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0. Introduction. In this talk we discuss properties of the Torelli locus inside the moduli
space of polarized abelian varieties over C. We would like to compare “canonical coordinates”
on Ag ⊗ C on the one hand and see how they relate to Tg ⊂ Ag on the other hand. In order
to make this more precise we study a special case:

consider algebraic curves C over C
such that its Jacobian variety J(C) = Pic0

C is a CM abelian variety.

We will see this is a fascinating problem in itself, but it also pins down essential features of
the problem. For further explanation see below.

For results, a discussion of these ideas, and many references see:
[MO] = [34] B. Moonen & F. Oort, The Torelli locus and special subvarieties.
[CO] = [7] C.-L. Chai & F. Oort, Abelian varieties isogenous to a Jacobian.

1. Complex multiplication. We say an abelian variety A of dimension g over a field
K admits sufficiently many Complex Multiplications (smCM) if D = End0(A) contains a
commutative semi-simple algebra Λ ⊂ D of rank dimQ(Λ) = [Λ : Q] = 2g. In this case we say
A is a CM abelian variety. A point z ∈ Ag(k) is called a CM point if z is the moduli point of
a polarized abelian variety z = [(A,µ)] such that A is a CM abelian variety.

If an algebraic curve C has a Jacobian J(C) which is a CM abelian variety we say C is a
CM curve.

A CM field L is a finite extension of Q (a number field) that contains a subfield L0 ⊂ L such
that L0 is totally real, [L : L0] = 2 and L/L0 is totally complex.

If A is a simple abelian variety, and A is an CM abelian variety, and char(K) = 0 then
End0(A) = D = L is a CM field. (This is no longer true in positive characteristic in general.)

2. A conjecture by Coleman.
Conjecture (1987, see [9], Conjecture 6). For a given g ≥ 4 the number of isomorphism
classes of algebraic curves C of genus g over C such that J(C) is a CM abelian variety is
finite.

In this conjecture by “an algebraic curve” we mean: an algebraic curve, proper and smooth
over a field, and absolutely irreducible. Certainly, if we would study the larger class of stable
curves there are many CM (stable) curves of any genus > 0.
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Why is this difficult? How can we give examples? Some curves have automorphisms
that generate a large enough CM algebra, e.g. the Fermat curves. However in this way for
any fixed g at most a finite number of isomorphisms classes of curves of this type give a CM
Jacobian. In general it is hard to see from properties of a given curve whether its Jacobian
is a CM abelian variety. On the other hand known criteria which decide whether a given
principally polarized abelian variety is a Jacobian does not enable us, it seems, to single out
form the large class of CM abelian variety many CM Jacobians:

starting with a curve C it is hard to decide whether J(C) is a CM abelian variety;
starring with an abelian variety A (maybe CM, principally polarized, g > 3) it is hard to

decide whether it is the Jacobian of an algebraic curve.

Why is this interesting? We will see that CM points are “torsion points in canonical
coordinates” on Ag,1(C), and this will give access to questions posed below: granting (AO)
we see that infinitely many CM Jacobians for a given value of g show some of the “canonical
coordinates” on Ag parametrize a subvariety in Tg.

Notation. We write Mg for the moduli space of curves (smooth and proper over the base
scheme, with absolutely irreducible geometric fibers). By C 7→ (J(C), λ) we obtain a morphism

j :Mg −→ Ag, T 0
g = j(Mg) ⊂ Ag

and the image of this map is called the open Torelli locus. Its closure(
T 0

g

)Zar =: Tg ⊂ Ag,

is called the (closed) Torelli locus. Note:

1 ≤ 3 =⇒ Tg = Ag,1; the dimension (over any field) equals: 1, 3, 6,

3 < g =⇒ Tg $ Ag,1; the dimensions are: 3g − 3 < g(g + 1)/2.

The Coleman conjecture can be formulated as:

#(CM(T 0
g ))

?
<∞ for g > 3.

3. Examples. We now know this conjecture does not hold for g ∈ {4, 5, 6, 7}, see [20], [53],
[44]. For a survey see [MO]. We explain one way to construct such examples as this was done
by Johan de Jong and Rutger Noot in 1991:

Consider curves given by
Cλ : Y 5 = X(X − 1)(X − λ).

It can be proved that for infinitely may values λ ∈ C the curve Cλ is a CM curve.

All infinite families of CM Jacobians constructed along this line (i.e., variable covers of P1)
have been classified, see [51], [31]. It seems other methods are necessary to decide whether the
Coleman conjecture holds for some/any given value g ≥ 8.

4. Special subvarieties. We will not give a treatment of Shimura varieties in general, but
only briefly give an ad hoc defintion in the case Ag,1(C). Statements below can be generalized
to arbitrary Shimura varieties.
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We write
hg = {τ ∈ (Cg)g = Mat(g × g, C) | τ =tτ, Im(τ) > 0},

the Siegel upper half space. We know

Ag,1(C) = Sp2g(Q)\hg,

under (
α β
γ δ

)
· τ =

ατ + β

γτ + δ
.

A subvariety Z ⊂ Ag := Ag,1 ⊗ C is said to be a special subvariety if there is a CM point
z ∈ Ag,1(C) and an algebraic group H ⊂ Sp2g over Q such that

τ_

��

τ ∈ hg

��

H(R)+ · τ? _oo

��
z z ∈ Sp2g(Q)\hg = Ag,1(C) Z(C).? _oo

Sometimes a special subvariety is also called “a subvariety of Hodge type”, “a modular subva-
riety”, “an irreducible component of a Hecke translate of a sub-Shimura variety”. Note that
a special point in Ag,C is a special sub variety of dimension zero, and hence, by definition, the
same as a CM point.

Important observation. The set CM(Z(C)) of CM points contained in a special subvariety
Z is dense in Z(C) (in the classical topology) and CM(Z(C)) is Zariski-dense in Z.

Here are some cases of special subvarieties.
(4.a) As mentioned before: a zero-dimensional case consisting of one CM point.
(4.b) PEL Shimura sub varieties. In particular: Hilbert Modular varieties; these will show
up in (7a) and in (9)
(4.c) All counterexamples for 4 ≤ g ≤ 7 to (2) will be given by families of curves with some
automorphisms creating a special subvariety; see [34], see [51], [31].
(4.d) Not every special subvariety of Ag comes from a PEL type Shimura variety. In [35]
Mumford constructed one-dimensional special subvarieties of A4 where generically the en-
domorphism ring of the fiber is Z. These subvarieties are partly well understood, see [40].
However see (11.4).

(4.e) For g > 3 the Torelli locus is not a special subvariety. In fact more is true, see [34], 4.5:

g > 3, Tg ⊂ Z ⊂ Ag,1, Z is special =⇒ Z = Ag,1.

5. Linearity. See [34] for more explanation and references.
We see that we can feel a special subvariety as an orbit under the action of a (linear) subgroup.
This is reflected in the fact that special subvarieties have strong linearity properties (e.g. under
the notion of local Serre-Tate parameters) and properties of being geodesic subvarieties, see
the PhD-Thesis by R. Noot (1992) [37], [38], and see the PhD-Thesis by B. Moonen (1995)
[27], [28], [29].

(5.a) Serre-Tate canonical coordinates. We give one example. Let κ← R ⊂ Quot(R) =
K ⊂ C be a local ring in mixed characteristic with finite residue class field κ and field of
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fractions K. Let (A,µ) be a polarized abelian scheme over S = Spec(R) giving z : S → Ag⊗R;
suppose A0 = A ⊗R κ is an ordinary abelian variety, and suppose that (Aη = A ⊗R K, µ) is
the Serre-Tate canonical lift of (A,µ)⊗R κ = (A0, µ). In this case we have an isomorphism

A/z
g,R
∼= ((Gm)g(g+1)/2

R )/1

between the formal scheme obtained by completing Ag along z and a power of the formal
group attached to the multiplicative group. In this case CM abelian varieties reducing to
A0 correspond to torsion points under this isomorphism. Moreover an algebraic subvariety
“containing” z is special only if its completion corresponds to a translate by a torsion point
of a linear formal subscheme.

(5.b) Any abelian variety over a finite field is a CM abelian variety, Tate 1966: [54]. Hence
any Jacobian over a finite field is a CM Jacobian. However (for g > 4) the theory of “canonical
lifts” does not provide us in this way with many CM Jacobians in characteristic zero, see [47].
see [11], see [27], IV Theorem 2.6 and see (10):

(5.c) Theorem (Moonen-De Jong-Oort). Fix g. Let U0 = T 0
g (Fp)ord be the set of all ordinary

Jacobians defined over a finite field. For every x0 ∈ U0 let xcan be the moduli point of the
canonical lift of this principally polarized abelian variety.

({xcan | x0 ∈ U0)
Zar = Ag,1.

We see that for g ≥ 4 ”most” ordinary Jacobians do not give a Jacobian under the canonical
lift.

The analogy with the Manin-Mumford conjecture is striking, and the following was conjec-
tured.

6. The AO conjecture.
Conjecture (Yves André, FO; see [1], [42], [43]). Suppose Z ⊂ Ag ⊗ C is an algebraic
subvariety then:

CM(Z(C)) is Zariski-dense in Z
?⇐⇒ Z is special.

Note that “⇐” is clear. For a survey, see [41].

Many special cases (sometimes under GRH) have been proved (Y. André, B. Edixhoven, B.
Moonen, A. Yafaev, Clozel-Ullmo, Pila, Pila-Tsimerman,...; see [41]). In [23] and [56] a proof
of the AO Conjecture for arbitrary Shimura varieties, under assumption of the Generalized
Riemann Hypothesis for CM fields, is announced. Pila and Tsimerman announce an uncon-
ditional proof for Ag with g ≤ 6, see [50].

7. An expectation (see [43], § 5). For large g (in any case g ≥ 8), there does not exist a
special subvariety Z ⊂ Ag with dim(Z) ≥ 1 such that Z ⊆ Tg and Z ∩ T 0

g is nonempty.

Any point in T 0
g corresponds with the canonically polarized Jacobian of an absolutely irre-

ducible, regular complete curve, and any point in Tg corresponds with the canonically polarized
Jacobian of a “compact type” algebraic curve.

Note that for 1 ≤ g ≤ 3 we have CM(T 0
g (C)) =∞; this shows that for any g > 0 we have

CM(Tg(C)) =∞. The Coleman conjecture expects: CM(T 0
g (C)) <∞ for g > 3.

4



We have seen in (3) that there are special subvarieties of positive dimension in Ag ⊗ C for
every g ≤ 7. For larger g we do not know either to construct such examples, or to prove the
expectation in that case.

Observe: Let g ∈ Z>7 such that the expectation mentioned above holds for that value of g.
Assume OA. Then

#
(
CM(T 0

g )
)

<∞,

i.e. the conjecture (2) by Coleman holds for that value of g. In short, for a fixed g:

(7) & (AO) =⇒ #
(
CM(T 0

g )
)

<∞.

Explanation. We like to know which part of the linear structure of Ag,C “lives” in T 0
g,C.

Special subvarieties contained in the Torelli locus tell us the answer to this question, and the
expectation says that this only should happen for small values of g.

Several papers are devoted to a proof of the expectation in special cases. Especially the paper
[19], using [16], gives an important approach. For further references, see [34]. We mention a
special case:

(7.a) Theorem. Let Z ⊂ Ag,C be a Hecke translate of a Hilbert modular subvariety of Ag,C,
i.e., Z is a special subvariety of PEL type obtained from a totally real field L0 of degree g.
Assume g ≥ 4. Then Z is not contained in Tg.
This was proved by A.J. de Jong and S.-W. Zhang, see [21], with a restriction in case g = 4;
this last case was settled in [4].

(7.b) Remark. For any g ≥ 4 the Torelli locus Tg ⊂ Ag,C is not a special subvariety; see
(4.e).

8. Weyl CM fields. Fix g ∈ Z>0. Consider indices {1, · · · , 2g}. A group Wg is defined,
which containes the (normal) subgroup N generated by the transpositions (12), · · · , ((2i +
1)(2i + 2)), · · · ((2g− 1)(2g)), this group is isomorphic with (Z/2)g, and the quotient Wg/N is
given by the natural action of the symmetric group Sg permuting the pairs {{1, 2}, · · · , {2g−
1, 2g}}. We have an exact sequence

1→ (Z/2)g →Wg → Sg → 1,

and Wg is called the Weyl group. Note that #(Wg) = 2g · (g!). (Note: some authors denote
this group by W2g).

For a field extension Q ⊂M we write M∼ for the Galois closure of M/Q.

Lemma (8.a). Suppose Q ⊂ L0 ⊂ L are field exensions with [L0 : Q] = g and [L : L0] = 2.
There is an inclusion Gal(L∼/Q) ↪→Wg, unique up to conjugation. 2

Definition (8.b). A field L is called a Weyl CM field, if it is a CM field such that
Gal(L∼/Q) = Wg.

Note that “most CM fields are Weyl CM fields”, as was made explicit in [18], [8], [24], [25],
[26], [13].
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9. Finiteness of the number of Weyl CM Jacobians for g ≥ 4.
Under a mild restriction we can prove an analog of the Coleman conjecture:
Theorem (Ching-Li Chai & FO). Assume (AO). For any g ∈ Z≥4 we have:

# (WCM(Tg(C))) <∞.

See [7], 3.7. Sketch of proof. Suppose for a given value of g we have # (WCM(Tg(C))) = ∞.
The Zariski closure of this set contains a positive dimensional subvariety. By (AO) this is a
special subvariety. One proves this is a Hilbert modular variety, see [7], Lemma 3.5. By (7a)
we conclude g ≤ 3, a contradiction. 2

Note that for any g the boundary Tg −T 0
g contains infinitely many CM Jacobians (for g > 1).

However none of these is a Weyl CM Jacobian.
Note that a hyperelliptic curve is not a Weyl CM curve. Note that any curve C of genus

g > 1 with a non-trivial automorphism is not a Weyl CM curve.

10. Linearity at the boundary. We compare [11] (1986) with [17] (1994).

Consider:
(DO) The moduli space Ag ⊗Z(p) in mixed characteristics, view Ag ⊗Q as “the interior” and
consider

Ag ⊗ Fp = ∂ = ∂
(
Ag ⊗ Z(p)

)
as its boundary. For any point x = [(A, λ)] in the ordinary locus ∂o := (Ag ⊗ Fp)ord we have
the notion of a kind of tubular structure where the canonical lifts give directions “transversal
to the boundary ∂o”. In [11] the question was asked: suppose moreover x lies in the Torelli
locus Tg ⊗ Fp does the canonical lift stay in the Torelli locus? (Also see 5.c.)

(FvdP) Consider the moduli space Ag,C, let A(∗)
g,C some nice kind of compactification (e.g. a

toroidal compactification), and consider

A(∗)
g,C −Ag,C = ∂ = ∂(Ag,C)

as its boundary. We have a good moduli interpretation of points in this boundary. Again here
one can introduce the notion of a “canonical lifting” from a point in the boundary (this can
be done analytically, or in formal algebraic geometry). In [17] the question was asked: if a
boundary point x lies in the Torelli locus of the boundary (i.e. it is the polarized Jacobian of
a stable curve of “compact type”) does the canonical lift stay in the Torelli locus?

In both cases the answer is: if g ≥ 4, there is a non-empty open set U in ∂o, respectively in
∂, such that for every x ∈ U the canonical lift xcan does not land into Tg. Needless to say
that, for these two very different theorems, in different fields the proofs are different. But the
analogy is striking.

Also see [27], IV Theorem 2.6, [29], Theorem 6.6. for an explanation and a proof in mixed
characteristic.

(10.a) Question. For a given g > 3 study the closure/boundary structure of special subvari-
eties and their boundaries in both settings. Study “canonical coordinates” and their behavior
with respect to the Torelli locus in this setting. See [3]. How far can we use this (for non-
compact special subvarieties) to give an answer to Expectation (7) ?
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(10.b) Remark. It has been fruitful to consider the “boundary” for subsets of Ag not only
in the case the abelian varieties in question degenerate, but also in cases where the abelian
varieties do not degenerate, but the p-structure changes. E.g. in positive characteristic p lower
p-rank abelian varieties can be considered as giving boundary points of moduli of ordinary
abelian varieties, and in this sense supersingular abelian varieties, which by now are fairly well
understood, give moduli points “deepest in the boundary”.

11. Some questions.
Already raised: Expectation (7) and Question (10.a).

(11.1) How do we construct explicitly CM curves? Except some very special cases (e.g.
curves with many automorphisms) we do not know how to construct explicitly CM curves.

(11.2) CM curves with Aut(C) = Z ? Clearly any elliptic curve with j(E) 6= 0, 6= 1728
has no non-trivial automorphisms; hence there exist many CM elliptic curves with trivial
automorphism group. Do we know examples of such curves for g ≥ 2 ? Or do we know
explicit examples, or can we prove the existence of CM curves with a small automorphism
group?

(11.3) Do we know Weyl CM curves of genus at least 4 ? We showed that for a given
g ≥ 4 the number of Weyl CM curves of genus g is finite. But, do we know any examples? I
expect there do exist such examples, but I do not know how to construct, or prove existence
of such curves.

(11.4) Are there any Mumford-Shimura curves in T4? In [35] Mumford constructed
special subvarieties of A4,C of dimension one where the generic fiber abelian variety has en-
domorphism ring equal to Z (in particular this is not a PEL type Shimura variety). Clearly
any Hecke translate of such a special subvariety again is special. Let us call these “Mumford-
Shimura curves”. Is any of these curves contained in T4 ? If such a curve would exist, it would
meet T 0

4 . If so, we would prove the existence of infinitely many CM curves of genus 4 along
this line. As T4 is an ample divisor in A4 and any of the Mumford-Shimura curve is compact,
any such curve has a non-empty intersection with T4.

(11.5) Describe all special subvarieties contained in Tg.
See [34], 6.4. Can we describe / classify all special subvarieties of positive dimension contained
in Tg ? Even for g = 4 we do not know such a description.

(11.6) Does there exist a special subvariety Z ⊂ Tg with End(A) = Z generically ?
We have seen constructions of special subvarieties in the Torelli locus using curves with some
automorphisms (then moving the curves, and showing they sweep out a special family). For
g ≥ 4 we do not know a special subvariety Z ⊂ Tg such that for the generic point η ∈ Z we
have End(A⊗ k(η)) = Z.

(11.7) Abelian varieties isogenous to no Jacobian. Fix an algebraically closed field.
Choose g > 3. Is there an abelian variety over k not isogenous to any Jacobian?

• Easy: in case k = C a countability argument shows that for any g > 3 there is an abelian
variety over C not isogenous to any Jacobian.
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• More involved: in case k = Qa, an algebraic closure of Q indeed for any g > 3 there is
an abelian variety over Qa not isognous to any Jacobian; see [7]. [55].

• Unknown: in case k = Fp it is not known whether for a given g > 3 there exists an abelian
variety over k not isogenous to any Jacobian; clearly we do not have a good approach
to this question, or to any generalization in the style of [7], 1.2: given a closed subset
X $ Ag,k does there exist an abelian variety whose Hecke orbit has empty intersection
with X?

(11.8) Families of curves with automorphisms. See [51], [31], [34] Section 5 and 6.8.
We have seen families of curves with automorphisms sweeping out a special subvariety. In
the cases classified the quotient of these curves is rational, and the families are obtained by
moving the branch points. Are there any special families of Jacobians given by deforming a
covering C → G\C = D not already described by the know examples?

(11.9) AO in positive characteristic? Is there a clear and useful analog of the AO Con-
jecture for Ap,Fp? One could involve linearity properties or something like that, but for the
moment we have no clear ideas.

Note that the notion of hypersymmetric points seems to be of no help: Proposition (7.3)
of [6] says that any algebraic curve in (A1,Fp)

2 contains a dense set of hypersymmetric points
(although hypersymmetric points in positive characteristic seem the right analog of CM points
in characteristic zero). Maybe, the analog is not about density of a certain type of points.
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