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ations in non linear problems : appli
ation to�uid �ow problemsR. AbgrallSeptember 22, 2008Abstra
tThis paper deals with the 
omputation of some statisti
s of the solutions of linear and nonlinear PDEs by mean of a method that is simple and �exible. A parti
ular emphasis is given onnon linear hyperboli
 type equations su
h as the Burger equation and the Euler equations.Given a PDE and starting from a des
ription of the solution in term of a spa
e variable anda (family) of random variables that may be 
orrelated, the solution is numeri
ally des
ribed byits 
onditional expe
tan
ies of point values or 
ell averages. This is done via a tessellation of therandom spa
e as in �nite volume methods for the spa
e variables. Then, using these 
onditionalexpe
tan
ies and the geometri
al des
ription of the tessellation, a pie
ewise polynomial approx-imation in the random variables is 
omputed using a re
onstru
tion method that is standardfor high order �nite volume spa
e, ex
ept that the measure is no longer the standard Lebesguemeasure but the probability measure. Starting from a given s
heme for the deterministi
 versionof the PDE, we use this re
onstru
tion to formulate a s
heme on the numeri
al approximationof the solution.This method enables maximum �exibility in term of the PDE and the probability measure.In parti
ular, the s
heme is non intrusive, 
an handle any type of probability measure, evenwith Dira
 terms. The method is illustrated on ODEs, ellipti
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onve
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e term . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Example of the Euler equations 207.1 Sho
k tube like test 
ases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217.2 Sho
k-turbulen
e intera
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 CPU 
onsiderations 239 Con
lusions 231 Introdu
tionWe are interested in solving linear and non linear PDE, su
h as
∂u

∂t
+

∂f(u)

∂x
= ν

∂2u

∂x2
+ S(x) t > 0, x ∈ RInitial and/or boundary 
onditions (1)with ν ≥ 0 and S is a sour
e term. Examples are given by a transport equation with f(u) = au, S =

0, the Burgers equation with f(u) = 1
2u2, the heat equation where f = 0 or even a Lapla
e equationwhere f = 0 and a time independent solution. Of 
ourse, in ea
h 
ase, the boundary 
onditionshave to be adapted to the 
ase under study.In this paper, we assume in addition that the initial 
ondition is a random variable u0 := u0(x, ω)where ω ∈ Ω a probabilisti
 spa
e. We assume that u( . , ω) has a known distribution law dµ whi
hmay or may not have a density. Examples are given by the uniform distribution, the Gaussiandistribution, of a 
ombination of a pdf with a density with Dira
-like distributions. In that 
asethere is no density. In this work, we assume to know the pdf. The problem of knowing thedistribution law of the solution of (1) is a di�
ult problem in general whi
h is still open up to ourknowledge.There are many situations where one wants to estimate some statisti
s on the solution of aPDE. Consider the �ow around an air
raft for example. The boundary 
onditions (in�ow ma
hnumber, Reynolds number, some geometri
al parameters) may only be known approximately eitherin a nozzle �ow or a true �ight. In hyper-soni
s, the equation of state or the vis
ous model play animportant role and they are sometimes known very approximately. The same is true for multiphase�ows. One may also wish to �extrapolate� experimental results whi
h are partialy known to �ow
onditions that are not 
ontained in the experimental data base : what is the 
on�den
e one mayhave ? The question is not only to know the sensitivity of the solution of (1), but also to tounderstand the importan
e (i.e. the weight) of these variations. In other terms, assuming thelikely-hood of relative variations, how 
an we weight their in�uen
e on the solution ?The aim of this paper is to propose a general method whi
h enables to 
ompute (approximationsof) the statisti
s of the exa
t solution with the smallest possible modi�
ation of an existing 
ode.In parti
ular we are interested in developing general purpose methods able to easily handle, withlittle or no 
ode/s
heme modi�
ation, the following list:2



1. the pdf is general and may 
hange either in time or through some optimisation loop forexample,2. the pdf may or may have a density, may or may be not 
ompa
tly supported, or 
an be knownonly trough an histogram,3. The initial solution may depend on several 
orrelated or un
orrelated random variables.4. no modi�
ation of the 
ode has to be done when one 
hanges the pdf,5. as little as possible modi�
ation of an existing deterministi
 
ode/method is needed.Namely, when one approximates (1) or more 
omplex 
onservation systems, the 
oding e�ort is puton the spatial dis
retisation, the approximation of the �ux and the time approximation.The problem (1) is a very 
rude approximation of the above mentioned problem. Our aim isto develop a general methodology that 
ould easily be extended to these more 
omplex physi
alproblems.In most engineering situations, the numeri
al method is at most se
ond order a

urate. Sayingthis, we have in mind the 
ase of a non linear problem of hyperboli
 type or possibly with se
ondorder terms but whi
h role is signi�
ant only in a small part of the 
omputational domain. Theprototype example is again (1) with ν << 1. In engineering appli
ations, this is the Navier Stokesequations. In these 
ases, sin
e deterministi
 methods are generally se
ond order a

urate in timeand spa
e, our belief is that there is no need to have a method able to 
ompute statisti
al quantitieswith an extremely high a

ura
y. The best would be to have a method where the dominant sour
eof error 
omes from the deterministi
 method. The aim of this paper is to propose a method thatis able to 
ombine all these requirements.The paper is organised as follow. First we review several existing te
hniques. In a se
ondse
tion, from several 
omputational remarks, we propose a general framework to a
hieve our goal.This framework is illustrated by several examples, ranging from standard ODEs, to Euler equations,via an ellipti
 problem and several s
alar hyperboli
 problems. Every time this is possible, errorwith respe
t to the exa
t solution are given.2 Review of existing te
hniquesIn many 
ases, the de�nition of the physi
al problem is not fully known. This may be the 
ase forseveral reasons in
luding:
• The geometry may be known only partially. Imagine that the body surfa
e is rough, one 
an
ertainly parametrize the roughness by some random parametrisation
• The boundary 
onditions may be partially known only, for example in the 
ase of �u
tuationsof some parameters,
• Some 
onstants in the model 
an be un
ertain, think for example of a turbulen
e model orthe parametrization of the equation of state. This is a very important pra
ti
al problem forindustry. 3



In ea
h 
ase, even if the model, hen
e the numeri
al method . . . , su�ers from de�
ien
ies, there isstill a need to 
ompute and simulate !In order to ta
kle this issues, there are 
urrently several te
hniques available in the engineering
ommunity, and this is a very a
tive resear
h topi
.One te
hnique relies on polynomial 
haos expansion. Assuming that the random inputs datawhi
h depends on spa
e x ∈ A ⊂ R
d and a a random parameter, say the boundary 
onditions to�x ideas, is de�ned on a probabilisti
 spa
e (Ω,A, P ) and has a �nite varian
e, we 
an de�ne the
ovarian
e matrix

C(x, y) = E(X(x, .)X(y, .)), for x, y ∈ A.If fk is the k�th eigenfun
tion
∫

A
C(x, y)fk(y)dy = λkfk(x),one 
an write the Karhunen-Loève expansion of X,

X(x, ω) =

∞
∑

k=0

√

λkfk(x)ζk(ω) (2)where the ζk are un
orrelated Gaussian random variables. Then, following [1℄, one 
an expand thesolution of (1) as
u(t, x, ω) = a0Γ0 +

∞
∑

i1=1

ai1Γ1(ζ1(ω)) +

∞
∑

i1=1

∞
∑

i2=1

ai1i2Γ2(ζ1(ω), ζ2(ω))

+ . . .

+

∞
∑

i1=1

∞
∑

i1=1

. . .

∞
∑

ik=1

ai1i2...ikΓk(ζ1(ω), ζ2(ω), . . . , ζk(ω))

+ . . .

(3)
The fun
tions Γk are de�ned by

Γk(ζ1, ζ2, . . . , ζk) = (−1)keζ·ζT ∂ke−ζ·ζT

∂ζ1 . . . ∂ζk
.The idea is, after trun
ation both in the random input and (3), to introdu
e this relation into (1),then to use a spe
tral method (be
ause of the form of the Γk). There are other versions of thispolynomial 
haos, see for example [2, 3℄.In our opinion, there are at least three drawba
ks to this approa
h. First, it is not 
lear at allwhat should be the right trun
ation level in the expansion (3), see for example [4℄. Se
ond, if onehas a good numeri
al method to solve one problem, the numeri
al strategy has to be revisited fromA to Z to go to another one, whi
h is not a

eptable from an engineering point of view. It is alsonot 
lear how to handle dis
ontinuities in the formulation. The last one is that if one 
hanges thestru
ture of the input random fun
tion, every thing has to be restarted from s
rat
h. This is the
ase in parti
ular when new informations are introdu
ed to the system.The se
ond problem of the previous approa
h, that the method is intrusive, 
an be ta
kled bya method whi
h is in between the spe
tral expansion that has been sket
hed above and the Monte4



Carlo method. One 
hooses a �good� set of random realisations and one run the baseline numeri
als
heme for these random parameters. Sin
e the output of the whole 
omputation is to evaluateexpe
tation of a fun
tional f of the the solution, say the pressure distribution to �x ideas, thesefun
tional depend on ζ1, . . . , ζN . The random parameters are 
hosen su
h that the expe
tan
y
E(f) =

∫

Ω
f(ζ1, . . . , ζN )dµ
an be evaluated easily with a good a

ura
y. This amounts to �nd quadrature points for thisintegral. These quadrature points are related in general to zeros of some orthogonal polynomials.The 
urse of dimensionality 
an be ta
kled by mean of the Smolyak quadrature formula, for example.This path has been explored by several resear
hers, see for example [5℄.In our opinion, one of the weakness of this te
hnique is that if the probability density fun
tionsare not smooth enough � this may o

ur in some 
ombustion problems, see [4, 6℄ for example�, the
onvergen
e of the integral may be very slow.In both 
ases, an other major drawba
k is the following: the pdf is in general not known, sothat the whole pro
ess 
ollapses. The numeri
al pro
edure may be one part of a more general loopin whi
h a learning pro
ess is implemented, via some optimisation loop for example. Clearly, on
ethe expansion (2) has been 
hosen, there is no spa
e for any learning pro
ess so that the expe
tedresults of the whole methodology 
an be disappointing. How 
an we 
onstru
t a numeri
al method,able to handle true �uid problems, for whi
h a learning pro
ess 
an be implemented ?3 Prin
iples of the method3.1 Some 
omputational remarksLet dµ a probability measure and X a random variable de�ned on the probability spa
e (Ω, dµ).Assume we have a de
omposition of Ω by non overlapping subsets Ωi, i = 1, N of stri
tly positivemeasure:

Ω = ∪N
i=1Ωi.We are given the 
onditional expe
tan
ies E(X|Ωi). Can we estimate for a given f , E(f(X)) ? Weassume X = (X1, . . . ,Xn)The idea is the following: For ea
h Ωi, we wish to evaluate a polynomial Pi ∈ R

n[x1, . . . , xn] ofdegree n su
h that
E(X|Ωj) =

∫

Rn 1Ωj
(x1, . . . , xn)P (x1, . . . , xn)dµ̃

µ(Ωi)
for j ∈ Si (4)where dµ̃ is the image of dµ and Si is a sten
il asso
iated to Ωi. 1This problem is reminis
ent of what is done in �nite volume s
hemes to 
ompute a polynomialre
onstru
tion in order to in
rease the a

ura
y of the �ux evaluation thanks the MUSCL extrapo-lation. Among the many referen
es that have dealt with this problem, with the Lebesgue measure1for example dµ is the sum of a Gaussian and a Dira
 at x0,

Z

Rn

P (x)dµ̃ = α
1

√

2πσ

Z

R

P (x)e−
(x−m)2

2σ dx + (1 − α)P (x0)5



dx1 . . . dxn, one may quote [7℄ and for general meshes, one may quote [8, 9℄. A systemati
 methodfor 
omputing the solution of problem (4) is given in [10℄.Assume that the sten
il Si is de�ned, the te
hni
al 
ondition that ensure a unique solution toproblem (4) is that the Vandermonde�like determinant (given here for one random variable for thesake of simpli
ity)
∆i = det

(

E(xl|Ωj)

)

0≤l≤n,j∈Si

.is non zero. In the 
ase of several random variable, the exponent l above is repla
ed by a multi�index.On
e the solution of (4) is known, we 
an estimate
E(f(X)) ≈

N
∑

j=1

∫

Rn

1Ωj
(x1, . . . , xn)f

(

P (x1, . . . , xn)

)

dµ̃.We have the following approximation results : if f ∈ Cp(Rn) with p ≥ n then
∣

∣

∣

∣

E(f(X)) −
N
∑

j=1

∫

Rn

1Ωj
(x1, . . . , xn)f

(

P (x1, . . . , xn)

)

dµ̃| ≤ C(S)max
j

[

µ(Ωj)
p+1

p
]for a set of regular sten
il whi
h proof is straightforward generalisation of the approximation results
ontained in [11℄.In all the pra
ti
al illustrations, we will use only one or two sour
es of un
ertainty even thoughthe method 
an be used for any number of un
ertain parameters, this leading to other knownproblems su
h that the 
urse of dimensionality. The spa
e Ω is subdivided into non overlappingmeasurable subsets. In the 
ase of one sour
e of un
ertainty, the subsets 
an be identi�ed, via themeasure dµ, to N intervals of R whi
h are denoted by [ωj, ωj+1]. The 
ase of multiple sour
es 
an be
onsidered by tensorisation of the probabilisti
 mesh. This formalism enables to 
onsider 
orrelatedrandom variables, as we show later in the text.Let us des
ribe in details what is done for one sour
e of un
ertainties. In the 
ell [ωi, ωi+1], thepolynomial Pi+1/2 is fully des
ribed by a sten
il Si+1/2 = {i + 1/2, i1 + 1/2, . . .} su
h that in the
ell [ωj, ωj+1] with j + 1/2 ∈ Si+1/2 we have

E(Pi+1/2|[ωj , ωj+1]) = E(u|[ωj , ωj+1]).It is easy to see that there is a unique solution to that problem provided that the elements of
{[ωj , ωj+1]}j+1/2 ∈ Si+1/2 do not overlap, whi
h is the 
ase. In the numeri
al examples, we 
onsiderthree re
onstru
tion me
hanisms :

• a �rst order re
onstru
tion: we simply take Si+1/2 = {i + 1/2} and the re
onstru
tion ispie
e-wise 
onstant,
• a 
entered re
onstru
tion: the sten
il is Si+1/2 = {i − 1/2, i + 1/2, i + 3/2} and the re-
onstru
tion is pie
e�wise quadrati
. At the boundary of Ω, we use the redu
ed sten
ils

S1/2 = {1/2, 3/2} for the �rst 
ell [ω0, ω1] and SN−1/2 = {N − 1/2, N − 3/2} for the last 
ell
[ωN−1, ωN ], i.e. we use a linear re
onstru
tion at the boundaries.6



• An ENO re
onstru
tion : for the 
ell [ωi, ωi+1], we �rst evaluate two polynomials of degree 1.The �rst one, p−i , is 
onstru
ted using the 
ells {[ωi−1, ωi], [ωi, ωi+1]} and the se
ond one, p+
i ,on {[ωi, ωi+1], [ωi+1, ωi+2]}. We 
an write (with ωi+1/2 = ωi+ωi+1

2 )
p+

i (ξ) = a+
i (ξ − ωi+1/2) + b+

i and p−i (ξ) = a−i (ξ − ωi+1/2) + b−i .We 
hoose the least os
illatory one, i.e. the one whi
h realises the os
illation min(|a+
i |, |a−i |).In that 
ase, we take a �rst order re
onstru
tion on the boundary of Ω.Other 
hoi
es are possible su
h as WENO-like interpolants. Again, the 
ase of multiple sour
e ofun
ertainties 
an be handled by tensorisation.3.2 A general strategyLet us start from a PDE of the type

L(u, ω) = 0 (5)de�ned in a domain K of R
d, subje
ted to boundary 
onditions. Sin
e the dis
ussion of this se
tionis formal, we put the di�erent boundary 
onditions of the problem in the symbol L. The term ωis a random parameter, i.e an element of a set Ω equipped with a probability measure dµ. In (5),the un
ertainty is weakly 
oupled with the PDE, i.e. ω does not depend on any spa
e variables.However, the measure dµ may depend on some spa
e variable. The examples we have in mind aresu
h that for a given realisation ω0 ∈ Ω, L(u, ω0) = 0 is a �standard� PDE, su
h as the Lapla
eequation, Burgers equation, the Navier Stokes equations, et
. To make things even more 
lear, andto give an example, let us 
onsider the heat equation

∂T

∂t
= div (κ∇T ) + S(t, x), t > 0, x ∈ K ⊂ R

dwith Diri
hlet boundary 
onditions
T = g on ∂Kand initial 
onditions

T (x, 0) = T0(x).In this example, κ, the sour
e term S, the boundary 
ondition g, the domain K and the initial
ondition T0 may be random. For any realisation of Ω, we are able to solve the heat equation bysome numeri
al method. What we are looking for is, for example, statisti
s on the approximatesolution T when ω follows a given probability law.We are given a numeri
al method for solving L(u, ω0) = 0, say
Lh(uh, ω0) = 0.for any ω0 ∈ ΩThis gives birth to a method for solving (5) that we denote Lh(uh, ω) = 0. On
e this is done,we have to dis
retise the probability spa
e Ω: we 
onstru
t a partition of Ω, i.e. a set of Ωj,

j = 1, . . . , N that are mutually independent
µ(Ωi ∩ Ωj) = 0 for any i 6= j7



and that 
over Ω
Ω = ∪N

i=1Ωi.We assume µ(Ωi) > 0 for any i. Our problem is to estimate E(uh|Ωj) from L(u, ω) = 0.For example, if an iterative te
hnique is used for solving the deterministi
 problem, say
un+1

h = J (un
h),this leads to

un+1
h (ω) = J (un

h, ω),so that
E(un+1

h |Ωj) = E(J (un
h)|Ωj).In the examples we have in mind, the operator J is a su

ession of additions, multipli
ations andfun
tion evaluations. The average 
onditional expe
tan
ies, as we have explained in the previousse
tion, enable to 
ompute approximations of the average 
onditional expe
tan
ies of any fun
tional,so that the evaluation of E(J (un

h)|Ωj) 
an be done in pra
ti
e: we are able to 
onstru
t a sequen
e
(

E(un+1
h |Ωj)

)

n≥0
. If this sequen
e 
onverges in some sense, the limit is the sought solution.This example is also useful for 
larifying what we are not looking for. It may well be that thefun
tional 
oming into J depend on several instan
e of uh, for example the value of uh at severalmesh point lo
ations. In our method, we need that the probability law be the same all over the
omputational domain K, or we would need joint probabilities between the various variables 
ominginto play. If this is doable in theory, we do not believe it is doable in pra
ti
e. Moreover, for all theexamples we have in mind, it is reasonable to assume that the probability law is the same all overthe 
omputational domain.In the next se
tions, we provide examples of realisations of this program on ellipti
, paraboli
and hyperboli
 equations with some non linear examples.4 Example of an ODEOur �rst example is a simple ODE equation with initial 
ondition,

du

dt
= f(u, t)

u(x, t = 0, ω) = u0(x, ω)
(6)where f is assumed to be smooth enough for having a unique solution. Here, we assume that f is

C1, but this assumption is 
ertainly too strong and 
ould be lower by a deeper analysis, This is notour point here.The equation (6) is dis
retised, for any ω, by an ODE solver. To make things simple, but withoutloss of generality, assume that we use the �rst order Euler forward method
un+1(ω) = un(ω) − ∆t f(un(ω), tn).Then we have, for any Ωi

E(un+1|Ωi) = E(un|Ωi)) − ∆t E(f(un, tn)|Ωi). (7)8



The problem is to evaluate E(f(un, tn)|Ωi). This 
an be done via a numeri
al quadrature thanksto the re
onstru
tion we have developed in se
tion 3.1. Let us give an example, say
f(u, t) =

{

u(u − 1
2)(1 − u) if u ∈ [14 , 3

4 ]
0 else. (8)In that example,

u∞ = lim
t→+∞

u(t) =







u0 if u0 < 1
4

1
2 if 1

4 ≤ u0 < 3
4

u0 if u0 > 3
4 .From this, we see easily that if u0 is random with probability law dµ, the repartition fun
tion of

u∞ is
Φ(u) := P (ω|u∞(ω) ≤ u) =















P (s ≤ u) if u < 1
4

P (s ≤ 1
4) if 1

4 ≤ u < 1
2

P (s ≤ 3
4) if 1

2 ≤ u < 3
4

P (s ≤ u) if u ≥ 3
4Take the s
heme is (7) with a third order re
onstru
tion (with a 
entered sten
il) ex
ept on theboundaries of Ω where, if Ω0 and ΩN are the boundary 
ells, we take the following sten
ils

• for Ω0, S = {0, 1},
• for ΩN , S = {N − 1, N}.The results are independent of the high order re
onstru
tion formula be
ause the solution limitvalue u∞ = 1

2 is stable.A third order quadrature Gaussian formula is used in the 
ase of a probability with a density
∫ b

a
f(x)dx ≈ b − 1

2

(

f
(a + b

2
+ θ(b − a)

)

+ f
(a + b

2
− θ(b − a)

)

)

, θ =
1√
3
.An optimal 6th order Gauss quadrature formula 
ould have been used, but sin
e the time steppingis only �rst order, and sin
e the numeri
al examples we 
onsider are steady, there is no need to dealwith optimally order quadrature formula. When there is no density, for example if dµ = fdx+Cδa,the regular part of µ is dealt with the previous formula, and the singular one by an ad ho
 one.In order to illustrate the method, we 
onsider three pdfs. Here, we set dµ = f(x)dx

• a uniform distribution :
f(x) = 1[0,1],

• A Gaussian distribution on [−2, 2] with 0 mean and varian
e σ = 1,
f(x) =

e−x2/2

∫ 3

−3
e−s2/2ds

,

• A Poisson distribution on [0, 2],
f(x) = 1[0,2]

e−x

1 − e−2
,, 9



In these example, any of the three re
onstru
tion methods presented in se
tion 3.1 works �ne. Wehave 
hosen the 
entered one for the numeri
al illustration sin
e it is a priori the most a

urate one.We show how the method approximates the values P (s ≤ 1
4) and P (s ≤ 1

2). We have 
hosen avery 
rude way of the repartition fun
tion of the random variable u∞,
Ψ(U∞) ≈

∑

j

P (s ∈ [ωj, ωj+1]su
h that u∞(s) ≤ U∞).This explains the stair
ase like behavior of the 
urves of Figure 2 where we have displayed theresults for these three pdfs. This method is a

urate however when 1/4 and 1/2 are mesh points inthe probability spa
e, in whi
h 
ase the only approximation holds on the quadrature de�ning theterms P (s ∈ [ωj , ωj+1]). We see on �gure 1 that the method has the a

ura
y of the quadratureformula (fourth order a

urate) when the probability mesh meet this 
ondition; this test has been
ondu
ted with the Gaussian pdf. Other results obtained for the other pdfs and 101 points aredisplayed in Table 1.

0.01 0.1
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-12

-10

-8
P1
P2
slope 4

Figure 1: Error in the evaluation of Ψ(U∞) when U∞ ∈]14 , 1
2 [ and U∞ ∈]12 , 3

4 [ for optimal meshes.
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Figure 2: Repartition fun
tion for the EDO (8) and the three pdf.10



The error between the exa
t and numeri
al results for P1 = Ψ(1
4) and P2 = Ψ(3

4) in the 
ase ofthe Gaussian distribution is displayed in Figure 1.
Ψ(U∞) Uniform Gauss Poisson

U∞ ∈]14 , 1
2 [ 1

2

erf(1/4) − erf(−1)erf(1) − erf(−1)

1 − e−1/2

1 − e−2exa
t ≈ 0.64458450997090083670 ≈ 0.2558207969
omputed 0.25 0.644584509951823 0.246768643147764

U∞ ∈]12 , 3
4 [ 3

4

erf(3/4) − erf(−1)erf(1) − erf(−1)

1 − e−3/4

1 − e−2exa
t ≈ 0.90043482545390904212 0.6102173907Computed 0.75 0.900434825432325 0.615653168991007Table 1: Numeri
al values found for Ψ at the 
riti
al points. There are 101 points in the probabilitymesh.At �rst glan
e, it might look strange that a 
entered re
onstru
tion works well for a problem thatadmits dis
ontinuous results. It is well known that su
h re
onstru
tion su�ers from a Gibbs�likephenomena. However here, the problem a bit spe
ial. The two solutions u∞ = 0 and u∞ = 1 areunstable and the way we have pro
eed avoid them. We have kept only the the stable one u∞ = 1
2 .More over, if u ∈ [14 , 3

4 ] we have u∞ = u0 and the initial 
ondition is linear. Thus the re
onstru
tionis exa
t here. If any os
illation develop ( i.e. when in the transient, we are out are out of [14 , 3
4 ]),the solution will be attra
ted to the 
losest stable limit solution, i.e. u∞ = 1

2 . two possible 
ases5 Example of an ellipti
 problemAs an illustration, we 
onsider the simple problem
(κ(x, ω)u′)′ = 0 , x ∈]0, 1[
u(0) = 0 , u(1) = 1

(9)where ω ∈ Ω is random with a given pdf, and κ(x, ω) > κ0 > 0 on ]0, 1[×Ω whi
h solution is
u(x, ω) =

∫ x
0

1
κ(x,ω)dx

∫ 1
0

1
κ(x,ω)dx

.Equation (9) is approximated on the mesh xi = i∆x, i = 0, . . . , N by (the mesh is uniform)
κi+1/2(ui+1 − ui) − κi−1/2(ui − ui−1) = 0 1 ≤ i ≤ N − 1

u0 = 0, uN = 1that is
ui =

κi+1/2ui+1 + κi−1/2ui−1

κi+1/2 + κi−1/2

u0 = 0, uN = 1,

(10)11



and κj+1/2 := κ(xj+1/2, ω).The rest of the method is similar, and we have used the same quadrature formula as in theprevious paragraph.In the numeri
al examples, we have 
hosen
κ(x, ω) = 4(x − 0.5)2 + 0.33 cos

(2πω

4

)

(x − 0.5) + 0.01Here κ ≥ 0.003. The pdf is a Gaussian distribution with mean 0.5 and varian
e 0.5.In �gure 3, we show the result obtained for 101 points in the spa
e dire
tion and 21 points inthe probability dire
tion. Again a 
entered re
onstru
tion is used.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

mean
mean-sigma/2
mean+sigma/2

Figure 3: Mean and varian
e for 101 points in the spa
e dire
tion and 21 points in the probabilitydire
tion.The exa
t solution is
u(x, ω) =

arctan
(x−ϕ

δ

)

+ arctan
(ϕ

δ

)

arctan
(1−ϕ

δ

)

+ arctan
(ϕ

δ

)with
ϕ = 0.5 − 0.33

8
cos(2πω), δ =

√

0.0025 −
(0.35

8

)2
cos2

(2πω

4

)

.so that it is easy to estimate the L∞ and L2 errors of the mean and varian
e. This is done on �gure4. The results are se
ond order a

urate with respe
t to the spa
e variable. We see also that theresults are almost independent of the dis
retisation in the probability dire
tion. �Converged� resultsare obtained already with 9 
ells in the probability dire
tion.6 Example of the 
onve
tion and Burgers equationsOur next example is the Burgers equation (1). In order to illustrate the strategy, we start from aMUSCL type predi
tor�
orre
tor se
ond order s
heme.
∂u

∂t
+

∂f(u)

∂x
= 0 t > 0, x ∈ R

u(x, t) = u0(x) x ∈ R

(11)12
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(a) (b)Figure 4: Errors in the mean and varian
e. (a) represents the error for a �xed spa
e dis
retisation(∆x = 10−2) and a varying probability dis
retisation (from 10 to 80) points. (b) represents theerror for a �xed probability dis
retisation (50 points) and a varying spa
e dis
retisation (from 20 to
101 points). The slope −2 is represented. The results are obtained with a 
entered re
ontru
tion.with periodi
 boundary 
onditions on [0, 2π]. For the 
onve
tion problem, we take f(u) = u and forthe Burgers equation, we take f(u) = u2/2. The interval [0, 2π] is subdivided into equally spa
edsub�intervals [xi−1/2, xi+1/2] where xj+1/2 =

xj+xj+1

2 with xj = j∆x.A standard 
onservative formulation for (11) writes, in its �rst order version,
un+1

i = un
i − λ

(

f̂(un
i , un

i+1) − f̂(un
i−1, u

n
i )

) (12)with λ = ∆t/∆x. The se
ond order predi
tor 
orre
tor s
heme we use is
u

n+1/2
i = un

i − λ

2

(

f̂(un,L
i+1/2, u

n,R
i+1/2) − f̂(un,L

i−1/2, u
n,R
i−1/2)

) (13a)
un+1

i =
un

i + u
n+1/2
i

2
− λ

(

f̂(u
n+1/2,L
i+1/2 , u

n+1/2,R
i+1/2 ) − f̂(u

n+1/2,L
i−1/2 , u

n+1/2,R
i−1/2 )

) (13b)where
uR

j+1/2 = uj + δj/2, uL
j−1/2 = uj − δj/2and δj = L(uj+1 − uj , uj − uj−1) and L is a standard limiter. In this paper, we have 
hosen thesuperbee limiter,

L(a, b) = max
(

0,min(2a, b),min(a, 2b)
)

.The �ux is the Murman�Roe �ux with Harten's entropy �x for the Burgers equation,
f̂(a, b) =

1

2

(

f(a) + f(b) − λ(a, b)(b − a)

) (14)13



where, if f̃ ′(a, b) is the Roe average,
λ(a, b) =







|f̃ ′(a, b)| if |f̃ ′(a, b)| > ε

|f̃ ′(a, b)|2 + ε2

2ε
else.Here, we have taken ε = 0.01.We have also run a 
ase where S(x) = (sin2(x))′. Here, the �ux in (14) is modi�ed by repla
ing

f(a) and f(b) by
f(a) − sin2(xa), f(b) − sin2(xb)where xa and xb are the physi
al lo
ations of the unknown a and b, i.e.

f̂(a, b) =
1

2

(

f(a) + f(b) − λ(a, b)(b − a)

)

− 1

2

(

sin2(xa) + sin2(xb)

)

. (15)Assume now that the initial 
ondition, though still periodi
 of period 2π depends on a randomparameter. Ea
h of (12), (13a) and (13b) is similar, so we 
on
entrate on (12). We have again, forany physi
al 
ell [xi=1/2, xi+1/2] and any Ωj,
E(un+1

i |Ωj) = E(un
i |Ωj) − λ

(

E
(

f̂(un,L
i+1/2, u

n,R
i+1/2)|Ωj

)

− E
(

f̂(un,L
i−1/2, u

n,R
i−1/2)|Ωj

)

) (16)This amounts to 
omputing the �ux expe
tan
ies, E
(

f̂(un,L
i+1/2

, un,R
i+1/2

)|Ωj

). For this, again, were
onstru
t the variables un,L
i+1/2 and un,R

i+1/2 with the te
hnique of se
tion 3.1. In the numeri
alexamples, we have either used a third order a

urate 
entered re
onstru
tion or the se
ond orderENO one in the probability dire
tion. As expe
ted, the 
entered re
onstru
tion generates (slight)os
illations. We only display the results with the ENO one. In the probability dimension, we usea Gaussian quadrature formula with two points. Hen
e, if we have Nprob 
ells in the probabilitydire
tion, we need 2Nprob solution evaluations. The time step, i.e. λ is 
hosen by a worst 
ases
enario, but this strategy might be over pessimisti
. Further studies are 
ertainly needed.6.1 Conve
tion problemThe example is the 
onve
tion equation (velo
ity of unity) with an initial 
ondition u0. Sin
e theexa
t solution is u(x, t) = u0(x− t) it is easy to evaluate the error on the mean and the varian
e. Inthe example, the pdf is N (1, 1). In �gure 5, we have displayed the results for 11, 21 and 41 pointsin the probability spa
e. The results are se
ond order a

urate in spa
e. We have also displayedthe same results but for a Gaussian law with the same mean and the varian
e σ = 0.1. In that
ase, the gradient of the pdf is larger and then the quadrature formula (two point Gaussian) isless e�
ient. This 
ould be improved by an adapted mesh, i.e. a mesh where the measure, withrespe
t to the probability law, of ea
h probability 
ell would be the same [12℄. However, the resultsof Figure 6 indi
ate the same type of errors. This is 
on�rmed by �gure 7 where the same 
ase arererun with a �xed number of mesh points and 11 to 41 points in the probability spa
e. Note thatthe same example gives, in the deterministi
 
ase, the following errors : 0.799 10−2 in the max normand 0.7919 10−3 for the L2 norm. This shows that the main sour
e of error 
omes from the spa
edis
retisation, as in the ellipti
 
ase. 14



100
1e-05

0.0001

0.001

0.01

Mean Linf
Mean L2
Variance Linf
Variance L2
slope 2

100
1e-05

0.0001

0.001

0.01

0.1

Mean Linf error
Mean L2 error
Variance Linf error
Variance L2 error
slope 2

11 points in prob spa
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e
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Mean L2
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41 points in prob spa
eFigure 5: Errors in mean and varian
e for the 
onve
tion problem with the pdf N (1, 1), the CFLnumber is 0.75. The �nal time is t = 1.5 and the domain is [0, 2π]. The slope limiter is 
enter inthe probability spa
e.6.2 Burgers equationThe initial 
ondition is
u0(x, ω) = |a(ω)| sin(2x − a(ω))with a(x) = x. This results in a a dis
ontinuous solution with a dis
ontinuity lo
alised at xω = a(ω).Three pdfs were used:1. A Gaussian pdf: N (m,σ) with m = 1 and σ = 0.1 or 1 
onditioned by x ∈ [−3, 3].2. A dis
ontinuous pdf de�ned by dµ = f

wdx with
f(x) =















0 if x ≤ −1
0.1 if x ∈] − 1, 0.5[
1 if x ∈ [0.5, 1[
0 if x ≥ 1and w = 0.65 (i.e. the weighting fa
tor so that the integral of f/w is equal to 1.)15



100
1e-06

1e-05

0.0001

0.001

0.01

Mean Linf
Mean L2
Variance Linf
Variance L2
slope 2

100
1e-06

1e-05

0.0001

0.001

0.01
Mean Linf
Mean L2
Variance Linf
Variance L2
Slope 2

11 points in prob spa
e 21 points in prob spa
e
100

1e-06

1e-05

0.0001

0.001

0.01
Mean Linf
Mean L2
Variance Linf
Variance L2
Slope 2

41 points in prob spa
eFigure 6: Errors in mean and varian
e for the 
onve
tion problem with the pdf N (1, 0.1), the CFLnumber is 0.75. The �nal time is t = 1.5 and the domain is [0, 2π]. The slope limiter is 
entered inthe probability spa
e.On Figure 8, we have represented for the two types of pdfs. The aim of this pi
ture is to show thehighly os
illatory behavior of the solution. To get them, we had to use the ENO�like limiter : the
entered one produ
es os
illations as expe
ted. In the 
ase of the Gaussian pdfs, the realisationsare the same, but their weights are di�erent. Figure 9 is more interesting. We show, for ea
hexample, the mean, mean ±σ/2 of the initial solutions and the 
omputed solutions at time 1.5. The
omputations have been done with 101 spa
e 
ells and 21 
ells in the probability dire
tion. Clearlythe solutions are very di�erent. One should not be surprised by the highly os
illatory behavior ofthe �Gaussian� solution with σ = 1. A 
lose look at Figure 8 plus the understanding that the pdf isnot very peaky in that 
ase helps to understand that the weight of the dis
ontinuities for amplitudes(and phases) near ±3 play an important role in the evaluation of the means.6.3 Burgers equation with sour
e termThis example is taken from [5℄. The initial 
ondition is
u(x, 0) = β sin x16
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σ = 0.1 σ = 1Figure 7: Errors in mean and varian
e for the 
onve
tion problem with the pdf N (1, σ), σ = 0.1and 1. The �nal time is t = 1.5 and the domain is [0, 2π], the CFL number is 0.75 and there are 51mesh points. The slope limiter is 
entered in the probability spa
e.with periodi
 boundary 
onditions on [0, π]. The exa
t steady solution is
u∞(x, β) = lim

t→+∞
u(x, β, t) =

{

u+ = sin x if 0 ≤ x ≤ Xs

u− = − sin x if Xs ≤ x ≤ πwhere the sho
k lo
ation is
Xs =

{

arcsin
√

1 − β2 if − 1 < β ≤ 0

π − arcsin
√

1 − β2 if 0 < β ≤ 1If |β| ≥ 1, the solution is smooth.In [5℄ is 
onsidered the 
ase of β random where α =
β

1 − β2
is Gaussian with mean m andvarian
e σ. We have

β =







−1 +
√

1 + α2

2α
if α 6= 0

0 else.We see that β de�ned as this is always in [−1, 1], so a sho
k always exists. The density of the sho
klo
ation is
p(x) =







1

σ
√

2π

1 + β2

(1 − β2)2
e−[(x−m)2/2σ2] sin(x) if x ∈ [0, π],

0 elseIn the numeri
al se
tion, we are going to evaluate the repartition fun
tion x 7→ Pσ,m(Xx ≤ x). Aneasy 
al
ulation shows that
Pσ,m(x) = P (Xs ≤ x) =

1

σ
√

2π

∫ − cosx

sin2 x

−∞
e−

(x−µ)

2σ2 dx =







erf(− cosx

sin2 x
−m

σ
√

2
) if 0 ≤ x ≤ π

2

1
2 + erf(− cosx

sin2 x
−m

σ
√

2
) if π

2 ≤ x ≤ π17
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with the Gaussian pdfs with the dis
ontinuous pdfFigure 8: Plot of ea
h realisation for the Gaussian pdfs and the dis
ontinuous one.In order to show the �exibility of the method, we also 
onsider the sum of the previous pdf anda Dira
 measure. More pre
isely,
dµ =

1

I

(

1

σ
√

2π
e−[(x−m)2/2σ2]1[A,B]dx + θδωc

) (17a)where ωc ∈]A,B[, θ ≥ 0, I is the normalizing fa
tor
I =

∫ B

A

1

σ
√

2π
e−[(x−m)2/2σ2]dx + θ. (17b)and δωc is the Dira
 distribution at ω = ωc. In that 
ase, the repartition fun
tion is

Pµ(x) = Pσ,m(x) + θ1[Y,B]where Y is the sho
k lo
ation for α = xc, i.e.
Y = π − arcsin

(

√

1 − β2

)

, xc =
β

1 − β2
.The simulation is initialised with, in ea
h 
ell, the expe
tan
y of the spatial averaged solution.The solution develops sho
ks. Sin
e the method is a �nite volume one, these sho
ks are at bestknown with an a

ura
y of O(∆x). We have adopted the following pro
edure to lo
alize the sho
kposition: for ea
h 
ell [ωj−1/2, ωj+1/2], we determine the 
ell ]xij−1/2, xij+1/2[ su
h that

∣

∣

∣

∣

∣

E(ui+1|Ωj) − E(ui|Ωj)

∆x

∣

∣

∣

∣

∣is maximal. If this o

urs at two di�erent lo
ations, we 
hoose the smallest index. On
e the index
ij is known, we 
ompute

p(xij ) = P (x ≤ xij )18
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ontinuous pdfFigure 9: Means and mean ±σ
2 for ea
h pdf.Note that for many j, |ij − ij+1| > 1: this means that there are �holes� in the numbering sin
e thesho
k dete
tion pro
edure may well de
ide that for j and j + 1, the sho
k has the same lo
ation.See �gure 10 for an illustration. It order to �ll these gaps and to be able to draw xi 7→ p(xi), wemake a linear interpolation between two 
onse
utive gaps. The numeri
al repartition fun
tion is
ompared to the exa
t repartition one, and to the repartition fun
tion 
omputed for the exa
t sho
klo
ations 
orresponding to the events ωl+ωl+1

2 , l = 1, · · · .In the �rst set of example, we have 
onsidered a Gaussian distribution with m = 1 and σ = 1for 101 and 151 mesh points in spa
e, and 5 and 11 points in the probability dire
tion. This
orresponds to 100 and 150 'spa
e� 
ells and 4 and 10 �probability� 
ells. The point repartition isuniform in both dire
tions. The results are displayed in Figure 11. A good agreement is obtained:remember that the sho
k lo
ations are at most known with an O(∆x) error. A 
lose inspe
tion ofthe �gure indi
ates that for x ≈ π, the numeri
al repartition fun
tion has a dis
ontinuity whi
h isnot existing in the exa
t one. The explanation is the following: our variables are the expe
tan
iesof the averaged variables : E(ui|Ωj), whi
h 
an be though as the value of ui at ωj+1/2 =
ωj+ωj+1

2 .Hen
e, the sho
k lo
ation for this random parameter does not 
orrespond to the random parameter
α for whi
h xl = arcsin

(

√

1 − β2(α)

). The di�eren
e is the most visible for the �rst row. This is19
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Figure 10: Illustration of the sho
k lo
ation me
hanism. The theoreti
al sho
k lo
ation is repre-sented by the dotted 
urve. The bla
k spots are the sho
k lo
ations. Consider the thi
k verti
al line: there is a jump of 2∆x when going to ωj to ωj+1 so that there is no ωl for whi
h xi 
orrespondsto a sho
k for the realisations in [ωl, ωl+1].why we have also plotted the exa
t value of the repartition fun
tion for the ωj+1/2. We also see ajump, and the agreement is now very good.The Figure 12 represents the same type of results for the singular pdf (17). Here θ = 1 and
ωc = 0.5. This 
orresponds to the sho
k lo
ation xc ≈ 1.997874914. The same 
omments as in theprevious examples 
an be given.7 Example of the Euler equationsThe method is easily extended to the Euler equations. The base s
heme is the se
ond Roe s
hemeusing the superbee limiter on the 
hara
teristi
 variables. We use the wave interpretation of theRoe s
heme to 
onstru
t the se
ond order s
heme (see [13℄). Even-though the s
heme use the
onservative variables W = (ρ, ρu,E) for the time evolution, the main variables are the density ρ,the velo
ity u and the pressure p. The total energy is related to these variable via an equation ofstate. Here, we have 
hosen a perfe
t gas EOS,

E =
p

γ − 1
+

1

2
ρu2,where the ratio of spe
if heats γ may be non uniform. In that 
ase, we use the version of the Roes
heme developed in [14℄. Examples of this type have been su

essfully run, but are not reportedhere.In order to show the versatility of our method, we have run the method on two 
lasses ofexamples, namely a sho
k tube like problem, and the intera
tion of a density sine wave with a sho
k(as proposed by Shu and Osher). 20
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spa
e: 151, prob: 5 spa
e: 151, prob: 11Figure 11: Solution for the double nozzle problem obtained with the Gaussian law. Numeri
: distribution obtained from the solver. Exa
t : exa
t distribution. Exa
t from prob mesh :distribution at the points ωj+1/2.The un
ertainty parameters are now two dimensional, and in the examples we show, we have
hosen a Gaussian type law where the un
ertainty are 
orrelated. The pdf is
f(ω1, ω2) = Ke−

ω2
1−(ω2−1)2−ω1(ω2−1)

2 , (18)and K is a normalizing 
oe�
ient and (ω1, ω2) ∈ [−3, 3]2.7.1 Sho
k tube like test 
asesThe initial 
onditions are
• If x ≤ 0.5,

ρ(x) = ρL(1 + 0.2 sin(ω1))
u(x) = uL

p(x) = pL(1 + 0.2 sin(ω2))21
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spa
e: 101, prob: 11 spa
e: 201, prob: 11Figure 12: Solution for the double nozzle problem obtained with the law (17). Numeri
 : distributionobtained from the solver. Exa
t : exa
t distribution. Exa
t from prob mesh : distribution at thepoints ωj+1/2.
• else

ρ(x) = ρR(1 + 0.2 sin(ω1))
u(x) = uL

p(x) = pR(1 + 0.2 sin(ω2))with γ = 1.4. The density of the random variables ω1 and ω2 is given by (18). The CFL 
onditionis set to 0.75. The results are displayed in Figure 14. Again several resolution in the probabilitydire
tions have been run. Again, we see that the results, on that 
ase, are indistinguishable.7.2 Sho
k-turbulen
e intera
tionThe initial 
onditions are, with ρL = 3.857143, uL = 2.629369, pL = 10.333333 and uR = 0.,
pR = 1., and sloc = −4,

• If x ≤ sloc,
ρ(x) = ρL

u(x) = uL

p(x) = pL

• else
ρ(x) = 0.5 (1 + 0.2 sin(5x))
u(x) = uR

p(x) = pR(1.0 + 0.2 sin(ω1 + ω2))On �gure 14, the simulation is done with 400 points in the spa
e dire
tion and 10× 10 or 20× 20 inthe probability spa
e. Again the same 
on
lusion holds: there is little dependen
y on the probabilitydire
tion resolution.
22
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Velo
ity ComparisonFigure 13: Sod tube 
ase with random densities and pressure. Two 
orrelated random variables areused.8 CPU 
onsiderationsFor several of the previous problems, we give on table 2 the CPU 
ost obtained on a Ma
BookPro running at 2.4 Ghz with 2Go of ram and the Intel (10.1) 
ompiler (no option). No parti
ularoptimisation has been performed. This table show that the CPU is rather low.9 Con
lusionsWe have des
ribed and illustrated a general method that enable to 
ompute some statisti
s onthe solution of a PDE or and ODE, linear and non linear. The sour
e of un
ertainty may bemultidimensional. The te
hnique relies on a re
onstru
tion method in the random variable. Thisre
onstru
tion te
hnique is standard in �nite volume s
heme, ex
ept that the measure is no longerthe Lebesgue measure but is the probability law. This method enable to 
onsider random variablethat depend on possibly 
orrelated random variables. The solution des
ription uses the expe
tan
iesof a given fun
tion 
onditioned by the belonging of the random variable to subsets that are mutuallyin dependant and 
overs Ω. 23
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Velo
ity Varian
eFigure 14: Shu and Osher 
ase with a random post sho
k state. Two 
orrelated random variablesare used.Given one problem and an integration method, we have shown how to 
onstru
t a s
heme whi
henable to approximate these 
onditional expe
tan
ies.The method is illustrated on several types of problems, linear and non linear, in
luding theEuler equations. The method is 
heap and �exible. Its a

ura
y is linked to the a

ura
y of there
onstru
tion and the deterministi
 solution method. We show numeri
ally that the main sour
esof errors are still in the deterministi
 s
heme. Correlated sour
e of un
ertainties 
an easily beimplemented in this framework, as well as very general pdfs.In a future work, we will extend this to the Navier Stokes equations, see how the 
ase of manyrandom variables 
an be handled in this framework. Note that [15℄, using a related method, hasalready 
onsidered turbulen
e problems with one or two sour
es of un
ertainties.Referen
es[1℄ R.H. Cameron and W.T. Martin. The behavior of measure and measurability under 
hange ofs
ale in Wiener spa
e. Bull. Am. Math. So
., 53:130�137, 1947.24
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