Massey products in Galois cohomology via rational points

Abstract: the Milnor conjecture identifies the cohomology ring \(H^*(\text{Gal}(\bar{k}/k),\mathbb{Z}/2) \) with the tensor algebra of \(k^* \) mod the ideal generated by \(x \otimes (1 - x) \) for \(x \in k - \{0,1\} \) mod 2. In particular, \(x \cup (1 - x) \) vanishes, where \(x \in k^* \) is identified with an element of \(H^1 \). We show that order \(n \) Massey products of \(n - 1 \) factors of \(x \) and one factor of \(1 - x \) vanish by embedding \(\mathbb{P}^1 - \{0,1,\infty\} \) into its Picard variety and constructing \(\text{Gal}(\bar{k}/k) \) equivariant maps from \(\pi^1_{\text{et}} \) applied to this embedding to unipotent matrix groups. This also identifies Massey products of the form \(\langle 1 - x, x, \ldots, x, 1 - x \rangle \) with \(f \cup (1 - x) \), where \(f \) is a certain cohomology class which arises in the description of the action of \(\text{Gal}(\bar{k}/k) \) on \(\pi^1_{\text{et}}(\mathbb{P}^1 - \{0,1,\infty\}) \).