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1. Introduction

Non-conservative hyperbolic systems arise in a wide range of applications, which makes their theoretical study and
numerical approximation a very important topic. We are interested in the numerical solution of non-conservative hyperbolic
systems

ouU oU
S HAU) G =

ot 0 M

subject to initial conditions. Here U € Q C RP.

The challenge here is twofold: first, to generalize the notion of weak solutions to the case where the underlying hyper-
bolic system is not in conservation form, by giving an acceptable definition of shock waves. Second, once the theoretical
framework has been established, to compute solutions to those systems. The difficulty lies in the fact that while for conser-
vative systems, shock relations depend on the solution states to the immediate left/right of the shock, in the non-conserva-
tive case they depend not only on those states but also on the path that connects them

oUs U= [ AWy dU.

UL

here o denotes the shock speed, and U,y the left/right states. In the conservative case, A(U) is the Jacobian of a flux function
F(U) and the above relation recovers the standard Rankine-Hugoniot relations.
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There has been many contributions on the topic during recent years. From the theoretical point of view, most notably the
work of Dal Maso et al. [1] where the notion of path is introduced to define generalized shock relations: given a family of
paths, i.e. C' function from [0,1] x @* — Q

(x,u,v) > @(z;u, v),
such that @(0,u, v) = uand &(1;u, v) = v. and given two states U; and Uy, the two states are said to define a shock moving at
speed ¢ if

G(UL—UR):L A(di(s,;UL,UR))WdS. 2)

With this relation, a mathematical theory for weak solutions for hyperbolic systems in non-conservation form is developed,
and the solution to the Riemann problem may be constructed [1].

Once the Rankine-Hugoniot relations have been encoded by (2), a numerical approximation of (1), called path-conserva-
tive, have been proposed by Parés and collaborators (see for example [2,3]). Given Ax > 0 and the mesh {x;};., with x; = jAx,
the path-conservative schemes are defined as schemes of the form

" n At _ N rm n n
Uj+1 =U; - Ax (DjH/Z(Uj Ui) +Dj+—l/2(Uj—1>Uj )> (3)

where the residuals Dﬁuz(U;: Uj.,) satisfy the conservation relation

s; U, Ug)

— n n ! . a¢( d
Dj.1, (U UL )= [ @0 U P s 4)

j+1

)+ D} (U U
In [2], the theoretical framework for path-conservative schemes was presented, and a Lax-Wendroff theorem was conjec-
tured: if the numerical solution (U}');, obtained by a path-conservative scheme converges, its limit is the weak solution
in the sense defined by the theory of [1]. A more recent paper [3] found that in fact those schemes generate convergence
error source-term which is supported on shock trajectories and that the error measure is usually 'small’. The paper presented
a thorough numerical investigation to evaluate the range of validity of certain schemes.

Several questions seem legitimate: (i) how does one go about choosing a path; (ii) what influence does the choice of path
and discretization scheme have on the computed solution; (iii) once a path is specified and a consistent path-conservative
scheme designed, does the numerical solution converge to the assumed path; and (iv) in cases where the correct jump
conditions are known unambiguously, can a path-conservative scheme be designed so that it converges to the correct
solution?

The answers to these questions are in general quite difficult, so we proceed by considering the following illuminating
example.

2. A simple example

Consider the Euler equations of fluid dynamics in Lagrangian coordinates

Ut - um = 07
U + P =0, (5)
e+ (pu),, =0.

Here, vis the specific volume, u the velocity, e the specific total energy and p is the pressure. We also use e = ¢ + u?/2, where
¢ denotes the specific internal energy. The equation of state for perfect gas is given by

e=(y-1)pv

with y the specific heat ratio, taken to be 1.4 in the numerical experiments.
We also write (5) in a non-conservative manner, in terms of (v,u, €)

UVt — Uy = 07
Ue + Py =0, (6)
& +pu,, =0.

We observe that (6) is 'minimally’ non-conservative in that it only has one non-conservative product, and otherwise has a
conservative sub-system in the first two equations. We consider both systems (5) and (6) and try to shed light on the ques-
tions raised in the previous section. Of course, in this case, the correct shock relations are given by the conservative system
(5). In designing numerical approximations to solve (6), the ultimate task is to compute solutions of (6) which recover the
shock relations of (5).
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2.1. A numerical example

We write (6) in quasi-linear form

v

0 7]

& u +A8_m u 707
&

where A is given by

0 -1 0 0 -1 0
A=|p, 0 p.|=|-p/v 0O (y-1/v
0O p O 0 p 0
In this case, the shock relations defined by the theory in [1] are
! a9(s; U, U A
o(Ug — Up) :/ A@(s, ;UL U 228U UR g [ Ay | (7)
0 0s 1 du(s)
fop s dS

We define a path which is linear in in »,u and p

v(s)=svp+(1—=8)vg,  u(s)=su +(1—-sjug,  p(s)=p,+(1—9)p,

and note that for this path (i) % = Au and (ii) p(s) is linear over the path and its integral can be evaluated exactly. Here we

have used the standard notation Af = f; — fzr where fis any of u, v, p, &. In this case, the non-conservative product may be
integrated exactly

1 1
/ pau(s) ds = Au/ p(s)ds = pAu
0 0s 0

with p = (p, +pg)/2.
We further note that the shock conditions for this choice of path, according to (2), are

o6Av+ Au =0,
gAu—-Ap =0, (8)
gAg — pAu =0,

Which are, in fact, the exact (!) shock relations for the gas dynamics equations. The above choice of path, linear in »,u and p
therefore reproduces the exact shock relations. In that sense, this is a correct choice of path and at least the ambiguity of how
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Fig. 1. Computed solutions by Roe-type and Lax-Friedrisch (LxF)-type path-conservative schemes. and by Roe’s scheme for the conservative system (5).
Bottom line is a zoom of the top.
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Fig. 2. Numerical viscous path in u—p plane, corresponding to Roe-type and LXF-Type path-conservative schemes, and to Roe’s scheme for the conservative
system (5).

Table 1
Exact and computed pressure behind a shock by a Roe-type path-conservative scheme. The right state is (p,u,p) = (0.125,0,0.1), the left state is controlled by
P.. The relative error is given by |(p, — p.)/pe|-

De De Rel. error
0.2 0.1997547 0.00122
0.3 0.2988168 0.00394
0.4 0.397263 0.00684
0.5 0.4953561 0.00928
0.6 0.5931094 0.01143
0.7 0.6906313 0.01338
0.8 0.7879680 0.01504
09 0.8851661 0.01648

to choose a path is resolved here. We turn to the next question: does the corresponding path-conservative scheme converge
to the correct solution?

We have used a Roe-type path-conservative scheme [2], here the eigenvalues of A are 0 and +C with C? = yp/? and the
Roe averages are [5] v = %5 i =4tk p — PPk,

2.2. Numerical test

We have conducted a series of runs with initial data corresponding to right moving shocks of various strengths. The com-
putation was done using 1,500 grid cells, and to the best of our judgement, the results are converged. The right state in all
tests is Ug = (v,u,p)i = (8,0,0.1) corresponding to the right state of the standard Sod’s shock tube problem. The left state is
chosen to yield a single right running shock, and the parameter controlling the strength of the shock is p; (or Ap). In the first
example, shown in Fig. 1 the left state was chosen so that p, = 1.0. Results by a Roe-type and a Lax-Friedrichs (LxF)-type
path-conservative schemes are shown in Fig. 1. It is clear from the figure that numerical solutions by the path-conservative
schemes do not recover the correct solution, here computed by a Roe-type scheme of the conservative formulation (5) and
shown by a black curve. This is despite the fact that the chosen path in this example is correct, at least in the sense that it
reproduces the correct jump conditions. The fact that the system has a conservative sub-system appears to be of little help
here. We also note that solutions obtained by Roe’s and by LxF path-conservative scheme converge to close but different
solutions, despite the fact that they are both based on the same path definition.

We ask further whether the computed solutions converge to the assumed path that underlies the scheme, in this case
linear in »,u and p. Fig. 2 shows the numerical viscous path corresponding to the various schemes. It is clear that there is
little connection between the viscous path towards which the computed solution converges, and the assumed path, which
in this case would be represented as a straight line in the u—p plane. This finding is particularly disheartening. In computa-
tions of non-conservative products, the discussion often revolves around the question of what is the correct choice of path,
and usually proceeds by saying ‘suppose we know what the correct path is, here is what we do’. The present computation
shows that even if we knew how to define the path correctly, the numerical solution will not, in general, converge to the
assumed path. Rather the computation is dominated by viscous terms that arise due to truncation errors, and those have
little to do with the assumed path. While the same is true for the computed solution for the conservative system (5), in
the conservative case, the numerical method does not rely on getting the path right because of the conservative nature of
the underlying system and scheme.
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Finally, we repeated the computation for data corresponding to right moving shocks of increasing strengths, and mea-
sured the resulting relative errors (in pressure). Results are summarized in Table 1. It is clear that the error is inherent to
the scheme, and increases with the strength of the shock. This behaviour is shared by other schemes for non-conservative
systems (see for example [4], where errors are of similar size to those in Table 1).

3. Concluding remarks

Our study shows that the so-called path-conservative schemes are not, in general, able to compute correctly the solution
of non-conservative hyperbolic problems. The difficulty goes beyond determining what is the correct path. Even if the correct
path is assumed to be known, it is in general not possible to design a scheme that converges to the assumed path. The fact
that the problem may have a conservative sub-system is of little help. These points were illustrated using the Euler equations
in Lagrangian form, where the choice of linear path in fact gives the correct jump conditions, but the computed solution is
not able to recover them.
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