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1 Introduction

Let k be a finite field of characteristic p. Let V/k be a smooth projective
geometrically connected curve with function field K . Let X/k be a proper
smooth and geometrically connected surface endowed with a proper flat map
f : X → V such that the generic fiber XK /K is smooth and geometrically
connected of genus g ≥ 1. Let AK /K denote the Jacobian of XK /K .

The proof of Theorem 4.3 in [11], which we state in corrected form below,
is based in part on a result of Gordon [6]. Thomas Geisser noted in [4] that
the formula provided in Theorem 4.3 in [11] needs to be corrected, due to the
fact that Lemma 4.2 in [6] is missing a hypothesis. He provides a corrected
formula in [4], Theorem 1.1, and his method applies also to the number field
case (up to a power of 2 if not totally imaginary). Several of the intermediate
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results in [6] are only valid under the assumption that Pic0(XK ) = AK (K ).
We revisit the paper [6] in this corrigendum to remove this hypothesis in all
arguments. In doing so, we also avoid using Lemma 4.3 in [6], whose proof is
incorrect, and whose statement might be wrong in general.

2 Corrected statements

We start by recalling the notation needed to state our main theorem. Let
X(AK ) denote the Shafarevich–Tate group of the abelian variety AK /K . Let
Br(X) denote the Brauer group of X . It is well-known that if either X(AK )

or Br(X) is finite, then so is the other (see [15], section 3, or [8], section 4).
The index δ := δ(XK ) of a curve over a field K is the least positive degree of

a divisor on XK . The period δ′ := δ′(XK ) of XK is the order of the cokernel of
the degree map PicXK /K (K ) → Z. When v ∈ V is a closed point, we denote
by Kv the completion of K at v, and let δv := δ(XKv ), and δ′

v := δ′(XKv ).
Recall that we have an exact sequence

0 −→ Pic0(XK ) −→ AK (K ) −→ Br(K ).

Since the Brauer group Br(K ) is a torsion group, and since AK (K ) is a
finitely generated abelian group, the quotient AK (K )/Pic0(XK ) is finite, and
Pic0(XK ) and AK (K ) have the same rank. Let

a := ∣
∣AK (K )/Pic0(XK )

∣
∣.

We find in [11], Proof of 4.6, based on the proofs of 2.3 and 2.5 in [5], that
a divides (

∏
δ′
v)/ lcm(δ′

v). We are now ready to state the main result of this
corrigendum.

Corrected Theorem 4.3. Let X/k and f : X → V be as above. Assume
thatX(AK ) and Br(X) are finite. Then the equivalence of the Artin–Tate and
Birch–Swinnerton-Dyer conjectures holds exactly when

|X(AK )|
∏

v

δvδ
′
v = a2δ2|Br(X)|. (2.1)

The statement of Theorem 4.3 of [11] unfortunately omits the factor a2 in
the above formula. This omission leads to the following change in Corollary
4.7 of [11]. The paragraph after Corollary 4.7 in [11] can now be completely
omitted.

Corrected Corollary 4.7 Assume thatX(AK ) andBr(X) are finite. Then the
conjectures of Artin–Tate and Birch–Swinnerton-Dyer are equivalent if and
only if δa = δ′bcε.
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Corrigendum to Néron models, Lie algebras 595

Theorem 4.3 in [11] is used in the proof of Corollary 3 of [12]. The corrected
version of Theorem 4.3 can be used in that proof to produce exactly the same
result. We restate below Corollary 3 of [12] with the correct formula relating
the orders ofX(AK ) and Br(X).

Corrected Corollary 3. Let f : X → V be as above. Assume that for some
prime �, the �-part of the group Br(X) or of the groupX(AK ) is finite. Then
|X(AK )|∏v δvδ

′
v = a2δ2|Br(X)|, and |Br(X)| is a square.

3 Proof of the corrected Theorem 4.3

We follow closely the paper [6] of Gordon, and indicate below every change
that needs to be made to the statements in [6] to obtain a complete proof of
Formula (2.1).

3.1. It may be of interest to first quickly indicate why the change in the formula
occurs as a ‘square’. This fact is essential for the proof of Corollary 3 in [12]
to remain correct. The conjectures of Birch–Swinnerton-Dyer and of Artin–
Tate require the explicit computation on one hand of the determinant of the
height pairing on the lattice AK (K )/AK (K )tors, and on the other hand of the
determinant of the intersection pairing on the free part NS(X)/NS(X)tors of
the Néron–Severi group NS(X). For this, it suffices to construct explicit bases
for sublattices of finite index in these lattices (see, e.g., 3.7, 3.10), and the
following well-known lemma then introduces ‘squares’ in the formulas.

Lemma 3.2 Let � be a free abelian group of finite rank n, and let �′ ⊆ � be
a sublattice of finite index [� : �′]. Let B : � × � → R be a bilinear form.
Consider a basis λ1, . . . , λn for �, and a basis λ′

1, . . . , λ
′
n for �′. Let d :=

det((B(λi , λ j ))1≤i, j≤n), and similarly, let d ′ := det((B(λ′
i , λ

′
j ))1≤i, j≤n).

Then

d ′ = [� : �′]2d.

3.3.We introduce below a finite group E . This group is claimed in [6], Lemma
4.3, to be always trivial, but the proof provided in [6] is unfortunately incorrect
(in the last paragraph, the computation of π∗C is wrong). This group will
appear in two quotients of the filtration of NS(X) introduced in 3.8. The final
index discussed in 3.9 however does not depend on |E |.

We follow below the notation in [6] on page 177. Let k denote an algebraic
closure of k, and for any k-scheme S, set as usual S := S×k k. The natural map
X → X defines an injection Div(X) → Div(X) which is compatible with the
intersection pairings ( , )X and ( , )X . We identify Div(X) with its image in
Div(X). Similarly, we use the maps f : X → V and f : X → V to identify
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596 Q. Liu et al.

Div(V ) and Div(V ) with their images in Div(X) and Div(X), respectively.
Let us now define some natural subgroups of Div(X).

First, Divvert(X) is the subgroup generated by the irreducible curves C on
X for which f (C) is a single point. We denote by Div0(X) the subgroup
generated by the irreducible curves C on X which are algebraically equivalent
to zero. Finally, let Div0(V ) denote the image in Div(X) of the subgroup of
divisors on V algebraically equivalent to zero. The subgroup Div0(V ) is the
set of all divisors of the form

∑

v avXv , where Xv is the fiber over v ∈ V
and

∑

v av = 0. The intersection of Div(X) with the subgroup Div0(V ), resp.
with Div0(X) or Divvert(X), is denoted by Div0(V ), resp. by Div0(X), or
Divvert(X).

It is clear that Div0(V ) is contained in Div0(X) ∩ Divvert(X). We let

E := Div0(X) ∩ Divvert(X)

Div0(V )
.

For v ∈ V , write Xv = ∑

a pva Xva with Xva/k(v) irreducible of multi-
plicity pva , and set dv := gcdv(pva). The integer dv is called the multiplicity
of the fiber Xv , and when dv > 1, Xv is called a multiple fiber. Clearly
1
dv
Xv ∈ Div(X).

If W ∈ Div0(X) ∩ Divvert(X), then W is numerically equivalent to zero,
and so (W ·Xva)X = 0 for all Xva . It follows from the fact that 1

dv
Xv generates

the kernel of the intersection matrix associated with the fiber Xv that W =
∑

v mv(
1
dv
Xv) for some integers mv . Since (W · �)X = 0 for any horizontal

divisor � on X , we find that
∑

v(mv/dv) degk v = 0. Hence for any W ∈
Div0(X) ∩ Divvert(X), we have W ∈ Div0(V ) if and only if mv ∈ dvZ

for all v. This implies that E is isomorphic to a subgroup of ⊕vZ/dvZ. Let
	 := lcmv(dv). Then E is killed by 	 and |E | divides ∏

dv .
Let now D�(X) denote the subgroup of divisors in Div(X) that are linearly

equivalent to zero. Set D�(X) := D�(X) ∩ Div(X). Let Pic0X/k and Pic0V/k

denote the Picard schemes of X/k and V/k, respectively. (Pic0V/k is nothing

but the Jacobian of V/k.) The scheme Pic0X/k might not be reduced, and we

denote by Pic0X/k,red the (reduced) abelian variety associated with Pic
0
X/k . We

have

Pic0X/k,red(k) = Div0(X)/D�(X) and Pic0V/k(k) = Div0(V )/D�(V )

because Br(k) is trivial.

Lemma 3.4 Keep the above notation. Then

a) We have (Div0(X) ∩ Divvert(X)) ∩ (Div0(V ) + D�(X)) = Div0(V ).

123



Corrigendum to Néron models, Lie algebras 597

b) We have a natural injection

E −→ Pic0X/k,red(k)/Pic
0
V/k(k)

given explicitly as

Div0(X) ∩ Divvert(X)

Div0(V )
= Div0(X) ∩ (Divvert(X) + D�(X))

Div0(V ) + D�(X)
−→

−→ Div0(X)

Div0(V ) + D�(X)
.

Proof The proof of b) follows immediately from a). To prove Part a), it suffices
to prove that

Divvert(X) ∩ (Div0(V ) + D�(X)) = Div0(V ).

If D ∈ Divvert(X)∩ (Div0(V )+ D�(X)), then D ∈ Divvert(X)∩Div0(X). As
noted in 3.3, we can then write D = ∑

v rvXv for some rational numbers rv
with

∑

v rv deg(v) = 0. On the other hand, by hypothesis, D = div( f ) + D0
for some f ∈ k(X)∗ and D0 ∈ Div0(V ). Since k is finite, some multiple of
D0 is linearly equivalent to zero. Thus, for some positive integer m, mD =
div( f mh) for some h ∈ k(V )∗. Since mD = ∑

v mrvXv ∈ Div0(V ), we find
that some positivemultiple n ofmD is of the formdiv(h′) for some h′ ∈ k(V )∗.
Hence, f mn ∈ k(V )∗. Since we assume that the generic fiber of X → V is
geometrically integral, we find that f ∈ k(V )∗. Thus D ∈ Div0(V ). ��

We stray here a little bit from the notation used by [6], and we define B/k
to be the quotient abelian variety B := Pic0X/k,red /Pic0V/k . Since k is finite,
we have

B(k) := Pic0X/k,red(k)/Pic
0
V/k(k).

For use in the proof of 3.8 (iv), let us note that

B(k)

E
= Div0(X)

(Div0(X) ∩ Divvert(X)) + D�(X)
. (3.1)

Remark 3.5 In [6], just before Proposition 4.4 on page 180, B/k is defined to
be the K/k-trace of AK /K . Then Proposition 4.4 asserts that the K/k-trace
of AK /K is an abelian variety which is purely inseparably isogenous to the
quotient abelian variety Pic0X/k,red /Pic0V/k . The proof of Proposition 4.4 in
[6] uses the fact that a = 1. We refer the reader to [3] for the definition and
existence of the K/k-trace of AK /K . When k is algebraically closed, we find
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598 Q. Liu et al.

in [14], Theorem 2, a theorem of Raynaud which asserts that the K/k-trace
of AK /K is k-isomorphic to Pic0X/k,red /Pic0V/k when f : X → V does not
have any multiple fibers (i.e., dv = 1 for all v). The notion of K/k-trace is not
needed in this corrigendum, and we do not use Proposition 4.4 in [6].

Let Div0(X) denote the subgroup of Div(X) generated by the irreducible
curves which intersect each complete vertical fiber Xv with total intersection
multiplicity zero. We let Div0(X) := Div0(X) ∩ Div(X). Let � ∈ Div(X) be
a horizontal divisor of degree δ, where δ is the index of XK over K . In the
following modified version of Lemma 4.2 in [6], the group AK (K ) has now
been replaced by Pic0(XK ).

Lemma 3.6 (see Lemma 4.2 in [6])There are natural isomorphisms of groups

Div(X)

(Divvert(X) ⊕ Z�) + D�(X)
−→ Div0(X)

Divvert(X) + D�(X)
−→ Pic0(XK ).

Proof Same as in [6], replacing when necessary AK (K ) by Pic0(XK ). ��
3.7. Let NS(X) := Div(X)/Div0(X). Let us now introduce further notation
needed to define below the completely explicit subgroup N0 of NS(X).

(a) Let r be the rank of AK (K ), and let {α1, . . . , αr } be a basis of the lattice
Pic0(XK )/Pic0(XK )tors. Choose divisorsA1, . . . ,Ar in Div(X) such that
for each i , the class in Pic0(XK ) of the restriction of Ai to the generic
fiber XK is αi . For the later purpose of computing the global height pairing
〈αi , α j 〉 as in 3.11, we assume also that we have chosen the divisors A1,
. . . , Ar , such that the supports of the restrictions of Ai and A j to the
generic fiber XK are pairwise disjoint when i �= j .

(b) Since XK /K has index δ, choose a divisor
∑

i si xi in Div(XK ) such that
∑

i si degK (xi ) = δ. Let xi denote the closure of xi in X , and set � :=
∑

i si xi in Div(X).
(c) Since V/k is geometrically integral, its index δ(V/k) is equal to 1. Choose

a divisor
∑

j t jv j in Div(V ) such that
∑

j t j degk(v j ) = 1. Let F :=
∑

j t j Xv j in Div(X). This definition agrees with [6], 4.6, when XK has
a k-rational point and the complete fiber in 4.6 is chosen to be above a
k-rational point.

(d) For each v ∈ V , write the fiber Xv as Xv = ∑h(v)
a=1 pva Xva , where the

components Xva are irreducible. For each closed point v ∈ V such that Xv

is reducible, consider the set {Xva, a > 1, v ∈ V } of irreducible divisors
in Div(X).

We let N0 denote the subgroup of NS(X) generated by NS(X)tors and the
classes of {A1, . . . ,Ar }, �, F , and {Xva, a > 1, v ∈ V }. We will compute
the index of N0 in NS(X) in Proposition 3.9.

123



Corrigendum to Néron models, Lie algebras 599

Denote by S1 the set of closed points v ∈ V such that Xv is reducible. Let
S2 denote the set of closed points v ∈ V such that Xv is irreducible but not
reduced. Set � := S1 � S2. Let S3 denote the set of v ∈ V such that Xv is
integral but not geometrically integral.

The set � is finite, and thus we have

Q := Divvert(X)

Div(V )
= ⊕v(⊕aZXva)

⊕vZXv

= ⊕v∈�

(⊕aZXva

ZXv

)

. (3.2)

Define NS(X)vert to be the image in NS(X) of the subgroup Divvert(X) of
Div(X). Let [�] denote the class of � in NS(X). It is clear that NS(X)vert ∩
Z[�] = (0), and we write

N := NS(X)vert ⊕ Z[�].
Wemay now state amodified version of Proposition 4.5 in [6], where the group
E occurs in two different factors.

Proposition 3.8 (see Proposition 4.5 in [6]) The group N S(X) has a filtration
by subgroups

0 ⊆ f ∗NS(V ) ⊆ NS(X)vert ⊆ N ⊆ NS(X)

with respective quotients Z, Q/E, Z, and Pic0(XK )/(B(k)/E).

Proof (i) The map f ∗ : NS(V ) → NS(X) is injective, and since NS(V ) is
free of rank 1, so is f ∗NS(V ).

(ii) Let us first note that the natural map

E = Div0(X) ∩ Divvert(X)

Div0(V )
−→ Q = Divvert(X)

Div(V )

is injective because

Div0(X) ∩ Divvert(X) ∩ Div(V ) = Div0(V ). (3.3)

Recall that

NS(X)vert = Divvert(X)

Divvert(X) ∩ Div0(X)
,

and consider the natural map f ∗ Div(V ) −→ NS(X)vert. This map has kernel
f ∗ Div0(V ), by (3.3). Hence, we have an exact sequence

0 → f ∗NS(V ) −→ NS(X)vert −→ Q/E −→ 0.
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600 Q. Liu et al.

(iii) By construction N /NS(X)vert = Z[�] � Z.
(iv) As in Part (4) of the proof in [6], we have an exact sequence

0 −→ Div0(X)

Div0(X) ∩ (Divvert(X)) + D�(X))
−→

−→ Div0(X)

Divvert(X) + D�(X)
−→ NS(X)

N −→ 0.

Thefirst term in this sequence is identifiedwith B(k)/E in (3.1) since D�(X) ⊆
Div0(X). The middle term is identified with Pic0(XK ) in 3.6. We thus have
an isomorphism

NS(X)/N −→ Pic0(XK )

B(k)/E
.

��
Proposition 3.9 (see Proposition 4.6 in [6]) Let N0 ⊆ NS(X) be as in 3.7.
Then the quotient N S(X)/N0 is finite with

|NS(X)/N0| = |Pic0(XK )tors|
|B(k)| ·

∏

v∈� pv1

|NS(X)tors| .

Proof Let N ′ be the subgroup of NS(X) generated by the classes of �, F,

and Xva for a > 1 and h(v) > 1, so that N ′ ⊆ N0. Recall that N :=
NS(X)vert ⊕ Z[�], so that N ′ ⊆ N . We have two exact sequences

0

��
N /N ′

��
0 �� N0/N ′ �� A′ := NS(X)/N ′ ��

��

NS(X)/N0 �� 0

P := NS(X)/N

��
0

Let us start by computing the order of N /N ′. Write N ′′ for the subgroup
of N ′ generated by the classes of F , and Xva , a > 1 for all v with h(v) > 1.
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Corrigendum to Néron models, Lie algebras 601

Then N ′′ ⊆ NS(X)vert and N ′ = N ′′ ⊕ Z[�]. It follows that
N
N ′ = NS(X)vert

N ′′ = NS(X)vert/ f ∗NS(V )

(N ′′ + f ∗NS(V ))/ f ∗NS(V )
.

The numerator of the group on the right is identified with Q/E in 3.8. One
checks thatN ′′∩ f ∗NS(V ) = Z[F].With the group Q identified as in (3.2), let
Q′ denote the subgroup of Q generated by the classes of the components Xva
with a > 1 for all v with h(v) > 1. Then the denominator in the above expres-
sion is equal to Q′ and it is clear that Q/Q′ is isomorphic to

∏

v∈� Z/pv1Z.
Since Q′ is torsion free and E is torsion, we find that

N /N ′ � (Q/E)/Q′ � Q/(Q′ + E),

so that N /N ′ is finite, of order (
∏

v∈� pv1)/|E |.
Recall now from 3.8 that P � Pic0(XK )/(B(k)/E). Since B(k)/E is finite,

we find that
|Ptors| = |Pic0(XK )tors|/|B(k)/E |, (3.4)

and we also have a canonical isomorphism

Pic0(XK )/Pic0(XK )tors −→ P/Ptors. (3.5)

Since the group N /N ′ is finite, we find that

|A′
tors| = |N /N ′| · |Ptors| (3.6)

and that
A′/A′

tors −→ P/Ptors (3.7)

is an isomorphism.
By construction, the classes of the restrictions ofA1, . . . ,Ar to the generic

fiber are a basis of Pic0(XK )/Pic0(XK )tors. Using the isomorphisms (3.5)
and (3.7), we find that the classes of A1, . . . ,Ar are a basis of A′/A′

tors. This
implies that NS(X)/N0 is torsion and that

0 −→ (N0/N ′)tors −→ A′
tors −→ NS(X)/N0 −→ 0

is exact. It is clear that

N0 = (〈[A1], . . . , [Ar ]〉 + NS(X)tors) ⊕ N ′.

It follows that

NS(X)/N0 = A′
tors

NS(X)tors
.
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The desired formula for the index follows from (3.4) and (3.6). ��
3.10. Let N 0 be the image of N0 in the lattice NS(X)/NS(X)tors. The com-
putation of the discriminant of the intersection pairing on the sublattice N 0
is done exactly as in Proposition 5.1 of [6], and the formula obtained is the
same. The only difference now is that the discriminant of the height pairing
| det 〈αi , α j

〉 | that appears in the formula is the discriminant for the height
pairing on Pic0(XK )/Pic0(XK )tors, and not anymore on AK (K )/AK (K )tors.
Let a f denote the index of Pic0(XK )/Pic0(XK )tors in AK (K )/AK (K )tors. As
indicated in Lemma 3.2, the two discriminants differ by a factor a2f .

Similarly, the discriminant of the intersection pairing onN 0 differs from the
discriminant of the intersection pairing on the full lattice NS(X)/NS(X)tors
by the square of the index

|Pic0(XK )tors|
|B(k)| ·

∏

v∈� pv1

|NS(X)tors|
obtained in 3.9. This index is exactly the same as the one obtained [6], except
that in [6], the term |Pic0(XK )tors| is replaced by |AK (K )tors|. Let ators :=
|AK (K )tors/Pic0(XK )tors|. We have a = a f ators, and we find that the final
discrepancy is a factor of a2.

Remark 3.11 We supply in this remark some references for an important
result stated just before Proposition 5.1 of [6], and needed in its proof. Let
α, β in Pic0(XK )/Pic0(XK )tors. The global height pairing 〈α, β〉 can be
computed as a sum of local contributions

∑

v 〈α, β〉v (see, e.g., [7], (4.6)).
Each local contribution can be expressed as a local intersection number
〈α, β〉v = −(α, β)v log(|k(v)|) (see, e.g., [7], (3.7)), where the contribution
(α, β)v is the value of Néron’s pairing at v on α and β. Let A, B ∈ Div(X)⊗Q

be two divisors whose restrictions to XK are in Div(XK ) and equal the
classes α and β, respectively, and have disjoint supports. Assume in addi-
tion that (A · Xva)X = 0 for all v and all a. Then (α, β)v = (A · B)v ,
where (A · B)v denotes the contribution of the points in Xv in the intersec-
tion number (A · B)X (see, e.g., [2], 4.3, or [13], 2.2). One then obtains that
〈α, β〉 = −(A · B)X log(|k|).
3.12.We recall below the formula ofGordon found in themiddle of page 196 in
[6]. This formula is claimed to hold exactly when the Birch–Swinnerton-Dyer
conjecture is equivalent to the Artin–Tate conjecture. This claim is incorrect
when a > 1. In [6], page 169, the integer α appearing below is defined to be
the index δ.

|X(AK )|
∏

v

d2v εv = α2|Br(X)|. (3.8)

123



Corrigendum to Néron models, Lie algebras 603

This formula in [6] is misleading, as the term εv is only introduced in the
statement of Proposition 5.5 of [6] when v ∈ S1, but the formula (6.2) in [6],
from which (3.8) above is derived, involves a product over a set S (defined on
page 165 of [6]) which contains S1, but which might also contain S2 and S3
(notation introduced in 3.7). Let us therefore state below the correct formula
(3.9) that can be inferred fromGordon’s work and which should be substituted
for (3.8).

Let Av/OKv denote the Néron model of AKv /Kv . Let v/k(v) denote the
group of components of the special fiber of Av. When v ∈ S2 � S3, the fiber
Xv is irreducible, say Xv = dv�v for some irreducible curve �v/k(v). Let qv

denote the degree over k(v) of the algebraic closure of k(v) in the function field
of �v/k(v). It follows from the fact that k(v) is a finite field that δv = dvqv .
Note that if v /∈ S1 � S2 � S3, then δv = δ′

v = 1. Then Gordon’s arguments,
along with the removal of the hypothesis that X → V be cohomologically flat
in dimension 0 in [11] and the corrections given in this corrigendum, give the
following formula.

|X(AK )|
⎛

⎝
∏

v∈S1
d2v εv

⎞

⎠

⎛

⎝
∏

v∈S2�S3
d2v |v(k(v))|qv

⎞

⎠ = a2δ2|Br(X)|. (3.9)

The formula can be turned into Formula (2.1) aswe did in the proof of Theorem
4.3 in [11], using Theorem 1.17 of [1]. For instance, when v ∈ S2 � S3, this
theorem shows that |v(k(v))| = δ′

v/dv . Since it follows from the adjunction
formula that dvqv divides g − 1 in this case, Theorem 7 in [10] shows that
δv = δ′

v . It follows that d
2
v |v(k(v))|qv = δvδ

′
v , as desired, and Formula (2.1)

is established.
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