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Abstract. The structure of component groups of Néron models has been investigated on
several occasions. Here we admit non-separably closed residue fields and are interested in
the subgroup of rational points or, in other terms, in the subgroup of geometrically con-
nected components of a Néron model. We consider Néron models of abelian varieties and
of algebraic tori and give detailed computations in the case of Jacobians of curves.

Introduction

Let Ax be an abelian variety over a discrete valuation fi€ld_et A be the
Néron model ofAx over the ring of integer®, of K and A, its special
fibre over the residue fieldof O . Denote byA® andA? the corresponding
identity components. Then we have an exact sequence

0—>A,?—>Ak—>¢A—>O,

whereg, is a finite étale group scheme ovelThe latter is called thgroup
of components od. The group of rational pointg, (k) counts the number
of connected components of the special fildgewhich are geometrically
connected. In this paper we are interested in “computing” this group and the
image ofAg (K) — ¢4 (k). The starting point of this work is an e-mail of E.
Schaefer to the second author. He convinced us of the interest in computing
¢4 (k). Actually, the order of the group, (F,) is involved in the conjecture
of Birch and Swinnerton-Dyer for abelian varieties o@rWhile a lot is
known abouip, (k) whenk is separably closed, it is hard to find literature
dealing with the general case.

This paper is organized as follows. Section 1 deals with the case where
Ak is the Jacobian of a cunZ&y overK. Let X be a regular model of ¢
overOk. Then a modified intersection matrix gives an explicit subgroup of
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¢4 (k) and the quotient can be controlled by some cohomology groups. The
main result of this section is Theorem 1.17 which determifig®) when
k is finite.

In Section 2, we put together some classical results and general remarks
about the canonical mapg (K) — ¢4 (k).

In Sections 3 and 4, we assume tl&ats complete. First we consider
algebraic toriTx with multiplicative reduction (sdx is not an abelian
variety in this section). LeT" be the Néron model ofx. We show in 3.2
thate¢r (k) coincides withpr,, (k), whereTg g is the biggest split subtorus of
Tk, and thatT (Ok)/T%(Ok) — ¢r (k) is an isomorphism. If’x does not
admit multiplicative reduction, the same constructions lead to subgroups of
finite index; cf. 3.3. Finally, we add some results on abelian varieties
with semi-stable reduction, which are more or less known. When the toric
part of A is split, theng, is constant; cf. 4.3. In general, using data coming
from the rigid uniformization ofd ¢, we are able to interpret the image of
Ax(K) — ¢4(k); see 4.4.

Throughout this paper, we fix a separable clogtiref k, and we denote
by G the absolute Galois group G&l/ k) of k.

1. Component groups of Jacobians

In this section, we fix a proper flat and regular cu¥eover Og whose
generic fibre is geometrically irreducible. Let us start with some notations.
In this sectionAx will always denote the Jacobian &fx. LetT;,i € I,
be the irreducible components of the special filie Denote byZ! the
free Z-module generated by tHé's. It can be identified canonically with
the group of Weil divisors otk with support inX,. We denote byi/; the
multiplicity of T'; in Xy, ¢; its geometric multiplicity (see [2], Def. 9.1.3),
and letr; = [k(I";) Nk3 : k]. The integer; is also the number of irreducible
components ofl";),s. For two divisorsVs, V, on X, such that at least one
of them, sayVy, is vertical (i.e. contained i), we denote by, - V, their
intersection numbedeg, Ox(V2)|v,. When it is necessary to refer to the
ground fieldk, we denote this number b1, Va)i.

Now let us define two homomorphismsZimodules which are essential
for the computing ofp, (k). First,« : Z! — Z! is defined by

a(V) ="y eV, TiTy

foranyV e Z! (see Lemma 1.4 which shows thateally takes values in
7). Definep : Z! — Z by B(I';) = rid;e;. Note thate can be defined
more canonically as a may — (Z')’ using a suitable (not necessarily
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symmetric) bilinear form. But for our purpose, this does not seem to be
useful.

Let O‘}f denote a strict henselization©f; . The residue field (ID}(” iSks.
The base chang x SpedD¥! — SpecD$! gives rise to a regular surface
with special fibreX;s. Let I be a set indexing the irreducible components
of Xi-. We can define similarlg : Z! — Z’ andg : Z! — 7Z. The Galois
groupG acts onZ! via its action onX;s. Moreover, it is not hard to check
that the action o0& commutes with and8. Note that since is étale over
k, pa(k®) = pa(k?9).

Theorem 1.1 (Raynaud).Let X be a proper flat and regular curve over
Ok, with geometrically irreducible generic fibre. Assume further that either
k is perfect orX has an étale quasi-section. L&te the Néron model of the
Jacobian ofX ¢ . Then there exists a canonical exact sequenceofodules

0— Ima — Kerpg — ¢, (k') — O. (1)

Proof. The existence and exactness of the complex as abstract groups are
proved in [2], Theorem 9.6.1. Let us just explain quickly why the map
Kerp — ¢4(k*) commutes with the natural action 6f on both sides. To
do this, let us go back to the construction of the map Kes ¢4 (k*) as
done in [2], Lemma 9.5.9.

Let P be the open subfunctor of Rig, corresponding to line bundles
of total degree 0, then the Néron models a quotient ofP ([2], Theorem
9.5.4). Since our assertion concerns only the special fibre and since the for-
mation of Néron models commutes with étale base change, we can replace
Ok by a henselization and thus assume tBatis henselian. Theff)}f’ is
Galois overOg with groupG. Let S = Sped0D¥, ¥ = X x S, and let
7! be identified withD, group of Weil divisors oft with support inX;s.
Denote byA;, j € I the irreducible components ¢f;:. Consider the ho-
momorphismp : Pic(Y) — D defined byp(£) = Y, e (deg, L|a,)A;.
Thenp~t(Ker B) = P(S), andp is a homomorphism ofi-modules. Since
S is strictly henselian, it turns out that| (s, induces an isomorphism
P(S)/P°(S) ~ Ker 8/Ima, and the canonical map

P(S)/P°(S) — A(S)/A%S) = pa(k®)

is also an isomorphism. The composition of these two isomorphisms gives
rise to the above exact sequence. Now it is clear that all the maps we con-
sidered are compatible with the natural actiongof 0O

Corollary 1.2. If , = 1(i.e.T'; is geometrically irreducible) for all, then
¢4 is a constant algebraic group (or equivalentiy, (k) = ¢4 (k*)).

Proof. Actually, in this case5 acts trivially on Kerg. O
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Example 1.3.Itis known that for modular curve¥(N) overQ,,, the multi-
plicitiesr; are equal to 1 (atleast whahis square-free). Thus the component
group of the Jacobiary(N) is constant.

Now we want to take the long exact sequence of Galois cohomology of
(1). For this purpose, we need some informations on the actichafZ’.
Let us first state a technical lemma.

Lemma 1.4. Let Y be a proper regular scheme (of arbitrary dimension)
over a discrete valuation rin@x . LetOg be afinite étale Galois extension
of Ok, with residue fieldk’ at some maximal ideal aDg:. LetT" be an
irreducible component of the special fitfe Then for any irreducible com-
ponentl™” of I'y/, and for any curve (i.e. closed subscheme of dimension 1)
contained inY, we have

(T, C)i = [K' N k() : kKT, p*Cy

wherep is the canonical projectiop,, — Y. Moreover, ifY has dimen-
sion2, then the geometric multiplicity of T divides(I"’, p*C) .

Proof. We considel»,, as aregular scheme ow®k. Letr = [k'Nk(T) :

k]. Then p*I" = 'y hasr irreducible components. Sindg,, — Y is
Galois, andp*T" is invariant by GalK’/K), for any irreducible compo-
nentI’” of I'y we have(I”’, p*C)y = (I'”, p*C)p. Thusr(I', p*C)p =
(p*T, p*C)r = (T, C),. The last equality holds becau€k: is étale over
Ok. This proves the first part of the lemma. This part can also be proved
using the projection formula fgr. For the second part, we notice thathas

the same geometric multiplicity dssincek’/ k is separable. Thusdivides

(I'", p*C)p = deg. OYOK, (p*C)|r according to [2], Cor. 9.1.8.00

Before going back to groups of components, let us derive the following
consequence.

Corollary 1.5. LetY be aregular, proper scheme over a discrete valuation
ring Ok. LetT;,i € I, be the irreducible components of the special fityre
Denote byi; the multiplicity ofT"; in Y; and setr; = [k* Nk(T;) : k]. Then

for any closed pointP of the generic fibré’, the degred K (P) : K] is
divisible bygcd{r;d; | i € I}. Furthermore, ifdimY = 2, then[K (P) : K]

is divisible bygcd{r;d;e; | i € I}, wheree; is the geometric multiplicity
of I;.

Proof. LetC := {P} be the Zariski closure dfP} in Y. Then we know that

[K(P): K]= (Y, Che = Y _di(Ti, C) 2

iel
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Letk’/k be a field extension that contaik@™;) N k* for all i € I, and such
that there is an étale Galois extensiBr./Ok whose localization at some
maximal ideal hag’ as residue field. According to Lemma 1.4, this implies
thatr; divides(I';, C),, and so doesge; if dim Y = 2. Thus the corollary is
proved. O

Remark 1.6.This corollary confirms a prediction of Colliot-Théléne and
Saito ([6], Remarque 3.2 (a)). Actually, 18§ = gcd{r;d; | i € I}, and let

I, be the g.c.d ofK (P) : K], whereP varies over the closed points Bf
(see [6], Théoreéme 3.1). Then Corollary 1.5 is just the divisibility relation
I3| I,. We understood that in a forthcoming preprint, they will prove that
I, = I, = I3 for p-adic fields (wherd; is some integer related to Brauer
groups, see [6] loc. cit.). We think that Corollary 1.5 should still hold if one
replaces; by [k¥9 N k(T;) : k] = rie;.

Corollary 1.7. Let X be a connected, proper, flat and regular curve over
Ok . Letg be the genus of the generic fibXg, and lets’ = gcd{r;d;e; | i €
I}. Thend' | 2g — 2.

Proof. Letwy 0, be the relative dualizing sheaf af. Then

2 — 2= (X, oxjoxhe = Y di(Ti, ox/0 -
Using the bilinearity of the intersection forms and the same method as in

the proof of Corollary 1.5, we see thae; divides(I';, wx,0, k. Thusé’
dividesZ — 2. O

Remark 1.8.1t is known thatd | ¢ — 1 (apply the adjunction formula to
dlxk). It should be noticed that, to the contrasydoes not divideg — 1 in
general.

Now let us return to the Galois action. Consider the natural injective map
A Z! — 7' which sendd™ to I'ys.

Proposition 1.9. Let X be a proper flat and regular curve ové?x with
geometrically connected generic fibre. Then we h@/e® = Z'. Letd =
gedid; |i € I} and Vg := %Xk. Then we have the following commutative
diagram of complexes:

0—— V()Z Zl

I

0 —— WZ Z!
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Proof. The only non-trivial pointis to check thato A = Loa. LetV e Z!
be considered as a Weil divisor 6h Thena (V) = Y, te; 1V, ;)i T
Denote byT; ; the irreducible components of;s lying over I';. Then
Ma(V)) =Y ri ey (V. Ti) I . By Lemma 1.4,

Ma(V) =" e (Vis, T jhie T
ij
(Asin the proof of Corollary 1.5, one can reduce to a finite Galois extension
before applying Lemma 1.4). Thusa(V)) = a(Vis). O

Corollary 1.10. We have a canonical exact sequence of groups
0— Ima — Kerg — ¢pa(k) > HYG,Ima) - HY(G,KerB) (3)

Proof. It is clear that(Ker 8)¢ = Ker 8. Let us show thatima)® = Im .
Consider the exact sequence

0— VoZ — Z' — Ima — 0, 4)

and take the long exact sequence of cohomology. It is enough to see that
HY(G, VoZ) = 0. This follows immediately from the facts th&t acts
trivially on VoZ, G is profinite and that/sZ has no torsion. Now we get

the corollary just by taking Galois cohomology of the exact sequence (1) of
Theorem 1.1. 0

In next lemma we give some information on the last two terms of the
exact sequence (3).

Lemma 1.11. In the situation of 1.9, letl’ = gcd{rid; | i € I}, 6§ =
gcdidie; | i € I} and lets’ = gcd{r;d;e; | i € I}. Then:

() Thereis an isomorphistH (G, Ker B) ~ §7./8'Z;
(i) The groupH(G, Im@) is killed byd’/d.

Proof. Let us first show that?1(G, Z’) = 0. Let J; denote the set of
irreducible components af";),s. ThenZ! = @;¢;Z’ asG-modules. Let
H C G be the stabilizer of some componéhp of X;s. Then[G : H] =r;
andZ’i = Ind% (T, 0Z). It follows from Shapiro’s lemma (see [5], 111.6.2
and 111.5.9) thatH*(G, Z”') ~ HY(H, T, oZ) = 0.

(i) We have the exact sequence- Kerg — Z' — §Z — 0. Taking
Galois cohomology we get

0— ImB =87 — 8Z — HY(G, KerB) - HY(G,Z') = 0.
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(ii) Using the exact sequence (4) we get an exact sequence
0— HYG,Im&) — HAG, VoZ) — HA(G,Z"). (5)

Leta € HY(G, Im@). It is enough to show thair; /d kills a for all i € I.
Let H C G be as above. Thefi/' = T'; oZ @& (@01, ;Z) as H-modules.
We have a commutative diagram

egi

R
H2(G, VoZ) ——— H?(G, VoZ) —> H?(H, VoZ) ——— H?(H, VoZ)

l l l L

Re$
—

p

H2G, 21y —P 5 H2G, 7% H2(H, 7)1y —Y— H2(H,T;07)

where Re§ are restrictions, the’s come from projections of Galois mod-
ules, and the vertical arrows are induced®d¥. — Z’ — Z’ — T'; ¢Z.The
cokernel of the injective homomorphisWZ — TI'; oZ isdZ/d;Z, thus one
sees easily that key) is killed by d; /d. In particular(d; /d)Re$; (a) = 0.
Finally [G : H] = r; implies thatr;(d; /d)a = 0. O

Corollary 1.12. In the situation of 1.11, assume th#it=d. Then
KerB/Imoa — ¢4(k)

is an isomorphism. In particular, this isomorphism holdXi (K) is not
empty.

Proof. The first assertion follows from the exact sequence (3) and previous
lemma. Assume thaXx (K) # @. It is enough to show that = 4’ = 1.

Let P € Xk (K), and letC be its Zariski closure itX. Then the equality (2)
implies that there existse I such that;(I';, C), = 1. Thusd; = 1 =d.
Using the same argument as in the proof of Corollary 1.5, we;getl, so
d=1 0O

Remark 1.13.The group Kep/Im« can be determined by means of ele-
mentary divisors of the matrixe; *r, (T, ';)1)i.jes @s in [2], Corollary
9.6.3.

Remark 1.14Let Xx be an elliptic curve oveK. Let X be its minimal
regular model ove®) k. Then one can apply Corollary 1.12 and the previous
remark to compute, (k). But in some situations it is faster to directly
determinep, (k) as a subset a4 using the interpretation af, (k) given in

the introduction (that igh4 (k) consists of those componentsqfwhich are
geometrically connected). Note that the Néron motef X i is the smooth
locusX’ of X. Indeed, the canonical morphiski — A is an isomorphism
after the (faithfully flat and étale) base change to the strict henselization of
Ok ([2],1.5.1), soX’ — A is already an isomorphism.
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Example 1.15Assume thak is perfect and ch&k) # 2. Leta,b € Ok
be invertible and such that the clas% k is not a square. Let > 1 be an
integer. Consider the elliptic cun&g given by the equation

y2 = (x? = br®)(x +a)

wherer is a uniformizing element aDx . Then the minimal regular model
of Xx overOg consists of a projective linE; overk, followed by a chain
of n — 1 projective lines ovek(+/a), and ends with the conit,, given by
the equation? = (u? — b)a. S0 X, is a Zi-gone. Thusp, (k*) = Z/2nZ,
pa(k) = Z/2Z.

Remark 1.16 As D. Lorenzini pointed out to us, the order of K&fim « is
easy to compute. Lélf = (¢; 'r; X, T';)0)i, jes» and letM* = (m},);, ; be
its adjoint. Then for all, j, one has

ord(Ker B/Ima) = |mj;|(e;r;d;d;)"ds’,
wheres’ = gcd{rie;d; | i € I}.

Proof. Let’D = (did™ L, ..., d,d™Y),' D" = (e1r1dsd' %, . .., enrnd,8' ™).
Then one checks easily that is a generator of KM : Z! — Z') and
that D" is a generator of K&rM : Z! — 7Z!). Using a similar method as in
[10], prop. 1.1, in conjunction with the relations- M* = 0,'M -'M* = 0,
we find thatM* = y D - 'D” for some integery. Since the g.c.d of the
entries of D - D" is 1, |y| is the greatest common divisor of all entries of
M* and thus equals otHer 8/Im«a) (see [10], 1.5). Finally the equality
ly| = |m};|(die;r;d;/d8")~* comes fromM* = y D -'D". O

Theorem 1.17. Let X be a proper flat and regular curve ovédx with

geometrically irreducible generic fibr& . Letd = gcd{d; | i € I} and

d" = gcd{r;d; | i € I}. Assume thaGal(k®/k) is procyclic (i.e. any finite
Galois extensiort’/k is cyclic) and thatk is perfect. Letd be the Néron
model of the Jacobian df . Then we have an exact sequence

0 — KerB/Ima — ¢a(k) — (qdZ)/d'7Z — 0
withg = 1if d' | g — 1andg = 2 otherwise.

Remark 1.18.The hypothesis Gélt*/k) procyclic in Theorem 1.17 is not
optimal. As one can see in the proof below, it is enough to assume that the
Galois closure ovet of U;k(T";) N k* is a cyclic extension of. We do not
know whether the theorem is true without this condition. Note however that
Corollary 1.12 provides some evidence for a positive response.
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The remainder of the section is devoted to the proof of Theorem 1.17. Let
k' / k be afinite Galois extension containikgN k(T";) forall i € I. Thenthe
components ok are geometrically irreducible. Thus the exact sequences
(1) and (3) can be determined ovérCorollary 1.2). For simplicityin the
rest of the proof, we denote Wy the groupGal(k’/k). SinceG is cyclic,
we can determine explicitly each group of this exact sequence. Let us recall
some notations and results of [13], VIII, §4. Fix a generataf G. Let
m=|G|,N =3 ., 10’ andD = o — 1. Recall that for ang;-module
M we have the isomorphisms

HYG,M)~ yM/DM, H?*G,M)~MS/NM

Moreover, if 0> M’ — M — M” — 0 is an exact sequence Gf-
modules, then the transition homomorphisms

81: xM"/DM" — M'°JNM', So: M'® — yM'/DM’
are given by
S1([x]) = [Nyl, do([x]) = [Dy] (6)
if y € M is in the preimage af € M".
Lemma 1.19. Recall thatVy = %Xk. The following properties hold :

() Themapd:(G, Imw) — ’Z—?VOZ/mVoZ defined bya (V)] — [N (V)]
is an isomorphism.

(i) LetU e Z'!, thenDU e yKerB. The isomorphisnH (G, Ker g) ~
d7Z/d'Z (Lemma 1.11 (i)) is induced by the mppU] — [B(U)].

Proof. (i) Let J; denote the set of irreducible componentg16f),. In the
exact sequence (5), we hak# (G, VoZ) = VoZ/mVoZ,

HXG,Z") = ®;c; HX(G, Z"") = ®;;TiZ/mr; T Z,

and the homomorphisnH2(G, VoZ) — H2(G,Z') sends[V,] to
(Id;d~T;1);. Then it is not hard to check (i) using the definition &f
(i) Direct computation. O

Proof of Theorem 1.17.et us first describe the map : H(G, Ima) —
H(G, Ker ) in the exact sequence (3). One should notice that while these
groups are isomorphic by the previous lemnjajs not an isomorphism

in general. LetL : DZ' — Z' be a section ofD : Z' — DZ'. Let
a@(V) € ylma. SinceHY(G,Z') = 0, one hasx(V) € DZ', and thus
®(V) = D(Low(V)). Hence using Lemma 1.19 (ii), we see tiiais given

by the formula

v([@(V)]) = [B(L oa(V))] € HY(G, KerB) ~ dZ/d'Z.
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Fix for eachi € I an irreducible componerit; o of (I';),, and put
T =0/ (T0). LetVy := ¥, "l o. SinceN (Vy) = 24 Vo, Lemma 1.19
(i) implies thatH X (G, Im@) = [a(V1)|dZ/d'Z. Putn := B(Low(Vy)) € Z.
Then keryr is generated by[a(V1)], whereg is the smallest positive integer
such thatd’ | gn. Using Corollary 1.7, we see that to prove the theorem, it
is enough to show that= ¢ — 1 modd’.

Now let us construct a section &f : Z/ — DZ!. Since the set
{Tio, DI jliel, 0<j<r,—2}

forms a basis of/, we have a well-defined-linear mapL’ : Z' — Z!
given byL'(T'; o) =0, L'(DT; ;) =T ; foranyi e Jand 0< j <r; — 2.
By construction it is clear that := L'|,,7 is a section oD : Z' — DZ'.
ReplacingDT; ; byI'; j11 — I'; j, we see thal'(T'; ;) = ZOglgj—l I;, for
anyi e lTand0< j <r, — 1.

Let us compute the integer Applying the definitions ofr andL, we
get

n= Z e, (Vi Ty )BoL'(T:))

iel,0<j<r;—1

. (7)
= jdi(Vi-Tij) =Y di(Vy-Up),
i,j i

whereU; = > o ;. 1jli;. ConsiderW; = % ,_._, 4 jT;;. Since
I, ; =T, if j = j’ modulor;, we have (putt = mr; %)

-1
Wi = Z Z (lr,- —I—h)l“,-,h = a(a—z)r,-Fi +ClUi.

O<l<a—-10<h<r;—-1

SinceN (Vy) = ”’d—f’Vo e VoQ, we see thavy - I'; = m~Y(N(Vy) - T;) = 0.
So replacing in the equality (7) the divisbf by ;m~1W;, and thenV, by
its definition, we get

nzzrij;:;,dl > i@y T

ilel 1<j<m-1

Onthe other hand;; ; - Ty0 = 0™ /(I'; ;) - 6™ /(T'10) = Tio- Tim—j. SO

r,-dird .
n= "N n— )(Tio- T

m
ilel d 1<j<m-1
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Adding these two equalities leads to

ridind;  _
2n=3 i 'Ti —Tio) - Tro

1
ilel
mrd,
— (Z ly'g .r,,o> —d'Vi=—d'V&

Let O/ /Ok be as in the proof of Corollary 1.5, and let Xop,, — X be
the projection. Using the adjunction formula, we see Wfais congruent to
(V1, p*wx,0, ) mod 2. By Lemma 1.4 and the bilinearity of the intersection
forms we have

(V1, prox/00 )0 = Z ;(Fi, wx ok = Xk, 0x,0 )k =
iel
Thusn is congruent t@ — 1 modulod’. This achieves the proof of Theorem
1.17. o

Example 1.20Assume chak) # 2. Letg > 1, let X be the hyperelliptic
curve defined by an equation = ao [ ;.1 (x—a;)*+7, wherez; € Ok

are such that their images € k are pairwise distinct andp is not a
square. Finallyr is a uniformizing element o0k . Let X be the minimal
regular model ofXx over Og. Then X, is integral withg + 1 ordinary
double points. Ovet’ = k[+/ao], Xy splits into two components isomorphic

to P}, intersecting transversally at+ 1 points. Thusd = 1,d" = 2.

Using Theorems 1.1, 1.17 (see Remark 1.18) and Remark 1.13, we see that
oa(k*) =7Z/(g + DZ, andp (k) = 0 orZ/27Z depending org is even or

odd.

2. The homomorphismAg (K) — ¢4 (k)

In this section A is an abelian variety ovek . Let A be the Néron model
of Ag overOg. We would like to discuss some relationships betwé&€eki)
and ¢4 (k). By the properties of Néron modeld,(Ox) = Ax(K). The
specialization map gives rise to a homomorphism of grodpsK) —

A (k). The second group maps canonicallygto(k). In general, the map
Ar(k) — ¢4(k)isnotsurjective. The reasonis tlfgt(k) counts the number
of geometrically connected componentsdqf while the image ofA, (k) in

¢4 (k) (which is isomorphic tmk(k)/A,?(k)) parameterizes the components
with rational points. Each geometrically connected component is a torsor
under A?. But such a torsor may be non-trivial (that is, without rational
point).
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Lemma 2.1. Let A be an abelian variety oveX .

() If K is henselian (e.g. complete), thar (K) — Ay (k) is surjective.

(i) If kis finite, or if A2 is an extension of a unipotent group by a split torus
with k perfect, them, (k) — ¢4 (k) is surjective.

Proof. (i) SinceK is henselian and is smooth, the mag (Og) — Ax(k)

is surjective (see for instance [2], Prop. 2.3.5).

(i) Let £’/ k be a finite Galois extension éfsuch thatA; (k') — ¢4 (k') is
surjective (such an extension exists becatises finite). Then it is enough

to show that*(Gal(k’/ k), Ag(k/)) = 0. The case finite is a theorem of
Lang ([9], Theorem 2). The remaining case is Hilbert's 90th Theorem (see
[13], Chap. X, §1) with induction on the dimension4§. o

3. Algebraic tori

In this section we consider an algebraic tofigsover K, its Néron model’
over the ring of integer®y of K, and the associated component grgup

As the formation of Néron models is compatible with passing fioro its
completion by [2], 10.1.3¢7 remains unchanged under this process, and
we will assume in the following thaPx andK arecomplete Writing O3/

for a strict henselization aPx andK*" for the field of fractions of);h, we
know then that the extensicki*” /K is Galois. The attached Galois group
G is canonically identified with the one &f / k, the residue extension of
K"/K.

Let us first assume thd has multiplicative reduction, so that the iden-
tity componentZ? of the special fibref; is a torus. TherTk splits over
K", and we can view the group of charactéref Tx as aG-module. Itis
well-known that in this case we have an isomorphisnahodules

¢r ~ Hom(X, Z);

see for example [14], 1.1. So we can identify the submoduie-ofvariants
Hom(X, Z)¢ with the group ofk-rational points ofp;. In particular, if Tk

is split over K, the action ofG on X is trivial, and ¢ is isomorphic to
the constant groufi? with d = dim Tx. Moreover,Tx (K) — ¢7(k) is

surjective in this case, as is seen from the construction [2], 10.1.5.

Lemma 3.1. Let X; be the biggesZ-free quotient ofX which is fixed by
G. Then the projectioX —> X gives rise to an isomorphism

Hom(X¢, Z) — Hom(X, Z)°.
Proof. The epimorphisnX — X induces injections

Hom(Xg, Z) — Hom(X, Z)¢ — Hom(X, Z),
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and we have to show that the left injection is, in fact, a bijection. To do this,
consider aG-morphismf: X — Z which is fixed byG. Then f factors
through aG-morphismX/W — 7Z whereW C X is the submodule
generated by all elements of type-o (x) withx € X ando € G.As X is
obtained fromX/ W by dividing out its torsion part and &is torsion-free,

we see thatf must factor throughX;. Hence, the map Ho(X s, Z) —
Hom(X, Z)© is bijective, as claimed.O

Now let 7 x be the torus with group of charactexs;. The projection
X — X definesTg ¢ as the biggest subtorus B¢ which is split overk,
and we can identify the associated morphism K&, 7Z) — Hom(X, Z)
with the corresponding morphism of component grapips—> ¢r. There-
by we can conclude from 3.1:

Proposition 3.2. Let Tx be a torus with multiplicative reduction, and let
T;.x be the biggest subtorus which is split ovér Assume thak is com-
plete. Then the injectiofi; x < T and the associated morphism of Néron
modelsl; — T induce a monomorphism of component gropips— ¢r
and an isomorphismy, (k) > ¢7 (k) between groups di-rational points.

Furthermore, the canonical mafx (K) —> ¢r (k) is surjective, as the
same is true for the split toruk; .

What can be said if, in the situation of 3 does not have multiplicative
reduction? In this case we can still view the group of charactes§ Ty as
a Galois module under the absolute Galois groug oSimilarly as above,
we can use the inertia groupand look at the biggest subtorlisx C Tx
which splits over the maximal unramified extensiki#' of K. We get an
exact sequence of tori

0—>T1’K—)TK—)fK—)O

with a torusTk such thafx @ K*" does not admit a subgroup of tyfig,.
The Néron modefl™ of Tx is quasi-compact by [2], 10.2.1, and, hence, the
component groug; must be finite.

We view now Néron models as sheaves with respect to the étale (or
smooth) topology o0 . Then the above exact sequence of tori induces a
sequence of Néron models

O—>T,—>T—>f—>0

which is exact by [4], 4.2. Furthermore, using the right exactness of the
formation of component groups, see [4], 4.10, in conjunction with the facts
that7; ¢ has multiplicative reduction and, hence, that the component group
¢r, cannot have torsion, we get an exact sequence of component groups

0— ¢r, — ¢r — ¢ — 0.
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Restriction tok-rational points preserves the exactness,
0 —> ¢7,(k) —> ¢r(k) — ¢ (k) — O,

asHY(G', Z%) = Hom(G', Z%) = 0 for any finite groupG’ acting trivially
onZ?. Now, taking into account th&f; x has multiplicative reduction and
thate; (k) is finite, we can conclude from 3.2:

Corollary 3.3. Let Tx be an algebraic torus, leT; x be the biggest sub-
torus which is split oveK, and letTx be defined as above. Assume tKat
is complete. Then the canonical sequence

0 — ¢r5(k) — ¢r (k) — ¢ (k) — O,

is exact withpr,, (k) being free andp; (k) finite.
In particular, the image ofi; x (K) is of finite index inpr (k), and the
same is true for the image @% (K).

4. Abelian varieties with semi-stable reduction

Let Ax be an abelian variety over the base fi&gdwhich is assumed to be
completeWe will view A g as arigidK -group and use its uniformization in
the sense of rigid geometry; cf. [12] and [4], Sect. 1 A0can be expressed
as a quotienk x /Mg of rigid K-groups with the following properties:

(i) Eg is a semi-abelian variety sitting in a short exact sequence
O0— Tx — Ex — Bx — 0,

whereTy is an algebraic torus argl, an abelian variety with potentially
good reduction.

(i) Mg is alattice inEx of maximal rank; i. e., a closed analytic subgroup
of Ex which, after finite separable extensionkbfbecomes isomorphic
to the constant group® with d = dim T.

Let A be the Néron model of x and A° its identity component. Recalll
that A is said to havesemi-stable reductioifithe special fibreA? of A is
semi-abelian. Furthermore, let us talk abospét semi-stable reduction if
the toric part ofA? is split overk. The property of semi-stable reduction is
reflected on the uniformization of in the following way:

Proposition 4.1. The abelian variety ¢ has semi-stable (resp. split semi-
stable) reduction ovekK if and only if the following hold:

() The torusTk splits over a finite unramified extensionKf(resp. over
K).
(i) The abelian varietyBx has good reduction oveX'.
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If the above conditions are satisfied with being split overk, the same is
true for the latticeMx C Eg; i. e., Mk is then isomorphic to the constant
K-groupZ¢, whered = dim Tx.

Proof. As any abelian variety with semi-stable reduction acquires split semi-
stable reduction over a finite unramified extensiorkgfwe need only to
consider the case of split semi-stable reduction. So assum# thzs split
semi-stable reduction. Then we have an exact sequence

0— Ty — A? — B, — 0,

where T is a split torus andB; an abelian variety ovek. Let A be the
formal completion ofA alongA; and.A° its identity component. Using the
infinitesimal lifting property of tori, see [8], exp. IX, 3.6, and working in
terms of formal Néron models in the sense of [3], we se€Tthiifts to a split
formal subgroup toru¥ ¢ A° such that the quotiett = A%/ T is a formal
abelian scheme liftinds;. The theory of uniformizations, as explained for
example in [1], Sect. 1, says now that the exact sequence

0—7T —>A°— B—0,
coincides with the one obtained from
O—)TK—>EK—)BK—)0

by passing to identity components of associated formal Néron models. As
the group of characters @fy coincides with the one df , we see thaf
is a split torus. Furthermord; is algebraizable with generic fibigx and,
thus, Bx has good reduction oves.

Let us show that in this situatioM ¢ will be constant. Indeed, writing
K’ for a separable closure &f, we choose free generators of the group of
characters of ¥ and look at the associated “valuation”

log

v: Ex(K®) —— |K*|9 —= R4,

whered = dim Tx. One knows thad/x being a lattice (of maximal rank)
in Ex means thatM is of dimension zero and thatfx (K*) is mapped
bijectively unden onto a lattice (of maximal rank) iR¢.

Now let us look at the action of the absolute Galois graup :=
Gal(K*/K) of K on Mg (K*) and show thablk is constant. AKX is com-
plete, the action ofG ¢ is trivial on |K*|. Hence, it respects the map
Thereforev can only be injective if the action @ x on Mg (K*) is trivial.
However, then all points affx must be rational, andi/x is constant.

The converse, that conditions (i) and (ii) imply semi-stable reduction for
Ak, follows from [4], 5.1. O
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Let us consider now an abelian variety with semi-abelian reduction
and with uniformization given by the exact sequence

0— My — Ex — Ax — 0.

Then, by 4.1 M becomes constant over an unramified extensiaf,@nd
the associated sequence of formal Néron models

O—M—>€—A—0

is exact due to [4], 4.4. As the component grayp is torsion-free, and as
the formation of component groups is right-exact, see [4], 4.10, the induced
sequence

0— ¢y — ¢ —> $pa— 0 *)

is exact, so thap, may be identified with the quotieriz /¢, . Thus, if
we view the objects of the latter sequence as Galois modules uhder
Gal(K*"/K) and apply Galois cohomology, we see:

Lemma 4.2. As before, letAx be an abelian variety with semi-stable re-
duction. Then the uniformization dfy, in particular, the above sequence
(x), gives rise to an exact sequence

0 —> ¢pu(k) — ¢r(k) —> ¢pa(k) — HY (G, Mg) — ...

If Ax has split semi-stable reductio/x is constant and, hence,
HY(G, M) is trivial.

To justify the latter statement, note thAt (G, M) equals the group
of all continuous homomorphisms —> M if the action of G on Mg
is trivial; cf. [13], Chap. VII, 83, and Chap. X, 83. However, && is
torsion-free, all such homomorphisms must be trivial.

It follows from 4.2 that the quotientz (k)/¢ (k) may be viewed as a
subgroup of the group @frational points ofp4, and it coincides witlp 4 (k)
in the case of split semi-stable reduction.

Let Tx be the toric andBx the abelian part oEg. Then we have an
exact sequence

00— Tx — Ex — By — 0
of algebraicK -groups and, associated to it, a sequence of Néron models
O0O—T—E—B—0.

In terms of sheaves for the étale (or smooth) topologygn the latter is
exact due to [4], 4.2, ad ¢ having semi-abelian reduction implies tHat
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splits over an unramified extension &f, use 4.1 and [4], 5.1. Similarly as
before, we get an exact sequence of component groups

0— ¢r — g — ¢p — O,

whereg; is trivial, sinceBk has good reduction. Thus, the morphisrm—-

E induces an isomorphisthy — ¢£ and, using the above exact sequence
(%), we canviewp, = ¢r /¢y as aquotienpr /¢, although the morphism
M — E might not factor througlt'.

Proposition 4.3. Let Ax be an abelian variety with split semi-stable re-
duction; i. e., we assume that the identity componghof the special fibre
of the Néron modell of Ak is extension of an abelian variety by a split
algebraic torus. Then:

(i) The component group, is constant (also valid iK is not necessarily
complete).
(i) The canonical mag g (K) —> ¢4 (k) is surjective.

Proof. It follows from 4.1 thatM is constant and thafy is split. Thus,

the k-groups¢r and¢,, are constant, and so is their quotignt If K is

not complete, we may pass to the completionkofvithout changing the
reduction ofAx and its type. This establishes assertion (i). Furthermore,
assertion (ii) is due to the fact that the mBp(K) —> ¢4 (k) is surjective,
asTy is a split torus. O

If the semi-stable reduction of ¢ is not split, the component grouf
is not necessarily constant, as can be seen from Example 1.15. Furthermore,
the quotientpr (k) /pu (k) will, in general, be a proper subgroup@f (k);
its index is controlled by the cohomology groff} (G, M ). To make this
subgroup more explicit, &t be the group of characters of the toric [@&tof
Ex.Asis explained in [1], Sect. 3 or [4], Sect. 5, we can evaluate characters
of X on the latticeM g, thereby obtaining a “bilinear ma@Zx x X — Pg
taking values in the Poincaré bundfe on Bx x B/, the product ofBg
with its dual. In fact, if the abelian pa®y of Ex is trivial, this pairing
is just the evaluation of characters on the latidg. Using the canonical
valuationPg (K*") — Z, we get a non-degenerate pairiblg x X — Z
of Galois modules with respect to the extensi&ff' /K and from it an
injectioni: My — Hom(X, Z) into the linear dual ofX. Now, as aG-
module, we can identify/x with the component groug,,. Furthermore,
Hom(X, Z) can be viewed as the component grouglef and it follows
from the discussion in [4], 5.2, that under this identification the inclusion
mapi corresponds to the canonical mgp — ¢ as considered above.
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In particular, we have a canonical commutative diagrar&-ahodules

0 dum or ®a 0
| | |
0 Mg Hom(X, Z) o 0

with exact rows and vertical isomorphisms. Restrictingstinvariants we
get from 3.1:

Proposition 4.4. Let A be an abelian variety with semi-stable reduction
and with uniformizatioMy = Ex/My. Let X be the group of characters
of the toric part of Ex. ThenX = Hom(X¢, Z)/M¢ is a subgroup of
¢4 (k), contained in the image of g (K) —> ¢4(k), such that the quotient
d4(k)/ T is mapped injectively intél 1(G, My ). Furthermore X coincides
with ¢4 (k) if Ag has split semi-stable reduction.

If the abelian variety does not admit semi-stable reduction, we still have
maps

b1 —> b1, —> dr —> dp —> Pa,

whereT; x stands for the maximal subtorus B which is split overk

and, likewise,T; ¢ for the maximal subtorus dfx which splits overk *".

The image inp, of each of these groups gives rise to a subgroup,ofand

we thereby get a filtration @f 4. Up to the termpy,,, this filtration was dealt
with in [4], Sect. 5; it goes back to Lorenzini [11]. Subsequent factors of
the filtration are controlled by suitable first cohomology groups or by the
component group oBy; cf. [4], 5.5. So, to make general statements about
k-rational points seems to be a little bit out of reach. However, the groups
¢, and¢r, are accessible, and this leads to the understanding of rational
components in the semi-stable reduction case.
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