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Abstract

We have recently proposed, in [21], a compressible two-phase un-
conditionally hyperbolic model able to deal with a wide range of ap-
plications : interfaces between compressible materials, shock waves in
condensed multiphase mixtures, homogeneous two-phase flows (bub-
bly and droplet flows) and cavitation in liquids. One of the difficulties
of the model, as always in this type of physical problems, was the
occurrence of non conservative products. In [21], we have proposed a
discretisation technique that was without any ambiguity only in the
case of material interfaces, not in the case of shock waves. This model
was extended to several space dimensions in [24]. In this paper, thanks
to a deeper analysis of the model, we propose a class of schemes that
are able to converge to the correct solution even when shock waves
interact with volume fraction discontinuities. This analysis provides
a more accurate estimate of closure terms, but also an accurate reso-
lution method for the conservative fluxes as well as non-conservative
terms even for situations involving discontinuous solutions. The accu-
racy of the model and method is clearly demonstrated on a sequence
of difficult test problems.
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1 Introduction

Multiphase flows are involved in a huge amount of fundamental and indus-
trial applications while multiphase mixtures may have several origins. Usu-
ally they are consequences of a physical mixing process of several fluids or
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materials. But in some circumstances, they may come from artificial (numer-
ical) smearing of contact discontinuities separating fluids of different physical
and chemical properties.

In this paper, we are interested in the numerical approximation of com-
pressible inviscid multiphase flows. Although we are aware that viscous terms
and turbulence can be omitted only in very special situations, this is never-
theless, from a numerical point of view, a fundamental situation. If one is
interested in the simulation of compressible viscous or turbulent multiphase
flows, one of the building block of the numerical scheme is nevertheless the
scheme aimed at the approximation of the convective and acoustic phenom-
ena ; this is precisely the topic of this paper.

In a previous work [21], we have proposed an unconditionally hyperbolic
model able to deal with physical mixtures as well as with numerical ones. It
is written as a sum of conservative and non-conservative product terms, com-
plemented with pressure and velocity relaxation terms, which, as explained
in this reference, modelize micro–scale phenomena. The model of [21] is an-
other interpretation of the Baer and Nunziato [3] model for wave propagation
in compressible mixtures. In the same reference, a new numerical method
able to deal with compressible mixtures, as well as interface problems, was
developed.

However, the model and the method of [21] were suffering of some imper-
fections:

• The closure laws for the average interfacial velocity and pressure were
left unclear. This is not surprising because there is no known solution
to this closure problem. It is usually considered as mixture topology
dependant and is one of the major issue in two–phase flows modelling.
However, the choices we made were not really important for the appli-
cations we considered.

• The approximation of the non-conservative terms, involving the volume
fraction gradient, the interface pressure and velocity, was carefully done
for contact discontinuities, but was left unclear for shock interaction
with volume fraction discontinuities.

The question of how to discretize the non conservative terms occuring
in two–phase flow problems has already been addressed by many authors
including [8, 3, 9, 13, 15, 4], etc. In [13], these terms were cancelled, thus
eliminating the difficulty. In [8, 3, 9, 13, 15, 4] the shock relations are derived

7



without considering any variation of the volume fraction at shock front. The
volume fraction is evolving with the convective velocity (gas or solid velocity
or velocity of the mixture) which is different of the shock velocity. Indeed,
if the analysis is conducted with the hyperbolic system without relaxation
terms, the result seems plausible. But physical situations always involve re-
laxation terms which are the trace of micro–scale phenomena, such as bubble
expansion or compression. These relaxation terms involve volume variations
inside the shock front, hence there are some difficulties to determine rigor-
ously shock relations, and of course the associated numerical approximations.
Moreover, there are physical situations where volume fraction varies across
shock front due to mass transfer : detonation, cavitation and condensation
problems. In this paper, we also show that these relaxation terms have a
direct connection to non-conservative ones, thus they cannot be omitted. In
fact, we show that part of the non-conservative terms are relaxation terms.

In most models for two-phase flows, the system of PDEs is not written
in conservative form. This results in difficult numerical and mathematical
problems because discontinuous solutions have to be considered, and a rig-
orous definition of weak solutions needs to be given. This is a necessary step
to correctly approximate the non conservative terms in the system. This
problem has motivated many researchers, see for example [5, 19, 26]. For ex-
ample, Sainsaulieu proposes to introduce additional viscous effects in order
to regularise the solution, and seek for the limit solution when the viscosity
parameter tends to zero. This program is complex and can only be conducted
until then end only in special situations [20]. The solution to this problem is
of fundamental importance because numerical solution may be very sensitive
to the treatement of non conservative products [14].

We believe that the existence of non-conservative terms is a result of mul-
tidimensional motion at the flow micro–scales, rather than a viscous process.
Imagine two fluids inside a tube separated by an interface. The liquid is at
the lower part of the tube, while the gas is at the upper part. The column
is impacted by a high velocity piston on its left side as depicted on Figure
1. Since the two fluids are considered as compressible, there are two shock
waves propagating in the liquid and in the gas. Since each fluid has its own
physical properties and equations of state, the shock waves have two dis-
tinct velocities. A consequence is that the post-shock pressure is different
in the two phases, even if they were originaly equal. The variation in the
post–shock pressure must be “relaxed” because the gas and liquid pressure
must be equal accross the slip line that separates them. This is obtained
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Figure 1: Schematic representation of shock waves propagation in a separated
two-phase mixture

via transverse waves that propagates in the gas and the liquid so that the
pressures tend to equilibrate across the slip line. During this relaxation pro-
cess, the interface moves with a two or three-dimensional motion. After the
transverse waves propagation, the two shock waves collapse on a single two
dimensional complicated wave for the configuration represented on Figure
1. We note that the velocity is not continuous across the slip line, only its
normal component is.

A two-dimensional direct numerical simulation of this problem is done on
Figure 2 with the numerical scheme described in [22] which is particularly
adapted to interface problems. When the mixture contains bubbles, droplets,
or any density discontinuity, similar hydrodynamic process occurs at the scale
of individual particles, thus this simulation can be seen as the simulation in
a small volume surrounding a bubble interface. Such type of process does
not involve fluid viscosity. From these two figures it is clear that the volume
fraction varies inside the shock because the volume of the phases cannot stay
constant when a pressure difference exists.

The wave–like structure one can observe at a macroscopic scale is obtained
by homogenisation of such micro–scales problems. The model and method
developed in [21] addresses the problem of micro–scale motion by introducing
relaxation parameters for pressure and velocity. These relaxation terms are
summarising the sum of multidimensional micro–scale motions.

A first implementation of this remark is done in [21]. The non–conservative
terms were considered and physicaly based discretisations of them are pro-

9



 

 

Gas

Liquid

Liquid Shock Wave

Gas Shock Wave

Density

Pressure

Figure 2: Numerical simulation of shock propagation in separated two-phase
mixtures. Density and pressure contours

posed. The numerical approximations are derived by considering a flow with
a uniform velocity and pressure ; the idea is to keep such wave structure in-
variant by the scheme. Such approximations are valid for interfaces because
the volume fraction, and not the velocity and pressure, may be discontinu-
ous : the situation is much simpler than for shock waves.

In this paper, we proceed in the opposite way to what is done usually.
Usually, the multiphase flow equations are considered at the continuous level
and are then approximated by a numerical method. Here, we consider
the pure phase Euler equations at the microscopic level. We give numerical
approximations of these equations in the context of interface problem at the
micro–scale via the Godunov scheme [12]. These approximations are then
averaged over the set of all possible realisations and provide the corresponding
scheme for the averaged multiphase flow equations. We provide the detailed
form of each terms.

The corresponding scheme is applied to severe test problems and shows
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a perfect accuracy with respect to the exact solution when it is known. The
method behaves perfectly with interface problems as well as with physical
mixtures.

The paper is organised as follows. First, we recall the averaging technique
developed in Drew and Passman [7] when ensemble average is used. Our
numerical scheme is derived by imitating, at the discrete level, the averaging
method of Drew and Passman. We then show how to derive high order
extension of the scheme. The efficiency of the method is demonstrated on
several conventional and other difficult test cases.

2 Preliminaries

2.1 Derivation of the continuous PDEs

We first recall the method to obtain the compressible multiphase model. The
dissipative effects and phase changes are not considered in the present work.
Here, we assume that for each realisation, the interface between the phases
is well defined ; in particular it is possible to define, for any physical points
located on the interface, an interface velocity. It is the velocity at which the
interface localy moves.

We consider the case of two phases Σ1 and Σ2. Each pure fluid is governed
by the Euler equations,

∂U (k)

∂t
+∇ · F (k) = 0 k = 1, 2 (1)

In (1), we set U (k) = (ρ(k), ρ(k)u(k), ρ(k)E(k))T and F (k) = (ρ(k)u(k), ρ(k)u(k) ⊗
u(k) + P (k)Id, (ρ(k)E(k) + P (k))u(k))T where ρ(k) is the density, u(k) is the
velocity, E(k) is the specific energy (E(k) = e(k) + 1/2u(k).u(k), where e(k) is
the internal energy) and P (k) is the pressure of phase Σk. We assume that
each pure phase admits a convex equation of state P (k) = P (k)(e(k), ρ(k)).

We introduce, as in Drew and Passmann [7], the characteristic function
X(k) of phase Σk : X(k)(x, t) = 1 if x lies in fluid Σk at time t, and 0 otherwise.
The function X(k) satisfies the topological equation :

∂X(k)

∂t
+ σ · ∇X(k) = 0 (2)

where σ is the interface velocity between the two phases. This equation can
be understood by looking at the two cases : either a point is inside one phase,
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or it is at the interface of the two phases. If we look at a point that is not on
the interface, either X(k) = 0 or 1. In either case, the partial derivatives both
vanish, and then the left hand side of the equation vanishes whatever σ. If
the point is on an interface, it moves with the interface velocity, so σ is the
interface velocity. Of course, (2) is understood in the sense of distributions,
as in [7]. This means that, for any regular compactly supported function ϕ,
and for any volume Ω, if we denote by Ω(k) the subset of Ω contained in the
phase Σk, we have

∫

Ω(k)

∂ϕ

∂t
+

∫

∂Ω(k)

σ · nϕ = 0. (3)

In (3), n is the exterior unit normal to Ω(k). The equation (3) reveals that σ
is the velocity of the interface between the two phases.

Drew and Passmann [7] consider averaging procedures E ( . ) that com-
mute with the time and space derivative. For any function f , we assume

E
(

∂f

∂t

)

=
∂E (f)

∂t

E (∇f) = ∇E (f)

(4)

for which they establish the two calculation rules (see [7], pages 102-103)

E
(

X(k)∇f
)

= E
(

∇X(k)f
)

− E
(

f
(k)
int∇X(k)

)

Gauss rule

E
(

X(k)∂f

∂t

)

= E
(

∂fX(k)

∂t

)

− E
(

f
(k)
int

∂X(k)

∂t

)

Leibniz rule.

(5)

In (5), f is any function, f
(k)
i is the value of f at an interface on the compo-

nent k of the interface : if M is located on an interface between Σ1 and Σ2,
f

(k)
int is the limit value of f(P ) when P →M stays in the phase Σk.

Using these rules for f = X(1)U (1) +X(2)U (2) and f = X(1)F (1) +X(2)F (2),
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we get ([7], pages 121–122), the system

∂E
(

X(k)ρ(k)
)

∂t
+∇ · E

(

X(k)ρ(k)u(k)
)

= E
(

ρ(k)
(

u(k) − σ
)

· ∇X(k)
)

∂E
(

X(k)ρ(k)u(k)
)

∂t
+∇ ·

(

E
(

X(k)ρ(k)u(k) ⊗ u(k)
)

+ E
(

X(k)P (k)
))

= E
((

ρ(k)u(k)(u(k) − σ) + P (k)
)

· ∇X(k)
)

∂E
(

X(k)ρ(k)E(k)
)

∂t
+∇ · E

(

X(k)ρ(k)E(k)u(k) +X(k)P (k)u(k)
)

= E
((

ρ(k)E(k)(u(k) − σ) + P (k)u(k)
)

· ∇X(k)
)

(6)

Defining the volume fraction of Σk as α(k) = E
(

X(k)
)

, the average density

as ρ(k) =
E
(

X(k)ρ
)

α(k) , the average velocity u =
E
(

X(k)ρu
)

α(k)ρ(k)
, etc, and dropping

the overline symbol for notational conveniency, we get the average balance
equations for each phase

∂α(k)ρ(k)

∂t
+∇ ·

[

α(k)ρ(k)u(k)
]

= E
(

ρ
(

u(k) − σ
)

· ∇X(k)
)

∂α(k)ρ(k)u(k)

∂t
+∇ ·

[

α(k)ρ(k)u(k) ⊗ u(k) + α(k)P (k)
]

= E
((

ρ(k)u(k) ⊗ (u(k) − σ) + P (k)
)

· ∇X(k)
)

∂α(k)E(k)

∂t
+∇ ·

[(

α(k)E(k)u(k) + α(k)P (k)
)

u(k)
]

= E
((

ρ(k)E(k)(u(k) − σ) + P (k)u(k)
)

· ∇X(k)
)

(7)
coupled with the average topological equation

∂α(k)

∂t
+ E

(

σ · ∇X(k)
)

= 0. (8)

In the sequel, we set

W = (α(1)ρ(1), α(1)ρ(1)u(1), α(1)E(1), α(1), α(2)ρ(2), α(2)ρ(2)u(2), α(2)E(2), α(2))T

(9)
and

F(W ) = (α(1)ρ(1)u(1), α(1)ρ(1)u(1) ⊗ u(1) + α(1)P (1), α(1)
(

E(1) + P (1)
)

u(1), 0,
α(2)ρ(2)u(2), α(2)ρ(2)u(2) ⊗ u(2) + α(2)P (2), α(2)

(

E(2) + P (2)
)

u(2), 0)T

(10)
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Following one more time Drew and Passman, the weak formulation of (7) is,
for any C1 compactly supported function ϕ,

∫ ∞

0

∫

R

(

∂ϕ

∂t
W +

∂ϕ

∂x
F(W )

)

−
∫ ∞

−∞
ϕ(x, 0)W (x, 0)dx =

∫ ∞

0

∫ ∞

−∞
E (ϕG) dxdt

(11)
where

G =
(

(ρ(1)(u(1) − σ)) · ∇X(1),
(

ρ(1)u(1)(u(1) − σ) + P (1)
)

· ∇X(1),
,
(

ρ(1)E(1)(u(1) − σ) + P (1)u(1)
)

· ∇X(1), σ · ∇X(1),
(

ρ(2)(u(2) − σ)
)

· ∇X(2),
(

ρ(2)u(2)(u(2) − σ) + P (2)
)

· ∇X(2),
(

ρ(2)E(2)(u(2) − σ) + P (2)u(2)
)

· ∇X(2), σ · ∇X(2)
)T

(12)
The next step, which is a modelisation step, is to close the expressions

of the form E ( · · · ). For example, in absence of mass transfer, it is of
common use [7, 21], to model

E
(

P (k)∇X(k)
)

= PI∇α(k)

E
(

(P (k)u) · ∇X(k)
)

= PIuI∇α(k)

E
(

σ · ∇X(k)
)

= uI∇α(k)

where PI is an average interface pressure, uI is an average interface velocity.
Relaxation terms were introduced [21] to modelize the terms omitted by this
averaging procedure. Of course, the difficult question is how to define the
interfacial quantities and the remaining terms, and there is a real debate
about this. Another difficult question is, from a mathematical point of view,
to define products like PI∇α(k) where both PI and α(k) may be simultaneously
discontinuous. In [21] we have developed a method that solves the second
problem, at least for flows with no shock (only contacts) and no mass transfer
between phases at shock fronts. This does not solve the problem in a general
context since there may exist situations where a shock wave enter a zone
where α(k) is discontinuous.

In this paper, we try to follow a different path. We wish to model as few
as possible, in particular, we want to avoid using interfacial average terms
since their definition is very delicate, if possible. However, we want to follow
the path developped in [7], which is summarised in equations (1), (2), (4),
(5), (6), (7) and (8). The key point is to evaluate exactly the averages in

14



(7) and (8). This can be done under mild assumptions that can be listed
exhaustively. Our numerical method uses the same type of procedure at the
discrete level.

2.2 Notations

Assuming two non miscible phases Σ(1) and Σ2 coexist in the flow, we consider
the following notations throughout the paper :

• U (k), k = 1, 2 is the vector of conservative variables that describe the
non averaged flow,

U (k) = (ρ(k), ρ(k)u(k), ρ(k)E(k))T .

The notation F (k) is the associated flux,

F(k) = (ρ(k)u(k), ρ(k)u(k) ⊗ u(k) + P (k)Id, (ρ(k)E(k) + P (k))u(k))T .

The vector U = (U (1), U (2)) denotes

U = (ρ(1), ρ(1)u(1), ρ(1)E(1), ρ(2), ρ(2)u(2), ρ(2)E(2))T .

F = (F (1), F (2)) is the associated flux.

• W (k) is the vector of conserved averaged variables,

W (k) = α(k)U (k),

and F (k) is the corresponding flux. We also define W = (W (1),W (2))
and F = (F (1),F (2)).

• X(k) is the characteristic function of the phase Σ(k), and by abuse of
language, we also set U (k) = X(k)U , W (k) = X(k)W , etc.

More generally, if g is any flow variable, g(k) represents this flow variable for
the phase Σk. When there is no ambiguity, without the superscript (k), the
variable g denotes g(1).
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3 Derivation of the numerical scheme

In this section, our purpose is to derive a semi–discrete numerical approxi-
mation of the two-phase system (1–7). For the sake of simplicity, we assume
the flow consists in two non miscible phases Σ1 and Σ2.

The scheme is of the finite volume type : the degrees of freedom are
the averaged values of the conservative variables (9) on the control vol-
umes {Ci}i, where ∪iCi = Ω, the computational domain. For the pur-
pose of convenience, we denote W (1) = (α(1)ρ(1), α(1)ρ(1)u(1), α(1)E(1))T (resp.
W (2) = (α(2)ρ(2), α(2)ρ(2)u(2), α(2)E(2))T ) the conserved variables for Σ1 (resp.
Σ2) and F (1) (resp. F (2)) the corresponding fluxes.

The idea is to apply the derivation presented in the previous section to
this discrete situation. Thus we consider a set of realisation, then evaluate
(with the notations of §2.1), for k = 1, 2,

∫

Ci
X(k)∂U

(k)

∂t
dx+

∫

Ci
X(k)∂F

(k)

∂x
dx = 0

and make an ensemble average, i.e.

∫

Ci

∂W (k)

∂t
dx+

∫

∂Cj
F (k) · n =

∫

Cj
E
(

G(k)
)

dx

where, being consistant with (11), we have set

G(k) =
(

(ρ(k)(u(k) − σ)) · ∇X(k),
(

ρ(k)u(k)(u(k) − σ) + P (k)
)

· ∇X(k),
,
(

ρ(k)E(k)(u(k) − σ) + P (k)u(k)
)

· ∇X(k), σ · ∇X(k)
)

.

The evaluation of the various terms involved in the previous equations
amount to solve the problem, for a general ensemble average ! This is why
we consider a simplified ensemble average which is constructed by considering
bubbles that are collections of elementary bubbles with very simple shapes,
see Figure 3. We construct the repartition of bubbles in such a way that
some of the moments of the repartition law are recovered. This is detailed
in the next paragraph. The elementary bubbles have to be chosen in such a
way that any bubble, in the limit, can be represented as an agglomeration of
elementary bubbles, for example as in Figure 3 where the elementary bubbles
are rectangles.

Of course, even if this framework is considerably simplified with respect
to real life, it is still too complex to perform effective calculations. This
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Figure 3: A configuration for a simplified ensemble average where the bubbles
are agglomerations of quadrangles.

is why we precise the necessary assumptions needed to compute easily the
various terms involved in the formula, i.e. to recover some moments of the
repartion law. The derivation is first conducted in the one dimensional case.

3.1 General principles and notations

We consider a computational mesh (xi)i∈Z and the associated control volumes
Ci =]xi−1/2, xi+1/2[ where as usual xi+1/2 = xi+xi+1

2
. On each control volume,

the flow is approximated by the two vectorsW
(1)
i = (α(1)ρ

(1)
i , α

(1)
i ρ

(1)
i u

(1)
i , α

(1)
i E

(1)
i )T

and W
(2)
i = (α

(2)
i ρ

(2)
i , α

(2)
i ρ

(2)
i u

(2)
i , α

(2)
i E

(2)
i )T where α

(1)
i and α

(2)
i are the vol-

ume fraction of the phases Σ1 and Σ2, α
(1)
i + α

(2)
i = 1.

The main idea of the method is to proceed in several steps :

1. consider at time t a random subdivision of each control volumes ,
xi−1/2 = ξ0 < ξ1 < · · · < ξN(ω) = xi+1/2, where ω is a random pa-
rameter aimed at indexing that specific realisation and N(ω)− 2 is the
number of internal points (see Figure 4) ;

2. affect randomly in each subcell ]ξl, ξl+1[ the phases Σ1 or Σ2 with the

state U
(1)
i = (ρ

(1)
i , ρ

(1)
i u

(1)
i , E

(1)
i )T and U

(2)
i = (ρ

(2)
i , ρ

(2)
i u

(2)
i , E

(2)
i )T ; this

means in particular that X(k) is assumed constant in ]ξj, ξj+1[, 0 ≤ j ≤
N(ω)− 1 ;
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3. write the semi–discrete approximation of that realisation thanks to
Godunov scheme ;

4. make an ensemble average of all realisations.

We may assume that two adjacent internal interfaces contain different phases,
because if not, we may merge the two internal cells. Hence, we merge similar
adjacent internal cells ; this has no consequences in the results because the
scheme is of finite volume type. Of course, the most left internal cell of Ci
and the most right internal cell of Ci−1, whatever i, may contain the same
phase, because the control volumes are considered independantly.

There is clearly a constraint on the subdivision and N(ω). We choose
the subdivisions in such a way that the average lenght of all the internal
sub–cells containing Σ1 is α

(1)
i ∆x, that is

E





N(ω)−1
∑

j=0

X(k)
(ξj + ξj+1

2

)

(ξj+1 − ξj)



 = ∆x α
(k)
i . (13)

Since the state U is constant in each ]ξj, ξj+1[, we notice that

E

(

1

∆x

∫ xi+1/2

xi−1/2

X(k)Udx

)

= W
(k)
i ;

so the control of the volume fraction plus the way we fill internal cells is
enough to recover the average state, without any additional assumptions.

In the following, we use the following notations :

• P (A) the probability of an event A and E (G) the mathematical ex-
pectation of the random variable G,

• U l
i is the conservative vector in the subcell ]ξl, ξl+1[. We denote by U+

i

the state in the most right subcell of Ci and U−i the state in the most
left subcell of Ci.

Doing so, the evolution of the phase Σ1 in Ci obeys

∫ t+s

t

∫

Ci

X

(

∂U

∂t
+
∂F

∂x

)

dx = 0

18



that is
N(ω)−1
∑

j=0

∫ ξj+1

ξj

X
∂U

∂t
dx+

N(ω)−1
∑

j=0

∫ ξj+1

ξj

X
∂F

∂x
dx = 0 (14)

where the characteristic function obeys

N(ω)−1
∑

j=0

∫ ξj+1

ξj

∂X

∂t
dx+

N(ω)−1
∑

j=0

∫ ξj+1

ξj

σ
∂X

∂x
dx = 0. (15)

In this sum, there are two types of terms : the integral terms for j = 1
to j = N(ω) − 2 which correspond to the internal subcells, and the terms
j = 1 and j = N(ω) − 1 which correspond to the boundary subcells. To
evaluate easily these integrals, we observe that the interface between two
subcells moves at the speed of the contact discontinuity between the left–
and right– constant states UL and UR at that interface. We denote this
speed by σ(UL, UR). This interface separates the two phases Σ(1) and Σ(2),
so UL = U (1) and UR = U (2) or UL = U (2) and UR = U (1). For a given

xi−1/2 = ξ0 ξ1 ξl ξN(ω) = xi+1/2

Σ1 Σ2Σ1 Σ1

Ci
Ci−1 Ci+1

t ξl + σ(U l−1
i , U li )s

Figure 4: A configuration

configuration, there is a finite number of internal subcells. Hence, between
times t and t+s with s small enough, the situation in Ci evolves like on Figure
4 : before the interfaces cross the cell boundary, each subcell is streched or
compressed according to the solutions of local Riemann problems, and the
interfaces move at constant speeds.
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UL UR

σ(UL, UR)

U−LR
U+
LR

fan/shock wave

fan/shock wave

Figure 5: : The various states in the Riemann problem with the Euler equa-
tions between states UL and UR

We denote by F (UL, UR) the Godunov numerical flux between the states
UL and UR and F lag(UL, UR) the flux across the contact discontinuity between
the states UL and UR. Following the notations of Figure 5, we have

F lag(UL, UR) = F (U+
LR)− σ(UL, UR)U+

LR = F (U−LR)− σ(UL, UR)U−LR.

where superscripts ± denote the states on the right and the left of the con-
tact discontinuity respectively. We also denote by U∗i+1/2 the solution of the

Riemann problem between U+
i and U−i+1.

The Riemann problems in each subcell are independent if the solution is
sought for times [t, t+ s] for s that satisfies a CFL condition of the type

|λmax|
s

∆ξ
≤ 1

2
. (16)

Here λmax is the maximum wave speed, and ∆ξ is the minimum width of a
subcell. Then we integrate equation (14) between t and t+ s, namely

N(ω)−1
∑

l=1

∫ t+s

t

∫ ξl+1

ξl

X
∂U

∂t
dx+

N(ω)−1
∑

l=1

∫ t+s

t

∫ ξl+1

ξl

X
∂F

∂x
dx = 0 (17)

and let s→ 0.
As on Figure 6 let us call D′ the point on the interface moving at speed

σ(U+
i−1, U

−
i ) coming from xi−1/2 and C ′ the analogous point for xi+1/2. We

denote by ADD′ (resp. BCC ′) the space–time triangle that lies between
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xi−1/2 xi+1/2

A B

CD

t

t+ s

D′ C′

Figure 6: Configuration for the evaluation of (17)

the segment AD (resp. BC) and the characteristic AD′ (resp. BC ′). The
space–time domain Ci× [t, t+ s] is the reunion of ADD′ ∩Ci, BCC ′ ∩Ci and
the Lagrangian internal cells as on Figure 6. The triangle ADD′ ∩ Ci may
be reduced to AD if σ(U+

i−1, U
−
i ) ≤ 0. Similarly area of BCC ′ ∩ Ci may be

reduced to CB if σ(U+
i , U

−
i+1) ≥ 0. These situations occur when the flow is

going out of Ci from the left or the right. By abuse of language, in any case,
we still denote BCC ′ ∩ Ci (resp. ADD′ ∩ Ci) by BCC ′ (resp. ADD′).

The equation (17) can be rewritten

∫

AD′D

X

(

∂U

∂t
+
∂F

∂x

)

dxdt (I)

+

N(ω)−1
∑

l=2

∫ t+s

tn

∫ ξl+1+s σ(U li ,U
l+1
i )

ξl+s σ(U l−1
i ,U li )

X

(

∂U

∂t
+
∂F

∂x

)

dxdt (II)

+

∫

CBB′
X

(

∂U

∂t
+
∂F

∂x

)

dxdt = 0. (III)

(18)

We detail each term
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Boundary terms (I) and (III) : We consider first (I). We have
∫

AD′D

X

(

∂U

∂t
+
∂F

∂x

)

dxdt

=
∫

AD′D

(

∂XU

∂t
+
∂XF

∂x

)

dxdt−
∫

AD′D

(

U
∂X

∂t
+ F (U)

∂X

∂x

)

dxdt

=
∫ xi−1/2+s σ+(U+

i−1,U
−
i )

xi−1/2

X(x, t+ s)U(x, t+ s)dx

−sX(xi−1/2, t
+)F (U∗i−1/2) + s F lag(U+

i−1, U
0
i ) [X]j=0

Here, we use the notation x+ = max(0., x). Similarly, we have for (III)
∫

BCC′
X

(

∂U

∂t
+
∂F

∂x

)

dxds

=

∫ xi+1/2+s σ−(U+
i ,U

−
i+1)

xi+1/2

X(x, t+ s)U(x, t+ s)dx

+sX(xi−1/2, t
+)F (U∗i−1/2) + s F lag(U+

i , U
−
i+1) [X]j=N(ω),

we have used the notation x− = min(0., x). The “flowing away” cases
are taken into account by the bound xi−1/2 +s σ+(U+

i−1, U
−
i ) in the case

(I) and xi+1/2 + s σ−(U+
i , U

−
i+1) in the case (III).

Internal terms (II) : we have

∫ t+s

t

∫ ξj+1+s σ(Uji ,U
j+1
i )

ξj+s σ(Uj−1
i ,Uji )

X

(

∂U

∂t
+
∂F

∂x

)

dxdt

= s

(

[X]jF
lag(U j

i , U
j+1
i ) + [X]j−1F

lag(U j−1
i , U j

i )

)

+
∫ ξj+1+s σ(Uji ,U

j+1
i )

ξj+s σ(Uj−1
i ,Uji )

X(x, t+ s)U(x, t+ s)dx−
∫ ξj+1

ξj

X(x, t)U(x, t)dx

where [X]l is the jump of X at node ξl: [X]l = Xl+1 −Xl.
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If we sum up all the terms, we get

1

∆x

∫ xi+1/2

xi−1/2

X(x, t+ s)U(x, t+ s)dx− 1

∆x

∫ xi+1/2

xi−1/2

X(x, t)U(x, t)dx

+
s

∆x

(

X(xi+1/2, t
+)F (U∗i+1/2)−X(xi−1/2, t

+)F (U∗i−1/2)

)

=

1

∆x

N(ω)−1
∑

j=1

s

(

[X]jF
lag(U j

i , U
j−1
i ) + [X]j−1F

lag(U j−1
i , U j−2

i )

)

+s

(

[X]0
∆x

F lag(U+
i−1, U

−
i ) +

[X]N(ω)

∆x
F lag(U+

i , U
−
i+1)

)

.

Taking the limit when s→ 0, we have the semi–discrete scheme

d

dt

(

1

∆x

∫ xi+1/2

xi−1/2

X(x, t)U(x, t)dx

)

+
1

∆x

(

X(xi+1/2, t
+)F (U∗i+1/2)−X(xi−1/2, t

+)F (U∗i−1/2)

)

=
1

∆x

N(ω)−1
∑

j=1

(

[X]jF
lag(U j

i , U
j−1
i ) + [X]j−1F

lag(U j−1
i , U j−2

i )

)

+
[X]0
∆x

F lag(U+
i−1, U

−
i )−

[X]N(ω)

∆x
F lag(U+

i , U
−
i+1).

(19)
Next, we take the mathematical expectancy of the relations (19).We first

have

E

(

1

∆x

∫ xi+1/2

xi−1/2

X(x, t)U(x, t)

)

= α
(1)
i U

(1)
i .

Then, we consider

N(ω)−1
∑

j=1

∆t

(

[X]jF
lag(U l

i , U
l−1
i ) + [X]j−1F

lag(U j−1
i , U j−2

i )

)

.
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We have [X]l = −[X]l−1 = 1 thanks to the definition of ξl : through a sub–
cell interface, X change from 0 to 1 or 1 to 0 depending wether we leave or
not the considered phase. Hence,

N(ω)−1
∑

j=1

(

[X]jF
lag(U j

i , U
j−1
i ) + [X]j−1F

lag(U j−1
i , U j−2

i )

)

= N(ω)int

(

F lag(U
(2)
i , U

(1)
i )− F lag(U

(1)
i , U

(2)
i )

)

(20)

where N(ω)int is the number of internal subcells.
This shows the expectancy of (19) is

d
(

α
(1)
i U

(1)
i

)

dt
+

1

∆x

(

E
(

X(xi+1/2, t
+)F (U∗i+1/2)

)

− E
(

X(xi−1/2, t
+)F (U∗i−1/2)

))

=
E (N(ω)int)

∆x

(

F lag(U
(2)
i , U

(1)
i )− F lag(U

(1)
i , U

(2)
i )
)

+
1

∆x

(

E
(

[X]0F
lag(U+

i−1, U
−
i )
)

− E
(

[X]N(ω)F
lag(U+

i , U
−
i+1

)

)

.

(21)

where
E (N(ω)int)

∆x
is interpreted as the average number of internal interfaces.

It remains to evaluate the three terms E
(

X(xi+1/2, t
+)F (U∗i+1/2)

)

, E
(

X(xi−1/2, t
+)F (U∗i−1/2)

)

and E ([X]0)F lag(U+
i−1, U

−
i )−E

(

[X]N(ω)

)

F lag(U+
i , U

−
i+1). This is done in the

next section.

3.2 Averaging procedure

Evaluation of conservative terms We first consider cell boundary i+1/2
and focus on the fluxes available for fluid Σ1, namely E

(

X(xi+1/2, t
+
n )F (U∗i+1/2)

)

.

On this cell boundary, four instances may occur : U−i+1 = U
(1)
i+1 and U+

i = U
(1)
i ,

U−i+1 = U
(1)
i+1 and U+

i = U
(2)
i , U−i+1 = U

(2)
i+1 and U+

i = U
(1)
i , U−i+1 = U

(2)
i+1 and

U+
i = U

(2)
i . We define

β
(l,p)
i+1/2 = sign (σ(U l

i , U
p
i−1) =

{

1 if σ(U l
i , U

p
i−1) ≥ 0

−1 if σ(U l
i , U

p
i−1) < 0.

24



Last, we introduce X(x±i+1/2) = limx−xi+1/2→0± X(x). With these nota-
tions, the four instances described above are summarised on the Table 1.

Flow paterns Left and right states Flux indicator

Σ1 − Σ2 U
(1)
i , U

(2)
i+1 (β

(1,2)
i+1/2)+

Σ1 − Σ1 U
(1)
i , U

(1)
i+1 1

Σ2 − Σ1 U
(2)
i , U

(1)
i+1 (−β(2,1)

i+1/2)+

Σ2 − Σ2 U
(2)
i , U

(2)
i+1 0

Table 1: The various flow configurations at cell boundary i+ 1/2.

Thus we have,

E
(

X(xi+1/2, t
+
n )F (U∗i+1/2)

)

= P
(

X(xi+1/2)− = 1 and X(xi+1/2)+ = 1
)

F (U
(1)
i , U

(1)
i+1)

+ P
(

X(xi+1/2)− = 1 and X(xi+1/2)+ = 0
)

(

β
(1,2)
i+1/2

)+

F (U
(1)
i , U

(2)
i+1)

+ P
(

X(xi+1/2)− = 0 and X(xi+1/2)+ = 1
)

(

−β(1,2)
i+1/2

)+

F (U
(2)
i , U

(1)
i+1)

It remains to evaluate the terms Pi+1/2(Σp,Σq) above,

Pi+1/2(Σ1,Σ1) := P
(

X(xi+1/2)− = 1 and X(xi+1/2)+ = 1
)

Pi+1/2(Σ1,Σ2) := P
(

X(xi+1/2)− = 1 and X(xi+1/2)+ = 0
)

Pi+1/2(Σ2,Σ1) := P
(

X(xi+1/2)− = 0 and X(xi+1/2)+ = 1
)

Pi+1/2(Σ2,Σ2) := P
(

X(xi+1/2)− = 0 and X(xi+1/2)+ = 0
)

.

(22)

This is carried out in §3.3.
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Using these notations, we rewrite the terms arising at the interface i+1/2

E
(

X(xi+1/2, t
+
n )F (U∗i+1/2)

)

= Pi+1/2(Σ1,Σ2)
(

β
(1,2)
i+1/2

)+

F (U
(1)
i , U

(2)
i−1)

+ Pi+1/2(Σ1,Σ1) F (U
(1)
i , U

(1)
i−1)

+ Pi+1/2(Σ2,Σ1)
(

−β(2,1)
i+1/2

)+

F (U
(2)
i , U

(1)
i+1)

(23)
Let us consider now the cell boundary (i−1/2). By the same arguments,

we get the averaged flux
E
(

X(xi−1/2, t
+
n )F (U∗i−1/2)

)

as follows :

E
(

X(xi−1/2, t
+
n )F (U∗i−1/2)

)

= Pi−1/2(Σ1,Σ2)
(

β
(1,2)
i−1/2

)+

F (U
(1)
i−1, U

(2)
i )

+ Pi−1/2(Σ1,Σ1) F (U
(1)
i−1, U

(1)
i )

+ Pi−1/2(Σ2,Σ1)
(

−β(2,1)
i−1/2

)+

F (U
(2)
i−1, U

(1)
i )

(24)

Evaluation of the non conservative terms We now consider the terms
E ([X]0)F lag(U+

i−1, U
0
i ) and E

(

[X]N(ω)

)

F lag(U
N(ω)
i , U−i+1). We first consider

the second term. As before, there are the same four possible configurations.
The jump indicators are given in the table 2.

Flow pattern Lagrangian flux Jump indicator

Σ1 − Σ2 F lag(U
(1)
i , U

(2)
i+1)

(

β
(1,2)
i+1/2

)−

Σ1 − Σ1 F lag(U
(1)
i , U

(1)
i+1) 0

Σ2 − Σ1 F lag(U
(2)
i , U

(1)
i+1) −

(

β
(2,1)
i+1/2

)−

Σ2 − Σ2 F lag(U
(2)
i , U

(2)
i+1) 0

Table 2: The various ingredients for the computation of the non-conservative
products related to the inner interface emerging from the cell boundary i +
1/2.
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Using the same type of arguments as in the previous section, we have

E
(

[X]N(ω)

)

F lag(U
N(ω)
i , U−i+1) = Pi+1/2(Σ1,Σ2)

(

β
(1,2)
i+1/2

)−
F lag(U

(1)
i , U

(2)
i+1)

− Pi+1/2(Σ2,Σ1)
(

β
(2,1)
i+1/2

)−
F lag(U

(2)
i , U

(1)
i+1).

(25)
We now apply the same arguments to the most left interface. Again for

this situation four instances may occur, and the same arguments give

E ([X]0)F lag(U+
i−1, U

0
i ) = −Pi−1/2(Σ1,Σ2)

(

β
(1,2)
i−1/2

)+

F lag(U
(1)
i−1, U

(2)
i )

+Pi−1/2(Σ2,Σ1)
(

β
(2,1)
i−1/2

)+

F lag(U
(2)
i−1, U

(1)
i ).

(26)

Relaxation terms They are

E (Nint)

∆x

(

F lag(U
(2)
i , U

(1)
i )− F lag(U

(1)
i , U

(2)
i )
)

(27)

where
E (Nint)

∆x
is the average number of internal interfaces per cell. These

relaxation terms depends of the flow topology as we will see later on.

The volume fraction evolution scheme The scheme is easily obtained
from the previous calculations by setting U = 1 and F = 0. Doing this,
F lag(UL, UR) reduces to −σ(UL, UR). Then the scheme reads:

d

dt
α(1)

i +
1

∆x

(

Pi−1/2(Σ1,Σ2)
(

β
(1,2)
i−1/2

)+

σ(U
(1)
i−1, U

(2)
i ) + Pi−1/2(Σ2,Σ1)

(

−β(2,1)
i−1/2

)−
σ(U

(2)
i−1, U

(1)
i )

+ Pi+1/2(Σ2,Σ1)
(

β
(1,2)
i+1/2

)+

σ(U
(1)
i , U

(2)
i+1) + Pi+1/2(Σ2,Σ1)

(

−β(2,1)
i+1/2

)−
σ(U

(2)
i , U

(1)
i+1)

)

+
E (Nint)

∆x

(

σ(U
(2)
i , U

(1)
i )− σ(U

(1)
i , U

(2)
i )
)

= 0

(28)
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3.3 Estimation of Pi+1/2(Σp,Σq)

To estimate these terms, we make the following remarks. First,

Pi+1/2(Σp,Σp) + Pi+1/2(Σq,Σp) = αpi+1

Pi+1/2(Σp,Σp) + Pi+1/2(Σp,Σq) = αpi

(29)

whatever p and q, and
Pi+1/2(Σp,Σq) ≥ 0.

Since 0 ≤ X(x±i+1/2) ≤ 1, we have

0 ≤ X(x+
i+1/2)X(x−i+1/2) ≤ X(x+

i+1/2)

and

0 ≤ X(x+
i+1/2)X(x−i+1/2) ≤ X(x−i+1/2),

so that Pi+1/2(Σp,Σp) ≤ αpi and Pi+1/2(Σp,Σp) ≤ αpi+1. This means that

Pi+1/2(Σp,Σp) ≤ min
(

αpi , α
p
i+1

)

.

The second remark is that since

Pi+1/2(Σp,Σp) ≤ min
(

α
(p)
i , α

(p)
i+1

)

,

we also have
Pi+1/2(Σp,Σq) ≥ max

(

α
(p)
i − α

(p)
i+1, 0

)

because

Pi+1/2(Σq,Σp) = αpi+1 − Pi+1/2(Σp,Σp) =

{

αpi+1 − α
p
i ≥ 0 if αpi ≤ αpi+1,

αpi+1 − α
p
i+1 = 0 otherwise

We also notice that min
(

α
(p)
i , α

(p)
i+1

)

+ max
(

α
(p)
i − α

(p)
i+1, 0

)

= 1
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Moreover, if the flow is smooth, it is legitimate to ask that

Pi+1/2(Σ1,Σ1) = P
(

X(x+
i+1/2) = 1 and X(x−i+1/2) = 1

)

' α(1)(xi+1/2)

Pi+1/2(Σ2,Σ2) = P
(

X(x+
i+1/2) = 0 and X(x−i+1/2) = 0

)

' α(2)(xi+1/2)

Pi+1/2(Σ1,Σ2) = P
(

X(x+
i+1/2) = 1 and X(x−i+1/2) = 0

)

' 0

Pi+1/2(Σ2,Σ1) = P
(

X(x+
i+1/2) = 0 and X(x−i+1/2) = 1

)

' 0.

The first two relations are legitimate because they mean that, in the limit,
the flow composition is approximately similar seen from the left and the right
of xi+1/2 almost everywhere. The last two means that almost nowhere, the
flow composition may be different seen from the right and the left of xi+1/2.
Doing so, we implicitly assume that the flow is almost everywhere regular.
This set of remarks is developped in appendix A.

Combining all these remarks, we make the following estimation and as-
sumption,

Pi+1/2(Σp,Σp) = min
(

αpi , α
p
i+1

)

whatever p and q. (30)

¿From this, and using the relations (29), we get

Pi+1/2(Σ1,Σ1) = min
(

α
(1)
i , α

(1)
i+1

)

Pi+1/2(Σ1,Σ2) = max
(

α
(1)
i − α

(1)
i+1, 0

)

Pi+1/2(Σ2,Σ1) = max
(

α
(2)
i − α

(2)
i+1, 0

)

Pi+1/2(Σ2,Σ2) = min
(

α
(2)
i , α

(2)
i+1

)

.

(31)

The relations (30) and (31) are only approximations. They are justified
by two additional remarks. First, in the two dimensional situations of Fig-
ure 7 the fluxes along the vertical interfaces can be computed by the same
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Figure 7: Schematic representation of the equivalence between a bubbly flow
or a dropplet flow with a stratified flow for the computation the numerical
fluxes between at a cell boundary

techniques as here, and the formula are identical to the ones we have pre-
sented here, with the same coefficients Pi+1/2(Σp,Σq). The physical meaning
of these coefficients, in the configuration of Figure 7 is the geometrical lenght
of the common interface between two equivalent bubbles.

The second justification is more mathematical. Because our scheme is an
averaged classical finite volume scheme, we may follow the lines of the proof
of Lax–Wendroff’s theorem, see e.g. [11]. We define W∆ by

W∆(x, t) = W n
i if (x, t) ∈]xi−1/2, xi+1/2[×[tn, tn+1[.

Thus, if we assume that, for ∆t
∆x

fixed,

• the sequence W∆ is bounded in L∞(R+ × R),

• there exists W ∈ L2(R× R+)loc such that W∆ → W ,

• the probability law of the flow is known,

• Pi+1/2(Σp,Σq) has the fonctional form Pi+1/2(Σp,Σq) = Ppq(α
(p)
i , α

(q)
i+1)

with (α, α′) 7→ Ppq(α, α
′) continuous and Ppp(α, α) = α, Ppq(α, α) = 0

if p 6= q
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then the limit solution W satisfies, for any test function ϕ compactly sup-
ported on R× R+,

∫

R×R+

W
∂ϕ

∂t
+F (W )∇ϕ−

∫

R
W (x, 0)ϕ(x, 0) = E

(∫

R×R+

(F (W )− σW )∇Xϕ
)

.

In other terms, the solution is a weak solution of the problem, as defined in
Drew and Passman [7]. This result is proved in Appendix A.

In practice, it is not necessary to know the probability law defined for the
flow under study. We only compute averages, so it is only necessary to define
averages. Here, the parameter that is given is the relaxation parameter, in
other words, the expectancy of the number of internal bubbles.

The definition of Pi+1/2(Σp,Σq) above satisfies these assumptions. We
have set this result for the Godunov scheme. In fact, what is really essential
is that the numerical flux be continuous and that it is possible to have a
discrete interface velocity.

3.4 Summary and extension to other fluxes.

We end this section by a summary of the results. The numerical approxima-
tion of (7), for Σ1, is

d

dt

(

α
(1)
i U

(1)
i

)

+
E (XF )i+1/2 − E (XF )i−1/2

∆x
= E

(

F lag ∂X

∂x

)

(32)

where the various terms are defined below.
In (32), the numerical flux F that we use at the microscopic level is

obtained thanks to an approximate Riemann Solver for which it is possible
to define a contact speed. The contact speed between the left state UL and
the right state UR is denoted by σ(UL, UR). We also denote by U±LR the left
and right states surrounding the approximate contact discontinuity, similarly
as in Figure 5 for the Godunov solver. This permits to define the Lagrangian
flux F lag(UL, UR) = F (U+

LR) − σ(UL, UR)U+
LR = F (U−LR) − σ(UL, UR)U−LR.

Last, we define β
(p,q)
i+1/2 = sign (σ(U

(p)
i , U

(q)
i+1)).

All the calculations have been performed for the Godunov scheme, but
can be extended to more general fluxes The key ingredient of the derivation
are, besides the randomisation, average procedures and estimation of the
various coefficients, the use of a Riemann solver for which it is possible to
define a contact discontinuity speed. This property is needed because we
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must define a Lagrangian flux, F lag(U, V ). This Lagrangian flux has to be
consistent, as well as the base flux F (U, V ).

Even more, the choice of the base flux F and the lagrangian flux F lag may
be independant : we do not really need a relation of the type F lag = F ∗−σU∗.
This can easily be understood from the proof of the Lax Wendroff Theorem,
see Appendix A.

The choice of the various fluxes has to be done only with the constraints
of physical problem under study, there is a lot of freedom. In this paper, we
have used the Godunov scheme and the HLLC flux [25].

Then, we have

E (XF )i+1/2 = max(α
(1)
i − α

(1)
i+1, 0)

(

β
(1,2)
i+1/2

)+

F (U
(1)
i , U

(2)
i+1)

+ min(α
(1)
i , α

(1)
i+1) F (U

(1)
i , U

(1)
i+1)

+ max(α
(2)
i − α

(2)
i+1, 0)

(

−β(2,1)
i+1/2

)−
F (U

(2)
i , U

(1)
i+1)

(33)

and

E
(

F lag ∂X

∂x

)

i

= max
(

α
(1)
i − α

(1)
i+1, 0

)(

β
(1,2)
i+1/2

)−
F lag(U

(1)
i , U

(2)
i+1)

− max
(

α
(2)
i − α

(2)
i+1, 0

)(

β
(2,1)
i+1/2

)−
F lag(U

(2)
i , U

(1)
i+1)

− max
(

α
(1)
i−1 − α

(1)
i , 0

)(

β
(1,2)
i−1/2

)+

F lag(U
(1)
i−1, U

(2)
i )

+ max
(

α
(2)
i−1 − α

(2)
i , 0

)(

β
(2,1)
i−1/2

)+

F lag(U
(2)
i−1, U

(1)
i )

+ Λi

(

F lag(U
(2)
i , U

(1)
i )− F (U

(1)
i , U

(2)
i )
)

(34)

where

Λi =
E (Nint)

∆x
. (35)

is the average number of internal interfaces. Similar expressions hold for the
fluid Σ2.

32



Last, the volume fraction evolution equation is obtained by the same
formulas by setting U = 1 and F = 0 as done in equation (28). This means
that the volume fraction equation comes from a trivial PDE:

∂1

∂t
+∇.(0) = 0 (36)

3.5 Numerical approximation of the semi–discrete scheme
(32)

In equation (32), the term E
(

F lag ∂X

∂x

)

i

can be split into two parts:

E
(

F lag ∂X

∂x

)

i

= E
(

F lag ∂X

∂x

)

i,bound

+ E
(

F lag ∂X

∂x

)

i,relax

where

E
(

F lag ∂X

∂x

)

i,relax

= Λi

(

F lag(U
(2)
i , U

(1)
i )− F lag(U

(1)
i , U

(2)
i )
)

and E
(

F lag ∂X

∂x

)

i,bound

is defined by the equations (25) and (26).

In practical applications, the solution is reached via a splitting method.
First, we integrate

(

α
(1)
i U

(1)
i

)n+1/2

−
(

α
(1)
i U

(1)
i

)n

∆t
+
E (XF )i+1/2 − E (XF )i−1/2

∆x
= E

(

F lag ∂X

∂x

)

i,bound

(37)
This step is stable under the condition

|λmax|
∆t

∆x
≤ 1

2
. (38)

Here λmax is the maximum wave speed, and ∆x is the cell size. This condition
holds because all internal waves are omitted during this evolution step.

Then, a relaxation step is applied,

(

α
(1)
i U

(1)
i

)n+1

−
(

α
(1)
i U

(1)
i

)n+1/2

∆t
= E

(

F lag ∂X

∂x

)

i,relax

(39)
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The flux are computed at time tn. The relaxation step can be carried out by
several ways :

• by a standard resolution of (39) when λi is not too large,

• by a procedure that computes the steady state of (39) when λi is large.
Such a relaxation procedure is detailed in [21, 24].

When dealing with contact-interface problems at the macroscopic scale,
as well as with well-mixed materials (for example solid alloys), the relax-
ation procedures given in [24] are appropriate. When dealing with mixtures
containing a moderate number of interfaces per computational cell, the res-
olution of (39) is recommended. It is also possible in such situations to solve
a micro-mechanical problem with integro-differential equations as was done
in [16, 10] or to use empirical closure laws including dissipation effects, as
done in most two-phase flow codes.

4 Second order accuracy

In this section, we propose an extension of the conventional MUSCL approach
to get a second order approximation of the scheme
(

α
(1)
i U

(1)
i

)n+1

−
(

α
(1)
i U

(1)
i

)n

∆t
+
E (XF )i+1/2 − E (XF )i−1/2

∆x
= E

(

F lag ∂X

∂x

)

i
(40)

where the flux are given by (33) and the non conservative terms/relaxation
by (34).

Following the MUSCL strategy, the variables U , defined by (9), in the
system (7-8) are approximated by their averaged values over the control
volume {]xi−1/2, xi+1/2[}i∈Z, so second order accuracy can be achieved if we

have a second order accurate approximation of the average of
∂F

∂x
(where F

is the flux (10)) and E (G) (from (12)).

4.1 A predictor corrector scheme

This scheme is an extension of the predictor corrector scheme for a general

conservation law
∂W

∂t
+
∂G

∂x
= 0 that we recall. Here , the mesh size is ∆y
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which is assumed uniform for simplicity only.

Step 1. From {W n
j }, compute the (limited) slopes δW n

i and evaluate

W n
i−1/2,r = W n

i −
∆y

2
δW n

i

W n
i+1/2,l = W n

i +
∆y

2
δW n

i

Step 2. Evolve the solution over half a time step

W
n+1/2
i = W n

i −
∆t

2∆y

(

G(W n
i+1/2,l,W

n
i+1/2,r)−G(W n

i−1/2,l,W
n
i−1/2,r)

Step 3. From {W n+1/2
j }, evaluate the (limited) slopes ∆

n+1/2
i , and compute

W
n+1/2
i−1/2,r = W

n+1/2
i − ∆y

2
δW

n+1/2
i

W
n+1/2
i+1/2,l = W

n+1/2
i +

∆y

2
δW

n+1/2
i

then

Step 4. Compute

W n+1
i = W n

i −
∆t

∆y

(

G(W
n+1/2
i+1/2,l,W

n+1/2
i+1/2,r)−G(W

n+1/2
i−1/2,l,W

n+1/2
i−1/2,r)

)

.

This is not the simplest predictor corrector algorithm, see [25] for example,
but the steps 1 and 2 are identical to the step 3 and 4. Hence, it is very
simple from the algorithmic point of view. Thanks to this remark, we only
describe the corrector step of our second order algorithm, i.e. the extension
of steps 3 and 4.

4.2 A predictor corrector scheme for multiphase flows

We start by the data reconstruction. Since the volume fraction has to remain
between 0 and 1, and because of the constraint ρk ≥ 0 and Pk ≥ 0, we
choose to reconstruct linearly the vector of primitive variables V n

i where
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V = (α, ρ, u, P )T for each fluid. We extrapolate these variables by using
their limited slopes δiV :

V n
i (x) = V n

i +
x− xi

2
δiV

with x ∈]xi−1/2, xi+1/2[. We denote by

V n
i−1/2,r = V n

i −
∆x

2
δiV and V n

i+1/2,l = V n
i +

∆x

2
δiV

the primitive variables at the most left/right points of the cell ]xi−1/2, xi+1/2[.
We denote by Un

i±1/2,r (resp. Un
i±1/2,l) the vector of conservative variables

corresponding to V n
i±1/2,r (resp. V n

i±1/2,l ).

In order to get an approximation of (7-8), we divide the cell ]xi−1/2, xi+1/2[
into subintervals ]xi−1/2, y1[, ]yl, yl+1[, l = 1, N − 1, ]yN , xi+1/2[. In the cells
]yl, yl+1[, we consider the conservative variable Wl+1/2 corresponding to the

primitive variables V n
i (yl+1/2) with yl+1/2 = yl+yl+1

2
, in ]xi−1/2, y1[ we consider

the one corresponding to V n
i−1/2,l = V n

i −
1

2
δiV , and similarly in ]ξN , xi+1/2[,

we consider V n
i+1/2,r. Then we apply the scheme (40), that is the technique

developed in section 3, to this data distribution. This means that we subdi-
vide each interval into random sub-interval (with the constraints of section
3), and then we take the expectancy of the schemes. There is no contra-
diction, since there might be only one random subdivision in each ]yl, yl+1[ :
this is taken into account in the relaxation term of equation (35), which is
defined here for each subinterval ]yl, yl+1[, and might vary with respect to
l. To o indicate this variation, we denote it by Λ(yl+1/2). Then, we get the
averaged flux variation over the interval ]xi−1/2, xi+1/2[ but summing up the
contribution over each subinterval xi−1/2, y1[, ]yl, yl+1[ for l = 1, · · · , N − 1
and ]yN , xi+1/2[. The arguments in the formula (31) are those defined by the

reconstructed left and right states at xi±1/2. Similarly, β
(1,2)
i±1/2 represents the

sign of the contact speed evaluated at xi±1/2 from the reconstructed data.
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In step 3, the conservative terms sum up to

E (XF )
(1)
i−1/2 =

(

β
(1,2)
i−1/2

)+Pi−1/2(Σ1,Σ2)F (U
(1),n+1/2
i−1/2,l , U

(2),n+1/2
i−1/2,r )

+ Pi−1/2(Σ1,Σ1)F (U
(1),n+1/2
i−1/2,l , U

(1),n+1/2
i−1/2,r )

−
(

β(2,1)
)−Pi−1/2(Σ2,Σ1)F (U

(2),n+1/2
i−1/2,l , U

(1),n+1/2
i−1/2,r ),

E (XF )
(1)
i+1/2 =

(

β(1,2)
)+Pi+1/2(Σ1,Σ2)F (U

(1),n+1/2
i+1/2,l , U

(2),n+1/2
i+1/2,r )

+ Pi+1/2(Σ1,Σ1)F (U
(1),n+1/2
i+1/2,l , U

(1),n+1/2
i+1/2,r )

−
(

β(2,1)
)−Pi+1/2(Σ2,Σ1)F (U

(2),n+1/2
i+1/2,l , U

(1),n+1/2
i+1/2,r )

(41)

since all the internal contributions cancel. The non conservative terms E
(

F lag ∂X

∂x

)

i

=

E
(

F lag ∂X

∂x

)

i,bound

+ E
(

F lag ∂X

∂x

)

i,relax

sum up to

−
(

β(1,2)
)+Pi+1/2(Σ1,Σ2)F lag(U

(1),n
i−1/2,l, U

(2),n
i−1/2,r) +

(

β(2,1)
)+Pi+1/2(Σ2,Σ1)F lag(U

(2),n
i−1/2,l, U

(1),n
i−1/2,r)

−
(

β(1,2)
)−Pi+1/2(Σ1,Σ2)F lag(U

(1),n
i−1/2,l, U

(2),n
i−1/2,r) +

(

β(2,1)
)−Pi+1/2(Σ2,Σ1)F lag(U

(2),n
i−1/2,l, U

(1),n
i−1/2,r)

+
N−1
∑

l=1

max

(

0,∆α(1)(yl+1/2)

)

F lag(U
(2),n
2 (yl+1/2), U

(1),n
1 (yl+1/2))−max

(

0,∆α(2)(yl+1/2))

)

F lag(U
(2),n
2 (yl+1/2), U

(1),n
1 (yl+1/2))

+
N−1
∑

l=1

Λ(yl+1/2)

(

F lag(U
(2),n
2 (yl+1/2), U

(1),n
1 (yl+1/2))−

N−1
∑

l=1

F lag(U
(1),n
1 (yl+1/2), U

(2),n
2 (yl+1/2))

)

(42)
where

∆α(1)(yl+1/2) =
(

δiα
(1)
)

(ξl − ξl+1).

We do not need any β terms because we account for all the internal cells in
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]xi−1/2, xi+1/2[. Hence, the last two terms of (42) are equal to

(N−1
∑

l=1

F lag(U (2),n(yl+1/2), U (1),n(yl+1/2))(yl − yl+1)

)

max

(

0, δiα
(1)

)

−
(N−1
∑

l=1

F lag(U (1),n(yl+1/2), U (2),n(yl+1/2))(yl − yl+1)

)

max

(

0, δiα
(2)

)

which converges, when N →∞ to
(∫ xi+1/2

xi−1/2

F lag(U (2),n(y), U (1),n(y))dy

)

max

(

0, δiα
(1)

)

−
(∫ xi+1/2

xi−1/2

F lag(U (1),n(y), U (2),n(y))dy

)

max

(

0, δiα
(2)

)

(43)

Then we apply the mid point rule to (43), and we have a second order
approximation of the non conservative terms by

∆x E
(

F lag ∂X

∂x

)

= −
(

β(1,2)
)+Pi+1/2(Σ1,Σ2)F lag(U

(1),n
i−1/2,l, U

(2),n
i−1/2,r)

+
(

β(2,1)
)+Pi+1/2(Σ2,Σ1)F lag(U

(2),n
i−1/2,l, U

(1),n
i−1/2,r)

−
(

β(1,2)
)−Pi+1/2(Σ1,Σ2)F lag(U

(1),n
i−1/2,l, U

(2),n
i−1/2,r)

+
(

β(2,1)
)−Pi+1/2(Σ2,Σ1)F lag(U

(2),n
i−1/2,l, U

(1),n
i−1/2,r)

+ max

(

0,∆α
(1)
i

)

F lag(U
(2),n
i , U

(1),n
i )−max

(

0,∆α
(2)
i

)

F lag(U
(1),n
i , U

(2),n
i )

(44)

where ∆α
(1)
i = α

(1)
i+1/2,l−α

(1)
i−1/2,r and ∆α

(2)
i = α

(2)
i+1/2,l−α

(2)
i−1/2,r are the limited

slope of α(1) and α(2) in the cell Ci.
Similarly, the relaxation terms corresponding to a linear reconstruction

of the data can be approximated, thanks to the same interpretation in terms
of Riemann sums and to the mid point rule by

Λi

(

F lag(U
(2),n
i , U

(1),n
i )− F (U

(1),n
i , U

(2),n
i )

)

. (45)
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It is not surprising to have the averaged values of the conservative variables
U1 and U2 because we need to evaluate U (1) and U (2) at the point xi+1/2.
This values are precisely the averaged ones thanks to the geometry of the
cell. The same remark applies to the relaxation term Λ.

In the end, the predictor step becomes

(

α
(1)
i U

(1)
i

)n+k −
(

α
(1)
i U

(1)
i

)n

∆t
+
E (XF )

(1)
i+1/2 − E (XF )

(1)
i−1/2

∆x
= E

(

F lag ∂X

∂x

)

i
(46)

where E
(

F lag ∂X

∂x

)

i

is the sum of (45) and (43), the conservative terms

E (XF )
(1)
i±1/2 are given by (41).

There is an enlightening interpretation of the scheme. It is important to
note that the cell contains now a gradient of volume fraction α. Geometrically
speaking, the mid point rule applied to the integral of F lag and the internal
relaxation terms is equivalent to adding a new internal interface in the middle
of the cell between the values V

(n)
i−1/2,l and V

(n)
i+1/2,r as depicted on Figure 8.

It is essential to take into account this new interface for the design of the
second order scheme.

5 Some useful verifications

The various numerical approximations being rather complex, it is necessary
to check some elementary properties. The following verifications may be done
with the first and the second order variants. For the sake of conciseness we
consider the first order method only.

5.1 Uniform pressure and velocity flows

We have shown in a series of papers [2, 21, 22] that these uniform conditions
were particularly important for interface problems. We consider the semi
discrete form:

d

dt

(

α
(1)
i U

(1)
i

)

+
E (XF )i+1/2 − E (XF )i−1/2

∆x
= E

(

F lag ∂X

∂x

)

i,bound

(47)
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Figure 8: Schematic representation of a computational cell with a gradient
of volume fraction. The gradient in dotted lines is equivalent to the discon-
tinuous representation with full lines

where, for any i,

E (XF )i+1/2 = max(α
(1)
i − α

(1)
i+1, 0)

(

β
(1,2)
i+1/2

)+

F (U
(1)
i , U

(2)
i+1)

+ min(α
(1)
i , α

(1)
i+1) F (U

(1)
i , U

(1)
i+1)

− max(α
(2)
i − α

(2)
i+1, 0)

(

β
(2,1)
i+1/2

)−
F (U

(2)
i , U

(1)
i+1)

(48)
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and

E
(

F lag ∂X

∂x

)

i,bound

= max
(

α
(1)
i − α

(1)
i+1, 0

)(

β
(1,2)
i+1/2

)−
F lag(U

(1)
i , U

(2)
i+1)

− max
(

α
(2)
i − α

(2)
i+1, 0

)(

β
(2,1)
i+1/2

)−
F lag(U

(2)
i , U

(1)
i+1)

− max
(

α
(1)
i−1 − α

(1)
i , 0

)(

β
(1,2)
i−1/2

)+

F lag(U
(1)
i−1, U

(2)
i )

+ max
(

α
(2)
i−1 − α

(2)
i , 0

)(

β
(2,1)
i−1/2

)+

F lag(U
(2)
i−1, U

(1)
i )

(49)
We assume that the flow evolves under initial uniform pressure and ve-

locity conditions. Consequently, the pressures and velocity should remain
constant during time evolution. We now check whether this property is sat-
isfied or not at the discrete level by the scheme (47). Note that this basic
property was fulfilled in [21] but not in [13].

In the following, we consider base fluxes for each phase that have the
property, for any phase Σk

If u
(k)
i and p

(k)
i are uniform on the stencil of the flux, then the pure

fluid Euler scheme for phase Σk has the same uniform velocity
and pressure after one time step.

A slight variant of this property was considered in [21]. We assume that it is
possible to identify a wave structure, and a numerical contact discontinuity
so that the Lagrangian flux can be defined,

F lag(U, V ) = F (U, V )− σ(U, V )U∗(U, V ).

It is clear that if the velocity and pressure of the phase within one com-
putational cell are in equilibrium, the Lagrangian flux is uniform. These
two properties are obviously satisfied by the Godunov’ scheme, Roe scheme,
HLLC scheme, etc.

Since the velocity and pressure of both phases are equal and uniform in
space, the Lagrangian fluxes are constant and some flux indicator cancel (the
velocity is assumed positive):

F lag(U
(1)
i , U

(2)
i+1) = F lag(U

(2)
i , U

(1)
i+1) = F lag(U

(1)
i−1, U

(2)
i ) = F lag(U

(2)
i−1, U

(1)
i ) = F lag,∗
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then
(

β
(1,2)
i−1/2

)+

=
(

β
(2,1)
i−1/2

)+

=
(

β
(1,2)
i+1/2

)+

=
(

β
(2,1)
i+1/2

)+

= 1

and
(

β
(1,2)
i−1/2

)−
=
(

β
(2,1)
i−1/2

)−
=
(

β
(1,2)
i+1/2

)−
=
(

β
(2,1)
i+1/2

)−
= 0

Owing to these simplifications the numerical fluxes and non conservative
terms reduce to:

E (XF )i+1/2 = F (U
(1)
i )

(

max(α
(1)
i − α

(1)
i+1, 0) + min(α

(1)
i , α

(1)
i+1)
)

and

E
(

F lag ∂X

∂x

)

i,bound

= F lag,∗
(

−max
(

α
(1)
i−1 − α

(1)
i , 0

)

+ max
(

α
(2)
i−1 − α

(2)
i , 0

))

.

This reduces again to

E (XF )i+1/2 = α
(1)
i F (U

(1)
i )

and

E
(

F lag ∂X

∂x

)

i,bound

= (α
(1)
i − α

(1)
i−1)F lag,∗

We now notice that F (U
(1)
i ) = F lag,∗ + σU

(1)
i where σ = u = cst. and

denote λ = ∆t/∆x. Thus the scheme (47) reduces to:

(α
(1)
i U

(1)
i )n+1 = (α

(1)
i U

(1)
i )n − λu

(

(α
(1)
i U

(1)
i )n − (α

(1)
i−1U

(1)
1,i−1)n

)

(50)

We then drop superscript (1) and develop this equation for the various com-
ponent of the vector U =

(

1, ρ, ρu, ρE)T . The volume fraction equation
reads:

(α)n+1
i = (α)ni − λu(αni − αni−1)

The mass conservation equation reads:

(αρ)n+1
i = (αρ)ni − λu(αni ρ

n
i − αni−1ρ

n
i−1)

The momentum equation reads:

(αρu)n+1
i = (αρu)ni − λu(αni ρ

n
i u

n
i − αi−1nρ

n
i−1u

n
1,i−1)
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¿From these last two equations, it is obvious that:

un+1
i = uni

The velocity does not change, in agreement with what was expected. Now
we consider the energy equation:

(αρE)n+1
i = (αρE)ni − λu(αni ρ

n
i E

n
i − αni−1ρ

n
i−1E

n
i−1)

Using the fact that the velocity does not evolve, we can eliminate the kinetic
energy in the total energy. Thus, last equation can be rewritten in terms of
internal energy:

(αρe)n+1
i = (αρe)ni − λu(αni ρ

n
i e

n
i − αni−1ρ

n
i−1e

n
i−1)

We now introduce an equation of state (EOS). The stiffened gas EOS is able
to describe gases, liquids and solids. It can be written as:

ρe = (P + γP∞)/(γ − 1)

with
1

γ − 1
=

α

γ1 − 1
+

1− α
γ2 − 1

γP∞
γ − 1

=
αP

(1)
∞

γ(1) − 1
+

(1− α)P
(2)
∞

γ(2) − 1

where γ(1), P
(1)
∞ (resp.γ(2), P

(2)
∞ ) are the thermodynamical parameters of Σ1

(resp. Σ2).
Since the pressure is uniform at time level n, and since the parameters of

the equation of state are constant too, a sufficient condition for the pressure
to not evolve is:

αn+1
i = αni − λu(αni − αni−1)

which is in perfect agreement with the numerical update of the volume frac-
tion obtained previously. The overall scheme satisfies perfectly the uniform
pressure and velocity flow.
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5.2 Flow in a uniform volume fraction field

In the particular case of two-phase flow with uniform volume fraction field, if
we do not account for the relaxation terms, we expect that the fluids evolve
freely, as they were evolving in a one dimensional duct if they were alone.
So we must recover the Godunov scheme for the Euler equations when the
volume fraction is uniform.

Under uniform volume fraction condition we have:

E (XF )i+1/2 = α
(1)
i F (U

(1)
i , U

(1)
i+1)

and

E
(

F lag ∂X

∂x

)

i,bound

= 0

By eliminating α
(1)
i the scheme (47) reduces to

U
(1),n+1
i = U

(1),n
i − λ(F (U

(1)
i , U

(1)
i+1)− F (U

(1)
i−1, U

(1)
i )) (51)

which is readily identified to the Godunov scheme.

6 Test problems

The method works for all tests of references [21, 24]. We have retained here
the most important ones corresponding to various flow situation in shock
tubes, the ”water faucet test problem” of Ransom, a sedimentation problem
and Rogue’s test case to show that the method works for very different flow
conditions.

6.1 Shock tubes with pure fluids and with mixtures

The tests are done with a uniform mesh of 200 cells. The materials are
governed by the stiffened gas equation of state: P = (γ − 1)ρe− γP∞. The
parameters of the gas are γ = 1.4 and P∞ = 0 while for the liquid they are
γ = 4.4 and P∞ = 6.108Pa.

The first shock tube involves a uniform volume fraction initial condition
as shown on Fig. 9. The diaphragm separates two mixtures of equal vol-
ume fractions (α = 0.5). The left and right part of the shock tube contain
fluids with a very strong pressure difference. The gas and liquid densities
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are 50kg/m3 and 1000kg/m3 respectively in the entire domain. The initial
pressure in the high pressure chamber (left) is 109Pa and 105Pa in the low
pressure chamber (right).

We use the second order variant of the method as described in section
4. For this first run, we do not use any pressure and velocity relaxation
procedure. The results are shown on the figure 9, and the numerical solution
of each fluid is compared to the exact one. The exact solution is obvious :
each fluid evolves in a constant cross section duct and is governed by the
Euler equations. Perfect agreement is obtained.

Then, we run the same test with the relaxation procedure of reference [24].
Now the fluids have an infinite drag coefficient and the pressure relaxation is
instantaneous. The results are shown on the Figure 10. The volume fraction
varies across the rarefaction and shock waves. This behaviour is in perfect
agreement with our previous results using a different scheme [21] and pressure
and velocity relaxation procedures.

We now use the same initial conditions as in the previous test problem,
but we change the initial volume fraction of the various fluids. An initial
discontinuous profile is imposed. The left part of the shock tube contains
the same liquid as before with an initial pressure of 2. 108 Pa and an initial
volume fraction of αl = 1 − ε (ε = 10−6). Its right part is filled with a
gas at 105 Pa with an initial volume fraction of αg = 1 − ε. This situation
corresponds to a nearly pure liquid on the left high-pressure chamber and
a nearly pure gas on the low pressure right chamber. We want to check
if the method is again able to solve interface problem between nearly pure
materials. The results are shown on the figure 11 and are obtained with
the second order scheme combined with the pressure relaxation procedures
of reference [24] as was done previously. We again obtain perfect agreement
with the exact solution.

We now redo the same test under the same initial conditions with a dis-
continuity in volume fraction. Contrarily to the previous calculations, we
do not use any relaxation procedure as in [24], nor solve the ODE system
(39). In other words, we take λi = 0 in equation (35). This means that
the two–phase control volume does not contain any internal interface. The
only interfaces come from one of the cell boundary and its contribution to
the evolution of the solution is controled by (34) only. In abscence of the
relaxation terms (35), each fluid will retain its own pressure, velocity, etc,
because there is no interaction between fluids. There is no drag force between
the fluids, and of course no pressure relaxation. Hence, this test puts into
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evidence the contribution of the non conservative terms appearing in (34)
only, that is the terms related to the interfaces that cross cell boundaries.
The results are displayed on Figure 12. As expected, the two fluids have
very different pressure and velocities. They also have very different profiles
because they do not have the same initial conditions, nor equation of state,
and they evolve in different volumes. In the left part of the shock tube, the
liquid is nearly pure and is expanded by a strong rarefaction wave. The solu-
tion of this rarefaction wave is in excellent agreement with the one obtained
with a pure liquid on the left left and a gas on the right . In the left part
of the shock tube, the gas is expanded too. It accelerates near the interface
because its volume varies in space and time. Indeed, the interface has a large
velocity, and during its propagation, it is smeared by numerical diffusion.
This numerical diffusion zone corresponds to a diverging nozzle where the
gas is again expanded by geometrical effects.

We now consider the right part of the shock tube. A shock wave propa-
gates into the gas due to the liquid–gas interface motion. The liquid existing
in the right chamber in a negligible volume is moved too by a fast shock wave
that is initiated in the stiff converging nozzle associated to the numerical dif-
fusion zone.

The most interesting result of this test is that the coupling between the
gas in the right part of the tube and the liquid on the left is achieved perfectly
at the interface. The non–conservative terms (34) are able to restore the
interface condition by the only fact that the volume fraction is discontinuous.
The matching between the gas and the liquid variables at the interface is
clearly shown on the magnified view of figure 13.

These results mean that the numerical model is able to deal with multi-
phase mixtures into non equilibrium velocities as well as interface problems
separating pure or nearly pure materials. Up to our knowledge, it is the first
model able to deal with mixtures and interfaces under a unique formulation.

6.2 Ransom test problem

The water faucet problem consists of a vertical tube 2 m in length. The
top has a fixed liquid velocity (10 m/s) and a liquid volume fraction of 0.8.
The bottom of the tube is opened to atmospheric conditions. Initially, the
tube is filled with a uniform column of liquid water at a velocity of 10 m/s
surrounded by a gas at volume fraction of 0.2. From these initial conditions,
gravity effects are considered and provoke a lengthening of the liquid jet. The
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gas and liquid are treated as compressible fluids with the same parameters
and equation of state as for the liquid-gas shock tube test problem. Exact
and numerical results are shown on the figure (14).

The numerical solution shows an excellent agreement with the exact one
even if the fluid compressibility necessitates the use of small time steps.
Under mesh refinement, the solution converges to the exact one, contrarily to
models involving pressure equality between phases and having a conditional
domain of hyperbolicity.

6.3 Sedimentation case

We consider a tube filed with air and water. The tube is vertical and closed
on top and bottom. Its length is 1 m. The mesh has 100 cells.

At initial time, the volume fraction of each phase is uniform and equal to
0.5. The initial velocity is 0 m/s, the initial pressure of both phase is 105 Pa.
The air density is 1 kg/m3, that of water is 1000 kg/m3. At t = 0, we set up
the gravity g = 10 m/s−2, so that the heavy fluid falls down, and the light
one moves up. At steady state, the tube should be filled with pure air in the
upper half domain and with water on the remaining half tube. We show on
Figure 15 the volume fraction and pressure after at initial time and after 1.5
s. Here, we use the pressure equilibrium procedure. The results of Figure 15
show that the method is able to separate fluids under body forces and fulfill
interface conditions, starting from an ideal mixture.

6.4 Rogue test case

We consider here a vertical tube filled with air, see Figure 16. In the middle,
a bed of dense and small solid particles is settled. A shock wave propagates
in the tube from the bottom. At some time, it crosses the bed of particles,
hence pressure disturbances and drag effects make the particle move. At
the same time, the incident shock wave refracts, a transmitted wave propa-
gates through the bed, and a reflected waves propagates backwards. During
the propagation of the transmitted wave, drag effects and volume fraction
modification weaken the propagated shock, while the bed of particle moves.

To visualise the pressure evolution due to this very complex phenomena,
two pressure gauges are installed, one before the particle bed, one after it.
Their locations are 4.3 cm before the bottom of the particle bed, and 11 cm
after it. The bed thickness is 2 cm.
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The particle are modelled as compressible particle, with the same param-
eters as for water.

The drag effects on the particles are modelled with the drag force

Fd =
3

4
Cd
ρ(1)

dp

(

1− α(1)
)

∣

∣

∣

∣

u(1) − u(2)

∣

∣

∣

∣

(

u(1) − u(2)

)

.
The various coefficients and parameters of the experimental setup are

given in Table 3. The superscript (1) stands for the ambient gas, and (2) for
the particles.

There exists experimental results about this configuration, see Rogue [17,
18]. No exact solution is known, of course. In Figure 17, we have reported
the experimental results for the pressure and computed ones. They are in
good agreement.

Parameter Value
Air preshock density 1.2 Kg/m3

incident shock mach number 1.3
Particle density 1050 Kg/m3

Particle diameter (dp) 2 mm
Particle bed thickness 2 cm
Initial gas volume fraction in the bed 0.35
Drag coefficient (Cd) 0.6

Table 3: Parameters for the Rogue test cas

The accuracy of the computed results could be improved by adding gran-
ular pressure and energy to the model. Doing this, the method would couple
two more complicated systems than the Euler equations. This type of work
comes out of the scope of this paper. For addition of extra physics and
hydrodynamics to the model see [23].

7 Conclusions, perspectives

This paper describes a new philosophy for the modelling and numerical res-
olution of heterogeneous media. We have successfully applied it to interface
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problem and compressible multiphase mixtures. We believe that this con-
cept may be applied to other physical problems of physical and mathematical
importance.

The extension to multidimensional problems is possible [1]. The only real
modification, compared to the present developments, is about the coefficients
Pi±1/2(Σp,Σq). They are defined as, for an interface between two compu-
tational cells, say between ]xi−1/2,j−1/2, xi+1/2,j−1/2[×]yi−1/2,j−1/2, yi+1/2,j−1/2[
and ]xi+1/2,j−1/2, xi+3/2,j−1/2[×]yi−1/2,j−1/2, yi+1/2,j−1/2[, that is {xi+1/2,j−1/2}×]yi−1/2,j−1/2, yi+1/2,j−1/2[

Pi±1/2,j−1/2(Σp,Σq) = E
(∫ yi+1/2,j−1/2

yi+1/2,j−1/2

X(xi+1/2, s)ds

)

which can be evaluated in the same way as in the present paper.
The problem of the relaxation coefficient is more interesting. In the one

dimensional situation, they are defined as the average number of internal
interfaces. In the multidimensional case, using once more the same argument
as here, they are the average area of internal bubbles in the x and y directions.
It is interesting to note that the one dimensional case can be interpreted in
the same way. It is also noticeable that these quantities have already been
introduced in the litterature, see [6] for example.
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A Proof of a Lax Wendroff theorem

We show the following result

Theorem A.1. We consider the semi–discrete scheme (32–33– 34–35). We
define W∆ by

W∆(x, t) = W n
i if (x, t) ∈]xi−1/2, xi+1/2[×[tn, tn+1[.

Thus, if we assume that, for ∆t
∆x

fixed,

• the sequence W∆ is bounded in L∞(R+ × R),

• there exists W ∈ L2(R× R+)loc such that W∆ → U ,

• U is piecewise regular,

• the probability law of the flow is known and the relaxation coefficients
remain bounded,

• if Pi+1/2(Σp,Σq) has the functional form Pi+1/2(Σp,Σq) = Ppq(α
(p)
i , α

(q)
i+1)

with Ppq continuous and Ppp(α, α) = α, Ppq(α, α) = 0 if p 6= q

Then, the limit solution is a weak solution of the problem, i.e., for any ϕ ∈
C1(R× R+)4,
∫

R×R+

Wj
∂ϕ

∂t
+Fj(Wj)∇ϕ−

∫

R
Wj(x, 0)ϕ(x, 0) = E

(∫

R×R+

(F (Wj)− σWj)∇Xjϕ

)

, j = 1, 2.
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Proof. Let ϕi = ϕ(xi). We have

∑

i

∆xϕi
dW

(j)
i

dt
+
∑

i

ϕi
(

E (XiF ))i+1/2−(E (XjF ))i−1/2

)

−
∑

i

ϕi
(

E
(

F lag ∂X

∂x

)

)

i+1/2
= 0.

(52)
The flux E (XiF ))i+1/2 is defined by (23) can be written in short as a

sum of terms like βPF . The term
(

E
(

F lag ∂X

∂x

)

)

i+1/2
is the sum of of “non

conservative” terms (25) and (26) and “relaxation” terms (27). The non
conservative terms can be written as a sum of differences of terms of the
type βPF lag.

The difference between

S =
∑

i

∆xϕi
dW

(j)
i

dt
+
∑

i

ϕi
(

E (XiF ))i+1/2−(E (XjF ))i−1/2

)

−
∑

i

ϕi
(

E
(

F lag ∂X

∂x

)

)

i+1/2

and the same expression Sexact obtained with the exact probabilities Pexact
is the sum of terms like β

(

P − Pexact
)

F and β
(

P − Pexact
)

F lag. Then (52)
can be rewritten as

0 = Sexact + S − Sexact.

I- We first show that

Sexact →
∫

R×R+

Wj
∂ϕ

∂t
+Fj(Wj)∇ϕ−

∫

R
Wj(x, 0)ϕ(x, 0)−E

(∫

R×R+

(F (Wj)− σWj)∇Xjϕ

)

for the Godunov flux.

Recalling that
(

E (XjF ))i+1/2−(E (XjF ))i−1/2

)

−
∑

i

(

E
(

F lag ∂X

∂x

)

)

i+1/2

is the expectancy of

N(ω)−1
∑

l=2

∫ t+s

tn

∫ ξl+1+s σ(U li ,U
l+1
i )

ξl+s σ(U l−1
i ,U li )

X

(

∂U

∂t
+
∂F

∂x

)

dxdt

+

∫

CBB′
X

(

∂U

∂t
+
∂F

∂x

)

dxdt

see equation (18) and section 2.2, and since ϕ does not depend on ω, the
index of the realisation, we see that

∑

i

ϕi
(

E (XjF ))i+1/2 − (E (XjF ))i−1/2

)

−
∑

i

ϕi
(

E
(

F lag ∂X

∂x

)

)

i+1/2

53



is the expectation of

N(ω)−1
∑

l=2

∫ t+s

tn

∫ ξl+1+s σ(U li ,U
l+1
i )

ξl+s σ(U l−1
i ,U li )

ϕiX

(

∂U

∂t
+
∂F

∂x

)

dxdt

+

∫

CBB′
ϕiX

(

∂U

∂t
+
∂F

∂x

)

dxdt

Similarly, ϕi
dW

(j)
i

dt
is the expectancy of ϕi

dXU

dt
, so that grouping the terms,

we get that (52) is the expectancy of

∑

i

∆xϕi
dU

(j)
i

dt
+

N(ω)−1
∑

l=2

∫ t+s

tn

∫ ξl+1+s σ(U li ,U
l+1
i )

ξl+s σ(U l−1
i ,U li )

ϕiX

(

∂U

∂t
+
∂F

∂x

)

dxdt

+

∫

CBB′
ϕiX

(

∂U

∂t
+
∂F

∂x

)

dxdt.

(53)
Now the index ω is fixed, so using the classical arguments of the Lax Wendroff
theorem, and integrating in time, we see that, provided the probability law
of the flow is known, we have

Sexact →
∫

R×R+

Wj
∂ϕ

∂t
+Fj(Wj)∇ϕ−

∫

R
Wj(x, 0)ϕ(x, 0)−E

(∫

R×R+

(F (Wj)− σWj)∇Xjϕ

)

II- Then we consider the remaining terms S − Sexact and show that

S − Sexact → 0.

As previously noted, they are sums of terms like

ϕi

({

β
(

P − Pexact
)

F

}

i+1/2

−
{

β
(

P − Pexact
)

F

}

i−1/2

)

and

ϕi

({

β
(

P − Pexact
)

F lag

}

i+1/2

−
{

β
(

P − Pexact
)

F lag

}

i−1/2

)

.
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These terms are difference terms, so the same arguments as for the classical
Lax Wendroff theorem also apply. We note that almost every where, under
the assumptions of TheoremA.1, that

{

β
(

P − Pexact
)

F

}

i+1/2

→ 0

because P − Pexact → 0 almost everywhere.
III- The relaxation terms contributes to

∑

i

∆xϕiΛi

(

F lag(U
(2)
i , U

(1)
i )− F lag(U

(1)
i , U

(2)
i )
)

Since U is bounded and since U is almost everywhere regular, we have

F lag(U
(2)
i , U

(1)
i )− F lag(U

(1)
i , U

(2)
i )→ 0

almost everywhere. Thanks to the Lebesgue dominated convergence theorem,
they contributes to zero in the limit of a mesh refinement. This ends the
proof.

If we assume now that the flux F is only consistent with the continuous
flux, and the same for F lag. The difference between

∑

i

∆xϕi
dW

(j)
i

dt
+
∑

i

ϕi
(

E (XiF ))i+1/2−(E (XjF ))i−1/2

)

−
∑

i

ϕi
(

E
(

F lag ∂X

∂x

)

)

i+1/2

and the same expression with the Godunov flux is the sum of differences like

ϕi

({

βP
(

F − FGod
)

}

i+1/2

−
{

βP
(

F − FGod

}

i−1/2

)

.

Then the same arguments as before applies. This justifies the scheme when
the flux are not the Godunov scheme.

Similarly, the theorem can be extended to the second order scheme be-
cause the basic ingredient we have used is the conservation of the non aver-
aged numerical scheme, and the continuity of the probabilities P.
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Figure 9: Shock tube with two mixtures and uniform volume fraction. Second
order scheme of section 4. No pressure and velocity relaxation procedures
are used. Numerical solution with symbols. Exact solution with lines. The
single phase behaviour of the Euler equations is recovered.
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Figure 10: Shock tube with well mixed materials of the figure 9. Second
order scheme of section 4. Pressure and velocity relaxation procedures of
reference [24] are used.
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Figure 11: Shock tube with interface separating nearly pure materials. Sec-
ond order scheme. Pressure and velocity relaxation procedures of [24] are
used. Exact solution with lines, numerical solution with symbols
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Figure 12: Shock tube with interface separating nearly pure materials. Sec-
ond order scheme. No pressure and velocity relaxation procedures are used.
The exact solution is shown on the figure 11. Numerical solution with sym-
bols. Each fluid has its own behaviour, but at the interface, the pressure and
velocity interface conditions are automatically fulfilled.
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Figure 13: Magnified view of the pressures and velocity profiles near the
interface for the test of the figure 12. Liquid solution with diamond symbols.
Gas solution with lines. The interface conditions are automatically fulfilled.

 

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0 0.5 1 1.5 2

V
ol

um
e 

F
ra

ct
io

n

Position (m)

Figure 14: Exact (full lines) and numerical solution (with 100 and 4000 cells)
represented by symbols for the Ransom test problem.
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Figure 15: Volume fractions and pressures at times t = 0s and t = 1.5 s for
the sedimentation problem. Cross symbols : water, + : air.
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Figure 16: Experimental set up, Rogue test case
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Figure 17: Comparison between the experimental results and the computa-
tional ones.
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