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The aim of this paper is to develop a class of numerical schemes that work on
triangular finite element type meshes, and which are devoted to the computation
of steady transonic flows. The schemes are extensions of the positive streamwise
invariant scheme of Struijs and are built directly on the system of the Euler equation
for fluid mechanics. They are a blending between a first-order and a second-order
scheme, which is realized from entropy considerations. It is formally second-order
accurate at steady state. Several numerical examples are shown to demonstrate the
stability and accuracy of these schemeg.2001 Academic Press
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1. INTRODUCTION

We are interested in the numerical approximation of the Euler equations of fluid mechatr

in a domain® with boundary conditions,

oW

W‘i‘de(W) =0 t>0andxeQ

WX, 0 =Wo(X)  XeQ @)

boundary conditions  o#<.
The flux 7 = (F, G) and the conserved variables are given by

W = (p, pu, pv, E)T, F(W) = (pu, pu? + p, puv, u(E + p))",
G(W) = (pv, puv, pv?+ p,v(E+ p)T,

wherep is the densityu andv are the components of the velocityis the internal energy,
andE = pe + %,o(u2 +v?) is the total energy. The system is closed by the equation ¢
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state relating the pressupeto the conserved variables,

1
p=(y— 1)(E - SpuP+ vz)) = (y — Dpe.

The ratio of specific heatg is kept constanty = 1.4 in the applications.
The system (1) has to be supplemented by the entropy inequality which translates
second law of thermodynamics,

S Uy  IWwY

at X ay

<0 onQ. (2
Here, the mathematical entropy is given®y= —ph(s) [9], wheres s the physical entropy

s=¢, Iog(ﬁ) + % 3)
p)’
andh is any real-valued function such that

h/ >0 and W < )/_1.

In the practical examples, we takéx) = x. If the flow is smooth, (3) is equivalent to

as as as
and Tadmor has shown [14] that the solution (if it is bounded) adheres to the minim
principle

s(x,t) > min  s(y,0), (5)
ly—xll<tllulloo
where||x|| is the Euclidean norm of and||u||» is theL* norm of the velocity field.

In this paper, we are mainly interested in computing the steady solution of (1). This t
has become aroutine in many modern CFD codes. Many current schemes use ideas for
resolution schemes developed in the 1970s and 1980s by van Leer, Roe, Osher, Harten
Sweby, and many others. The listis enormous, and some of the most significant contribut
have been collected in [10]. However, the quality of the solution is still questionable: sol
apparently simple problems, such as computing the lift and drag of an airfail, still po
difficulty. One reason is that the so-called high-resolution schemes suffer a much too g
entropy production. In fact, they have been devised on scalar 1D problems, then exter
to multiD systems; but their construction relies on “1D ideas.” Another difficult problem |
the sensitivity to the mesh. It is still difficult to construct a 3D mesh of good quality an
consequently, the quality of the solution itself may be questionable in many cases. Henc
is natural to try to develop methods that have as little sensitivity as possible to the regula
of the mesh.

For these reasons, for several years, researchers have tried to incorporate ideas con
in the 1D high-resolution schemes (upwind) into a finite-element-like framework. Some
the major contributions have been made by P. L. Roe, H. Deconinck, D. Sidilkover, and tt
coauthors. These fluctuation splitting schemes, were first developed for a scalar trans
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equation, then formally extended to the system (see [6, 13] for example) by incorporat
as much physics as possible. These schemes share many common features with the
scheme of Hughes or the streamline diffusion methods of Johnson, except for up-wind
These schemes are not constructed by deeply using any particular direction of the r
One advantage is that, at least for scalar equations, one can construct a fully second-c
accurate scheme on triangular meshes with a very compact stencil; the scheme uses
the neighboring nodes.

In our opinion, the maturity of these new schemes is still not sufficient: they may la
robustness, the formulation may not be simple enough, etc. The aim of the present par
to give some elements that might clarify the construction of second-order upwind resid
schemes.

We first give some generalities on fluctuation splitting schemes. In particular, we c
nect them to finite volume schemes and show why they offer more flexibility. We rec
Roe-Struijs—Deconinck linearization [5], give a simple condition that guarantees a L
Wendroff-like theorem, and describe the design principle of our scheme. Then, we re
two important examples of the system N (narrow) and the LDA (low diffusion advectio
system schemes introduced by van der Weide and Deconinck [15] after their scalar ver:
We show they are well defined for a symetrizable system. Barth [2, 4] has shown that f
linear symetrizable system the N scheme is globally and locally dissipative. In the next
tion, we give a different interpretation of the PSI (Positive Stream Wise Invariant) scher
and we show how to extend it to (1). Last, we give numerical examples to illustrate 1
scheme.

2. THE FLUCTUATION SPLITTING SCHEMES

2.1. Generalities

Throughout the paper, we consider a two-dimensional computational danidat is
triangulated. For the moment, we forget the boundary conditions. The set of triangle:
{Ti}j=1,..nt. The mesh points argM; }i_1,.n,. The vertices of a triangl& are M;,, M;,,
Mi,. When there is no ambiguity, they are denoted by their index in théMsfi_1 .,
namelyiy, i», i3, or simply by 1 2, 3. To discretize (1), we consider the following residual

scheme:

Wn+l —Wn
|Ci|#+ Z o =0. (6)
T,MeT

In this equationW" is an approximation ofV(M;, t,), |Ci| is the area of the dual control
volume (see Fig. 1), and the residudi$ are function ofW" and its neighboring values.
The residuals are assumed to fulfill the condition

> af =/Tdiv]—'hdxfor any triangleT, (7)

Mi eT

whereF" is an approximation ofF. In [3], it is shown that under reasonable assumption
on the®[’s (continuity, convergence of" toward F, continuity of 7 on the edges of
T) and the classical assumption of the Lax—Wendroff theorem [11], the numerical solut
converges to a weak solution of (1).
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FIG. 1. The dual cell is obtained by joining the midpoints of the edges starting fprand the centroids of

the triangles containinlyl; as a vertex.

An example is given by the following finite-volume scheme (see Fig. 2 for the notation:
The numerical flux on the edgé/f, M;] is
(F -0 (W) + F -l (W) — Q(WE, Wi, nib ) - (W — W)

1
F(OW Wy, mij) = 5
+

(F 0§ (W) + F - nZ (W) — Q(Wr, Wi, nf) - (W —Wj)). (8)

In (8), we have used the notaticdh- n for ny F(W) + ny G(W), wheren, andny are the
two components afi. Since the boundary @; is closed, the scheme would be the same i

we had set

[ERN

O = Z(F - nfi (W) = F - nfi (W) — Q(Wr, Wi, ) - (W — W)))

(F - nf (W) — F - nf (W) — Q(WE, Wh, n) - (W — Wk) 9)

NI =

T2
+

and the same foF,. In Eq. (9), the indices andk denote the indices of the two vertices of

FIG. 2. Geometrical elements for the finite volume scheme. The nomfpa'ﬂ orthogonal to G, 1] with the

same length. Same fof;.
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T, different fromM;. In the end, we get

S o= 3 Fow-n,

Mi ET1 Mi ET1

wheren; is the inward normal oT; opposite to the nod®;. Here, the approximatio#™
is the piecewise linear interpolant of the flux.

Other schemes that cast immediately into this formulation are the finite-element-|
schemes, i.e., the SUPG schemes and the streamline diffusion method.

The main advantage of the residual formulation is that we are no longer constrail
by the geometry of the mesh, as in the finite volume schemes. Only relation (7) &
the continuity of 7" through the edges are important; hence much more flexibility i
possible.

2.2. The Roe-Struijs—Deconinck Linearization

The parameter vector is given by

Z = (Jp, /PU, /v, oH) = (21, 25, 23, 20)",

whereH = % is the enthalpy. Note th&W = W(Z) andF = F(Z) are quadratic irZ,
1 1
W(Z) = ED(Z)Z, F(2) = ER(Z) -Z, (10)

where D(Z) and R(Z) are matrices that depend linearly @ The matrixD(Z) is a
triangular matrix and is invertible as soon as# 0. The matricedD and R have been
chosen to be the Jacobian matrices\dfresp.F) with respect taZ.

If Z is linearly interpolated o by Z", we set

Fx,y) = F(Z"

and simple calculations show that

_awh Wh
/dw]—"h(x y)dx dy= /AM+B—dxdy

where

—  odF = [ C] = = i+ 2o+ Z3

A=-mW(2), B=_w(W(2) withZ = 3 (11)

More explicitly, we have

(A, B) = R(Z)D"1(2).

Since the Jacobian matrices are functions of the velocity and the enthalpy only, the matr
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A andB are functions of

A/P1U1 + /p2U2 + /p3Us
NN

V/P1v1+ /p2v2 + /p3v3 (12)
NSV

q \//)_1H1+\//)_2H2+\//)_3H3'

Vet /p2+/p3

<l
I

<
I

In the following we set
x| an
Ki = é(AnX + Bny),

wherenl,, niy are the components of the outward unit veatpof the side ofT opposite
to M.

One of the important properties of the linearization is that the matkgesre easy to
compute, and they are diagonalizable, with real eigenvalues.

The eigenvalues df; arex = u, + ¢, uy, Uy. Hence, to show that the matricésalways
have real eigenvalues, because of Eq. (11), it is enough to show that the average spe
sound defined by

c?

1
y—1 2
whereh stands for the average specific enthalpy with the same weight coefficients ac
(12), is a real number. The rests quadratic in speed and is given by

8(J/P1+ /P2 + /P3)? = (U1, Up, U3) P (U1, Uz, U3)" + (v1, vz, v3) P(v1, v2, v3) "

If zz = /p1, €tc., we get

21(22 + 23) 212, —2173
P = —-212 (21 + 23) —237;
—2173 —Z32p 73(z1 + 2)

This matrix is symmetric and positive because its eigenvalues are
M=0 Aa=v+n, Az3=v—0p
with
V= 217y + 2173 + 2325
n? = 2225 + 375 + 375 — BB2023 — 212573 — 23207

We can see thaf? = (212o + 2173 + 2,73)? — 3212,73(21 + 2o + 23) is always positive. If
we left z, andzz constant;? becomes a second-degree polynomial for which the discrirr
inant —3z375(z, — z3)? is negative. The coefficienf? thus has a constant sign, positive.
Moreover,n? < 7375 + 7225 + 7373 < (212 + 2123 + 223)?, so all the eigenvalues d?

are positive. Thus§ > 0 andc? > 0. Hence we get
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ProOPOSITION 2.1. If the densitiesp; are positive, the Roe—Struijs—Deconinck’s lin-
earization is diagonalizable with real eigenvalue matricgs K

Note that the conservation relation (7) reads
T= Z KiZi, (13)
MiET

whereK; is computed via the Jacobian of the fluxes with respe@.to

3. DESIGN PRINCIPLES

In this section, we present three design principles (up-winding, the linear preserv
property, and a monotonicity condition) and give some examples.

3.1. The Up-Winding Property
Following Roe, Deconinckt al., [6] we have that the scheme is upwind if the following
condition is true:

() if all the eigenvalues oK; are negative, the® = 0.

3.2. Second-Order Accuracy at Steady State: The Linear Preserving Condition (LP)
At steady state, scheme (6) satisfies

for any nodeM;, Z @ =0.
T.MeT

For any smooth functiop € C1(R*)*, we have

()

T,MjeT

Settingpd = (p1 + 92 + ¢3)/3, the value of the piecewise linear interpolantgofit the
centroid of T, we have, after having used (7),

Z(pe/dlv]-“hdx dy+> > (o T = 0. (14)

T MeT

To get second-order accuracy at steady state, the second term of equation [14] mu
of the form

> (o —9d) ( > d>T> =0(h?) (15)

M; T.MieT

when the arguments of the residuals are replaced by a smooth solution of (1). Ih {@5),
the maximum diameter of the triangl&és

One way of ensuring this condition is, for any smooth solutéaf (1), to haved (W) =
O(h®) because of (14). This is clear from (14) because (a) the number of vertices in a bour
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domain isO(h~2) for a regular mesh and (b) Eq. (15) requires tigat— ¢oc) @ = O(h*)
which is true sincey, — g = O(h).

This condition is obtained for the SUPG and streamline diffusion schemes because
residual is written

of =pl o7

with BT uniformly bounded independent of the mesh. For a smooth solution of the stee
version of (1), one ha$" = [, div F"(W) dx = O(h%). Indeed, we have

/div}'h(W)dx=/div(}'h(W)—}'(W))dx
T T
=/ (F'"(W) — F(W)) - ndl.
aT

Assuming thatF" is a second-order approximation &, and since the length &fT is
O(h), we get

o = / div F" (W) dx = O(h®).
T

This proof makes clear two facts:

1. The scheme we construct can be second-order accurate only for steady problem
2. The approximatiot" of the flux must be second-order accurate. This is true for th
Roe—Deconinck-Struijs linearization.

The conditiondt = O(h®) is not clear, and probably untrue, for finite volume schemes
because it necessitates geometrical cancellations that are not true in general (except for
regular meshes with geometrical invariance properties).

3.3. The Monotonicity Condition

This condition is very clear for a scalar equation and quite intuitive but difficult t
formalize for a system. The idea is to have a condition that avoids the creation of unphys
oscillations. For a scalar equation, this condition is met, up to a CFL-like condition, if tf
residual sent at nodel; has the structure

o = > Gj(u —uj)

M;eT

with ¢;; > 0 and uniformly bounded. These schemeslafestable under a CFL condition.

In the case of a system, this monotonicity condition is meaningless, but one still want:
avoid unphysical oscillations. Some well-considered schemes admit unphysical solutic
such as the ENO schemes [1], but the constraints are such that one can reasonably €
that these oscillations are weak and vanish when the mesh size tends to zero; and tl
indeed the case in practice.

When a monotonicity condition exists, the schemledsstable. In this paper, we replace
a monotonicity condition by a formal approximation of the inequality (4). If (4) were
numerically true, we would have a discrete version of (5) (under a CFL condition) and sir
s is concave, the scheme would b& stable.
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4. EXAMPLES

We give two examples of upwind schemes: the system N scheme and the system |
scheme of Deconinck and van der Weide [15].

4.1. The System N Scheme
We set
o = K" (W; — W), (16)

whereK; = ATniX + B_niy andW, = D(Z)Zi L In order to recover the conservation relation
(13), we must have

(Z K;) W=>" K W. (17)
i=1,3 i=1,3

To defineW, one has a priori to invert the matrix

K

i=13
which in some cases, may be impossible. When it is possible, we dendtethmy matrix
-1
N = (Z Ki> . (18)
i=1,3

However, we show in Appendix B that, for the Euler equatida$W is always defined.
More precisely, we show that for the scalar product) defined byAo, the Hessian of the
mathematical entrop$ evaluated at the same average state that is used to defindB,
the space of stafe* can be written as

R*=Rro@ H,

where

S =T

_|_

30 +07)

The spaceH is the orthogonal complement gfR for (., .). The projector ontd is given
by

(W, vo)

W) =W —
n( ) <r01 UO)

lo. (19)

1If K is a diagonalizable matrix with real eigenvalués £ LAR) A = diag(™), thenK* = LA*R where
A* = diag(A®).



286 R. ABGRALL

The vectony is Vs evaluated at the average state; it is the (common) left eigenvector
A andB. We also denote by * the projector

(W, vo)

1
W) =
g ( ) <r07 UO)

lo. (20)

It gives the component AV along the entropy wave. The adjoimt of r is given by

(W, ro)
Vo
(ro, vo)

T (W) =W — (21)

and satisfief\gr = 7* Ag.

We can give a meaning to the inverse)of_, ; K", denoted byN. The proof is valid
for a linearized symmetric system and is given in Appendix B.

The N scheme is linearly dissipative when the system is symetrizable. More precisel
the linearization is carried out in the entropy variablesT. Barth [2, 4] has shown that

LEMMA 4.1. If the matrices K are symmetricone has

1
D (VLT =2 > (M, KiVi) + Qn(Va, Vo, Va), (22)
MiET MiET

where

20N (V1, Vo, Va) = —(@TN, @7) + Y ((Vi, Ki* Vi) — (K" Vi, NK{H Vi)
MiET

+ ) (M =KV = (=KW, N(=KD)W). (23)
MieT

The quadratic fornQ) is positive: the N scheme is locally dissipative.

He shows thatachof the three terms in (23) is positive. The proof of Lemma 4.1 is
reproduced in Appendix A.

In the case of alinear problem, the sumgf, K; V;) cancels, and we getgiobal energy
stability result for the N scheme. If we had a linearization ingdh&opy variable V= Vy S,
we could interpre§ >~y 1 (Vi, Ki Vi) as

/ vV, KpaV)'do,
oT

where the “energy?V, K,V) is piecewise linearly interpolated by, K,V)". Hence,
using exactly the same technique as in [3], if the conditions of the Lax—Wendroff theore
are true, then the limit of the numerical solutions satisfies an entropy inequality, namel

2—ts+div(u8) <0.
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4.2. The System LDA Scheme

The straightforward extension of the scalar LDA scheme is given by
o = —K'NoT, (24)

where theN matrix is given by (18). The conservation relation is obviously satisfied. Th
scheme is upwind and LP.
When the linearization is carried out in the entropy variables, and if we set

VA —N(Z Kﬁ\/i) and V- =N (Z Ki_Vi> :

i=13 i=13

we have

NI =

D (VL o) =2 > (VL KiVi) + Qupa(Va, Va, Va) (25)

MieT MieT
with

3 3
2Qipa(V1, Vo, Va) = Y (V= Vi, KF (V= Vi) + > (Vi =V, K (Vi = V7))

i=1 i=1

+ 30 (Vi KTV + KV KV )
MieT

+ 3 (Vi =KV + (=K VL N KOV ). (26)
MieT

Unfortunately,Q, pa is not a positive quadratic form.

4.3. Additional Properties of the LDA and N Schemes

It is also possible to compar@y and 9, pa for a symetrizable system when the lin-
earization is done via the entropy variables.

LEMMA 4.2. We have
O1pa (V1, Vo, V3) < On(V1, Vo, Va).

This result states that the N scheme is more dissipative than the LDA scheme.
have the following additional property.
LEMMA 4.3.

1. If ®; is the residual for the N scheme or the LDA schewehave
(V, m®i (V1, V2, V3)) = (7*V, & (m*Vy, Vo, 7*V3)).

2. The results of Lemmas 4.1 and 4.2 are valid on H Bngl

This result states that we can split the energy contribution of the residuals into tt
contributions along the entropy wave and its orthogonal complement.
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5. AN LP POSITIVE SCALAR SCHEME

In this section, we consider a scalar equation

i—f + (A, Vu) =0. 27)

Letusfirstdescribe in detail the N and LDA schemes on a trighgie sek; = % (A, Nj).
Sincer’=l k; = 0, there are two generic cases: Either only one okitigstrictly positive,
or two of them are strictly positive. The first case is called the “one-target case,” the sec
one the “two-target case.” For the sake of simplicity, let us assumégthat0, andk, > 0
in the two-target case. We have

e One-target case:

o) =@
oY =0
o) =0.

Since—k, > 0 and—ksz > 0, the scheme is positive if

Zk- ~oKj
At——— <1
ICi|
e Two-target case:

@Y = ky(ug — ug)
Y = ka(up — Ug)

oY = 0.
Sincek; > 0 andk; > 0, the scheme is positive if

Zk->0 kj
At—/—— " < 1.
IGi|

The condi'[ionAtZkj -0 lKjl/ICi| < 1is a global positivity condition. Similarly, the LDA

scheme reads
e One-target case:

= —ka(ug — uz) — ka(u1 — u3)

Since—k; > 0 and—ks > 0, the scheme is positive.
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e Two-target case:

®oA — _ Mg
1 k3
OLPA = —Qcp
k3
dLPA = 0.

In this section, we consider a scheme that is a blending between the N scheme ant
LDA scheme. On any triangl€, the residual is written

& =1oN + (1 - 1oPA,

We look forl € R such that the scheme is positive and LP. The conservation constrair
as well as the upwind constraints, are automatically satisfied. The problem is to cdmpu
For this, we follow Sidilkover’s technique [12],

O =1dN + 1 -DHOPPA = (1 + @ -Dry) oV, (28)

wherer; = ®-PA /N,

One-target case. Any value ofl works sincedN = ®-PA for anyi. We setl = 1in that
case.

Two-target case. We have the relations (28) for= 1, 2. Since the N scheme is positive
(with a CFL constraint), the blended scheme may also be positive if

I+A=Dri=11=r))+r;>0

(29)
[+ @ =Dra=1(1-ry)+r>0.

We can write

withe = — € [0, 1]andg = — € [0, 1] anda + B = 1. Setting’ = —®}/ Y, inthe
inequalities (29), we write

I(B+ar)+al—-r)>0
[(+Br)y+pBlL—r)=0.

A solution to this set of inequalities is

I {1 ifr <0 (30)
= at —1) B@A-T)
max(m, P ) else



290 R. ABGRALL

The formulae (30) can be rewritten as

1 ifr <0
=850 ifo<r<1

ar=1

Brar ifl<r

so that an explicit calculation of the residugls = | ®N + (1 — ) ®LPA gives

ol ifr<0 oY ifr <0
P, =<¢({Pd ifO<r<i ®, =<0 fo<r<l1
0 ifl<r, o ifl<r,

which means that in the case> 0, all the residuals are sent either to node 1 or to node -
this is nothing else than the positive streamwise invariant (PSI) scheme.

It is also possible to rewrite the limitérof (30) in different forms. Také < [0, 1[ and
defineg: by

£
1 else

g ifr<g
e (X) = (31)

We also defing as the limit ofg: whené — 1,

T jfr<1

p1(X) = {ﬁ

—oo else

Then we can rewrité of (30) as

I'= min(1, max(g (r1), ¢ (r2))) (32)
= min(1, max(g1(r1), ¢1(r2))).
This remark will be useful in the following.
Another choice of limiter that does not give back the scalar PSI scheme is obtained
applying the formula (32) wherg: is replaced by} given by

voo = X
x| +1°

(33)

namely
I'=min(L, max(¥y (ry), ¥ (r2))). (34)
We note that limiter (32), (31), or (34) satisfies

lim | =1,
¢g‘—>0

which ensure the continuity of the limiter function.
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6. AN LP STABLE SCHEME FOR (1)

6.1. Comments on the System N Scheme

All the numerical experiments that have been conducted with the system N sche
indicate it is a very stable, robust, and monotonic scheme. By saying it is monotonic,
mean that however strong the discontinuities are, there are no pre- or post-discontin
oscillations. In particular, it is a numerical fact that the physical ent®pgllows the
semidiscrete relation

d
|Ci|<d—f) + ). D cis—-s)=0 (35)

I T,MeT MjeT

for some positive numbexs; .
Sincerg is a common eigenvector & and B, we have

(it T) = 3 ol (v Tt (W — W))), (36)
M;eT

where thex:ﬁ are the coefficients for the scalar N scheme whetet; i.e.,

o K"k

ne 21:1,3 kf.

Equation (36) states that the system N scheme is positive on the (linearized) entropy w
Throughout the paper, we assume that a similar relation does exist on the shear
acoustic wave modes; more precisely, we assume that a relationship of the type

(i) < o (v, (W — W) 37)
MjET

holds even if we have been unable to prove it. The first inequality (36) states a monotc
behavior of the projection @b on the entropy wave. The second inequality (37) states tt
same for the projection @b on the acoustic and shear modes.

6.2. Construction of an Entropy Stable LP Scheme

In the following analysis, we set
vi = Vws(W)

and we consider the semidiscrete scheme
dw T
ICil <dt>, + Z o =0,
T.MjeT

where

o] = ¢ 4+ (1d — 0o "M T, (38)
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Here¢ is a matrix the structure of which has to be defined to get a monotonic entropy sta
scheme.
We first left multiply (dW/dt); by v;, and we get

ds

|Ci|(a) + > (w.@l)y=0.

! T,MjeT

The idea is to construétin such a way that

(o 9T) _
oy 2 0. (39)

If it is possible, by combining this inequality with (36) and (37), provided tha®/)/
{vi <I>iN’T) is bounded, we recover formally a bound on the solution, under a CFL-lik
condition. Now we show how it is possible to construct such a métrix

To begin with, recall the decomposition of the state sf&te- Rro & H given, for any

stateW € R*, by

W =n(W)+ JTJ‘(W), nJ‘(W) =|l(W)rg = <<:N’ ZO; o
(W, vo) o
y= (W) =W — o
(ro, vo)

The vectorso andvg are evaluated for an averaged set of Jacobian matficesi B. From
a physical point of view,(W) is the component dfV on the entropy wavey, while 7 (W)
is the sum of the acoustic and shear waves.

The key remark is to notice that the N scheme and the LDA scheme have a sim
expression for this decomposition becaugés a common eigenvector @ and B. More
precisely, we have

3 3
oN = Z KN Kj*ni(VNVi —W,—) + Z K*N Kj’n(VNVi —\7Vj)
J=Lj# J=hA
3 KW — W 3 PR
_ <2J=l,1#l kK| (_' '))r0+ Z K*N Ky (Wi — Wj)
=13k =LA
3 . . 3 - ~
A = — N KINKm (Wi —Wp) — Y KINK (Wi — W)
j=1; ] # =LA
3 KTkl (W — W, 3 PO
_ <ZJ=1,J;&I;<| il(W J)>ro— > KENK(W; — W)).
Dimrjni K j=1; ] #
j=1;j A j=Lj#A

For this reason, we set

C=lirt + 1o (40)
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In other words, the matriX has two components. One acts only on the components ¢
the entropy wave, and the other component only plays on the shear—acoustic waves. T
thanks to Lemma 4.3, we evaluate the entropy production within a single triangle,

(vi, ®i) = (v, €M) + (vi, (1d — D)
= (I (oo (@) + @ =T (w7 (€1%4)))
(12 (vi. 7 (@) + (L= 1) (i, 7 (27>)))

+
T )Y (s o
<|1+(1 (CDN)> ><U" (CDI )>

+ <|2+ (1—|2)m> <vi,71(<DiN)>.

We defind; andl, by the two conditions

e Fori =1,2, 3,
(vi. 7 (2P))
i+ Q=1 —20,
' (vi. (@)
e Fori =1,2, 3,
' LDA
|2+(1—|2)<v"”(®' ) 2o

-_ >
(v (@)~
Following the developments of Section 5, we set

l1 = min(1, max(gs (ry), ¢:(r5), g:(ry)))
lo = min(1, max(ez (r1), ¢z (r2), @z (ra))),

(41)

wherer; = (vi, T(®FPA)) /(vi, 7 (@N)) andr! = (v, 7H(PPA)) /(vi, L (@N)) for i =
1,2,3,& € [0, 1], andy; is defined by (31). Contrary to the scalar case where the value
&, was unimportant, it is not clear whether different valueg @firnish the same value of
[,. Another solution is given by

l1 = min(1, max(¥(ry), ¥ (rz), ¥(r3)))

. (42)
l2 = min(1, max(y (r1), ¥ (r2), ¥ (rs))),

whereys is defined by (33).

Remark 6.1.

1. Inthe continuous case, we hale= (v, dW). Sincev belongs t®Rrg, v is orthogonal
to the acoustic and shear modes of the Euler equations. In the discrete case, howeve
situation is a bit more complex: There is no reason Whyz - ®N) should be zero. When
the flow is smooth({v;, 7+ ®N) is likely to be small, but certainly not when a discontinuity
exists.
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2. We have developed another version of the scheme (referred to ¥sdtigeme later
in this remark), where we replaceby V = Vy(ps). At the continuous level, one has
(V, divF(W)) = p(v, divF(W)) + sdiv(pu), and then

(V, (div F(W))) = p(v, div F(W))
and
(V, 7t (divF(W))) = sdiv(pu).

This suggests that the same numerical technique, wheésereplaced byv;, would be a
very similar scheme ofrg, but would act to limit the mass flow oH. We have imple-
mented this scheme. Its results are indistinguishable from those obtained by the sch
(v-scheme) developed in this section. However, we have preferregtshbeme because
the interpretation of th& -scheme is not clear. Thescheme uses an approximation of
the transport of the physical entropy where a minimum principle exists, whil-teheme
uses an approximation of a conservation operator,

a(ps)

T + div(psu)

for which no minimum or maximum principle exists.

7. BOUNDARY CONDITIONS

To set the boundary conditions, we utilize the fact that a finite volume scheme is aresic
distributive scheme, according to Eq. (9). The inflow and outflow boundary conditions ¢
prescribed via the modified Steger and Warming [8] flux splitting,

FW, W, n) = AW)T - nW + AW ™ - nW,,
and the wall conditions are simply obtained by settjngn) = 0; i.e.,
0
PNk

pny
0

fwaII(W ) n) =

8. NUMERICAL EXAMPLES

We have run this scheme on many examples; all of them are steady computations.
report the most significant ones and compare them with the N scheme, the LDA schenr
first-order finite volume scheme (Roe scheme), and a monotonic upstream-centered scl
for conservation laws (MUSCL) (Roe scheme with MUSCL extrapolation on the primitiv
variables with van Leer limiter). The finite volume schemes use the dual-cell control volur
formulation [8]. For a given problem and variable, the same isolines have been used to o
the pictures whatever the scheme. In all the numerical computations, we have taken
matrix ¢ defined by (42).
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FIG. 3. Mesh for the shock tube problem.

8.1. A Shock Tube Problem

The initial condition consists of two parallel uniform flows, conditions of which are liste
above:

e Top: Mach numbee=24,p=y,p=1
e Bottom: Mach numbet 4,p = %, p=0.25

The conditions on the left boundary are identical to the initial conditions. The flow
everywhere supersonic; no exit boundary condition is needed. The steady solution con
of a shock wave, a contact discontinuity, and a fan. On any line orthogonal to the ini
velocity vector, the solution looks like a 1D Riemann problem. On Fig. 3, we display tl
mesh, on Figs. 4—6, the density, the pressure, and the Mach number.

From these results, it appears clearly that:

o the resolution of the shock between the MUSCL and blended schemes favors the
scheme,

e the resolution of the slip line between the MUSCL and blended schemes without ¢
doubt favors the blended scheme,

e the fan is better represented by the blended scheme because the plateau, whel
solution is constant between the discontinuities, starts earlier for the blended scheme
for MUSCL scheme.

The display of the results for the N scheme illustrates the monotonic behavior of this sche
where as the LDA scheme is clearly not monotonic.



FIG. 4. Density isolines for the shock tube problem. Top: N scheme (left), MUSCL scheme (right). Bottor
LDA scheme (left), Blended scheme (right). N schem&: 9 p < 1.4, MUSCL: 069 < p < 1.40, LDA: 0.61 <
p < 1.42,Blended: 70 < p < 1.40.

FIG.5. Pressure isolines for the shock tube problem. Top: N scheme (left), MUSCL scheme (right). Botto
LDA scheme (left), Blended scheme (right). N schem@&506< p < 1, MUSCL: 024 < p<1,LDA:0.2<p <
1.04, Blended: @5 < p < 1.

296
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FIG. 6. Mach number isolines for the shock tube problem. Top: N scheme (left), MUSCL scheme (righ
Bottom: LDA scheme (left), Blended scheme (right). N schem®:2M < 4, MUSCL: 240 < M < 4.07, LDA:
239< M < 4.27,Blended: 2 < M < 4.0.

8.2. A Transonic Test Case

We take one of the test cases of the Game workshop held at INRIA Rocquencour
1987 [7]. It is the NACA 0012 case, the Mach number at infinittMs, = 0.85, with
a = 1°. The solution has two shocks: one on the top of the airfoil, and a weaker one on

NS
S
BB

QAN
SOAANN
VAN

(a)

FIG. 7. Meshes for the NACA 0012 problem.



298 R. ABGRALL

(a) (b)

FIG. 8. Deviation of physical entropy}{ = s — s,,/S.) for the MUSCL scheme (a) and the blended scheme
(b).

bottom. A slip line comes out of the trailing edge. This case is interesting because the nr
dissipative the scheme, the more symmetric the solution. We present the results on
different meshes. Both are unstructured; one is very irregular (Fig. 7a); the other is mi
more regular (Fig. 7b). Our purpose is to illustrate the effects of the numerical dissipat
and the mesh. Table | gives the minimum and maximum of the Mach number, the pres:s
coefficientc, = (p — poo)/(%poougo), and the entropy deviatiol = (S — Sy)/Sx for the
irregular mesh (Figs. 8-10) and the Mach number for the regular one (Fig. 11). There
three main facts.

1. By looking at Table | and Fig. 8, we see that the entropy has a more physical beha
for the blended scheme than for the MUSCL scheme. There is no numerical artifact (
Fig. 8a, lower and upper shocks). The slip line seems less diffused. We shoulg kage

(2) (b)

FIG. 9. Pressure coefficient for the MUSCL scheme (a) and the blended scheme (b).
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(a) (b)

FIG. 10. Mach number contours for the MUSCL scheme (a) and the blended scheme (b).

Numerically this is violated by both schemes but by an order of magnitude less by
blended scheme; see Table I.

2. The shocks are better resolved because the isolines go into the shock much mor
the blended scheme than for the MUSCL one; see Figs. 9 and 10.

3. When comparing the results of Fig. 10, one can see a strange behavior of the M
number contours. This is due to the large entropy layer created by the MUSCL sche
and the strong dependency of the scheme on the mesh. Compare to Fig. 11, wher
same schemes have been used on a much more regular mesh. There is still a |
entropy layer for the MUSCL scheme, but its influence on the Mach number is mu
weaker.

(a) (b)

FIG. 11. Mach number contours on the regular mesh of Fig. 7b for the MUSCL scheme (a) and the blen
scheme (b).
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TABLE |
NACA 0012 Problem on 7aand b

Irregular Mesh, Figure 7a

Scheme Mach (Min, Max) ¢p (Min, Max) % (Min, Max)
MUSCL 0.053, 134 —1.00, 105 —0.005, 0054
Blended 0022, 139 —1.00, 108 —0.0005, 0052

Regular Mesh, Figure 7b

Scheme Mach (Min, Max)
MUSCL 0.047, 142
Blended 005, 143

Note. Minimum and maximum of the Mach number, the pressure coefficient, and the
entropy deviation.

8.3. Engine Inlet

This is another test case of the Gamm workshop [7]. The conditions are set so that
Mach number at infinity isM,, = 2 and the Mach number at the exit of the engine inlef
is M = 0.27. We display in Fig. 12 the Mach number in the whole computational domai
The solution has a lambda shock at the entrance of the inlet. This lambda shock prodi
a slip line coming out of the triple point. By comparing the solutions of Figs. 12c and 12
it is clear that a slip line is much better resolved by the blended scheme than the MUS
one, even though the mesh is quite coarse; see Fig. 13.

Next, in Figs. 14-16, we see that the location of the secondary shock depends on
scheme. The shock s hardly visible for Roe’s. By increasing strength, we have the N sche
first, then MUSCL, and last the blended scheme. Moreover, the stronger the scheme
further the shock is from the inlet entrance. This is quite consistent with the conclusion
the Gamm workshop: The less diffusive the shock is, the further from the entrance itis.’
have run this case with the LDA scheme; the results are very oscillatory but support
conclusion. In Table II, one can notice that evexif> 0 theoretically, this is not the case
for the new scheme. However, the deviation f&m> 0 is more than an order of magnitude
smaller from the blended than the MUSCL scheme.

Last, the lambda shock is reflected on the wall of the engine. The reflection is mt
clearer for the blended scheme than for the MUSCL one. The shock wave also has n
reflections, but this is difficult to notice on Fig. 12.

TABLE Il
Engine Inlet Problem

Scheme Mach (Min, Max) Pressure (Min, Max) % (Min, Max)
Roe 050, 221 057,576 00,014

N 0.53, 225 058, 606 00, 010
MUSCL 0.48, 226 056, 590 —0.01,016
Blended 038, 227 056, 675 —0.0008, 017

Note. Minimum and maximum of the Mach number, pressure, and entropy devigtion
for the first-order Roe scheme, the N scheme, the MUSCL scheme, and the blended scheme.
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(b)

(c) (d)

FIG. 12. Mach number contours for the first-order Roe scheme (a), the system N scheme (b), the MUS
scheme (c), and the blended scheme (d).

8.4. Flow over a Cylinder

This is another Gamm test case. The Mach number at infinlhgis= 0.38. The solution
should be symmetric with respect to tkeandy axes. The Mach number is always less
than 1, but its maximum is very close to 1. Since the flow is subsonic, the entropy deviat
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FIG. 13. Zoom of the mesh near the inlet entrance.
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FIG. 14. Zoom of the Mach number contours for the first-order Roe scheme (a), the system N scheme
the MUSCL scheme (c), and the blended scheme (d).

should be 0. In fact, the respect of the symmetry properties and the departurk froth
are good criteria to compare the solutions. Once more the mesh is completely unstructt
see Fig. 17.

We display the solution given by the MUSL scheme, the blended scheme, and the L
scheme, As expected, the LDA scheme gives the best results; see Figs. 18c and 19c
the blended scheme is not that far away; see Figs. 18b and 19b, and compare the ma
values on Table Ill. It also gives much better results than the MUSCL scheme, as repo
on Figs. 18a and 19a, and Table Ill. The entropy production is five times greater than in
other schemes. The entropy layer is also much thicker.

8.5. Comments on the Iterative Convergence

As in the van der Weide system PSI scheme [15], the iterative convergence of the sch
we present in this paper is very poor; basically tferesidual on the density stagnates at
about 102-10-3, where the residual is compared to the first iteration.
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FIG. 15. Zoom of the pressure contours for the first-order Roe scheme (a), the system N scheme (b),
MUSCL scheme (c), and the blended scheme (d).

There is a way to improve this behavior by modifying the arguments in Egs. (32)
(34). To simplify the text, take the example of the functibpEgs. (33). The arguments are
essentially

v, A
y(ri) = |L<DAI I >| N
[ (o @] + [ (wi 1Y)

TABLE Il
Flow over a Cylinder Problem
Scheme Mach (Min, Max) Pressure (Min, Max) 3 (Min, Max)
MUSCL 0.0001, 082 067,110 —0.0004 Q048
Blended 00001, 089 064, 111 00, 0.009
LDA 0.0, 094 062,110 —0.001, Q010

Note.Minimum and maximum of the mach number, pressure, and entropy deviation
¥ for the MUSCL scheme, the blended scheme, and the LDA scheme.
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FIG. 16. Zoom of the entropy deviation contours for the first-order Roe scheme (a), the system N scheme
the MUSCL scheme (c), and the blended scheme (d).

or

(1,501

o R+ o x|

Y(ri) =
€

To prevent division by zero, we have considered instead

(. 01
)+ . )+

1s”e(ri):
I

and

(o, 7008

vi,JTLCDiLDAH + }<vi,ni<l>iN>| +e

1pe(ri) = ’<
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FIG. 17. Mesh for the cylinder problem.

(c)

FIG. 18. Entropy deviation contours for the MUSCL scheme (a), the blended scheme (b), and the LI
scheme (c).
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(©)

FIG.19. Mach number contours for the MUSCL scheme (a), the blended scheme (b), and the LDA scheme

The parametee should beO(h®) for it to be negligible compared to the residual of the
N and LDA schemes. In all the calculations, we haveesietthe range [10°, 107°]. If ¢

is too small, the iterative convergence is erratie H> 0 the scheme resembles the LDA
scheme. In our experiments, we have noticed that the results are quite insensititheto
are nonoscillatory.

9. CONCLUDING REMARKS

In this paper, we have presented the construction of an upwind residual scheme
is formally second-order accurate at steady state. It is a blending between the syste
scheme and the low diffusion advection schemes formally extended by van der Weide
Deconinck. The present construction relies on the analysis of the entropy productior
the scheme within a single element. This scheme is robust and much less diffusive th
state-of-the-art MUSCL scheme on an unstructured mesh. The stencil of the scheme is
more compact, so a parallel implementation is much easier.
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The limiter we consider here has only two degrees of freedom. Future work will cons
of constructing limiters with more parameters, in the hope of decreasing the numer

diffusion. Extensions to unsteady flows will also be considered.

APPENDIX A

Proof of Lemma 4.1

The proof of the energy inequality was made by T. Barth and is presented in [2]. It
included in the present paper for completeness, with permission from the original auth
For ease of exposition, we will show the development in two space dimensions, but
generalization t&Y will be clear. The analysis is done for a symetrized linear hyperboli

system: we assume that the matriggsare symmetric, the state variables &fe

(V1, Vo, V3)T, we can rewrite the N scheme as

SettingV =
LtVr=] &, | = K; + K;_ [N] Ky
@3 Ky Ky Ks

.
Vi

\) (43)
V3

with K* symmetric andN] a block diagonal matrikN] = diag(N, N, N).

The study of the quadratic form

(V1, @1) + (V2, O2) + (V3, ®3)

amounts to studying the symmetric mat¢lx+ LT)/2. The study oy,

3
Qm%ﬂ@%ﬁﬂ%@ﬂ+Wz%%H%ﬂh——(X:WKM>,
i=1

is thus equivalent to the study of

K1
}(L +LNH -2 K
2 2 2
Kz
The symmetric part ok is given by

K S <1 ke
Lt = Ky +5 Ky | [N] | Ky +5| K
Ky Ky Ks Ks

3

T
+
Kl

[N] | K3
K3

(44)

Examining rows ofLt or L1, observe that the row sum is nonzero. However, we can ac

the a block diagonal matrix to the element matrix

K
1| K
- Kz ,

2
K3

(45)
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sothat rows and columns of the sumto zero. These additional terms have noimpacton th
constant coefficient discretization of the Cauchy problem. These terms all vanish identic
when summed for all elements sharing a mesh vertex since the geometry surrounding
vertex is closed. Henceforward, we will include these terms in our definitiary &nd T+
yielding

T
Ky K Kil' KD K
1 1 N _ 1 _ n
LT=§ K2 +§ K3 | [N] | K; +§ K5 | [N] | KJ
IKl3 Ki Ks Ks Ks
(46)
Next, rewrite off-diagonal terms such as
KI"NKj + K7 NK]
in the following form:
KN K + Ki‘NKj+ = KiNK; = K*N KJ-+ — K NKj .
Consequentlyl.t can be rewritten as
T K K+ K17
1 Kq Ky 1 1 1 1
LT=E Ko | [N] | K2 +§ K — | K3 [ [N] | KS
Ka Ks Kg K3 Kg
K —K{ K71
+ > —K5 — | =K5 | [IN] | =K5 | . 47)
—Ks —Ks —Ks |

Note that the first term appearing on the right-hand side of Eq. (47) givesrise to a quadr
form with positive energy, so our only concern is the remaining terms on the right-hand s
on this equation. Before proving positive semidefiniteness of (47), we first review a sim
result concerning the spectra of noncommuting matrices.

LEMMA A.1l. The nonzero parts of the spectrum of AB and B A are identical for a
matrices Ac R™" and Be R™™.

Proof. See for example Axelsson [16, p. 69m
Next we prove positive semidefiniteness of a specialized matrix in product form.
LEMMA A.2 (Golub). The matrix
A0 0 A A"
L=|0 B 0O|-|B|N|B| , N=[A+B+C] 1
0 0C C C

is positive semidefinite for all B, C € R™" symmetric positive definite.
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Proof. Let

N

1
oo >»
o W o
O oo

and congruence transforin

I Al/2 A2 T
z7Y2Lz7Y2 = I — | BY2| N |BY2| =13 —P.
In Cl/2 C1/2

Next use Lemma A.1 concerning the spectra of nonsquare matrix products. In the pre
case Lemma A.1 implies that

AL/2 A/27T
Eigenvalued | BY? | N | BY2 = EigenvaluegN'/2(A+ B + C)N'?) + 2n zeros
Cl/2 Cl/2

= EigenvalueéN (A + B + C)) + 2n zeros
= Eigenvalueél,) + 2n zeros (48)

and consequently
I3 — P
is positive semidefinite. From this result it follows immediately that
L = 2Y?(l3, — P)ZY/?

is also positive semidefinite.m

The extensiont@, B, C > 0and(A + B + C) > Ofollows by considering the perturbed
matricesA. = A+¢€l,B. = B+ ¢l,andC, = C + ¢l and lettinge | O.
Returning to the system N scheme, we now can prove

LEMME A.3 (Lemma 41). If the matrices K are symmetricone has

1
D (Ve @) =2 > (M, KiVi) + Qn(Va, Vo, Va), (49)
MieT MieT

where

20N (V1 V2, Vg) = —(@TN, @T) + D (V. Ki"Vi) — (KW, NK V)
MiET
+ D (Vi =KV = (=K N (=KD VE). (50)
MiET

The quadratic fornQ) is positive the N scheme is locally dissipative.
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Proof. SinceN = [K{ + KJ + K]t = [-K] — K; — K371, the result follows
immediately after application of the Golub lemmato (47m

APPENDIX B

The N and LDA Schemes are Well Defined

We show that for a linearized symetrizable system, the system N and LDA schemes
well defined. We carry out the proof only for the N scheme; the extension to the LDA o
is obvious.

We consider a linearization of the system

by means of some parameter vector. The Jacobian is evaluated at some average stal
example, that given by the parameter ve&oit could be any other linearization provided
the symetrization property of the system is kept.

Formally, the residual within a triangle of the system N scheme is written

= > Ci(W — W),

M;eT
where the matrice§;; are
-1
Gij = Kﬁ(Z K,—> K/ (51)
1=1,3

HereK, = Anl, + BnI where(n!, n' \) are the component of a vector. The vectorsy,
=12, BSatlsfyZI 1”I =0. Inthefollowmg weseN = (3,_; 3 K)~*. The question
is whether the matriceS;; are well defined.

Since the system is symmetrizable, there exists a symmetric positive definite (s.0
matrix Ag such that

A=AAY, B=BA!

are symmetric. Herer is the Hessian of the mathematical entrdpgvaluated at the
average state. We skt = An' + Bn' =K A0 SinceAy is s.d.p., we can left and right
multiply by A'* to see that

=K"AL K =K AL K= KA

We also havé", K; = 0,3, K| = 0.
Since A and B are symmetric, thé, Kli, |K|| are also symmetric. Hence

> K =0
|

d K=o
|

Y IKiI=o0.
|
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This shows tha}", K[, >, Ki", =3, K|~ have positive eigenvalues; this can be seen stil
by left and right multiplying byA7'* and Ay /2.

If one matrixK;" has a system of strictly positive eigenvalu®$, K,;* has only strictly
positive eigenvalues. Thys), K" is invertible.

Assume now there existse R* such thaf) ", K;"x = 0. By settingy = Aox, we have
S, K"y = 0. Thus,

0= (D Ki'xx) = > (Kiy.y).
|

If there existd such that/K;"y, y) > 0, y cannot be in the kernel 6F, K;* unlessy = 0
and therx = 0.

Thus we have to assume théty = Oforl = 1, 2, 3. Sinced_ K;" = =3 K|, the same
arguments as above, applied:tqj, show thaﬂZry = 0forl =1, 2, 3. ThusK;x = 0, with
x # 0. Coming back to the definition d€;, since any two amonfn, n,, n3} are linearly
independent, we havAx = Bx = 0: The matricesA and B have a common eigenvector,
associated to the eigenvalue O.

In the case of the Euler equations, the eigenvecto#s aife

1 1 1 0
u+a _ u—a u 0

R = R = RO = R =
1 v ’ 1 v ’ 1 2U ) ’ 1 1
H +ua H —ua e v

with the eigenvalues + a, u — a, u, andu. Those ofB are

1 1 1 0
b u - u 0 u ¢ | 1
R = v+a |’ Ry = v—a |’ R = v » Re= 0
H + ua H —ua L;vz u

with the eigenvalues + a, v — a, v, andv. We see thaR? = R = r,.

The only solution to the problem is= v = 0 andx = Arg = Arg (Stagnation point);
otherwisea = 0, which corresponds to vacuum.

What remains is to show that one can give a meaninG;teven in that case. More
precisely, we show there exists a decompositioRbsuch thaR* = Rro @ H, whereH
contains all the eigenvectors #fand B that are different fronng.

LEMmMA B.1. If A and B are two matrices with one common eigenvecgorand if
there exists a s.p.d. matrixpAhat symmetrizes A and B there exists a vector space H th
can be explicitly computed such that the other eigenvectors of A and B belong to H
R" = (Rro) @ H.

Proof. The matricesA A, andB A, are symmetric; so arky 2 AA, ?andAy *B A, 2
(left and right multiply byAé/Z). They are also congruent ®and B, respectively.

Let{rg}k=o,n—1 and{ry }x—o,n—1 complete systems of eigenvectorshdindB, respectively.
We assumeg =rg. Then {Aé/zrk}kzo,n,l and {Aé/zrg}k:o,n,l are complete systems of
eigenvectors of symmetric matrices: They are orthogonal. Hence

R — RAY 0@ (RAYro) .
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Clearly , A7’r € (RAY*ro)* and Ay/%rx € (RAG?ro)* for k > 0. By defining
H = A (R A o)
we have the expected decompositiom
X =1(X)rg+ x*, x* € H,

wherel (x) = %, and we have

(u,ni)*(u, ny)~
Mij X = (Zils(u’ nil)+>|(x)l’o + Mij Xt

Whenu — 0, the first term tends to O because

(u,ni)*(u, nj)~

> izpau, i)t

<Ku,np) | — 0

and M;; x* converges to a finite limit because none of the eigenvalues of the restriction
N to the spacéd vanish. =

Remark B.2. Sincer*Ag = Agm, we can see thalorg = vg. HenceH is the kernel of

7t

APPENDIX C

Proof of Lemmas 4.2 and 4.3

In this section, we assume that the linearization is done via the entropy vaviadie
we use the notation of the previous section.

Throughout this section, we can assumelfhat least for the symmetrizable system, of
the Euler equations. We skt = —N and

so that we have®™ = M~1(V+ — V).

Proof of Lemma 4.2. A direct calculation shows (with obvious notation)

3

Qipa (V1, V2, V3) — On(Vy, Vo, V3) = Z (Vi, o P — o))
i—1
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Since®PA — oN = K" (V* — V) and since

Z KVt = Z K"V,

we get

3
QoA (V1. Vo, Va) — On(Vi, Vo, V) = > (M, KF(V™ = W)
i=1
3
==Y (VT =V, K (V™" = V)
i=1
<0. n

Proof of Lemma 4.3. The result is true if the first part of the lemma is shown. The N
scheme can be written (in symmetric variables)

3
o :Z}kaj—(vi - V).
=1
SinceK;" = K A%, K = Kj Agh, andN = AgN, we have
3
=Y K'NKj A V= V)
=1

Now, = commutes witrKi*, Kj‘, andN, and sincer? = & andzw Ag = Agrr*, we get the
result for the N scheme. The proof is identical for the LDA scheme. The second part of
lemma is a consequence of its first part.

APPENDIX D

The Blended Scheme is LP at Convergence

To show that the blended scheme is LP at convergence, we have to check the cond
(15) when the arguments in the residuals are replaced by the exact smooth solution. H

S5 (- 0) 0T =303 (- ) - (850 (o) — al0)).

T MieT T MeT

The LDA scheme is LP because the matrieg§;" N K; are uniformly bounded and the
solution is itself bounded. Sindeis also bounded, it is enough to check if

ZZ ¢ —¢g) - Lo = Oh?).

T Mi#M,
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In fact,

oN = Z KIENK (W — W) = Z K"NK; (Vn (W), MiMj),
j#i j#

wherer, (W) is the piecewise linear interpolant\df.? The matricesN K; are bounded, the
matricesK;" areO(h), andM;M j is alsoO(h) if the mesh is regular. HenceN = O(h?)
on any triangle. Moreoveg; — & = O(h), so itis enough to check #f = O(h). SinceWw
is the exact solution ang, (W) is the piecewise linear interpolant @f, we have

(vi,1(@P*) =0 and (v,l(x @) = Oh).
As we have seen just above,
(vi,1(®N) =0(h» and (vl (7rd}) =0M?),

and thug = O(h).

However, there is an important difference between what is done on the entropy w.
and its orthogonal. On the entropy wave, the scheme can be naturally associated to a
element method with discontinuous test functions, as with the SUPG method. This is m
less clear for what we do on the orthogonal complement of the entropy wave.
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