UE Théorie des nombres. Examen du 7 mai 2019, 9h-12h

Tous documents interdits.

Qing Liu

Exercice 1 Soit $L = \mathbb{Q}[\sqrt{-3}]$.

- (1) Montrer que $\mathcal{O}_L = \mathbb{Z}[\zeta]$ où $\zeta = (-1 + \sqrt{-3})/2$.
- (2) Quel est le discriminant de L?
- (3) Montrer que \mathcal{O}_L est principal.
- (4) Trouver les unités de \mathcal{O}_L .

Exercice 2 Soit $L = \mathbb{Q}[\sqrt{7}]$.

- (1) Quels sont \mathcal{O}_L et le discriminant de L?
- (2) Montrer que l'extension L/\mathbb{Q} est ramifiée au-dessus de 2 et que $2\mathcal{O}_L = \mathfrak{q}^2$ avec \mathfrak{q} maximal.
- (3) Calculer $N(\mathfrak{q})$ et trouver un générateur de \mathfrak{q} (de la forme $\sqrt{7} + k$).
- (4) Montrer que \mathcal{O}_L est principal.
- (5) Déterminer les unités de \mathcal{O}_L .

Exercice 3 Soit A un anneau principal, de corps de fractions K. Soit L une extension finie séparable de K. On suppose que $L=K[\theta]$ avec θ entier sur A. Considérons

$$C = A[\theta] := \{ f(\theta) \mid f(T) \in A[T] \} \subseteq L.$$

On sait que C est fini (donc entier) sur A.

(1) Soit $w \in L$ entier sur A. Considérons

$$I_w = \{ a \in A \mid aw \in C \}.$$

Montrer que I_w est un idéal de A. On sait par le cours que $I_w \neq \{0\}$.

- (2) On suppose que pour tout élément irréductible π de A, l'anneau $C/\pi C$ est réduit (les éléments nilpotents sont nuls). On veut montrer que C est alors la clôture intégrale de A dans L. Soit $w \in L$ entier sur A. Soit t un génerateur de I_w .
 - (a) Si t est inversible dans A, montrer que $1 \in I_w$ et que $w \in C$.
 - (b) Supposons que t n'est pas inversible dans A. Montrer que $\alpha:=tw\in C$ satisfait une relation

$$\alpha^{n} + a_{n-1}\alpha^{n-1} + \dots + a_{1}\alpha + a_{0} = 0$$

avec $a_i \in tA$ (utiliser une équation entière satisfaite par w).

(c) Soit π un facteur premier de t. Montrer que $\alpha^n \in \pi C$. En déduire que $\alpha \in \pi C$ et que $t/\pi \in I$. Conclure.

Le but des trois exercices suivant est de traiter au maximum le deuxième cas de Fermat pour les premiers réguliers et de résoudre complètement le problème quand p=3. L'exercice 6 est extrait de l'écrit de MG du concours d'agrégation de 2019.

Exercice 4 Soit $p \geq 3$ un nombre premier. Soit $L = \mathbb{Q}[\zeta_p]$ l'extension cyclotomique engendrée par une racine primitive p-ième de l'unité $\zeta \in \mathbb{C}$. On sait que $\mathcal{O}_L = \mathbb{Z}[\zeta]$. On note $\Phi_p(X) \in \mathbb{Z}[X]$ le p-ième polynôme cyclotomique.

- (1) Soit ℓ un nombre premier distinct de p.
 - (a) Montrer que l'image de $X^p 1$ dans $\mathbb{F}_{\ell}[X]$ est séparable. En déduire le même résultat pour $\Phi_p(X)$.
 - (b) Montrer que l'extension $\mathbb{Z} \subset \mathcal{O}_L$ est non-ramifiée au-dessus de ℓ .
 - (c) Supposons $\ell \equiv 1$ [p]. Montrer qu'il existe un élément dans \mathbb{F}_{ℓ}^* d'ordre exactement p. En déduire que ℓ est totalement décomposé dans \mathcal{O}_L : l'idéal $\ell \mathcal{O}_L$ est le produit de p-1 idéaux maximaux 2 à 2 distincts.
- (2) Posons $\lambda = \zeta 1 \in \mathcal{O}_L$.
 - (a) Montrer que l'image de $\Phi_p(X)$ dans $\mathbb{F}_p[X]$ est égale à $(X-1)^{p-1}$.
 - (b) Soit $\mathfrak{q} = (\lambda, p)$ l'idéal de \mathcal{O}_L engendré par λ et p. Montrer que \mathfrak{q} est maximal, que $p\mathcal{O}_L = \mathfrak{q}^{p-1}$ et que $\mathbb{Z}/p\mathbb{Z} = \mathcal{O}_L/\mathfrak{q}$.
 - (c) En développant la relation $1 = (1 + \lambda)^p$, montrer que

$$\frac{\lambda^{p-1}}{p} = -1 + \lambda a, \quad \text{pour un } a \in \mathcal{O}_L.$$

- (d) Montrer que $p \in \lambda \mathcal{O}_L$, que $\mathfrak{q} = \lambda \mathcal{O}_L$ et que $p\mathcal{O}_L = \lambda^{p-1}\mathcal{O}_L$.
- (3) Rappelons que pour tous $i, j \in \mathbb{Z}$ premiers à $p, (\zeta^i 1)/(\zeta^j 1) \in U(\mathcal{O}_L)$. Montrer que $(\zeta^i - 1)\mathcal{O}_L = \lambda\mathcal{O}_L$ pour tout i premier à p.
- (4) (Indépendante de (1)-(3)). Pour tous $\alpha, \beta \in \mathcal{O}_L$, montrer que

$$\sum_{0 \le i \le p-1} \zeta^i(\alpha + \zeta^i \beta) = 0.$$

Exercice 5 Nous conservons les hypothèses et notations de l'exercice précédent. On fixe $\alpha, \beta, \gamma \in \mathcal{O}_L$ non nuls tels que $\alpha, \beta \notin \lambda \mathcal{O}_L$, $\gamma \in \lambda \mathcal{O}_L$ et que

$$\alpha^p + \beta^p + u\gamma^p = 0$$

pour un certain $u \in U(\mathcal{O}_L)$. Nous avons donc une relation

$$-u\gamma^p = \prod_{0 \le i \le p-1} (\alpha + \zeta^i \beta). \tag{1}$$

Nous allons trouver des propriétés sur les facteurs du terme de droite.

- (1) (Étude des puissances p-ièmes dans \mathcal{O}_L). On a vu dans le cours que $\alpha^p \in \mathbb{Z} + p\mathcal{O}_L$. Nous allons améliorer ce résultat en utilisant l'hypothèse $\alpha \notin \lambda \mathcal{O}_L$.
 - (a) Montrer que $\mathcal{O}_L\subseteq\mathbb{Z}+\lambda\mathcal{O}_L$ (utiliser 2(a)). En déduire qu'il existe $k,r\in\mathbb{Z}$ et $\alpha'\in\mathcal{O}_L$ tels que

$$\alpha = k + \lambda r + \lambda^2 \alpha'$$
.

De plus on peut choisir k compris entre -(p-1)/2 et (p-1)/2.

(b) Montrer que

$$\alpha^p \in k^p + \lambda p(k^{p-1}r + (\lambda^{p-1}/p)r^p) + p\lambda^2 \mathcal{O}_L$$

et

$$\alpha^p \in k^p + \lambda p(k^{p-1}r - r^p) + p\lambda^2 \mathcal{O}_L$$

- (c) Montrer que pour tout $s \in \mathbb{Z}$, on a $s^p \equiv s$ [p], et que $s^{p-1} \equiv 1$ [p] si $s \notin p\mathbb{Z}$.
- (d) Montrer que $k \notin p\mathbb{Z}$ et que $\alpha^p k^p \in p\lambda^2 \mathcal{O}_L = \lambda^{p+1} \mathcal{O}_L$.
- (2) On veut montrer que $\gamma \in \lambda^2 \mathcal{O}_L$.
 - (a) Similairement à α , choisissons un entier m compris entre -(p-1)/2 et (p-1)/2 tel que $\beta^p m^p \in \lambda^{p+1}\mathcal{O}_L$. Montrer que $k+m \equiv k^p + m^p \equiv 0$ [p].
 - (b) En déduire que k + m = 0 et que $\gamma \in \lambda^2 \mathcal{O}_L$.
- (3) Calcul de "pgcd". Supposons dans la suite que α, β sont premiers entre eux (dans le sens que $\alpha \mathcal{O}_L + \beta \mathcal{O}_L = \mathcal{O}_L$).
 - (a) Montrer que la différence entre deux facteurs quelconques de droite dans la relation (1) est toujours divisible par λ mais jamais par λ^2 (utiliser l'exercie 4.3).
 - (b) Montrer que λ divise un des facteurs de droite, et que par suite il divise tous les facteurs de droite.
 - (c) En déduire que λ^2 divise un et un seul facteur $\alpha + \zeta^{i_0}\beta$. Quitte à remplacer β par $\zeta^{p-i_0}\beta$, on peut supposer que λ^2 divise $\alpha + \beta$.
 - (d) Soient $i \neq j$ compris entre 0 et p-1. Supposons qu'il existe un idéal maximal \mathfrak{m} de \mathcal{O}_L tel que $\alpha + \zeta^i \beta$, $\alpha + \zeta^j \beta \in \lambda \mathfrak{m}$. Montrer que $\alpha, \beta \in \mathfrak{m}$.
 - (e) Montrer que les éléments $(\alpha + \zeta^i \beta)/\lambda \in \mathcal{O}_L$ sont 2 à 2 premiers entre eux.
- (4) Enfin, supposons de plus que p soit un premier régulier. Montrer qu'il existe $u_i \in U(\mathcal{O}_L)$, et des $\delta_i \in \mathcal{O}_L$ 2 à 2 premiers entre eux tels que $\alpha + \zeta^i \beta = \lambda u_i \delta_i^p$ et que $\delta_0 \in \lambda \mathcal{O}_L$. Plus précisément, si λ^n est la plus grande puissance de λ divisant γ (i.e. $v_{\lambda}(\gamma) = n$), alors $v_{\lambda}(\delta_0) = n 2$.

Exercice 6 (Fermat pour p=3) On veut montrer que si $x, y, z \in \mathbb{Z}$ vérifient $x^3 + y^3 + z^3 = 0$, alors xyz = 0.

Supposons qu'il existe une solution avec $xyz \neq 0$. On peut supposer que x,y,z sont premiers entre eux. Soit $L=\mathbb{Q}[\zeta]$ engendrée par une racine primitive 3-ième de l'unité ζ . On utilisera librement les résultats des exercices 1, 4 et 5. Soit $\lambda=\zeta-1$.

- (1) Montrer que x, y, z sont deux à deux premiers entre eux et que $3 \mid xyz$.
- (2) Soient $a,b\in\mathbb{Z}$ et $c=\operatorname{pgcd}(a,b)\in\mathbb{Z}$. Montrer que c est aussi un pgcd de a,b dans \mathcal{O}_L .
- (3) Nous allons montrer un résultat dans \mathcal{O}_L plus fort que Fermat. Supposons qu'il existe $\alpha, \beta \in \mathcal{O}_L \setminus \lambda \mathcal{O}_L$ premiers entre eux, $u \in U(\mathcal{O}_L)$ et $\gamma \in \lambda \mathcal{O}_L$ non nul tels que

$$\alpha^3 + \beta^3 + u\gamma^3 = 0.$$

Nous allons conclure à une contradiction.

- (a) Montrer qu'il existe $\delta_1, \delta_2 \in \mathcal{O}_L \setminus \lambda \mathcal{O}_L$ premiers entre eux, $\delta_0 \in \lambda \mathcal{O}_L$ et $u_0, u_1, u_2 \in U(\mathcal{O}_L)$ tels que $\alpha + \beta = u_0 \delta_0^3$, $\alpha + \zeta \beta = u_1 \delta_1^3$ et $\alpha + \zeta^2 \beta = u_2 \delta_2^3$.
- (b) Montrer qu'il existe $w_0, w_2 \in U(\mathcal{O}_L)$ tels que

$$\delta_1^3 + w_2 \delta_2^3 + w_0 \delta_0^3 = 0$$

(utiliser l'exercice 4.4).

- (c) Montrer que $w_2 \equiv \pm 1$ [λ^3]. En déduire que $w_2 \notin \{\pm \zeta, \pm \zeta^2\}$.
- (d) Montrer que $w_2 = \pm 1$ (utiliser la description explicite de $U(\mathcal{O}_L)$) et que λ^2 divise δ_0 .
- (e) Nous avons donc obtenu un quadruplet $(\delta_1, w_2\delta_2, u_0, \delta_0)$ satisfaisant les mêmes propriétés que $(\alpha, \beta, u, \gamma)$ et tel que $v_{\lambda}(\delta_0) = v_{\lambda}(\gamma) 1$. Conclure.
- (4) Montrer Fermat pour p = 3.

⋄⋄ Fin ⋄⋄