existe des exemples d’anneaux de Dedekind qui proviennent
de la géométrie algébrique. Si P(X,Y) € C[X,Y] est un polynome irréductible
tel que P,0P/0X et P/JY n’ont pas de zéro commun dans C2, alors on peut
montrer que 'anneau quotient C[X,Y]/P(X,Y)C[X,Y] est un anneau de De-
dekind.
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Exercice 3.1.8 Soit f(X) € C[X] un polyndme non constant et sans racine
multiple. Montrer que C[X,Y]/P(X,Y)C[X,Y], ot P(X,Y) =Y? — f(X), est
un anneau de Dedekind.

3.1.2 1Idéaux fractionnaires

Rappelons que dans un anneau A, on définit le produit de deux idéaux
I, J comme étant ’ensemble des sommes finies d’éléments de la forme xy avec
xz € I,y € J. Clest I'idéal de A engendré par les xy, € I,y € J. En général
1J est strictement plus grand que cet ensemble des xy. Mais si I = aA, alors
IJ=A{ay|ye€ J}

Nous allons montrer que dans un anneau de Dedekind, tout idéal non nul
s’écrit comme un produit d’idéaux premiers, de facon unique & permutation prés,
exactement comme tout entier strictement positif s’écrit comme un produit de
nombres premiers.

Un outil technique de base pour la preuve est la théorie des « idéaux frac-
tionnaires ». L’ensemble des idéaux de A forme un « monoide » commutatif
unitaire avec A comme élément neutre. Le seul élément ayant un inverse est A
lui-méme. Ce monoide est donc trés d’étre un groupe. Cependant, & U'instar de
N, en élargissant ce monoide aux idéaux fractionnaires, on obtient un groupe si
A est un anneau de Dedekind.

Définition 3.1.9 Soient A un anneau noethérien intégre. Soit K = Frac(A).
Un idéal fractionnaire de A est un sous-A-module non nul M de K de type fini.

Exemple 3.1.10 1. Il suit de la définition que les idéaux fractionnaires
contenus dans A sont exactement les idéaux non nuls de A.

2. Soit & € K*, soit I un idéal non nul de A. Alors al := {az | z € I} est un

idéal fractionnaire. Les idéaux fractionnaires de la forme oA sont appelés
idéauz fractionnaires principaur.

Proposition 3.1.11. Soit M un sous-A-module de K. Les propriétés suivantes
sont équivalentes.

(i) M est un idéal fractionnaire ;
(ii) 4l existe « € K* et un idéal I de A tels que M = ol ;
(iil) 4l existe € K* tel que M C aA.

Démonstration. (i) = (ii). Soient z1,xa,...,z, € K des générateurs du A-
module M. Il existe a € A non nul tel que ax; € A pour tout ¢ < n. Il suit que
I:=aM C A. C’est un sous-A-module de A, donc un idéal, et on a M = a~'1.

(ii) implique trivialement (iii). Enfin (iii) implique (i) car a4 est un A-
module de type fini. Comme A est noethérien, cela implique que M est de type
fini. O

Définition 3.1.12 Soient M, N deux idéaux fractionnaires. On définit le pro-
duit M N comme étant le sous-A-module de K engendré par les éléments xy
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avecx € M,y € N.Si M =l et N = J, alors MN = (af)IJ est aussi un
idéal fractionnaire. On a (aA)(BA) = (ap)A.

Si M, N sont des idéaux de A, cette définition coincide avec celle des produits
d’idéaux.

Sia € K*, on note aM = {ax | © € M} le produit des idéaux fractionnaires
aA et M.

ATTENTION : en général 'ensemble des xy est strictement plus petit que
MN.

Exemple 3.1.13 Tout idéal fractionnaire M de Z est de la forme M = rZ pour
un nombre rationnel r € Q non nul.

On note I(A) 'ensemble des idéaux frationnaires de A. Le produit des idéaux
fractionnaires est clairement commutatif et associatif, avec 1'idéal A comme
élément neutre. Nous allons montrer que le produit fait de I(A) un groupe
commutatif. Pour tout idéal fractionnaire, notons

Mt :={zeK|zMC A}.

C’est un idéal fractionnaire car c’est un sous-A-module de K et si M C A,
alors M~! C a~1A. Ce sera I'inverse de M pour le produit dans I(A).

Lemme 3.1.14. Soient A un anneau noethérien et I un idéal non nul de A.

(1) Alors I contient un produit p;y - - - p,, d’idéaux premiers non nuls (non né-
cessairement distincts).

(2) Si A est un anneau de Dedekind, alors tout idéal mazimal de A contenant
I est égal a un des p; ci-dessus.

Démonstration. (1) Considérons ’ensemble S des idéaux non nuls de A ne véri-
fiant pas la propriété énoncée et supposons cet ensemble non vide. Comme A est
noethérien, cet ensemble admet un élément maximal (pour linclusion) I. Par
définition de S, I n’est pas premier. Il existe donc a,b € A\ I tels que ab € I.
Considérons les idéaux I + aA, I + bA de A. Ils contiennent strictement I. Par
la maximalité de I dans S, ces idéaux n’appartiennent pas a S. On a donc

I+aADpr-pn, IT+DADq1  qm
avec des idéaux premiers non nuls p;, q;. Il suit que
P Pngrqm © (I +ad)(I +bA) C 1.

Contradiction avec I’hypothése I € S. Donc S = 0.

(2) Soit p est un idéal maximal contenant I. Supposons qu’aucun des p;
ne soit contenu dans p. On choisis alors un a; € p; \ p pour chaque i < n.
Le produit ay---a, € p1---p, C p, impossible car p est premier. Suppsons
donc que p contienne p;,, alors ils sont égaux puisque p;, est automatiquement
maximal, A étant un anneau de Dedekind. O
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Lemme 3.1.15. Soit p un idéal mazimal de A. Alors dans I(A) on ap~tp = A.

Démonstration. Montrons d’abord qu’il existe z € p~1\ A. Soit a € p \ {0} tel
que p # aA (remplacer a par a? si p = aA). On a une inclusion

prepn CaACyp

avec des idéaux maximaux p; par le lemme 3.1.14 ci-dessus et on peut supposer
que n est le plus petit possible. On a n > 2 car aA # p. Par le méme lemme,
on peut supposer que p,, = p. Par la minimalité de n, il existe b € py---p,_1 €t
b ¢ aA. 1l suit que v :=b/a ¢ A. Mais zp Ca"p;---p, C A, doncx € p~t\ A.

Par définition p~'p est un idéal fractionnaire contenu dans A. C’est donc
un idéal de A. S’il n’est pas égal & A, il est contenu dans un idéal maximal
p’ 2 p~p DO p. Donc p~ip = p’ = p. En particulier zp C p. Il suit de la
proposition 2.1.6(iii) que x € K est entier sur A, donc z € A. Contradiction. [

3.1.3 Théoréme de décomposition des idéaux

Dans un anneau principal, tout élément non nul se décompose de maniére
unique comme produit d’éléments irréductibles. Donc tout idéal non nul se dé-
compose comme produit d’idéaux maximaux. Cette derniére propriété est plus
faible que la décomposition des éléments, mais elle se généralise aux anneaux
de Dedekind.

Theorem 3.1.16. Soit A un anneau de Dedekind. Soit I un idéal non nul de
A. Alors il existe des idéaur mazrimaur deur & deux distincts p1,...,ps et des
entiers ri,...,rs > 1 tels que

— T1 Ts
I=pi - ps

(si I = A, on convient que A est le produit d’idéaur mazimauz indexé par
un ensemble vide). Une telle décomposition est unique a permutation prés. Les
P1,...,Ps sont exactement les idéauz premiers de A contenant I.

Démonstration. Montrons d’abord 1’existence. Il suffit de montrer que I est un
produit d’idéaux maximaux. On écrit p; - - - p,, € I comme avant et on raisonne
par récurrence sur n (les p; ne sont pas nécessairement distincts). Si n = 1,
alors I = p; ou A et il n’y a rien a démontrer. Si n > 2, on peut supposer que
ICp,etonaalorspy---p,_1 C p;ll C A. Par récurrence p;ll est un produit
d’ideaux maximaux qy - - - g, il suit que I = ppp, 7 = pndr - G-

Lorsque l'on a une décomposition I = pi* ---p%s comme dans le théoréme,
chaque p; contient I. Inversement si p est un idéal maximal contenant I, par le
lemme 3.1.14, p est égal & un des p;. Cela implique déja 'unicité de I'ensemble
des idéaux maximaux qui interviennent dans la décomposition de I. Le reste de
I’unicité se démontre par une récurrence sur r1 +- - -+75 en utilisant le lemme ci-
dessus qui permet de "simplifier” par un idéal maximal dans un produit d’idéaux
maximaux. O
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Exemple 3.1.17 Si A est principal dans le théoréme, on prend un générateur a
de I, on le décompose en produit a = [], p;* avec des des éléments irréductibles
p; deux a deux non-associés. On alors

I= H(pz'A)”

est la décomposition recherchée.

Exemple 3.1.18 Revenons a ’exemple 3.1.6. Donc n > 5 sans facteur carré,
n =1 mod4 et L = Q[y/—n]. On a vu que idéal 20}, n’était pas premier.
Quelle est sa factorisation en produit d’idéaux maximaux? Notons 6 = /—n.
Alors Of, = Z[f)]. Soit pa = (2,1 4 6). Montrons que c’est un idéal maximal et
que 20, = p3.

D’abord, tout élément de O est équivalent, modulo po, & 0 ou 1. Cela
implique immédiatement que Oy, /ps est isomorphe a Fy, donc ps est maximal.
L’idéal p2 est engendré par 4,2(1 +6), (1 +6)%. On a

(1+6)>=20+1-n¢€20;.
Donc p2 C 20;. De plus, si on écrit n = 4m + 1, on a
—2=(1+6)%—2(0+1) +4m € p3.

Donc 20}, = p3.

Considérons maintenant la décomposition de 30r. On va prendre n = 5.
Modulo 3, on a X%+ 5 = (X + 1)(X — 1). Considérons p3; = (3,6 — 1) et
p32 = (3,0 + 1). Ce sont des idéaux maximaux comme on le voit pour py. Ils
sont distincts car sinon ils contiendraient 3 et 2 = (0 +1) — (6 — 1) et donc 1.
Ils contiennent 3, donc 3Q,. Par ailleurs, si un idéal maximal p de Ok contient
3, il contient 6 = (6§ —1)(6 + 1), donc il contient aussi § — 1 ou  + 1. Il suit que
p est égal & p3 1 ou p3 2. Le théoréme de decomposition dit que 30 = p3';p3%
avec 71,79 > 1. Comme p3 1p32 = (9,3(0—1),3(0+1),6%—1) C 30y, on trouve

301 = p3,1p3,2-

Enfin un dernier exemple avec 110y, (toujour avec n = 5). On a Or /110y, =
Z[X]/(11,X? +5) = F11[X]/(X? + 5) est un corps car X2 + 5 est irréductible
dans Fy1[X]. Donc la décomposition de 110y, est juste égale a 'idéal lui-méme.

Revenons briévement aux idéaux fractionnaires.

Corollaire 3.1.19. L’ensemble I(A) des idéaux fractionnaires de A muni du
produit un groupe commutatif.

Démonstration. Cela résulte immédiatement du théoréme et du lemme 3.1.15.
O

Exercice 3.1.20 Montrer que I'inverse de M dans I(A) est égal & M 1.
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Exercice 3.1.21 Montrer que tout idéal fractionnaire M de A posséde une
décomposition unique

M:p;‘l ...p:l"
avec 1; € Z\ {0} et que M C A si et seulement si 7; > 0 pour tout i.

Remarque 3.1.22 Pour un anneau intégre A en général, on peut définir si-
milairement ’ensemble des idéaux fractionnaires avec une loi de multiplication
commutative et associative. On peut montrer que si cet ensemble est un groupe,
alors A est nécessairement un corps ou un anneau de Dedekind.

Remarque 3.1.23 La structure du groupe des idéaux fractionnaires est trés
simple. C’est le groupe abélien libre engendré par ’ensemble des idéaux maxi-
maux de A. Par exemple, I'ensemble des idéaux maximaux d’un anneau d’entiers
est dénombrable, donc I(Oy,) ~ I(Z) pour tout corps de nombres L. On ne peut
donc pas tirer énormément d’informations sur A & partir de I(A).

Définition 3.1.24 L’ensemble des idéaux fractionnaires principaux (ceux de
la forme A, pour un @ € K*) est un sous-groupe du groupe I(A). Le groupe
quotient est appelé le groupe des classes de A. On le note Cl(A).

Proposition 3.1.25. On a Cl(A) = {1} si et seulement si A est principal.

Démonstration. Si A est principal, tout idéal fractionnaire est principal par la
proposition 3.1.11. Inversement, supposons Cl(A4) = {1}. Soit I un idéal non nul
de A. Alors il existe t € K* tel que I =xA. Onax=z.1€ I, doncx € Aet [
est un idéal principal. Ce qui prouve que A est principal. O

Définition 3.1.26 Soit L un corps de nombres, on appelle C1(Op) le groupe
des classes de L, et on le note (par abus de notation!) CI(L). On verra que ce
groupe est fini. Son cardinal, noté hy, ou h(L), est appelé le nombre de classes
de L. C’est un invariant important de ’extension L. Mais on verra qu’il n’est
pas toujours facile & déterminer, méme pour les extensions quadratiques!

Exemple 3.1.27 Soit d > 0 sans facteur carré et soit L = Q[v/—d] (cf. exemple
3.1.6). On connait les valeurs de d pour lesquel Ay, vaut 1 :

1,2,3,7,11,19,43,67,163.
Ceux pour lesquel hy, vaut 2 :
5,6,10,13,15,22,35,37,51,58,91, 115,123,187, 235, 267, 403, 427.

On sait que hy, tend vers l'infini avec d. En revanche, on conjecture que hQ[ Vi
vaut 1 pour une infinité de d.
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3.1.4 Génération des idéaux d’un anneau de Dedekind

Nous allons montrer que les anneaux locaux de Dedekind sont principaux et
que tout idéal dans un anneau de Dedekind est engendré par au plus 2 éléments.

Un anneau est local s’il a un unique idéal maximal. Voir § 3.2 pour plus
d’informations.

Proposition 3.1.28. Soit A un anneau de Dedekind local. Alors A est principal.

Démonstration. Soit p l'idéal maximal de A. On a p # p? (sinon on obtient
A = p en multipliant par p~1). Soit t € p \ p2. Alors la décomposition de tA en
produit d’idéaux maximaux est tA = p. Soit I un idéal non nul de A, alors il
existe m > 0 tel que I = p™ =t™A. Donc A est principal. O

Définition 3.1.29 Deux idéaux I,J d’un anneau A sont dits premiers entre
eux si I + J = A. Cela revient a dire qu’il n’existe aucun idéal maximal de A
contenant a la fois I et J.

Lemme 3.1.30. Soit A un anneau.
(1) Deuz idéaur mazimaux distincts dans A sont toujours premiers entre eut.
(2) SiJy,...,Jy sont des idéauz premiers & I, alors Jy---J, est premier o I.

(3) Soient 1,J premiers entre eux. Soient m,n > 1. Alors I"™ et J" sont pre-
miers entre eut.

Démonstration. (1) Si I,J sont maximaux et distincts, alors I + J est un idéal
qui contient strictement I, donc égal & A.

(2) Soient 1 = «a; + B; avec a; € I et B; € J; pour tout ¢ < q. Le produit de
ces ¢ égalités montre que 1 € I + [],,, Ji.

(3) Utiliser deux fois (2). B O

Theorem 3.1.31 (Théoréme des restes chinois). Soit A un anneau. Considé-
rons des idéaux I, ...,I, de A deur a deux premiers entre eux. Alors

(1) On aMi<i<ndi = [[1<i<, Li-

(2) L’homomorphisme d’anneaux canonique A — [[,,-, A/I; est surjectif, et

induit un isomorphisme
A/ T L~]]A/L

1<i<n i

Démonstration. On se raméne a n = 2 grace au lemme ci-dessus. Soient deux
idéaux I, J premiers entre eux. Soit 1 = a4+  avec a € I et 8 € J. Pour tout
relnJ,onaxz=xa+zB € lJ+1J=1J.DoulndJ C IJ. Linclusion
inverse est évidente. Ce qui montre (1).

Pour tous a,b € A,onaa—b=(a—b)a+ (a —b)3, donc

at+b—-—a)a=b+(a—b)fe(a+I)N(b+J).

Cela montre la surjectivité de A — A/I x A/J. Le théoréme de factorisation
des homomorphismes d’anneaux implique (2). O
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Lemme 3.1.32. Soit A un anneau de Dedekind. Soit p un idéal mazximal et
t € p\p?. Fizonsn > 2. Alors tout idéal de A/p™ est engendré par une puissance
de t, la classe de t dans A/p™.

Démonstration. En effet, dans la décomposition de tA, p apparait avec ’expo-
sant 1 : tA = pI avec I premier a p (car produit d’idéaux maximaux distincts
de p), donc premier a p"~L. Soient zo € p" ! et yo € I tels que x¢ + yo = 1.
Pour tout x € p, on a x = zzg + xyo € p" + tA. 1l suit que p = tA + p". Pour
tout m > 1, on a alors p™ = ™A +p". Si J' C A/p™ est un idéal, son image
réciproque J dans A est un idéal de A contenant p”, il est donc égal a p™ pour
un 0 < m < n. Il suit que J' = p™/p™ =™ A/p". O

Lemme 3.1.33. Soit A un anneau de Dedekind. Soit I un idéal non nul de A.
Alors tout idéal de A/T est engendré par un élément.

Démonstration. Soit I = [],p;" avec des idéaux maximaux 2 a 2 distincts et
r; > 1. Alors A/I ~ ], A/p;" par le théoréme 3.1.31. Tout idéal de A/p;" étant
monogéne 3.1.32, il en est de méme pour A/I. O

Corollaire 3.1.34. Soit A un anneau de Dedekind. Alors tout idéal I de A est
engendré par au plus 2 éléments.

Démonstration. On peut supposer I # 0. Soit a € I non nul. Alors I'idéal I /aA
de A/aA est engendré par un élément b avec b € I. Il suit que I = aA+bA. O

3.2 Etude locale

Soit A un anneau de Dedekind de corps de fractions K. Sa structure de-
vient plus simple par localisation (c’est-a-dire en ajoutant des dénominateurs a
A). Typiquement, la localisation par rapport & un idéal maximal conduit a un
anneau de valuation discréte.

3.2.1 Localisation

Ce sous-paragraphe regroupe quelques généralités sur la localisation. La plu-
part d’entre elles ont été vue en TD, nous n’y reviendrons donc pas. Nous passons
directement a la proposition 3.2.12 et son corollaire 3.2.13.

On supposera dans cette section que A est un anneau intégre. On note K
son corps des fractions. La localisation est un procédé qui génére des A-algébres,
et qui permet entre autres d’étudier “isolément” les idéaux premiers de A.

L’exemple le plus simple de localisation est le corps des fractions K lui-méme.
On voit que ce procédé fabrique un anneau ayant une structure plus simple que
I’anneau de départ.

Définition 3.2.1 Une partie multiplicative S de A est un sous-ensemble non
vide stable par multiplication. Par commodité on demandera aussi que 1 € S et

0¢S.
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Exemple 3.2.2 S = A\ {0}, ou plus généralement, A\ p pour un idéal premier
pde A; {f"|n > 1} pour un élément donné f € A.

Définition 3.2.3 On pose
StA={a/sc K|ac A,scS}

On l'appelle la localisation de A par rapport & .S. On voit immédiatement que
¢’est un sous-anneau de K contenant A. L’inclusion A C S~!A fait de ce dernier
une A-algébre. De plus, Frac(S1A4) = K.

Exemple 3.2.4 Si p est un idéal premier de A, on note A, la localisation de
A par rapport & A\ p. En particulier, K = Ag,. Si f € A, on note Ay la
localisation de A par rapport a {f™ | n > 0}. La localisation Z1o est I’anneau
des nombres décimaux.

Soit I un idéal de A. On note S—'I I'ensemble {a/s | a € I,s € S}. Clest
un idéal de S~ A, égal a I'idéal de S—' A engendré par la partie I ¢ S~'A. On
note cet idéal aussi par I(S~1A).

Proposition 3.2.5. Si A est noethérien, alors il en est de méme pour S~ A.

Démonstration. Soit J un idéal de S™'A. Alors I := J N A est un idéal de
A, donc engendré par x1,...,x, € I. Ce sont aussi des éléments de J puisque
I C J. Pourtout x =af/s € J,onaa=srecJNA=1I Donca=>, az;
avec a; € A et x =) ,(a;/s)z;. Ce qui montre que z1,...,z, engendrent J en
tant que S~'A-module. Donc J est de type fini et S™'A est noethérien. O

Proposition 3.2.6. Soit S une partie multiplicative de A. Les correspondances
= aqnA, peSTlp

établissent une bijection (réciproque l'une de ’autre) de ’ensemble des idéaux
premiers de STYA avec l’ensemble des idéaux premiers de A ne rencontrant pas

S.

Démonstration. Notons d’abord que si q est un idéal premier de A,, g N A est
un idéal premier de A (I'image réciproque par un homomorphisme d’anneaux
d’un idéal premier est un idéal premier). De plus (q N A) NS = @ car sinon, si
s est dans l'intersection, on a s € q et s € (S7*A)*, Ce qui impliquerait que
q=S"'A4, et ce n’est pas un idéal premier!

Inversement, si p est un idéal premier de A avec p NS = ), montrons que
S~1p est premier dans ST1A. C’est un idéal propre car 1 = /s avec a € p,
s € S implierait que a = s € p N S. Ensuite, si a1/s; X az/sy € S™1p, alors
ajas € p, done, par exemple a; € p. Il suit que ay/s; € S~ 1p.

Il reste & montrer que (S~!p)N A =pet S~ (qN A) = q pour p,q comme
dans I'énoncé. On a clairement p C (S7'p)N A et S™1(qn A) Cq.

Soit a = a/s € (S71p) N A. Alors sa = a € p. Comme s ¢ p puisque SN p
est vide, on a a € p. Donc (S71A) Np C p et on a I'égalité. Soit z = /s € q.
Alors @« = sz € qNAet x = a/s € S (qN A). Ce qui montre I'inclusion
g C S71(qN A) et donc I'égalité. O
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Corollaire 3.2.7. Awvec les notations de la propostion ci-dessus, si de plus p est
un idéal mazimal de A, alors S~ p est un idéal mazimal de ST A.

Démonstration. Sip est maximal, et si S~!p est contenu dans un idéal maximal
qde S7'A, alors p = qN A, et donc S~'p = q est un idéal maximal. O

Définition 3.2.8 On dit qu’un anneau A est local s’il admet un unique idéal
maximal. Par exemple, un corps est un anneau local. L’idéal maximal d’un
anneau local contient tous les idéaux premiers.

Exercice 3.2.9 Un anneau A est local si et seulement si A\ A* est un idéal.
Ce sera alors 'idéal maximal de A. Si I est un idéal de A, alors A\ I = A* si
et seulement si I est 'unique idéal maximal de A.

Exemple 3.2.10 L’anneau Z n’est pas local.

Exemple 3.2.11 Soit A un anneau intégre. Soit p un idéal premier de A. Alors
A, est un anneau local, d’idéal maximal S~'p, ot S = A\ p. En effet par
la proposition 3.2.6, S~!p est un idéal premier puisque p NS = (). De plus, les
idéaux premiers de Ay sont de la forme S™1p’ avec p'NS = 0 donc p’ C A\S =p
et S~'p’ est contenu dans S~ 'p.

Cet exemple est fondamental. A partir de p, on a construit un anneau dont
les idéaux premiers correspondent & ceux de A contenus dans p. Ce qui simplifie
considérablement la structure du nouvel anneau.

Il existe une explication du terme « local » provenant de la géométrie algé-
brique.

Proposition 3.2.12. Soit A un anneau intégre et intégralement clos, alors
S~LA est intégralement clos.

Démonstration. Soit x € Frac(S™'A) = Frac(4) = K un élément entier sur
S71A. On a une relation entiére

" + (@n_1/8n_1)$n_1 + -+ (ao/So) = O, a; € A,Si € S.

En prenant s = sgs1 - -+ S,_1, on obtient une relation entiére de sx sur A, donc
st € Aet x € ST1A. Autrement dit, S~ A est intégralement clos. O

Proposition 3.2.13. Si A est un anneav de Dedekind, alors S™'A est soit un
corps, soit un anneau de Dedekind.

Démonstration. D’aprés ce qui précéde, ST A est intégre, intégralment close et
noethérien. Enfin, tout idéal premier de S~!A est de la forme S~'p avec p idéal
premier de A. Comme p est nul ou maximal, il en est de méme pour S~'p d’aprés
3.2.6. Si S7'A n’est pas un corps, c’est alors un anneau de Dedekind. [

Un point intéressant avec la localisation est qu’elle permet de rendre un idéal
principal en ajoutant juste un dénominateur.
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Proposition 3.2.14. Soient A un anneau de Dedekind, p un idéal mazximal et
t €p\p?. Alors il eviste s € A\ p tel que sp CtA C p.

Démonstration. La décomposition de tA fait apparaitre tA = p" Iy avec Iy pro-
duit d’idéaux maximaux différents de p (donc premier a p), et » > 1. On a
r=1cart ¢ p2 Soit s € Iy \ p (il existe car Iy est premier a p). Il suit que
p= tlo_l Ct(s71A) et que sp C tA. O

Exercice 3.2.15 Trouver une partie multiplicative S de Z, différente de Z\ {0},
telle que S~1Z = Q.

Exercice 3.2.16 Si A est principal (resp. factoriel), montrer que S—'A est
principal (resp. factoriel).

3.2.2 Anneaux de valuation discréte

Nous avons vu que les anneaux de Dedekind locaux sont principaux (pro-
position 3.1.28). Une fagon de construire de tels anneaux est donnée par les
valuations discrétes.

Définition 3.2.17 Soit K un corps. Une wvaluation discréte sur K est une ap-
plication v : K* — Z (et on conviendra souvent que v s’étend sur K en posant
v(0) = +00) telle que pour tous a,b € K*

1. v(ab) = v(a) 4+ v(b) (c’est un homomorphisme de groupes); en particuler
v(1) = 0.
2. v(a+b) > min{v(a),v(b)} (sia+b=0, il n’y a pas de condition).
On dit que la valuation est non triviale si v(K*) # {0} et qu’elle est normalisée

si v(K*) = Z (en général c’est un sous-groupe non nul de Z, donc de la forme
dZ). Nous n’utiliserons que les valuations non triviales dans ce cours.

Exemple 3.2.18 Soit p un nombre premier. On a une wvaluation p-adique sur
Q, définie comme suit. Tout nombre rationnel x non nul s’écrit de facon unique
a/b avec a,b € Z premiers entre eux et b > 0. On décompose a = p"u, b = p°v
avec 1,5 € N et u,v premiers & p. Alors la valuation p-adique v,(x) est égale a
vp(a) —vp(b) =7 — 5. On a z = p*»@c/d avec ¢,d € Z premiers a p.

Un corps K muni d’une valuation discréte non triviale v est appelé un corps
de valuation discréte. L’ensemble

O, :={a € K* | v(a) >0} U{0}.

est un sous-anneau de K, appelé un anneau de valuation discréte, ou 1’anneau
de valuation de (K, v). Le sous-ensemble

m, :={a € K* | v(a) >0} U {0}

est un idéal de O,,.
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Proposition 3.2.19. Un anneau A est un anneau de valuation discréte si et
seulement st ¢’est un anneau de Dedekind local. Son idéal maximal est alors m,.

Démonstration. Supposons que A est un anneau de valuation discréte. Si a €
A\ my,, alors v(1/a) = —v(a) = 0, donc 1/a € A et a € A*. Ce qui montre
que A est local d’idéal maximal m,. Soit I un idéal non nul de A. Soit zg € I
de valuation minimale. Alors pour tout € I, v(z/xg) > 0, donc x/z¢ € A et
I = z29A. Ce qui prouve que A est principal. La valuation étant non triviale, il
existe a € K non nul avec v(a) > 0. Donc a € A et 1/a ¢ A et A n’est pas un
corps.

Inversement, soit A un anneau de Dedekind local. Il est alors principal
(3.1.28). Soit ¢t un générateur de 'idéal maximal m de A. Comme A est un
anneau factoriel, ¢ est un élément premier et pour tout a € A non nul, il existe
un unique n > 0 tel que a = t"u avec u € A\ tA = A*. On pose v(a) = n. Cela
définit une application A\ {0} — N qui est multiplicative et qui s’étend en une
valuation discréte non triviale sur K = Frac(A) (les détails sont & vérifier laissés
aux ). O

La proposition suivante est un principe local-global (si une certaine pro-
priété est vraie en localisant en tous les idéaux maximaux, alors elle est vraie
globalement).

Proposition 3.2.20. Soient 1,J deux idéaux dans un anneau intégre A. Si
IA. C JAn pour tout idéal maximal m de A, alors I C J.

Démonstration. Soit § € I et considérons
H={acA|ape J}.

C’est un idéal de A. On veut montrer que H = A, ce qui impliquera que 1 € H
et donc que B € J. Si H est un idéal propre, il est contenu dans un idéal maximal
m de A. Comme A, C JA,, par hypotheése, il existe o € J, s € A\ m tels que
B =a/s. Donc sf € J et s € HC m. Mais s ¢ m. Contradiction. O

Theorem 3.2.21. Soit A un anneau intégre noethérien qui n’est pas un corps.
Alors A est un anneau de Dedekind si et seulement si pour tout idéal maximal
m de A, la localisation An est un anneau de valuation discréte.

Démonstration. Supposons vérifiée la propriété sur les localisations Ay,. Soit
x = a/b € K = Frac(A) (avec a,b € A) entier sur A. Alors pour tout idéal
maximal m de A, z € Frac(Ay,) est entier sur Ay,. Ce qui montre que z € Ay,.
Donc aAy, C bA,, pour tout idéal maximal m. La proposition 3.2.20 montre alors
que aA C bA, donc a € bA et z € A. Ce qui montre que A est intégralement
clos.

Soit p un idéal premier non nul de A. Soit m un idéal maximal de A contenant
p. Alors pAy, est un idéal premier non nul de Ay, (proposition 3.2.6), donc égal
a mAp. Il suit que p =m (loc. cit.) et p est maximal. On a donc montré que A
est un anneau de Dedekind.

Inversement, si A est un anneau de Dedekind, alors A, est un anneau de
Dedekind local (3.2.13). On peut donc appliquer la proposition 3.1.28. O
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Remarque 3.2.22 Soit p un idéal maximal de A, on peut définir une sorte
d’évaluation v, en p sur 'ensemble des idéaux fractionnaires de A de la fagon
suivante. Soit J un idéal non nul de A. Si p ne contient pas I, on pose v, (1) = 0.
Sinon, on pose vy, (I) = r 'exposant de p dans la décomposition de I. Ceci définit
une application multiplicative de I’ensemble des idéaux non nuls de A dans Z.
Elle s’étend en un homomorphisme de groupes v, : I(4) — Z.

Exercice 3.2.23 Soient I, J deux idéaux non nuls de A. Montrer que I C J si
et seulement is v, (I) > v, (J) pour tous idéaux maximaux p de A.

3.3 Ramification

Dans I'exemple 3.1.18 nous avons vu que le nombre premier 2 € Z n’est plus
un élément premier dans I'anneau des entiers d’une extension quadratique L.
Autrement dit, I'idéal 20, C O engendré par I'idéal maximal 2Z C Z n’est plus
maximal. Ce type de phénoméne s’appelle la ramification, et c’est 'analogue de
la notion de ramification pour les applications entre des variétés topologiques
ou complexes (comme 'application conforme C — C, z — 22).

3.3.1 Ramification et décomposition

Soit A C B une extension d’anneaux de Dedekind, soient p (resp. q) un idéal
maximal de A (resp. de B) tels que p C q. Alors 'idéal pB de B engendré par
le sous-ensemble p de B est non nul et se décompose donc en pB = q°I avec q
premier & I. Comme g N A est un idéal premier contenant p, ils sont égaux. Le
corps A/p (resp. B/q) s’appelle le corps résiduel de A en p (resp. de B en q).
L’inclusion p C q induit canoniquement une extension de corps A/p — B/q.

Définition 3.3.1 Dans la situation ci-dessus, on appelle 'entier e > 1 I'indice
de ramification de A C B en q et A/p — B/q Uextension résiduelle en q. On
dit que A C B est non-ramifié en q si e = 1 et si U'extension résiduelle est finie
et séparable. Notons que la derniére condition est automatiquement satisfaite
pour les extensions Z C Of, d’anneaux d’entiers de corps de nombres. En effet,
les corps résiduels sont alors des corps finis, et toute extension finie d’un corps
fini est séparable.

Pour un p fixé, si A C B est non-ramifié en tous les ¢ C p, on dit que
Pextension est non-ramifiée au-dessus de p. Lorsque A =Z et B = Op. On dira
par abus de langage que L/Q est non-ramifiée au-dessus de p.

Exemple 3.3.2 1. Dans l'exemple 3.1.18 avec L = Q[/—5], I'indice de ra-
mification de Z C Op, en ps est égal & 2, avec une extension résiduelle
triviale. Les indices de ramification en p3 ;1 et pz o sont égaux & 1 avec
extensions résiduelles triviales. Donc L/Q est non-ramifiée au-dessus de
3. De méme les calculs de I'exemple montrent que L/Q est non-ramifiée
au-dessus de 11. En fait elle est non-ramifiée au-dessus de tout premier

p# 2,5.
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2. Soit P(z) € C[z] un polynéme non constant. Considérons
A:=C[t]C B:=Cl[z], out=P(z).

Soit p un idéal maximal de A, alors il existe A € C tel que p = (¢t — \)C[t].
Tout idéal maximal ¢ de B contenant pB est de la forme q = (z — u)C|z]
avec P(u) — A = 0 (exercice). Alors I'indice de ramification en q est 'ordre
d’annulation de P(X)— X € C[X] en p et 'extension résiduelle est triviale.
Notons que la somme des indices de ramification en les idéaux maximaux
q C B contenant p est alors égale au

deg(P(X) — A\) = deg P(X) = [C(2) : C(t)].
Ceci se généralise en théoréme 3.3.9.

Nous allons maintenant préparer la preuve du théoréme 3.3.9. On fixe A C B
une extension finie d’anneaux de Dedekind. Soit p un idéal maximal de A et q
un idéal maximal de B contenant p. On note f = [B/q: A/p].

Lemme 3.3.3. Pour tout r > 0, on a un isomorphisme de B-modules B/q —
q"/q"

Démonstration. Soit m € q\ q2. L’homomorphisme B-linéaire B — q",b + br"
induit un homomorphisme B-linéaire B/q — q"/q" 1. 1l existe s € B\ q tel
que sp® C 7B pour tout i < r + 1 (proposition 3.2.14). Si 7"b € q"*1, alors
st"b € 7"t B, donc sb € 1B C q et b € q. D’ou I'injectivité. Soit b € q". On a
sb=n"b. 1l existe s’ € B\ q tel que ss’ € 1+ q car q+ sB = B. Cela implique
la surjectivité. O

Lemme 3.3.4. Soient R un anneau, I un idéal de R et M un R-module. Sup-
posons que IM =0 (i.e., ax = 0 pour tout a € I et pour tout x € M ). Alors M
est naturellement un R/I-module.

Démonstration. Il suffit de définir la loi de produit externe. Pour toute classe
a€ R/Ietxc M,onposeaxr=ax.Sia=a,alorsa—a €Ietar=adux.
Donc le produit externe est bien défini. Il est trivial de montrer que les axiomes
d’un module sur R/T sont vérifiés. O

Corollaire 3.3.5. Sir <e, alors B/q" est un A/p-espace vectoriel de dimen-
ston fr.

Démonstration. Notons que p C q° C q", donc B/q" est naturellement un espace
vectoriel sur A/p d’aprés le lemme ci-dessus. Si » > 1, on a une suite exacte
d’espaces vectoriels sur A/p :

0—q'/q"—=B/q" = B/q" ' —0.

Do dimy,, B/q" = dimy,, B/q" ' + dim,,, B/q en utilisant le lemme 3.3.3
ci-dessus. Cela implique immédiatement le corollaire par récurrence sur r. [
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Fixons p et considérons la décomposition de I'idéal pB de B :

p= ] o

1<i<m
Notons f; = [B/q; : A/p].

Proposition 3.3.6. On a

dimy,p(B/pB) = Z e fi-

1<i<m

Démonstration. D’apreés le théoréme des restes chinois 3.1.31, on a un isomor-
phisme canonique

B/pB=~ [[ B/

1<i<m

C’est un isomorphisme d’anneaux, mais aussi de B-modules (par construction),
et donc de A-modules. Comme tous les modules en présence sont annulés par p,
c’est aussi un isomorphisme de A/p-espaces vectoriels. Il suffit alors d’appliquer
le corollaire 3.3.5 ci-dessus. U

Nous allons maintenant comparer dim 4, B/pB avec le degré de I'extension
Frac(B)/Frac(A). Pour cela, nous supposons que B est la cléture intégrale de
A dans une extension finie séparable L de K = Frac(A) (proposition 3.1.3), de
sorte que B soit de type fini comme A-module (2.3.9). Nous allons alors montrer
que dimy/, B/pB = [L : K]. Nous commengons avec une forme trés générale
du célébre lemme de Nakayama.

Lemme 3.3.7 (Lemme de Nakayama). Soient R un anneau, I un idéal de R
et M un R-module de type fini. Si M = IM, alors il existe o € I tel que
(1+a)M =0.

Démonstration. Soit {x1,...,x,} un systéme de générateurs de M sur R. Il
existe une matrice D & coefficients dans I telle que

Yoy, zn) =D -Hay,. .., 20).
Donc (1, — D)¥(x1,...,2,) = 0. En multipliant par la comatrice de 1,, — D on
obtient det(1,, — D) - *(x1,...,2,) = 0. Soit a = det(l,, — D) =1+a € 1+1,
alors ax; = 0 pour tout ¢ < n, donc aM = 0. O

Corollaire 3.3.8. Soient by, -+ ,b, € B dont les images dans B/pB forment
une base de A/p-espace vectoriel. Alors ils forment une base de L/K.

Démonstration. (1) Indépendance linéaire. Soit », ., a;by = 0 avec a; € K.
On veut montrer que les a; sont tous nuls. En chassant les dénominateurs, on
peut supposer que a; € A. Supposons que les a; ne sont pas tous nuls. Alors
il existe 7 > 0 tel que a; € p” pour tous j < n, et que I'un des a;, disons ay,
n’appartient pas a p”tr.
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Soit t € p\ p2. Soit s € A\ p tel que sp” C t"A (proposition 3.2.14).
Alors ) (sa;t™")b; = 0 avec sa;jt™" € A. En passant dans B/pB, on obtient
sa;jt™" € p. En particulier sa; € t"p C q" 1. Soit a’ € A tel que 1 = sa’ +z avec
x € q, alors a; = (sa’ + z)a; € p"+L. Contradiction.

(2) Génération. Soit N = 37, ., Ab; C B. Soit M = B/N (quotient de
A-modules). Comme B C N + pB par I'hypothése sur les b;, on a M = pM. Il
suit du lemme de Nakayam qu’il existe a € p tel que (1 + )M = 0. Autrement
dit, comme 1+ a #0,ona BC (1+a)"'N C Y, ..., Kb;. En appliquant la
proposition 2.3.5(1) avec C = B, on obtient L C 271;].<n Kb;. Les by,--- ,b,
forment bien une base de L sur K. O

Theorem 3.3.9. Soit A un anneau de Dedekind de corps de fractions K, soit
B la cloture intégrale de A dans une extension finie séparable L/K. Pour tout
idéal mazimal p de A, on a une décomposition

pPB=ay' - -ay (3.1)

ou q1, ..., q, sont les idéauxr mazrimauzr de B contenant p, deux ¢ deux distincts
et ot e; est lindice de ramification de A C B en q;. De plus, on a [’égalité

[L:K]= Y efs (3.2)

1<i<n
ot f; est le degré de lextension résiduelle de A/p C B/q;.
Démonstration. Cela résulte de la proposition 3.3.6 et du corollaire 3.3.8. [

Proposition 3.3.10 (Cas galoisien). Conservons les notations du théoréme
3.3.9 et supposons extension L/K galoisienne. Alors e; = e; et f; = f; pour
tous i,7 < n.

Démonstration. Pour tout o € G := Gal(L/K), o(q;) est un idéal maximal
de B contenant o(p) = p. Donc G opére sur 'ensemble des g;. Montrons que
Paction est transitive. Supposons par exemple que o(qz2) # g1 pour tout o € G.
Soit

z € q1 \ Useco(q2).

Un tel z existe par le théoréme des restes chinois 3.1.31 (prendre un antécédent
de (0,1,...,1) par B — [], B/q;). Alors

[1 o(@) = Nijwe(@) € AN = C ao.
oceG

Donc un des conjugués de = appartient a go. Contradiction. Ce qui montre la
transivitivé de 'action.

Fixons r < n. Soit ¢ € G tel que o(q1) = q,. Comme pB = o(pB) =
[1o(q:)¢, il suit de 'unicité de la décomposition que e; = e,.. De plus, o induit
un isomorphisme de A-modules B/qy — B/o(q1) = B/q, qui est a fiortiori un
isomorphisme de (A/p)-espaces vectoriels. Donc fi = f,. O
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Nous allons donner une méthode concréte pour calculer les invariants e et f
dans un cas particulier (extensions monogénes).

Proposition 3.3.11 (Cas monogeéne). Soient A, B comme ci-dessus. Supposons
B = A[f] pour un certain 6 € B. Soit H(X) € A[X] le polynéme minimal de 6.
Fizons un idéal mazimal p de A, et notons k(p) = A/p. Soit H(X) la classe de
H(X) dans k(p)[X]. Considérons la factorisation

HX)= ] m(x)", ri>1

1<i<n

avec les hi(X) € k(p)[X] unitaires irréductibles et deuz & deux distincts. Soit
H;(X) € A[X] un polynoéme unitaire dont limage dans k(p)[X] est égale a
hi(X). Alors les propriétés suivantes sont vraies.

(1) On a un isomorphisme d’anneauzx A[X]/(H(X)) ~ B.

(2) Soit q; = H;(0)B+pB. Alors c’est un idéal mazimal de B contenant p avec
B/ai = k(p)[X]/(hi(X)).

(3) Lesqy,...,qn sont deux & deux distincts et sont exactement les idéaux maxi-
mauzr de B contenant p.

(4) On ae; =1, f; = degh;(X).

(5) La décomposition de pB est donnée par

pB= ][] af"

1<i<n

Démonstration. (1) Par hypothése 'homomorphisme de A-algebres A[X] — B
défini par F'(X) — F(6) est surjectif. Déterminons son noyau. Soit F'(X) € A[X]
tel que F(A) = 0. Comme H(X) € A[X] est unitaire, on peut effectuer une
division euclidienn dans A[X] :

F(X)=HX)Q(X)+ R(X), degR(X) < degH(X).

Il suit que R(#) = 0, donc R(X) = 0 puisque H(X) est le polyndme minimal de
6 sur K. Donc F(X) € H(X)A[X] et le noyau en question est égal & H(X)A[X].
Ce qui prouve (1).

(2) Rappelons que si I C J C R sont des idéaux dans un anneau R, alors on
a un isomorphisme canonique R/J ~ (R/I)/(J/I).

On a

B/ai ~ A[X]/(H(X), Hi(X),p) =~ k(p)[X]/(hi(X))
est un corps. Donc ¢; est un idéal maximal de B contenant p et k(q;) =~
E(p)[X]/(hi(X)) est une extension de k(p) de degré f; = degh;(X).

(3) Soient ¢ # j < n, montrons que q; # q;. En effet, comme h;(X), h;(X)
sont premiers entre eux, il existe g;(X), g;(X) € k(p)[X] tels que g;h; +gjh; = 1.
Si Gi(X),G,(X) € A[X] sont des polynomes qui s’envoient sur g;(X), g;(X)
dans k(p)[X], alors

Gi(X)H;(X) + Gj(X)H;(X) =1+ S(X), S(X)€p[X]
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(p[X] est I'ensemble des polynomes & coefficients dans p). Si q; = g, alors
1+ 5(0) = Gi(0)Hi(0) + G;(0)H;(0) € qi + ;= qa-

Or 14 5(f) € 14+ pB C 1+ qg; est dans le complémentaire de g;. Contradiction.
Il reste & montrer que tout idéal maximal q de B contenant pB est égal & un
des q;. Similairement & ce qui précéde, on a

HX)= ] HX)" +R(X), R(X)eplX]

1<i<n

avec un R(X) € p[X]. Il suit que

0=HO) = [] Hi0)" +R(®), R(@) € pB. (3.3)

1<i<n
Donc [[, H;(0)" € q. Par suite, H;(#) € q pour un certain i < n. Cela entraine
que ¢q; C q, donc g; = q puisqu’il est maximal.

(4)-(5) L’équation (3.3) ci-dessus implique que

[ #:(0) = —R(6) € pB.

i<n
Il suit que ], q;" € ([, Hi(#)",pB) C pB =[], q;*. L’exercice 3.2.23 montre
que 7; > e; pour tous ¢ < n. Par ailleurs, on a

> rifi =deg H(X) = deg H(X) = [L : K]

i<n

car H(X) est le polyndme minimal de 6 sur K et que L = K[f] (Proposi-
tion 2.3.5). D’aprés le théoréme 3.3.9 on a

Zeifi = Zﬁfz

7 K3

Comme r; > e; et f; > 1 pour tout i, on a r; = e; pour tout i < n. O

Exemple 3.3.12 Soit d # 1 un entier sans facteur carré et = 2,3 mod 4.
Considérons L = Q[v/d]. On a O, = Z[Vd] = Z[X]/(X? — d) (exemple 2.3.21).
En un premier p > 2 ne divisant pas d, on a

Or/pOr, = Fp[X]/(X? + d)

est soit un corps, auquel cas il y a un seul premier dans O au-dessus de p et
on a e =1, f =2; soit produit de deux copies de F,, et il y a deux premiers
au-dessus de p avec e; = f; = 1. Dans les deux cas, L est non-ramifié au-dessus
de p.

Enp =2 onaOL/pOL =F,[X]/(X +1)? ou F,[X]/(X?). Donc s = 1, et
onae=2, f=11IIsuit que 20;, = q°> comme dans 'exemple 3.1.18.
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En p > 2 divisant d, on a O, /pOr, = F,[X]/(X?). Donc situation similaire
4 2 : un seul premier au-dessus de p avec e =2 et f = 1.

Pour p > 2 et premier & d, X2 — d est soit irréductible, soit produit de deux
facteurs linéaires premiers entre eux. Donc s =1ou 2. Sis=1,onae=1¢et
f:2 815:2,0na61:62:f1:f2:1.

En résumé, les nombres premiers ramifiés dans l'extension L sont 2 et les
diviseurs premiers de d. Par ailleurs, le discriminant De,,z = 4d. Donc les
nombres premiers ramifiés sont ceux qui divisent Dp, ,z. Ceci n’est pas un
hasard comme on va voir un peu plus loin.

Exemple 3.3.13 Soit L = Q[a] engendrée par une racine a € C de H(X) =
X% — X —1. On a vu (2.3.17) que Op, = Z[a]. Dans Fg, on a la décomposition
X5 — X —-1=(X?24+X+1)(X%+ X2+ 1) en facteurs irréductibles. Donc
au-dessus de 2Z, ona s =2,e; =1, f; =2 et ea = 1, fo = 3. Cela implique
d’ailleurs que L/Q n’est pas galoisienne d’aprés la proposition 3.3.10.

3.3.2 Ramification et discriminant

Nous allons donner un résultat qui généralise I’exemple 3.3.12 concernant la
ramification.

Theorem 3.3.14. Supposons B libre sur A avec une base €. Alors A — B est
ramifié au-dessus de p si et seulement si p contient D4 (). En particulier, si
Frac(B)/Frac(A) est une extension séparable, alors A — B est ramifié seulement
au-dessus d’un nombre fini de p.

Démonstration. Nous démontrons ce théoréme dans le cas ot B = A[f] est mo-
nogéne sur A comme dans la proposition 3.3.11. Nous gardons les notations de
cette proposition. Comme le discriminant est indépendant du choix d’une base
de B sur A a multiplication par des inversibles de A prés, il suffit de montrer le
théoréme avec la base {1,6,...,097 1} ott d = deg H(X). Notons K = Frac(A)
et L = Frac(B) = K[X]|/(H(X)) = K[0]. Alors D := Dp,a(e) = Dp/k(e) =
disc(H (X)). Dire que I'extension B/A est non-ramifiée au-dessus de p est équi-
valent & r; = 1 et les h;(X) séparables. Comme ceux-ci sont premiers entre eux,
c’est encore équivalent & H(X) séparable, c’est-a-dire que disc(H (X)) # 0. Or
disc(H(X)) = disc(H(X)) € A/p. Cela implique le théoréme. Lorsque l'exten-
sion Frac(B)/Frac(A) est séparable, comme c’est le corps de rupture de H(X),
on a disc(H(X)) # 0 et il n’y a qu’un nombre fini d’idéaux maximaux de A qui
contiennent disc(H (X)). O

Remarque 3.3.15 On verra que Z n’admet aucune extension non triviale non-
ramifiée au-dessus de tout nombre premier (corollaire 4.2.16). Autrement dit Z
est une sorte d’espace simplement connexe. Il en est de méme pour I'anneau
C[X], cela résulte du fait que Pespace topologique C est simplement connexe.

En revanche, si k est un corps de caractéristique p > 0, 'extension finie non
triviale A = k[t] C B = k[y] avec t = yP — y est non-ramifiée au-dessus de tout
idéal maximal de A.



Chapitre 4

Groupe des classes des corps
de nombres

Le groupe des classes d'un anneau de Dedekind A est un groupe commutatif
qui mesure en quelque sorte le défaut de A a étre principal. Il est trivial si et
seulement si A est principal, cf. proposition 3.1.25. Plus précisément, si I est
un idéal non nul de A, et si sa classe dans Cl(A) est d’ordre fini égal a e, alors
1°¢ est un idéal principal. Dans ce chapitre nous étudions le groupe des classes
de I'anneau des entiers d’un corps de nombres. Nous montrons notamment que
ce groupe est fini (4.1.8) et donnons aussi une borne en termes de certains
invariants du corps de nombres (4.2.10).

4.1 Finitude du groupe des classes

Pour évaluer la taille de CI(A) lorsque A est un anneau d’entiers, on va
montrer que tout idéal fractionnaire est équivalent a un idéal de petite norme.

4.1.1 Norme absolue

Proposition 4.1.1 (et définition). Soit L un corps de nombres. Soit I un idéal
non nul de Oy,. Alors l'anneau quotient Or /I est fini. Son cardinal est appelé
la norme de I et est noté N(I).

Démonstration. Considérons I'idéal I N'Z de Z, il est principal, égal & dZ pour
un certain d > 0. Soit b € I non nul. Son polynéme minimal sur Q appartient
a Z[X], et le terme constant ag est non nul. Comme ay € INZ, on a d # 0.
Comme d € I, on a dOp, C I.

On a une application surjective Z-linéaire Z™ — Op, d’ou une application
surjective 2" /dZ™ — Or/dOr. Comme le membre de gauche est fini (il a d”
éléments), celui de droite aussi. Or O, /I est un quotient de O, /dOp, il est donc
fini. O

o1
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Exemple 4.1.2 Lorsque L =Q,ona I =kZ et N(I) = |k|.

Lemme 4.1.3. Soit q un idéal mazximal de Op, soit p le générateur premier de
lidéal mazimal N Z = pZ et notons fq = [Or/q: Z/pZ]. Alors N(q) = pa, et
N(q") = N(q)" pour tout r >0 (par convention q° = Oy,).

Démonstration. En effet, pour tout r > 1, le noyau de la surjection canonique
Or/q" — Or/q" ! est égal q"/q"~! ~ Or/q (lemme 3.3.3) qui est de cardinal
p’. Cela implique immédiatement le résultat recherché. U

Proposition 4.1.4. Soit L un corps de nombre.

(1) Soit I un idéal non nul de Or, et soit

sa décomposition en product d’idéaur mazimauz. Soit p; € N tel que q;NZ =
piZ et soit f; =[O /q; : Z/piZ). Alors

N =TTwl

(2) SiI,J C O sont non nuls, alors N(IJ) = N(I)N(J).

Démonstration. (1) En regroupant les q;, on peut les supposer deux a deux
distincts. Le théoréme des restes chinois 3.1.31 implique que O, /I ~ [[, Or/q;",

donc
=[I~GE.

OL/1| = H|OL/q:i

On conclut par le lemme qui précéde.
(2) Quitte & admettre des exposants nuls, on peut écrire

r=1lar. 7=T]ar

Donc IJ =[], q;*%. L'égalité N(I.J) = N(I)N(J) est alors une conséquence

7

immeédiate de (1). O

Proposition 4.1.5. Soit L un corps de nombres, soit « € O non nul. Alors
N(aOr) = [Ny jq(a)l.

Démonstration. Le Z-module Oy, est libre de rang n := [L : Q]. Il existe une base
{e1,...,en} de O comme Z-module et ay,...,a, € Z des entiers non nuls tels
que {ajey,...,aye,} soit une base de a@y, (théoréme de la base adaptée 1.2.2).
Or {aey,...,ae,} est aussi une base de aQp, sur Z, il existe donc une matrice
inversible U € GL,(Z) telle que (aey,...,ae,)t =U - (are1,...,ane,)t. Soit M
la matrice de lapplication [a] : O, — Oy, (multiplcation par «). Alors M = UD
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ot D est la matrice diagonale dont les éléments diagonaux sont aq,...,a,. Par
conséquent,

[Nejq(e)] = [det M| = des U]l [T ail = ] ] ol

D’autre part N(aOp) = |0r/aOr| = |[],Z/a;Z| = |]]; a;|. D’ou la proposi-
tion. 0

4.1.2 Application au groupe des classes

La norme absolue est une mesure sur ’ensemble des idéaux non nuls de Op.
Le lemme suivant dit que ’espace des idéaux est discret.

Lemme 4.1.6. Fizons un corps de nombres L. Soit ¢ > 0 un nombre réel. Alors
lensemble des idéaux non nuls J de Oy, tels que N(J) < ¢ est fini.

Démonstration. Soit J =[], q;* la factorisationc avec r; > 1 et N(J) < c¢. Soit
pZ=q;NZ. Alors N(J) = Hip?fi < c. Donc p; < cet r; <c. Comme il n'y a
qu’un nombre fini de q; contenant p; Oy, avec p; fixé, on voit que les ensembles
des q; et des r; qui interviennent dans la factorisation des J de N(J) < ¢ sont

finis. Il n’y a donc qu’un nombre fini de J avec N(J) < c. O

Lemme 4.1.7. Soit L un corps de nombres. Alors il existe une constante réelle
c > 0 avec la propriété suivante : pour tout idéal fractionnaire M de Oy, il
existe o € K* et un idéal non nul J de O, tels que M = aJ et N(J) < c.

Démonstration. On va montrer le lemme en trois étapes. Soit n = [L : Q] et
fixons une base eq,...,e, de O sur Z. C’est aussi une base de L sur Q.

(A) Il existe une constante ¢ > 0 telle que pour tout (a1,...,a,) € Q", on
ait
INLQ(D  aies)| < cmax{a;|"}. (4.1)

En effet, fixons une base {ey,...,e,} de Pespace vectoriel L/Q. L’application
[] : L — L multiplication par x = ), t;e; vérifie [z] = )", t;[e;], donc sa matrice
dans une base de L/Q s’écrit Mat([z]) = >, t;Mat([e;]). C’est une matrice a
coefficients dans Q[ty, ..., t,], donc de déterminant

NL/Q(I') = det[a:] = P(tl, C ,tn) € Q[tl, Ce ,tn].
Il existe une constante réelle ¢ > 0 telle que
[P(t1, - tn)| < e, V(t1,...,ts) €[0,1]™.

Pour tout (ay,--- ,a,) € Q" non nul, on prend a € Q tel que |a| = max;{|a;|}.
Alors

NL/Q(Z aie;) = a”NL/Q(Z(ai/a)ei) =a"P(a1/a,...,a,/a).

K2
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D’ot [N q(>2; aies)| < cmax;{|a;|"}.

(B) Pour tout idéal non nul J de Oy, il existe un a € J non nul tel que
INL/q(c)| < eN(J). Considérons 'ensemble

F = {Zaiei 60L|ai €Z,0<aq; SN(J)l/n}'

Alors
|E| = (IN()Y" + 1)" > N(J).

Donc il existe z,y € E distincts ayant la méme image dans Or,/J (ce dernier a
N(J) éléments). Leur différence o € Oy, vérifie

INLjg(a)] < eN(J)

car les coordonnées de av dans la base e; appartiennent a [—N(J)'/™, N(J)'/"].

(C) Preuve du lemme. L’idéal fractionnaire M est équivalent & un idéal non
nul J' de Op (proposition 3.1.11). Par (B), il existe a € J’ non nul tel que
INLjg(a)| < eN(J'). Soit J = '~ € Op. On a aOp = J'J, donc N(aOp) =
N(J')N(J). I résulte de la proposition 4.1.5 que N (J) = [Ny q(a)|N(J) <
c. Comme M est équivalent & J'~! donc & J, le lemme est prouvé. O

Theorem 4.1.8. Soit L un corps de nombres. Alors C1(Or) est fini.

Démonstration. D’apreés le lemme 4.1.7 ci-dessus, il existe une constante ¢ > 0
telle que tout idéal fractionnaire soit équivalent & un idéal non nul J de norme
N(J) < ¢. Mais il n’existe qu’un nombre fini de tels J d’aprés le lemme 4.1.6.
Donc CI(Of,) est fini. O

Corollaire 4.1.9. Soit ¢ une constante donnée par le lemme 4.1.7. Alors C1(Op,)
est engendré par les classes des idéauz mazimaux q avec N(q) < c. De plus, ces
idéauz mazimauz vérifient q N Z = pZ avec pls < ¢ ou fq est le degré de l’ex-
tension résiduelle Z — Or, en q.

Exemple 4.1.10 Soit L = Q[v/2]. Alors {1,v/2} est une base de Oy, sur Z et
la constante ¢ = 2 convient pour lemme 4.1.7. Pour déterminer C1(Op,), on doit
donc chercher les q au-dessus de p = 2. On a O = Z[V/2] ~ Z[X]/(X? - 2).
Comme X2 —2 = X2 mod 2, on a 20, = ¢% avec q2 = (2,v2) = V20,
(proposition 3.3.11). Donc g9 est principal et CI(Of) = 1. Par suite Z[/2] est
un anneau principal. En fait il est facile de montrer que c’est méme un anneau
euclidien.

Exemple 4.1.11 Soit L = Q[v/—5]. On a O = Z[v/-=5] car =5 = 3 mod 4.
On voit que ¢ = 6 convient car

INLjq(a1 + azv—=5)| = |a§ + 5a§| < 6max{\a1\2, |a2|2}.



4.2. BORNE DE MINKOWSKI 95

Il faut considérer les décompositions des idéaux 20,30 et 50,. Ona X245 =
(X +1)2eF[X], X24+5=(X—-1)(X+1) e F3[X] et X? -5 = X? € F5[X].
Donc

201 =q3, 30L =4d31q32, 50 =gz

avec g2 = (2,v/~5+ 1), q31 = (3,v/=5+ 1), qz2 = (3,v/=5 — 1), et q5 =
(5,v/=5) = V/=50¢. 1l suit que CI(Or) est engendré par les classes de gy =
(2,14 +v/=5) et de q3 := g3.1 (noter que 30, = q31q3,2, donc la classe de 32
est égale a 'inverse de la classe de q3 dans C1(Or)).

On a1 +\/j5 € g2 Mgz = (293 et N(l—I— \/j5) =6 = N(ngg). Donc
(1++v/=5)Or = q2q3 et CI(Or) est engendré par la classe de qo qui est d’ordre
1 ou 2 (puisque 20, = q3).

Montrons que qz n’est pas principal. S’il était engendré par a 4 by/—5, alors
2 = N(q2) = N(a+byv/—5) = a®> + 5b%. Ce qui n’a pas de solution avec a,b € Z.
Nous concluons que Cl(Op,) est un groupe d’ordre 2 engendré par la classe de
2. Comme corollaire, pour tout idéal .J de O, J? est principal.

Remarque 4.1.12 En dehors des anneaux d’entiers d’un corps de nombres, il
y a d’autres cas ou la finitude est valide : si A est un anneau de Dedekind qui
est fini sur un anneau de polynomes F[X] a coefficients dans un corps fini F,
alors on peut montrer que CI(A) est fini.

Mais en général le groupe des classes d’un anneau de Dedekind n’est pas fini.
On peut en donner des contre-exemples avec des courbes elliptiques E sur C. I
s’agit d’anneaux du type

A=C[X,Y]/(Y?+ X® +aX +b)

avec a,b € C fixés et vérifiant 4a® + 276> # 0. On peut montrer que A est un
anneau de Dedekind (exercice) et que Cl(A4) a toujours des éléments d’ordre
infini (en utilisant des outils de géométrie algébrique).

4.2 Borne de Minkowski

Le théoréme de finitude 4.1.8, s’il est suffisant pour I'aspect théorique, ne
permet pas de déterminer le groupe des classes de fagon efficace. Le corollaire
4.1.9 fournit une methode plus concréte, mais la constante ¢ n’est pas tou-
jours aisée a trouver ni optimale. Dans ce paragraphe, nous allons présenter une
nette amélioration par la borne de Minkowski (théoréme 4.2.10). La méthode de
Minkowski (lemme 4.2.5) est a l'origine d’une branche de théorie des nombres
appelée la géométrie des nombres.

4.2.1 Rudiments sur les réseaux

Dans toute cette partie, on fixe un entier n > 1 et on note V = R” et
{e1,...,en} sa base canonique.
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Définition 4.2.1 Un réseau dans V est un sous-Z-module libre A de V, de
rang n et contenant une base vectorielle de V. De facon équivalente, A est un
sous-Z-module de V' engendré par une base de V.

Par exemple, Z? est un réseau dans R?, mais Z(1,0) + Z(v/2,0), bien que
libre de rang 2 sur Z, n’est pas un réseau.

Remarque 4.2.2 Tout réseau A de V est discret : c’est-a-dire que pour tout
point v € A, il existe un voisinage ouvert Q2 de v dans V tel que QN A = {v}.
En effet, par translation, il suffit de montrer cette propriété pour v =0 € V.
Soit €1, ..., une base de A (en tant que Z-module), donc une base vectorielle
de V. Par I’équivalence des normes sur V, il existe une constant § > 0 telle que

I Z%‘EiHe > o max{|z;|}
3

ot ||.||e désigne la norme euclidienne. On obtient le résultat désiré en prenant
Q={z eV ||lz|le <0}

Si A est un réseau avec une base ¢ = {e1,...,e,}, on définit un domaine
fondamental (dépendant du choix d’une base)

F(Ae) = in5i|xi€R,0§xi<l cV.

1<i<n
Notons qu’un domaine fondamental induit une partition de V :
V=[]F®"e)+N),
AEA
et chaque morceau F(A, ) + A contient un et un seul vecteur de A.

Lemme 4.2.3. Avec les notations ci-dessus, on a les propriétés suivantes.

(1) L’ensemble F(A,e) est mesurable, son volume est égal o |det M| ou M est
la matrice des g; dans la base orthonormée {e1,...,e,} de V.

(2) Le volume v(F(A),g) ne dépend pas du choix d’une base € de A.

Démonstration. (1) Soit
T:R" =V, (z1,...,2,) — szsl

C’est un isomorphisme R-linéaire et on a T'([0,1[") = F(A,g). Le volume du
domaine fondamental est donné par

/ dyl...dyn:/ |det T|dzy ...dx, = |det T
F(Ag) [o.1["

(changement de variables). Or M est aussi la matrice de ’endomorphisme T
dans la base canonique, donc le volume de F'(A,¢g) est égal a | det M.

(2) Si on change la base ¢ en €', le quotient det 7'/ det T” est égal au déter-
minant de la matrice de passage qui vaut £1. Donc |det T| = | det T”|. O
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Définition 4.2.4 On notera vol(A) le volume de F(A,g). Clest le volume du
réseau A. Il est indépendant du choix d’une base de A.

Lemme 4.2.5 (Minkowski). Soit A une partie convexe compacte de V, sy-
métrique par rapport o lorigine (v € A = —v € A). Supposons vol(A) >
2"vol(A). Alors AN A # {0}.

Démonstration. Fixons un domaine fondamental F' := F(A,g). On suppose
d’abord vol(A) > 2"vol(A). Posons

A2 ={z/2; z € A}.

Elle a pour volume vol(A/2) = vol(A)/2™ > vol(A) et se découpe en une réunion
disjointe
A2=TJUF+1nA/2.
AEA

11 suit que

vol(A/2) = Y “vol((F+A)NA/2) =Y vol (FN(A/2-N)).

AEA AEA

Par conséquent, si les parties A/2 — X\, X\ € A, étaient deux & deux disjointes,
comme F'N(A/2— X)) C F, on aurait vol(A/2) < vol(F) = vol(A), ce qui est
contraire & 'hypotheése. Il existe donc A, u € A distincts tels que (A/2 — )N
(A/2 — u) # 0. Donc il existe xz,y € A tels que /2 — A = y/2 — p, et donc

A—p=(z—-y)/2

Or A est symétrique et convexe, —y € Aet (r—y)/2 € A. Donc A—p € ANA
et est non nul.

Supposons maintenant vol(A) = 2"vol(A). Soit m > 0 un entier. Alors on
peut appliquer le résultat qu’on vient de montrer & (1 4+ 1/m)A car ce dernier
est convexe, symétrique par rapport a l’origine, et son volume vérifie

vol((1+ 1/m)A) = (1 + 1/m)™vol(A) > 2"vol(A).

Donc (1 + 1/m)A N A contient au moins deux points. Comme A est discret
(remarque 4.2.2) et que (1+1/m)A est compact, cette intersection est un espace
topologique compact et discret, donc fini (voir aussi lemme 5.2.3). Quand m croit
vers l'infini, les

(1+1/m)ANnA

sont des ensembles décroissants, finis (avec au moins deux éléments), donc sta-
tionnaires. Leur intersection est égale ANA et contient au moins deux éléments,
en particulier un élément différent de 0. O

Exercice 4.2.6 Soit p un nombre premier =1 mod 4. On veut montrer que p
est somme de deux carrés.
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1. Montrer qu’il existe u € F;, d’ordre 4.

2. Soit p : Z2 = F,, (z,y) — (x — uy). Montrer que A := ker ¢ est un réseau
dans R?, de volume p.

3. Soit A C R? le disque fermé centré en l'origine et de rayon r = /3p/2.
Montrer qu’il existe a,b € A tels que 0 < a? + b < 3p/2.

4. Montrer que a®+b? = p (montrer que a®>+b? € pN en utilisant la définition
de A). Cela se démontre également avec I’anneau des entiers de Gauss Z[i].

4.2.2 Applications aux corps de nombres

On fixe un corps de nombres L de degré n = [L : Q], de discriminant
dr, = Do,z (voir 2.3.14). Soient r1,2r; les nombres de plongements réels
et imaginaires (définition 2.2.23). On sait que n = 11 + 2r3 (proposition 2.2.24).

Soient o1,...,0,, les plongements réels et o 41,0 415+ Trytrys Ory+rs
Les plongements imaginaires. On a alors un homomorphisme d’anneaux injectif
et Q-linéaire

p: L—V:=R"x Crza T = (O’l(l‘), s 7JT1(‘T)7UT1+1($)7 B -a0r1+r2(x))'

On considére V' comme un espace vectoriel sur R (de dimension n2) en utilisant
Iidentification de C avec R? : x + iy — (z,y).

Lemme 4.2.7. Soit J un idéal non nul de Or. Alors p(J) est un réseau dans

V, de volume
vol(p(J)) = 272N (J)|d|*/2.

Démonstration. L’idéal J est un Z-module de type fini et sans torsion, donc libre
de rang fini. Comme Oy, /J est fini (proposition 4.1.1), J a le méme Z-rang que
Oy, (utiliser le théoréme des bases adaptées 1.2.2), c’est-a-dire n. Soit €1,...,¢,
une base de J sur Z. Soit M la matrice des p(e;) dans la base canonique de V.
On va montrer que

|det M| = 27"2N(J)|d|*/2.

En particulier on aura det M # 0, ce qui montrera que p(eq), ..., p(e,) est libre
sur R et donc que p(J) est un réseau dans V' dont le volume est comme prédit
(lemme 4.2.3 et définition 4.2.4).

Considérons les vecteurs lignes de la matrice M : pour i < rq,

Ll‘ = (O’Z‘(El), ey O'i(En)) eV
et pour ri +1 <5 <ry+ro,
L; - (RG(O']' (51)), ey Re(oj (En)))

L} = (Im(o;(e1)), - .-, Im(a;(en)))-
Le déterminant de M ne change pas si, pour tout 5 > r1 + 1, on remplace L;»

par
Lj = L; —+ vV —lL;/ = (Uj(€1)7 e ,O'j(En)).
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Maintenant dans la nouvelle matrice, on remplace L}’ par
I/j = Lj - 2\/ —].L;-/ = (5’j(€1), ey 6’j(8n)).

On obtient alors une nouvelle matrice D avec det D = (—2y/—1)" det M. Par
ailleurs, ’ensemble Isomq(L, Q) des plongements de L dans Q est égal &

{0'1’ e Oy, Ol ey 5T1+T2}7
et la matrice D est celle qui permet de calculer le discriminant
Do, jz(g) = (det D)?

(théoréme 2.2.14 et remarque 2.3.13). Il suit que |det M| =27"2|Do, ,z(g)|'/2.
Il ne reste plus qu’a comparer Do, ;z(g) avec d..

Le théoréme des bases adaptées 1.2.2 dit qu’il existe une base ¢}, ...,e!, de
Oy sur Z et des aq,...,a, € Z non nuls tels que a;&}, ..., a,e], soit une base
de J. Il suit que

Do, jz(e) = Do, jz({a1€, ..., aney,}) = (a1 ... an)2DoL/Z(g/).
Par ailleurs, Or/J ~ ®1<;<nZ/a;Z, donc N(J) =|az ...ay,|. Dou
Do, jz(g) = N(J)?dy.
Ce qui achéve la démonstration. O

Lemme 4.2.8. Soit V = R™ x C™ comme ci-dessus. Pour tout nombre réel
t > 0, on pose

A =S (X1, Ty, 215 e 3 20y) EV ’ Z|x,|+22|z]| <t
i J

C’est une partie convexe compacte de V , symétrique par rapport a l'origine. Son
volume vaut

vol(Ay) = 2™ (w/2)"2¢"™ /nl.

Démonstration. Seul le calcul du volume est non trivial. On se rameéne par
homothétie & ¢ = 1. Ensuite il y a un calcul explicit assez long. Le résultat est
admis. ! O

Lemme 4.2.9. (Inégalité arithmético-géométrique) Soient x1,...,x, > 0 des
nombres réels. Alors

xl+...+xn
77]/ .

1. On peut trouver une preuve dans Pierre Samuel : Théorie algébrique des nombres, pp
79-80, ou James Milne : Algebraic Number Theory (en ligne), Lemma 4.22.

(@1...22)/" <
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Démonstration. On passe au logarithme. L’inégalité est alors une conséquence
immédiate de la concavité de la fonction In x. O

Nous pouvons maintenant démontrer le théoréme qui donne une majoration
explicite de la constante ¢ qui apparait dans le lemme 4.1.7.

Theorem 4.2.10. Soit L un corps de nombres de degré n. Soit

4\ n!
Cr = (ﬂ) o
la constante de Minkowski de L. Alors tout idéal fractionnaire de Op, est équi-
valent & un idéal J' de norme

N(J') < Cpldp)'/2.

Démonstration. Soit M un idéal fractionnaire. Alors M ! est équivalent a un
idéal non nul J C Op. On conserve les notations du lemme 4.2.8 ci-dessus et on
choisit ¢ de sorte que

vol(Ay) = 2"vol(p(J)).
D’aprés les lemmes 4.2.7 et 4.2.8, cette égalité équivaut a
t" = (4/m)"2nIN(J)|dp|"/? = n"N(J)COp|dp |2

Fixons t avec cette condition. D’aprés le lemme 4.2.5, il existe @ € J non nul
tel que p(a) € Ay, c'est-a-dire que

lor(@)] + -+ lor, (@) + 2om (@) + -+ 2o 4y (@) < .
Par 'inégalité arithmético-géométrique 4.2.9, on a
o1 (@)] -+ lory (@) o 11(@)* - [or s (@) 2 < (/)" =" /0"

Or le membre de gauche est égal a [Ny q()| (théoréme 2.2.11) et celui de
droite est égal & N(J)Cp|d|'/? par le choix de t. Par suite, |Np ()| <
N(J)Cp|dr|'/?. T suit que

N(aJ ™) < Cpldp|'/?
avec aJ 1 C Op, équivalent & M. O

Remarque 4.2.11 Comme pour le corollaire 4.1.9, le théoréme dit que le groupe
des classes C1(Op) est engendré par les classes des idéaux maximaux q vérifiant
N(q) < Crldr|'?. Soit pZ = qN Z, alors linégalité veut dire pf < Cp|dy|'/?,
ot f = fq/pz- Donc les idéaux q sont & chercher parmi les idéaux maximaux
au-dessus des premiers p tels que pf < Cp|dy|*/2.
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Exemple 4.2.12 Soit L = Q[v/—5]. On a —5 = 3 mod 4, donc d;, = —20
(exemple 2.3.21). On a

Crldp)'? = (4/7)(2!/2%)v/20 = 2,8...

11 suit que Cl(Op) est engendré par les classes des idéaux de norme < 2,8, donc
de norme < 2. On est ainsi passé de ¢ = 6 de I'exemple 4.1.11 & ¢ = 2. La
derniére partie de 4.1.11 montre que C1(Of) est engendré par la classe de q et
que hy = 2.

Exemple 4.2.13 Considérons L = Q[a] ol « est une racine de X* — X —1. Ce
polynome est irréductible dans Fo[X], donc irréductible sur Q. Son discriminant
vaut —23 et est sans facteur carré. Il suit que d, = Do, ;z({1, a, a?})=-23<0
(proposition 2.3.15). Comme 71 +2r9 = 3, on a ro = 1 (proposition 2.2.27). Donc

Crldp|? = (4/7)(3!/27)V23 = 1.35... < 2.

Tout idéal fractionnaire de Oy, est équivalent & un idéal non nul J de Of, avec
N(J) < 2,donc N(J)=1et J= Op. Par conséquent hy = 1.

Exemple 4.2.14 Soit L = Q[v/—19]. On va montrer que h;, = 1. Donc Oy,
est un anneau principal. On sait par ailleurs (5.1.5) qu’il n’est pas euclidien.
Comme —19 =1 mod 4, on a Op, = Z[a] o a = (1 4+ v/—19)/2 est racine du
polynéme X? — X +5 € Z[X]. On a donc d;, = —19 et

Crldp)V? = (4/7)(21/25)V19 = 2,77... < 3

Comme X? — X +5= X2+ X +1 mod 2 est irréductible dans F3[X], 20}, est
maximal et est principal. Donc hy = 1.

Exemple 4.2.15 Soit L = Q[/—163]. On va montrer que h, = 1. Ona —163 =
1 mod 4. Donc dy, = —163. 1l faut considérer les premiers

p < Crv163 =2v163/7m = 8,12...,

donc p = 2,3,5 ou 7. On a Of, = Z[a] avec le polyndme minimal de « égal a
X?+ X +41. On vérifie que ce polynéome n’a pas de racine dans F,, pour p < 7.
Il suit que tout q au-dessus de p < 7 est principal, engendré par p. Donc Oy, est
principal.

Corollaire 4.2.16. Soit L un corps de nombres de degré n.

(1) On aldp| > n"/4.

(2) (Hermite-Minkowski) Si L/Q est non-ramifiée, alors L = Q.

Démonstration. (1) On peut supposer n > 2. D’apreés 4.2.10(1) il existe a € Of,
non nul tel que 1 < [Ny, q(a)| < Crldy|'/?. Donc

[di| > (m/4)°20%"/(n)? > a, = (m/4)"n®"  (nl)>.
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Onaay=m2/det api1/a, = (r/4)(1+1/n)*. Or (1+1/n)"=1+1+..>2
par la formule du binéme. Donc (1 + 1/n)?" > 4. D’otl ay41/a, > 7 et

an > (/)72 = 7" /4.

(2) 1l suit de (1) que si n > 2, |[dr| > 3. Donc |dr| = 1 (ce qui équivaut a
L/Q non-ramifiée, théoréme 3.3.14) implique que n =1 et L = Q. O

Remarque 4.2.17 Quand n = [L : Q] tend vers l'infini, la formule de Stirling

dit que n!/n™ ~ /27\/ne”".

Exemple 4.2.18 L’extension L := Q[v/—1,v/=5] de K := Q[y/—5] est non-
ramifiée. En effet, Ox = Z[V/=5], et a := (/=14 v/=5)/2 € L est zéro du
polynéome X2 — /—5X — 1 € Og[X] et le discriminant de L/K dans la base
{1, a} vaut disc(X? — /=5X — 1) = —1.

Exercice 4.2.19 Montrer que Q[v/—3] est 'unique extension de Q avec |dr| =
3.

Exercice 4.2.20 Calculer hy, pour L = Q[v/—6] et trouver un générateur du
groupe des classes.

Exercice 4.2.21 Soit L un corps de nombres.

1. Soit g un maximal dont la classe dans C1(Or) est d’ordre m > 1. Montrer
qu’il existe une extension F/L de degré m telle que qOF soit principal.

2. Montrer qu’il existe une extension finie H/L telle que pour tout idéal I de
Op, IOy est principal. En prenant la cléture galoisienne, on peut méme
supposer H galoisienne sur K.

Exercice 4.2.22 Soit L = Q[v/7].

1. Montrer que L/Q est ramifiée au-dessus de 2 et que 201 = g2 avec q
maximal. Calculer N(q) et trouver un générateur de q.

2. Montrer que Oy, est principal.



Chapitre 5

Les unités des anneaux
d’entiers

Dans I’étude d’un anneau d’entiers ou plus généralement d’un anneau de
Dedekind A, nous nous sommes intéressés jusqu’a présent aux idéaux. Il y a un
autre object important que ne voient pas les idéaux, ce sont les unités, c’est-
a-dire les éléments inversibles de I'anneau. Les unités de A forment un groupe
commutatif, appelé le groupe des unités, et que nous noterons U(A).

Ce chapitre est consacré au théoréme de Dirichlet qui décrit la structure de
ces groupes dans le cas des anneaux d’entiers d’un corps de nombres.

5.1 Quelques exemples
Exemple 5.1.1 Le cas le plus simple : U(Z) = {£1}.

Proposition 5.1.2. Soit L un corps de nombres. Soit o € Op. Alors a €
U(Oy) si et seulement si Ny, jq(a) = £1.

Démonstration. Si o est inversible dans Or,, alors Ny g(a) est inversible dans
Z, donc égal a 1. Inversement, supposons que Ny, q(a) = £1. Soient K = Q[c]
et d =[L: K]. Alors

Nrjq(a@) = Nio(Nik(a)) = Nijq(a?) = N q(a)?
et on en déduit que Nk, q(a) = £1. Le polynéme minimal de «
Ma(X) = X"+ ap 1 X"+ + a1 X +ap € Q[X]
est a coefficients dans Z (proposition 2.1.20) et ap = (—1)™ Nk q(c) (proposi-

tion 2.2.4). Comme a(a™ ! + .-+ +a;) = £1, on voit que « est inversible dans
Z[a], donc inversible dans Oy,. O

63
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Exemple 5.1.3 Notons (L) ’ensemble des éléments de L qui sont des racines
de I'unité. Alors (L) C U(Or). En effet si ¢¥ = 1 pour un entier k > 1, alors
¢ est entier sur Z, donc appartient & Q. De plus (! € L est aussi une racine
de l'unité, donc appartient & O, d’on (L) CU(Op).

Exemple 5.1.4 (Unités quadratiques imaginaires) Soit d > 0 un entier sans
facteur carré. Soit L = Q[v/—d].

1. Supposons d = 1 ou 2 mod 4. Alors O, = Z[v/—d]. Soient a,b € Z. Alors
Npjq(a+bv—d) = a* 4+ b?d. On cherche (a,b) € Z* tels que a® 4+ b*d = 1.

(a) Si d = 1, les solutions sont (£1,0) et (0,£1). Donc U(Z[v/—1]) =
{£1,£v-1).
(b) Sid > 2, alors U(Op) = {£1}.
2. Supposons d = 3 mod 4. Alors O, = Z[a] ou o = (1 + v/—d)/2. Si
a,be Z, on a

Npjola+ba) =a®+ab+b*(d+1)/4 = (a+b/2)> + bd/4 > 0.

Les seules solutions pour Ny q(a + ba) = £1 sont, lorsque d > 3, a =
+1 et b = 0. Donc U(Or) = +1. Pour d = 3, on trouve des solutions
supplémentaires : U(Or) = {£1,£(1 £ /=3)/2 = £e*27/3},

En résumé, U(Or) = (L) pour les extensions quadratiques imaginaires.

Remarque 5.1.5 (Pas fait en cours) Soit A un anneau euclidien avec un sta-
thme
v:A—= NU{+oo}.

Alors il existe & € A\ ({0} U A*) tel que la surjection canonique A — A/aA
induise une application surjective A* U {0} — A/aA. 1l suffit pour cela de
prendre o € A\ ({0} UA*) avec v(«) minimal : pour tout a € A,onaa = ag+r
avec ¢,7 € A et v(r) <v(a). Doncr=0our € A* et onaa=r mod a.

Cette propriété permet de montrer que O = Z[(—1 4+ v/—19)/2] n’est pas
euclidien. En effet, O3 = {£1}. Si Oy, est euclidien, il existe & € Oy, non nul et
non inversible tel que Or /aOp, posséde au plus 3 éléments. C’est donc un corps,
isomorphe a Fy ou F3 et aOy, est un idéal maximal de Oy, au-dessus de 2 ou 3.
En particulier Oy, contient 20, ou 30. Or on a vu que O = Z[X]/(X? +
X +5) (exemple 4.2.14) et O, /20,0, /30y, sont des corps (car X2+ X +5
est irréductible dans Fs et F3), isomorphe a F4 et Fg. Donc aOf, = 20;, ou 30,
avec |0 /aOp| > 4. Contradiction.

Exemple 5.1.6 Si la situation des extensions quadratiques imaginaires est trés
limpide, le cas réel est plus... complexe et plus intéressant. Considérons L =
Q[v2]. On a O, = Z[/2]. 11 faut donc chercher a,b € Z tels que

a® —20% = £1. (5.1)

C’est une équation de Pell-Fermat. Elle est équivalente & Ny jq(a + bﬁ) = +1.
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On a ap = 14 V2 qui est de norme Ny, o(cg) = —1. C’est donc une unité
de Z[v/2] et on a
{#ak |k ez} CcU:=UZ[V2).

Montrons qu’on a ainsi toutes les unités de Or. Montrons que UN|1, ap[= 0.
Soit o = a + bv/2 une unité dans cet intervalle ouvert. Alors

\/5—1:@0_1<071<1.

En additionnant avec 1 < o < 1 + \@, on trouve V2 < a” ' +a < 2+ V2.
Comme Ny jo(a) = %1, on trouve a+a ™ = 2a ou 2bv/2. On trouve facilement
une contradiction en retournant a ces deux inégalités.

Soit maintenant o € U une unité > 1. Il existe un entier £k > 0 tel que
af < a <ol Alors aag® € UnN |1, a0[. D’aprés ce qui précede, af/ag® = 1
et a € af. Pour une unité générale a € U, les a1 sont des unités et I'une
d’elles est > 1. Il suit que

UZ[V2]) = {#af} ~Z/2Z x Z.

Ceci est en fait le cas général des corps quadratiques réels.

On a en méme temps trouvé les solutions de I’équation (5.1). Pour tout
k € Z, on écrit (1 +v/2)* = ay, + bpv/2 avec ay, by € Z. Alors les solutions sont
{*(ak,br) | k € Z}. Comme Ny ,o(1 + v2) = —1, les solutions de I'équation
avec second membre égal & —1 (resp. 1) sont les +(ay, by ), avec k impairs (resp.
pairs).

Exercice 5.1.7 Soit m € Z. On veut étudier les solutions de I’équation
a2 —202 =m

avec a,b € Z.

1. Supposons qu’il existe une solution (ag,bp). Montrer que l'ensemble de
toutes les solutions est constitué des 4(ax,by) € Z%, k parcourant les
entiers relatifs pairs, avec

(ap + boV2)(1 + V2)F = ay, + by V2.

2. Montrer que a? —2b?> = m a une solution si et seulement si a2 — 2b%> = —m
en a une (utiliser 1 + v/2).

3. Il peut arriver que I’équation n’ait pas de solution du tout. Montrer que
c’est le cas pour m = 3. (Raisonner modulo 3).

Exercice 5.1.8 Soient A un anneau de Dedekind, B la cloture intégrale de A
dans une extension finie séparable L de K = Frac(A). Soit b € B. Montrer que
b € B* si et seulement si N,/ (b) € A*.
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5.2 Théoréme des unités de Dirichlet

On note ,(C) = {z € C | 2™ = 1} pour tout n > 1. Pour tout corps de
nombres L, on note ,(L) = ,(C)NLet (L) = Up>1 n(L) 'ensemble des
racines de 'unité dans L.

Les éléments d’ordre fini dans un groupe commutatif forment un sous-groupe
appelé le sous-groupe de torsion. Le but de cette section est de montrer le
théoréme suivant :

Theorem 5.2.1. (Dirichlet) Soit L un corps de nombres de degré n, soient
r1, 219 les nombres de plongements réels et imaginaires de L.

(1) Le sous-groupe de torsion de U(OL), égal & (L), est fini et et cyclique.

(2) Le groupe quotient U(Or)/ (L) est libre de rang r1 + 12 — 1 et on a donc
un isomorphisme (non canonique)

U(OL) ~ (L) x Zr+ra—1,

Corollaire 5.2.2. Le groupe U(Op) est fini si et seulement si L = Q ou si ¢’est
une extension quadratique imaginaire de Q.

Pour la preuve du théoréme, nous allons procéder en plusieurs étapes. Rappe-
lons (4.2.2) qu’un sous-groupe discret d’un espace vectoriel H ~ R™ est un sous-
groupe G tel que pour tout x € G, il existe U, ouvert de H avec U, NG = {x}.
Il suffit que cela soit vrai pour 0 € G car Uy 4+ x est un voisinage ouvert de =
dont l'intersection avec G se réduit a {x}. Commengons avec un résultat sur la
structure des sous-groupes discrets.

Lemme 5.2.3. Soit H un R-espace vectoriel de dimension finie m. Soit G un
sous-groupe discret de H .

(1) Le sous-ensemble G est fermé dans H. Soit P une partie compacte de H,
alors PN G est fini.

(2) Le groupe G est un Z-module libre engendré par r < m = dim H vecteurs
libres dans R.

(3) S’il existe une partie bornée M dans H telle que
H=G+M:={g+z|geG,xe M},
alors G est de rang m.

Démonstration. (1) Soit Uy un voisinage ouvert de 0 € G tel que GNUy = {0}.
Alors (Up 4+ g) NG = {g} pour tout g € G. Si (gn)n est une suite convergente
avec g, € G. Alors c’est une suite de Cauchy. Donc il existe N > 1 tel que
gn — gn € UgNG = {0} pour tout n > N. Par suite (g, ), est stationnaire et sa
limite appartient & G. Donc G est fermé.

On a un recouvrement ouvert de P

P C(H\G)UUgea(Uo +9)
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dont, par hypothése de compacité, on peut extraire un recouvrement fini
P C (H \ G) U Ulgigq(Uo + gi).

Il suit que PN G = {g1,...,9,} est fini.

(2) Soient ey, ...,e, € G des vecteurs libres dans H avec r maximal. Mon-
trons que G est engendré (comme Z-module) par r éléments (mais pas néces-
sairement par ej,...,e,). Posons

P:{Z xie; |0 <z; <1}

1<i<r

C’est I'image de [0,1]" par Papplication continue
R" — I{7 (331')1' — inei,
i

c’est donc un espace compact. Donc P N G est fini. Soit @ € G. On peut écrire

o= Z rie;, x; €R.

1<i<lr

a=( Z [zi]e;) + Z (x; — [x4])e; € ZZei + PNG.
1<i<r 1<i<r %
Donc G est engendré par {e1,...,e,} U(PNG). Cest donc un Z-module de
type fini, sans torsion, donc libre. Comme G /(3" ,«, Ze;) est fini, on voit que
G est de rang r par le théoréme des bases adaptées 1.2.2.

(3) On peut supposer M fermé, donc compact. Soit Hy le sous-espace vec-
toriel de H engendré par G. La surjection canonique H — H/H, induit une
application continue surjective M — H/Hj par I'hypothése H C G + M. Donc
Pespace vectoriel réel H/Hj est compact, ce qui l'oblige a étre nul. O

Pour étudier les unités de Op, on va d’abord plonger L* dans un hyperplan
de R™*72, On reprend les notations

IsomQ(L,Q) = {0’1, ey Oy O 41,0 41y - - ,O’r1+7-2,5'7n1+7n2}

pour les plongements réels et imaginaires de L. Considérons ¢ : L* — R™1"2
définie par

= (In|oy(z)],...;In|on ()|, In o 11(2)],. .., In|0r 4y (T)])-

C’est la version logarithmique de l'application p définie en 4.2.2. Elle est bien
définie car o;(x) # 0 pour & € L* et c’est clairement un homomorphisme de
groupes.

Notons U = U(Op). Le lemme suivant précise la structure de ¢(U) et du
quotient de U/Usors.-
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Lemme 5.2.4. Conservons les notations ci-dessus.

(1) Pour toute partie bornée B C R"7"2 (=Y (B)NU est fini. En particulier
L(U) est un sous groupe discret, libre de rang fini.

(2) Le noyau de € est égal & (L) et c’est un groupe fini cyclique.
Démonstration. (1) Soit B une partie bornée de R™ 2. Il existe ¢ > 0 tel que
loi(a)| < ¢, Vi, Ya €l (B).

Il existe donc ¢ > 0 qui majore les valeurs absolues de toutes les fonctions
symeétriques en une partie des o(a), o € IsomQ(L,Q). Il suit que le polynome
minimal m, (X) de « est & coefficients bornés par ¢. Si de plus a« € U C Oy,
on a my(X) € Z[X]. Or il n’existe qu'un nombre fini de polynémes dans Z[X]
de degré < n et a coefficients bornés par ¢/. Donc Op N £~Y(B), et a fortiori
U N {¢~Y(B), est fini. Par suite £(U) a une intersection finie avec toute partie
bornée de R™*"2. Cela implique immédiatement que ¢(U) est discret. Par le
lemme 5.2.3, £(U) est libre de rang fini sur Z.

(2) En prenant B = {0} dans (1), on obtient que ker /NU est un sous-groupe
fini de L*, ses éléments sont donc d’ordre fini pour la multiplication dans L* et
ces sont donc des racines de I'unité !. Inversement, si ¢ € (L), avec (¢ = 1. Alors
dIn|o;(¢)] = 0, donc In|o;(¢)| = 0 et ¢ € ker/. Par ailleurs, ¢ € O} puisque
son inverse, (971, appartient & Op. Enfin, (L) étant fini, d’ordre disons N,
est contenu dans n(C), 'ensemble des racines N-iémes de 'unité dans C. Ce
dernier étant cyclique, (L) aussi. O

Démonstration. (du théoréme 5.2.1) Notons encore U = U(Op). Il est claire que

(L) C Uiors- Réciproquement, tout élément d’ordre fini dans U est une racine
de l'unité et appartient donc & (L). Par le lemme précédent, il ne reste qu’a
montrer que le sous-groupe discret £(U) de R™*"2 est de rang 71 + 72 — 1. Pour
tout « € U, on a

> Infoi(a)[+2 Y Infoj(e)] = In[Npq(a)| = 0.

1<i<n 1<j<rs
Donc £(U) est contenu dans I’hyperplan
H:={(t1, .. tpyqry) ERTM2 [ty oo b + 20 1 + -+ + 2t 4, = 0}

de R™ "2 11 suit que ¢(U) est de rang < ry + 7y — 1. L’inégalité inverse est
plus délicate. Nous allons construire une partie bornée M de H telle que H =
Uuev (M + £(U)) et appliquer le lemme 5.2.3(3).

Notation : Si X, Y sont deux sous-ensembles de I'anneau produit R™ x C"2,
on note XY l’ensemble des produits xzy avecz € X et y € Y.

1. On vient de montrer le théoréme de Kronecker : si un nombre algébrique z € C est tel
que tous ses conjugués sont de module 1, alors z est une racine de 'unité!
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L’application ¢ est la restriction & U de la composition de
p:L*— (R*)™ x (C*)™
(4.2.2) et de application surjective
6 : (R*)™ x (C*)™2 — R71+72
O(x,z) = (In x|, ..., .|z |, 0|2 1], -y 10|20 40s|)

qui est un homomorphisme de groupes surjectif et continu. Notons que p(U) C
6~1(H). I suffit donc de trouver une partie 7' de R™ x C"2 telle que (0~ (H)NT)
soit bornée et que 071 (H) C p(U)T (on prendra alors M = 0(0~1(H) N T)).

Soit § > 0 un nombre réel, qu'on choisira assez grand (on précisera plus
tard). Posons

Xs ={(z,2) eR™ x C™ [ |z <6, |27, 45 <6}
et
Zs ={pa™") | @ € Op,a # 0, [Ny jq(a)] < 6"}.X5.

On veut montrer que §~1(H) C Zs pour ¢ suffisamment grand. Montrons que
o" > 2" M "2vol(p(Of))
suffit. Soit y € 6~1(H). Posons
Y, =y ' Xs = {(2,2) € R™ x C™ | |zi| < |y; 10, |2m 45| < |Yritil 10}

C’est une partie convexe compacte symétrique de R™ x C™ de volume

vol(Y,) = ] @dlul™) I ®(lyri4517H?) =27 7"28" = 2"vol(p(Or))

1<i<r 1<j<rs

(on utilise 'hypothése O(y) € H dans 1'égalité du milieu). Par le lemme 4.2.5,
p(Or)NY, # {0}. Soit a € O, tel que p(a) € p(Or) NY, \ {0}. Alors o # 0
et on |og(a)] < |yl 710 si i < i, et oy, ()] < lyp4g| 70 sl < ra. En
tenant compte de 'hypothése y € 071 (H), on conclut que [Ny, q(a)| < 6™. Cela
implique donc que y € p(a~1).Xs. Dot ~1(H) C Zs.

Etudions maintenant Z;. L’ensemble des idéaux principaux non nuls de Oy,
de norme < " est fini (lemme 4.1.6). Soit {a1Op,...,anOL} cet ensemble.
Alors pour tout @ € O, non nul de norme [Ny q(a)| < 6", a est le multiple
d’un a4 by une unité de Oy,. Cela implique que

Zs = p(U)-(Ur<gzmplag t)-Xs).
Notons
T = Ulgqgmp(a(;l).xtg.

C’est une partie bornée de R™ x C"2. Il reste & montrer que 0(0~1(H)NT) est
bornée. On a T contenu dans un Xp avec R > 1. Si (x,2) € 071 (H)N T, alors
R>|z;| > R et R > |2,4,| > R™™"'. Donc 0(0~'(H)NT) est bornée. Ce
qui achéve la démonstration. O
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Définition 5.2.5 Une famille de 71 + 79 — 1 éléments dans U(O},) qui forment
une base dans le quotient libre de U(Op) est appelée un systéme d’unités fon-
damentales. Un tel systéme induit un isomorphism U(Op) ~ (L) x Z"1+r2=1,
Une unité fondamentale est un élément de U(Or) qui peut se compléter en un
systéme d’unités fondamentales.

Exemple 5.2.6 Revenons aux corps quadratiques réels L = Q[vd]. Si o =
u+vvd (u,v € Q) est une unité fondamentale, alors —ca, a1 aussi. L’ensemble
de ces quatre unités est égal a

{quv\/g,—u—v d,u—v\/g,fquv\/g}

(on a (u+vvVd) ™t = (u— vﬁ)NL/Q(a)_l). Soit ay = a + bv/d le maximum de
cet ensemble d’unités. Alors nécessairement a,b > 0 et ag > 1. Conclusion : il
existe une unité fondamentale g = a + bv/d > 1. Il est clair qu'elle est alors la
plus petite des unités > 1. Celles-ci sont de la forme (a + bvV/d)" = a,, + b,Vd
avecn > 1 et ay,b, € Q.

Supposons d = 2,3 mod 4. Alors a, b, a,,b, € N et il est facile de voir que
an, b, sont des suites croissantes. En particulier, b,, > b. Donc b est le plus petit
entier naturel tel que db> = 0+ 1 ou O — 1. Ainsi, une unité fondamentale de
Q[\ﬁ] est donnée par 8 + 3v/7.

Quelques autres exemples : 4 + \/ﬁ, 170 + 39+/19 sont les unités fonda-
mentales respectives des corps Q[v/15],Q[v/19]. Pour L = Q[v/13], on trouve
par une méthode similaire (3 4 1/13)/2. Avec le logiciel pari, utiliser la com-
mand quadunit(d) ou d est le discriminant de l’extension quadratique réelle
concernée.

Nous terminons par l’étude des unités des extensions cyclotomiques. Soit
m > 3. Une extension cyclotomique est une extension de Q engendré par une
racine de l'unité (,,, d’ordre m > 3. Pour simplifier, nous nous restreignons au cas
m = p > 2 premier. Notons ¢ une racine primitive p-iéme de I'unité, L = Q[(] et
LT =Q|(¢+ ¢71)/2]. La proposition suivante rassemble les résultats qui seront
utilisés dans la section suivante.

Proposition 5.2.7. Avec les notations ci-dessus, les propriétés suivantes sont
vraies.

(1) On a O =Z[(].

(2) (L) == ={£" ke Z}=(-().

(3) Lt = L9 ou c est la conjugaison compleze.
(4) U(OL) =(QU(Or+).

(5)

5) Pour tout o € O, on a o € Z+ pOyp,.

Démonstration. (1) TD.
(2) Si A € (L) est d’ordre N, alors A est d’ordre m := ppem(N, p) et on
a Q[A(] C QI¢]. Ce qui implique que ¢(m) | ¢(p). En écrivant m = p"m’ avec p
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premier & m’, on trouve facilement que r = 1 et m’ = 1 ou 2, donc X ou —\ est
une puissance de (.
(3) Comme ( est racine du polyndme

X2 - (C+CHX +1eLtX],

on voit que [L : L] < 2. On a l'égalité car ¢ est imaginaire et L™ C R. La
conjugaison complexe ¢ préserve L et est égale & 'identité sur LT, c’est donc le
générateur du groupe de Galois de L/L™.

(4) Fait en TD.

(5) Soit a € Op. Alors a = Y, 5 ai(" avec a; € Z. Dans tout anneau
commutatif A, on a (z + y)? € 2P + yP + pA. Donc

ap6ag+a117+...+ag_2+pOLQZ—FPOL-
O

Lemme 5.2.8. Pour tous i,j € Z premiers ap, on a ((*—1)/(¢?—1) € U(Op).

Démonstration. Comme (7 est un générateur du groupe des racines p-iémes de
l'unité, on a ¢* = (¢?)™ pour un m > 1. Alors

¢ =1 iyme j
s il SO (DR
Par symétrie, (¢/ —1)/(¢* — 1) € Or. Donc (¢t —1)/(¢? —1) € U(Oy). O

Remarque 5.2.9 Le sous-groupe U’ de U(Op) engendré par les unités ci-
dessus s’appelle le groupe des unités cyclotomiques. Le théoréme des unités de
Dirichlet dit que U(OpL)/ (L) est libre de rang (p —3)/2. Pour ¢ =2,...,p—1,
notons ug = (¢4 —1)/(¢ —1). On a up_g = —( %uq. Donc U’ est engendré par
les uy pour 2 < ¢ < (p — 1)/2. On peut montrer que U’ est d’indice fini dans
U(Oyp).

5.3 Premier cas du théoréme de Fermat

Soit n > 3. Le théoréme de Fermat stipule que I’équation

n’a pas de solution avec des entiers naturels z, y, z strictement positifs (de fagon
équivalente, pas de solution dans Z avec zyz # 0). Noter que pour n = 1,2,
il existe une infinité de solutions. Fermat a prouvé ce théoréme pour n = 4. Il
suffit alors de montrer le théoréme pour n = p > 2 nombre premier. Ce qui a
été fait par Andrew Wiles en 1994. Dix ans avant, Gerd Faltings avait prouvé
une conjecture de Mordell, impliquant en particulier que ’équation de Fermat
n’avait qu'un nombre fini de solutions (avec z,y, z premiers entre eux).

Dans cette section, nous montrons une solution partielle lorsque p est un
nombre premier “régulier” (5.3.2). On fixe un nombre premier p > 2 dans la
suite. Soit L = Q[¢] ou ¢ est une racine primitive p-iéme de l'uniteé.
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Theorem 5.3.1. Soit p > 2 un nombre premier. Supposons que p ne divise pas
le nombre de classes h, de Q[(]. Alors il n'existe pas de solution de

2P +yP + 2" =0

avec x,y,z des entiers relatifs premiers & p (premier cas du théoréme de Fer-
mat ).

Démonstration. Supposons le contraire et prenons une solution (z,y,2) avec
p fryz.

(0) Premiéres réductions. On peut bien sir supposer pged{z,y,z} = 1. Cela
entraine que z, ¥y, z sont deux a deux premiers entre eux. Si p = 3, comme dans
Z/9Z les cubes non nuls sont 1 et —1, mais que la somme de deux de ces nombres
n’est jamais égale a 41, on voit que 2% + y® + 23 = 0 n’a pas de solution non
nulle dans Z/9Z. 11 suit que p # 3 et donc p > 5.

Siz =y =2z mod p, alors 32P = 0 et donc p | 3z. Contraire a ’hypotheése.
Donc quitte & permuter x, y, z si nécessaire on peut supposer que x Z y mod p.

Soit ¢ € C une racine primitive p-iéme de l'unité. Soit L = Q[¢]. On a

—= [] @+ (5.2)

0<i<p—1

(1) Montrons que x + 'y et x+(7y sont premiers entre eur (dans le sens ot ils
engendrent I'idéal unité de Op,) sii # j. En effet, supposons qu’ils appartiennent
tous les deux & un méme idéal maximal q de Or. Alors

yC(¢T -1 eq.

Siy € q,alors x € q et donc z,y € qNZ = ¢Z pour un nombre premier .
Absurde. Donc y ¢ q. Comme ¢ est une unité, on a (=% — 1 € q et donc

p=Np,o( -1 eqnzZ
Onac¢'—1=((¢C"-1)/(¢ " —=1))(¢"*—1) € q (lemme 5.2.8) et
st+y=(x+¢y) - (' -yeqgnZ=ypZ,
ce qui implique que
—P=2P+yP=2+y=0 mod p.

Ce qui est contraire & I’hypothése p premier a zyz.

(2) Montrons que
z+Cy=al"v mod pOy, (5.3)
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avec a € Z,0<r <p—1etv e U(Op+). En effet, la décomposition (5.2) en
termes de produit d’idéaux maximaux implique que

(z+Cy)Or = J?

pour un certain idéal J de Op. Dans le groupe des classes de L, JP est donc
trivial. Or par hypothése, h, est premier a p. Donc J est déja trivial dans le
groupe des classes : J = aQp pour un certain a € Op, non nul et

z+Cy=ua®?, uweU(Op).

On conclut avec 5.2.7 (4) et 5.2.7 (1).

(3) Fin de la preuve. On applique la conjugaison complexe a 'égalité (5.3) :
z4+ ¢ ly=al"v modp
(ici  mod p veut dire modulo l'idéal pOy, C Of). Cela implique que
aCPT" 4 yCPTTT — 2" =yt =0 mod p

et donc
Yy aP =" —y¢"? =0 mod p.

On va conclure par un examen cas par cas suivant la valeur de 0 <r <p — 1.
— Supposons 2 < r < p—1etr # (p+ 1)/2. Les exposants de ¢ qui
apparaissent sont compris entre 0 et p — 2 et sont deux a deux distincts.
Comme {1,(,...,(P72} est une base de Z[¢] sur Z, cela implique que
p | x,y. Absurde.
— Supposons r = (p+ 1)/2. Alors

(y — I)C(pfl)/2 + (z — y)C(p*ii)/? =0 mod p.

Le méme raisonnement que ci-dessus montre que z — y = 0 mod p.
Contraire a ’hypothése faite dans L’étape (0).
— Sir =0, alors y(> —y =0 mod p, donc p | y. Contraire & ’hypothése.
— Sir=1,alors x — (> =0 mod p et p | z. Impossible. O

Définition 5.3.2 On dit qu’un nombre premier p > 2 est régulier si p ne divise
pas hp.

Remarque 5.3.3 On montre que pour p régulier, I’équation de Fermat n’a pas
non plus de solution dans le second cas (ou p divise ,y ou z), cf. L. Washington,
Introduction to cyclotomic fields, Theorem 9.3.

On sait que h, = 1 si et seulement si p < 19. Le nombre premier 23 est
régulier car on montre que hoy = 3. On ne sait pas s’il existe une infinité
de nombres premiers réguliers. Par contre, on sait qu’il existe une infinité de
nombres premiers irréguliers. Le plus petit d’entre eux est 37. En fait hog =
8, h31 =9et h37 = 37.
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Chapitre 6

Aspect analytique, fonctions
L

6.1 Fonction zéta de Riemann

La fonction zéta de Riemann est la fonction & variable complexe

=3 ni R(s) > 1.

n>1

6.1.1 Prolongement méromorphe en R(s) >0

Lemme 6.1.1. On a les propriétés suivantes :
(1) Soit (fn)n une suite de fonctions holomorphes sur un ouvert U de C. Si la
série Y. fn converge uniformément sur tout compact de U, alors ), fn
est holomorphe sur U.
(2) La série ((s) converge absolument pour R(s) > 1 et est ainsi une fonction
holomorphe en s sur cette région de C.

(3) (Euler, 1749)
() =JJa-p)" R(s)>1
P
ot le produit porte sur tous les nombres premiers p.

Démonstration. (1) Bien connu.

(2) Soit ¢ > 1 et z = R(s) > ¢. Alors [n~°| = n~® < n~° Donc la série
((s) converge uniformément sur R(s) > ¢. Comme tout compact de f(s) > 1
est contenu dans un fermé de type $(s) > ¢ pour un certain ¢ > 1, (1) implique
que ¢(s) est holomorphe.

(3) Pour tout m > 1, on a

H(l_p*S)*lzH(1+%+p§s+...): > ni

p<m p<m (fact. premiers de n)<m




76 CHAPITRE 6. ASPECT ANALYTIQUE, FONCTIONS L

Comme ) n~° converge absolument, le membre de gauche converge vers la
somme portant sur tous les n, ¢’est-a-dire ((s). O

Lemme 6.1.2. Soit ) u, une série complere absolument convergente telle
que 14 u,, # 0 pour tout n, alors le produit infini [ ], (1+wuy) converge vers une
limite non nulle.

Démonstration. Que le produit infini converge est classique. On peut par exemple
appliquer le logarithme au produits partiels finis. Pour montrer que la limite est
non nulle, il suffit de montrer que le produit infini [, (1+u,) " converge. Quitte
a enlever un nombre fini de termes, on peut supposer que |u,| < 1/2. On a

1 _ Up,
14w, 1+ u,
et
) < Al <o

1+un‘_ 1 — |y

Donc la série ), (uyn/(14uy)) converge absolument, il suit que le produit infini
[T, ((1 +u,)~t) converge. O

Proposition 6.1.3. La fonction analytique ((s) ne s’annule pas en R(s) > 1
et se prolonge en une fonction méromorphe sur {s € C | R(s) > 0}, avec un
unique pole en 1, de résidu 1. Plus précisément,

1
R(s) >0: ((s)= P + une fonction holomorphe.

Démonstration. (1) Numérotons les nombres premiers en ordre croissant p; <
p2 < - < pp < ---. Alors p,, > n et la série ) p;® converge absolument si
R(s) > 1. D’apres le lemme ci-dessus, le produit infini [, (1 — p,*)~! converge
vers une limite non nulle. Or cette limite est égale a ((s). Donc ((s) n’a pas de
zéro en R(s) > 1.

Montrons maintenant le prolongement sur R(s) > 0. Pour R(s) > 1, on a

1 Heo
= / t~4dt.
s—1 1

n+1
()= [ =Y o).

n>1v" n>1

Donc

Il suffit de montrer que le membre de droite se prolonge en une fonction holo-
morphe sur R(s) > 0.

Comme g, (s) est une fonction holomorphe sur C, il suffit de montrer que
la série de fonctions ) gn(s) converge uniformément sur tout compact K C
{s € C | R(s) > 0} (lemme 6.1.1 (1)). 11 existe ¢,C > 0 tels que R(s) > ¢
et [s| < C sur K. On a |gn(s)] < supsepy,pqq) [n7° — ¢7°|. Par I'inégalité des
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accroissements finis (valable pour les fonctions a valeurs complexes), et comme
d(t=*)/dt = —st=*71 on a

car pour t € [n,n + 1] et s comme ci-dessus, on a |[st—*7 < Cn="1. Ce qui
prouve la convergence absolue, donc uniforme, sur K. O

6.1.2 Fonction Gamma

On définit la fonction Gamma pour R(s) > 0

—+o0
I'(s) = / tste~tdt.
0

C’est une fonction holomorphe sur $(s) > 0. Une intégration par parties donne
la relation (équation fonctionnelle) pour R(s) > 0 :

sT'(s) =T(s+1). (6.1)

Comme I'(1) = f0+oo exp(—t)dt = 1, cette relation implique que

F'n)=(m-1)!, n>1.

La relation (6.1) permet aussi de prolonger I' en une fonction méromorphe sur
C:si0>R(s) > —1, on pose I'(s) =T'(s+1)/s. De méme pour R(s) > —2, on
prolonge T'(s) par I'(s 4+ 1)/s en utilisant le prolongement précédent et ainsi de
suite. La fonction méromorphe sur C ainsi obtenue satisfait encore ’équation
fonctionnelle ci-dessus.

En résumé, I'(s) est une fonction méromorphe sur C dont les poles (tous
simples) sont 0, —1, —2,... avec résidu (—1)"/n! en s = —n.
Proposition 6.1.4. On a

7r

I(s)I'(1—s) = Sn(ms) (6.2)

En particulier, T'(s) n’a pas de zéro dans C et I'(1/2) = /7. De plus

I(s) = 2571 (%) r (T) a2, (6.3)

Démonstration. (Esquisse) On considére la fonction méromorphe
f(s) =T(s)I'(1 — s) sin(7s).

Elle est holomorphe sur C car les poles possibles sont simples et se situent aux
entiers et ceux-ci sont des zéros de sin(7s). On montre qu’elle est bornée donc
constante égale a f(0). Quand s tends vers 0, on a I'(s) ~ 1/s et T'(1 — s) ~
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I'(1) = 1. Donc f(0) = w. Cela montre la premiére formule. Comme conséquence,
si I s’annule en un sy € C, alors 1 — s est un poéle de I', donc sy € N5g. Mais
alors T'(sg) = (so — 1)! # 0, contradiction. Enfin, en prenant s = 1/2 dans
I'égalité (6.2), on trouve I'(1/2)? = w. Mais I'(1/2) € R par sa définition
intégrale, donc T'(1/2) = /7.

Pour la deuxiéme formule, on considére

o) =20 (3)r (S5 ) v

qui est holomorphe sur C et on montre qu’elle est bornée, donc constante égale
a g(0) =2I'(1/2) = 2¢/7. O

6.1.3 Travaux de Riemann

Theorem 6.1.5 (Riemann, 1859). La fonction ((s) satisfait les propriétés sui-
vantes.

(1) (Prolongement méromorphe) La fonction ((s) se prolonge en une fonction
méromorphe sur C, avec un unique pole en s = 1.

(2) (Equation fonctionnelle) On a l’égalité des fonctions méromorphes sur C :

7=s/20 (g) C(s) = 7~ (A=9/2p (125> C(1—s).

Démonstration. (1) On va montrer que sur R(s) > 1, ((s)['(s) = I(s)/(e*™* —1)
pour une certaine fonction I(s) holomorphe sur C. Soient $(s) > 1 et n > 1.

Alors
+oo
F(S) :/ tsflefntdt
0

ns

par changement de variables. En sommant sur n, on obtient

+oo tsfl

T(s)C(s) = / —

0

On fixe une détermination du logarithme sur C\ Ry : S(Inz) €]0, 27, et sorte
que pour tout s € C, 257! = exp((s — 1) In 2) soit une fonction holomorphe sur

C\ R4. On intégre
s—1
I(s) := / S
H. e —1

T,€

le long du chemin H,. . :
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~
N

ot I'arc du cercle est de rayon r €]0, 27[ et ou les demi-droites horizontales sont
situées a (z) = e. Quand r et € €]0, [ varient, on reste dans une région ou la
fonction que l'on intégre est holomorphe, donc 'intégrale I(s) est indépendante
de 7, € et est holomorphe en s sur C. On calcule I'intégrale en trois morceaux et
on fait tendre € vers 0 :

T

Zsfl gim(s—1) +oo tsfl
I(s) = d msTy 1 dt.
= [ Eoqdere A=

Noter que la premiére partie est un O(r®(*)=1). Donc en faisant tendre r vers
0, on trouve que pour tout (s) > 1, on a

(e*™ — 1)T(s)¢(s) = I(s). (6.4)

Ce qui montre que ((s) se prolonge en une fonction méromorphe sur C. Noter
que D’égalité (6.4) est alors valable sur C. Si s est un pole de ¢ avec R(s) < 0,
on a (%™ —1)['(s) = 0, donc s = —n avec n € N. Comme €7 — 1 a un zéro
simple en —n, ce n’est pas possible. Donc ((s) n’a pas de péle avec $(s) < 0.
Combiné avec la proposition 6.1.3, on trouve que s = 1 est 'unique pole de {(s).

(2) On doit comparer deux fonctions méromorphes dont on connait les poles.
11 suffit de montrer I’égalité sur I'ouvert R(s) < 0. Soient R(s) < 0 et k > 1. Le
théoréme des résidus donne

1 Zsfl

2 Jo, e —1

dz = Z (2imn)s ™! (6.5)

1<[n|<k
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ou le petit cercle est de rayon r €]0, 27| et le grand de rayon (2k + 1)m. Les
deux segments horizontaux sont de partie imaginaire = 4-¢. Comme (—1)*71 =
e(s=1)im — _¢ims Je membre de droite dans I’égalité (6.5) ci-dessus est égal a
(2im)s—1 1< n|<k = (2im)* (1 — €)Y o, <7 Quand k — +oc il
tend vers (2im)¥71(1—¢!™*)((1 — s) (noter que R(s) < 0). Quand k — +oo, I'in-
tégrale dans I’égalité (6.5) est proche de la somme de —1(s) avec I'intégrale cur-
viligne le long du grand cercle |z| = (2k 4 1)7. Cette derniére est un O(k%(5)=1)
car |e® — 1| est minorée par une constante ¢ > 0 indépendante de k (on peut
prendre ¢ = 1 — e~ /2 en distinguant les cas |R(z)| > /2 et |R(z)| < 7/2.) On

trouve donc )
———1I(s) = (2im)* (1 — e"™)¢(1 — s).
A%y

En combinant avec ’égalité (6.4), on trouve
(2m)°C(1 — s) = 2I'(s)((s) cos(ms/2).

L’équation fonctionnelle s’obtient en appliquant les formules de la proposition
6.1.4. O

Corollaire 6.1.6. Les zéros de ((s) vérifient s = —2,—4, —06, ... (appelés zéros
triviaux) ou 0 < R(s) < 1.

Démonstration. Utiliser ’équation fonctionnelle et la proposition 6.1.3. O

Hypothése de Riemann : les zéros non triviaux de {(s) sont tous situés sur
la droite R(s) = 1/2.
Remarque 6.1.7 On peut montrer que pour tout n > 1 :

(2im)2n
2(2n)!

((2m) = -

2n
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ou les By, € Q sont les nombres de Bernoulli déterminés par la relation

x_l:ZBmz

m>0

En revanche, les valeurs de ((s) aux entiers naturels impairs > 1 sont encore
inconnues. Un célébre théoréme d’Apéry (1978) dit que ((3) est irrationnel. On
sait (Rivoal, 2000) qu’il existe une infinité de ((2n + 1) irrationnels. On sait
aussi que I'un des nombres ¢(5),¢(7),¢(9),(11) est irrationnel (Zudilin, 2001).
6.1.4 Théoréme des nombres premiers

La localisation des zéros de ((s) est cruciale pour estimer la répartition des
nombres premiers. Soit

7(z) = Card{p premiers | p < x}

la fonction de comptage des nombres premiers. Gauss et Legendre (vers 1790)
ont conjecturé que 7(x) était équivalente a x/Inx quand x tend vers 400 :

m(x) = o(—). (6.6)

11 se trouve que 7(x) est mieux approché par la “fonction d’écart logarithmique

intégral”
/ Int t

Theorem 6.1.8. (Hadamard, de la Vallée Poussin 1896) Il existe une constante
c > 0 telle que

T

Inz  Inz

que z/Inz.

/ ——i—O (zexp(—c(Inz)/?))

quand x tend vers +oo.

Une forme plus faible mais plus explicte

m(z) = ﬁ + O(x(Inz)~?).

La meilleure approximation connue actuellement est
m(z) = Li(z) + O (:E exp(—c(Inz)*/°/In(In 1)1/5))

(Korobov, Vinogradov).

Remarque 6.1.9 On peut montrer que ’hypothése de Riemann est équivalente
& 'approximation

7(z) = Li(z) + O(«/? Inz)
et que cette approximation est optimale (1/2 ne peut pas étre remplacé par un
exposant plus petit).
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Remarque 6.1.10 Le théoréme de Hadamard-de la Vallée Poussin est plus
fort que le théoréme des nombres premiers proprement dit (équivalence (6.6)).
Il existe maintenant des preuves tout-a-fait accessibles de ce dernier. Voir par
exemple la présentation par D. Zagier de la preuve de D.J. Newman en 1980
(http://minilien.fr/a0lzdl).

Exercice 6.1.11 Montrer que sur |0, 4+occ[, la fonction

(Inz)™
n.n!

1n|1nx|+lnm+z

n>2

est une primitive de 1/Inz. En déduire que Li(z) ~ z/Inzx.

6.2 Fonctions L de Dirichlet

Il existe différentes généralisations de la fonction zéta de Riemann. Nous
évoquerons les séries de Dirichlet et les fonctions zéta de Dedekind.

6.2.1 Caractéres de Dirichlet
Un caractére en général est un homomorphisme d’un groupe fini vers C*.

Lemme 6.2.1. Soit G un groupe fini abélien.

(1) L’ensemble G des caractéres de G a une structure naturelle de groupe abé-
lien fini, isomorphe (non canoniquement) a G.

(2) L’application "évaluation”

—

G—(G), g~ (x—x(9)

est isomorphisme de groupes.
(3) (Relation d’orthogonalité) Soit g € G. Alors

_ JCard(G) si g=
ZX(Q) o { 0 sinon.
X€EG

(4) Six #1, alors

> x(g) =0.

geG

Démonstration. (1) La structure de groupe est donnée par
(xax2)(a) = x1(a)xz(a).

Si on écrit G = []; C; comme un produit direct de groupes cycliques C;, alors

on a
G~T1e
7
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et il suffit de montrer 1’énoncé pour un groupe cyclique G ~ Z/nZ. Dauns ce cas-
la, G est isomorphe au groupe ,(C) des racines (non-nécessairement primitifs)
n-iéme de l'unité dans C. Donc G est cyclique d’ordre n et isomorphe (non
canoniquement) a G.

(2) L’application évaluation est clairement un homomorphisme de groupe.
On voit qu’elle est injective en écrivant G comme un produit direct de sous-
groupes cycliques. Elle est donc un isomorphisme par comparaison de cardina-
lités.

(3) La relation est évidente si ¢ = 1. Supposons g # 1. Par (2), il existe
Y1 € G tel que x1(g) # 1. On multiplie la somme ¥ := ¥, x(g) par x1(g) et on
obtient x1(g).X = X. Donc ¥ = 0.

(4) On identifie G a G par (2) et applique (3) (au groupe G). O

Définition 6.2.2 Soit m > 1 un entier. Un caractére de Dirichlet modulo m
est un homomorphisme de groupes

X : (Z/mzZ)* — C*,
c’est-a-dire un caractére du groupe (Z/mZ)*.

Un caractére de Dirichlet x induit canoniquement en une application % :
Z — C par Y(a) = 0si (a,m) # 1 et X(a) = x(a) sinon (ou a est la classe de a
modulo m). On a

Xla+m) =X(a), X(ab) =X(@XO), abez.

On note souvent par abus de notation I’application ¥ encore par x. De toutes
fagons, la notation Y n’est pas trés heureuse a cause de la possibilité de confusion
avec la conjugaison complexe...

6.2.2 Non nullité de L(1, )

Définition 6.2.3 Le caractére trivial xo est défini par xo(a) =1 si (a,m) =1
et xo(a) = 0 sinon. La série

Lis) =3 X

n
n>1

est appelée la fonction L de Dirichlet associée & x. On retrouve (presque) la
fonction zéta de Riemann avec m = 1 et x = xo. Comme |x(n)] = 0 ou 1, la
série converge uniformément sur tout compact de {f(s) > 1}, et définit une
fonction holomorphe sur cet ouvert de C.

On sait que la série Y. n~! diverge, alors que Y, (—1)"n~!

lemme suivant est une sorte de généralisation des séries alternées.

converge. Le

Lemme 6.2.4. Soit (z,,)n une suite de nombres complezes.
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(1) (Sommation d’Abel) Soit f : [1,+oo[— C une fonction Ct. Posons A(t) =
ant Zn. Alors pour tout © > 1, on a

S aufn) = Aw)f) - [ " A f (1.

1<n<z

(2) Soit r € R. On suppose que |A(t)|t™" est bornée (par une constante c)
quand t tend vers 4oo. Alors la série ) -, z,n~*° définit une fonction
holomorphe sur R(s) > r. -

Démonstration. (1) La fonction A(z) est une fonction en escalier et on vérifie
immédiatement que I’égalité & montrer se raméne & x = m un entier naturel.

On a

m m—1 k+1 m—1 k
[ awr@a=3" [ awrwa= 3w+ 1) - 10)
1 k=1 "k k=1 n=1
m—1m-—1 m—1
=3 N z(fk+1) = f(k) = Y zu(f(m) — f(n)).
n=1 k=n n=1

Donc
m

/ CAOF O+ S 2 f(n) = 3 2 f(m) = Am) f(m).
1 n=1 n=1

(2) On a

k

S an® = A(K)/k* — A(m)/m® + 5 / At) /4 dt

m<n<k m
le terme de droite en valeur absolue est majoré par
(2¢ + |sle/6)m™°, & =R(s) -

D’ou la convergence uniforme sur tout compact de R(s) > r et I’holomorphie
de Y, <, znn~* sur cette région. O

Proposition 6.2.5. Soit x un caractére modulo m.
(1) Pour R(s) > 1, on a
L(s,x) = [ = x)p™) "
p
En particulier L(s, x) # 0 si R(s) > 1.
(2) Six = xo le caracteére trivial modulo m. Alors
L(s,x0) = C(s) [T =p7), R(s) > 1.

plm

Elle se prolonge en une fonction méromorphe sur C, avec un unique pole
en 1, de résidu p(m)/m.
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(3) Supposons x # xo. Alors L(s,x) converge uniformément sur tout compact
de R(s) > 0. En particulier L(s, x) est holomorphe sur R(s) > 0

Démonstration. (1) se montre comme 6.1.1 (3). (2) découle de (1), car xo(p) =1
si (p,m) =1 et xo(p) = 0 si p|m, et du théoréme 6.1.5(1). Le résidu de L(s, xo)

en 1 est égal a [],,,,((p —1)/p) = ¢(m)/m.
(3) Pour tout t > 1, posons A(t) = >, ., <, x(n). Pour tout k € Z,

Z x(i) = Z x(a) =0

k<i<m+k 0<a<m-—1, (a,m)=1

d’aprés le lemme 6.2.1 (4). Il suit que |A(t)| < ¢(m) en écrivant t = mr + ¢/,
r € N, t' € [0,m]. On peut alors appliquer le lemme 6.2.4 (2). O

Remarque 6.2.6 Tout comme la fonction ¢, la fonction L(s, x) admet un pro-
longement méromorphe (holomorphe sous certains hypothéses sur x : primitif
et non trivial) sur C et une équation fonctionnelle. On connait ses zéros en
R(s) < 0. Voir § ?7.

GRH (Hypothése de Riemann Généralisée) : Les zéros de L(s,x) situés dans
0 <R(s) <1 sont de R(s) =1/2.

Lemme 6.2.7. Soit a € (Z/mZ)* d’ordre d. Alors
[1Q = x(a)T) = (1 — 7)™/ e Cl1).
X

Démonstration. Soit H le groupe des caractéres modulo m. Alors a correspond
a un caractére a* : x — x(a) de H. Clest un élément d’ordre d dans H ~
(Z/mZ)* (c’est I'isomorphisme canonique de 6.2.1(2) avec G = (Z/mZ)*). 1l
suit facilement que a* est un homomorphisme surjectif de H dans 4(C). Donc

H(l—a H H (1—wT) H (1—wT)“’(m)/d.

x€H we 4(C) a(x)=w we 4(C)
Or
I[[ a-wr)= dH (Tt =TT H-1)=1-T1,
we ¢(C)
et le lemme est démontré. O

Lemme 6.2.8. Soit (ap)n>1 une suite de nombres réels positifs ou nuls. On
suppose que la série Y -, a,n~° converge et définit une fonction holomorphe
g(s) sur R(s) > 1. Supposons de plus que g(s) s’étend en une fonction holo-
morphe sur R(s) > 0. Alors la série Y, <, a,n~" converge vers g(t) pour tout
t>0.
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Démonstration. Soit by = (—1)*g*)(2)/k!. On a
g(s) = br(2—s)"
k>0

dans un voisinage ouvert de 2. Mais g(s) est holomorphe, donc développable en
série entiére sur tout le disque disque ouvert {s € C | |s — 2| < 2}. Il suit que
I’égalité ci-dessus vaut pour tout s dans ce disque.

Soit ¢ €]0,2[. On a

nn/k
o)=Y 20 =Y (Y B ) 2

k>0 E>0 \n>1

C’est une série sommable & termes positifs ou nuls, on peut donc permuter les
signes somme

nn)*
g(t) = Z Z L k!) 2-t*|an?= Z ann”t.

n>1 \ k>0 n>1

Theorem 6.2.9. Soit x un caractére modulo m. Alors L(1,x) # 0.

Démonstration. Considérons le produit fini sur tous les caractéres modulo m :

Cm(8) == H L(s, x).

C’est une fonction holomorphe sur {f(s) > 0} \ {1}. Comme les L(s, x) sont
holomorphes dans un voisinage de s = 1 si x # Xo et que L(s, xo) a un pole
simple en 1, il suffit de montrer que (,,(s) a un pole en s = 1. Supposons le
contraire. Alors (,,(s) est holomorphe sur R(s) > 0.

Pour tout p 1 m, notons d(p) lordre de p dans (Z/mZ)*. Alors pour tout
R(s) > 1, en utilisant 6.2.7, on a

1 p(m)/d(p)
Gnls) =TT]O = x> "' =]] (1_},—d(m> '

ptm X ptm

C’est une série de la forme ) -, a,n™° avec a,, € Ry. Par le lemme 6.2.8, cette
série converge pour tout ¢t > 0 et donc

1
Cm(t) = H <1—p—d(1)>t

ptm

= annft

n>1

) ©(m)/d(p)

(cf. lemme 6.2.10). Notons que

®(m)/d(p)
1 = (14 p @) 4 2@y yelm)/d(p)
1— p*d(p)t



6.2. FONCTIONS L DE DIRICHLET 87

> 1 _'_p—ga(m)t +p_2‘P(m)t + .= (]_ _ p—tp(m)t)—l.
Donc pour tout ¢ > 1/¢p(m),

Gn(t) = [ =p 271 = Lip(m)t, xo)-

pim

Mais le membre de droite tend vers +o0o quand ¢ tend vers 1/¢(m). Contradic-
tion. 0

Lemme 6.2.10. Considérons pour tout nombre premier p, une suite de nombres
complexes (ayn)>1. On pose by =1 et pour tout n > 2

- T T
bn:a;pl'l Clpre,  SIMo=Dpitcopgt.

S

Soit s € C tel que la série 2721 b,n~% converge absolument. Alors le produit

—k
H(l + Z apkp S)
p k>1
existe et est égal & ), bpyn™°
Démonstration. Pour tout p, la série 14+, apkn‘kS est une série extraite de

>, bun™?, donc est absolument convergente. Soit N > 2, le produit partiel

H (1+ Z app ")

p<N k>1

est la somme des b,n~® pour les n dont les facteurs premiers sont < N. Cela
impliquement facilement le lemme. O

6.2.3 Théoréme de la progression arithmétique

On a Z[i] = Z[X]/(X?+1). On a vu que extension Z — Z[i] est décomposée
au-dessus d’un nombre premier p > 2 si X2 + 1 € F,[X] est scindée. Elle
est inerte sinon. Une question naturelle est de savoir s’il existe beaucoup de
p pour lesquels 'extension est décomposée au-dessus de p. Cette question est
équivalente & trouver les nombres premiers p =1 mod 4.

Plus généralement, soient m,a > 1 des entiers naturels (par exemple m = 4
et a = 1). On cherche les nombres premiers dans les termes de la progression
arithmétique

{a +mn | n €N},

autrement dit, les nombres premiers congrus a a modulo m. Il faut bien siir sup-
poser a, m premiers entre eux pour qu’il en existe. Mais méme avec ’hypothése
(a,m) =1, il n’est pas évident qu’il existe un nombre premier = a mod m.

Theorem 6.2.11. (Dirichlet) Soient m,a des entiers premiers entre euzx. Alors
l’ensemble
A = {p premiers| p=a mod m}

est infini.
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Nous avons besoin de quelques résultats préliminaires a la démontration du
théoréme.

Lemme 6.2.12. Soit x un caractére modulo m. Soit
)= x/r
P

pour t €]1,4+00].
(1) Ona

Z pfkrt <1.

k=2, p

1
E —t
p

(2) Six = xo le caractére trivial, alors

Lorsquet = 1%, on a

), t—17

Slt) ~ (),

(3) Six # xo, alors f,(t) est bornée dans un voisinage de 1.

Démonstration. (1) On a pour tout ¢ > 1

Do p M =310 1) < 31/ - 1) < 301/~ 1) = 1.

p k>2 P p n>2

D’autre part,

() ==Y (n(1—p )= (> 1/(kp*) Zp + Wt

P p  \k>1

avec W(t) =3 ;5op” kt /k qui prend ses valeurs dans [0, 1]. Le corollaire résulte
alors du fait que ((t) = 1/(t — 1) + O(1) dans un voisinage de 1.
(2) Ona fy,(t) =3,p7" =32, p~ " L’équivalence désirée résulte de (1).
(3) Soit In le logarithme qui est continue sur C \ R<q (les arguments appar-
tiennent a ] — mr, 7). On a In(1 +2) = >, o, (—1)*2*/k si |z| < 1. On applique
ce logarithme & 6.2.5 (1), B

In L(s, x) Zln (1—-x ) :Z(X(P)kpfks)/k:fx(5)+Fx(5)
k.p
avec
Sl =1 x) k™| < Y 1M <1
P2 pk>2

si t = R(s) d’aprés (1). Comme L(t, ) converge vers L(1,x) # 0 (théoréme
6.2.9), on voit que f,(t) reste bornée dans un voisinage de 1. O
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Démonstration. (du théoréme 6.2.11) Nous allons étudier les variations de la

fonction
g(s)=> p"
pEA

(pour ¢t > 1) lorsque ¢ tend vers 1. On a

> ox@ ) =D x(@) D xpp =D <Z X(a)lx(p)> p .

En appliquant le lemme 6.2.1 (3), on trouve que le dernier membre est égal a
> p=a mod m P(M)p™" = @(m)g(t). 1l suit que
p(m)g(t) = x(a) " fy(t) = fro () + D x(a) 7 £y (1),
X X#X0

11 suit du lemme 6.2.12 que g(t) — oo lorsque t — 1. En particulier, A n’est pas
fini. O

Remarque 6.2.13 On peut montrer (théoréme de Siegel-Walfisz) que la répar-
tition des nombres premiers suivant leurs classes modulo m est uniforme :

1
p(m)

Card{p premiers | p <z, p=a mod m} ~ Li(z).

6.3 Fonction zéta de Dedekind

On fixe un corps de nombres K. Rappelons que Ok désigne ’anneau des
entiers de K. La fonction zéta de Dedekind de K est la fonction & variable
complexe s :

I1COK

ou la somme porte sur I’ensemble des idéaux non nuls I de Ok et ou N(I) =
Card(Ok/I) (4.1.1). Quand K = Q, on retrouve la fonction zéta de Riemann.
Pour tout n > 1, soit j, le nombre d’idéaux I de O de norme N(I) = n. C’est
un nombre fini d’aprés 4.1.6. On a

Cr(s) = Z 7]72
n>1

Lemme 6.3.1. Soit K un corps de nombres.

(1) La série (6.7) converge uniformément sur tout compact de {R(s) > 1} et
définit ainsi une fonction holomorphe sur {f(s) > 1}.

(2) SiR(s) > 1, on a le produit eulérien

Cr(s) =] =N@™)™"

q

ot q parcourt les idéaux mazimauz de Ok . En particulier (i (s) # 0.
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Démonstration. On peut montrer que ) _, jn est un O(t), ce qui implique (1)
par 6.2.4 (2). Nous donnons ici une preuve différente.

Si g est un idéal maximal de Ok, on a ¢ N Z = pZ pour un nombre premier
p. On note fq le degré [Ok/q : Z/pZ]. On sait que N(q) = pfs par définition.
Soit ¢ > 1 un nombre réel. Pour tout N > 1, on a

O w0 0 <0 I 555

4, N(q)<N p<N qNZ= pZ p<N qmz—pz

(La premiére inégalité n’est en général pas une égalité car dans le produit du
milieu, on a admis éventuellement des facteurs indexés par N(q) > p et que
ces facteurs sont > 1). Comme il existe au plus d := [K : Q] idéaux premiers q
au-dessus de p, le terme de droite est majoré par

T ()" <o

_ m—t
pen 1P

Cela implique que le produit infini []_(1 — N(q)~*)~! converge quand ¢ > 1.
Maintenant tout idéal I de N(I) < N se décompose comme I = qi* ---qim
avec N(q;) < N.Doncsit>1, ona

Soovot< I Y ynamt= ] ﬁ(q)_tﬂ(t)d

N(D)<N N(9)<Nn>1 N(9)<N

et la série & termes positifs Y, N(I)~* converge.
Soit & > 0 et R(s) > 1+ 6. Pour tout N > 1, on a

SN Y Ny,

N(I)>N NI)>N

ce qui implique la convergence uniforme sur {f(s) > 1+ §}. D’ou (1). La pro-
priété (2) résulte d’une variante du lemme 6.2.10 ou les entiers n sont remplacés
par des idéaux de Ok et les nombres premiers par des idéaux maximaux. O

Theorem 6.3.2. Soit K un corps de nombres.
(1) La fonction (i (s) se prolonge en une fonction méromorphe sur C avec un
unique pole simple en s = 1.
(2) Le résidu en s =1 de Cx(s) est égal @

27 (27)"2
lim (K ———————hkRg.
M = V) = a7
ol 11,219 sont les nombres de plongements réels et imaginaires, hy est le
nombre de classes, et Ry le régulateur (6.3.3).

Cr (s) hi Ry

S0 s T (R
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(4) On a aussi une équation fonctionnelle.

(5) Zéros triviaux : les entiers strictement négatifs pairs sont des zéros d’ordre
r1 + 1o, les entiers strictement négatifs impairs sont des zéros d’ordre ro
(si ro > 0). Les autres zéros de Cx(s) sont dans 0 < R(s) < 1.

Définition 6.3.3 Soient t = r1 +ro — 1 et uy,...,u; une famille d’unités fon-
damentales de sorte que £(uy),...,~¢(us) soit une base du réseau ¢(U) dans
H C R*!. Le régulateur de L est le volume du réseau £(U) dans H, c’est-a-dire
le nombre

RL = ‘ det(é(ul), e ,é(ut))| €R.

Il est indépendant du choix de la famille des w; (noter que la matrice qui inter-
vient ci-dessus est d’ordre (¢ + 1) X ¢, on peut supprimer n’importe laquelle des
lignes parce que ces vecteurs colonnes se trouvent dans I’hyperplan H).
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