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Abstract. In this paper we describe techniques to represent data which originate from dis-
cretization of functions in unstructured meshes in terms of their local scale components. To do so
we consider a nested sequence of discretization, which corresponds to increasing levels of resolution,
and we define the scales as the “difference in information” between any two successive levels. We
obtain data compression by eliminating scale-coefficients which are sufficiently small. This capability
for data compression can be used to reduce the cost of numerical schemes by solving for the more
compact representation of the numerical solution in terms of its significant scale-coefficients.
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1. Introduction. Fourier analysis, which provides a way to represent square-
integrable functions in terms of their sinusoidal scale-components, has contributed
greatly to all fields of science. The main drawback of Fourier analysis is in its globality;
a single irregularity in the function dominates the behavior of the scale-coefficients and
prevents us from getting immediate information about the behavior of the function
elsewhere.

The recent development of the theory of wavelets (see [18] and [17]) was a great
step towards local scale decomposition, and has already had great impact on sev-
eral fields of science. In numerical analysis, representation by compactly supported
wavelets (see [8] and [7]) is used to reduce the cost of many numerical solution algo-
rithms (see [4]). The main drawback of the theory of wavelets is that it decomposes
any square integrable function into scale-components which are translates and di-
lates of a single function. Consequently there are conceptual difficulties in extending
wavelets to bounded domains and general geometries.

In [10, 13] we introduced the concept of “nested discretization,” which enables
us to represent data that originates from unstructured grids in bounded domains in
terms of its scale decomposition. This framework is a generalization of the theory of
wavelets in the sense that under conditions of uniformity its natural result is wavelets.

The main application of this new capability is to the numerical solution of partial
differential equations in complex geometries, e.g., the solution of the equations of
compressible gas around an airplane. As we have demonstrated in a series of articles on
multiresolution schemes for the solution of hyperbolic conservation laws in Cartesian
grids (see [12, 11] and [6, 5]), there is a lot to be gained by formulating the time-
evolution of the problem in terms of the more compact representation of the solution
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by its significant scale-coefficients. This technique is an attractive alternative to the
methodology of adaptive grids, and it enables us to dynamically adjust the local level
of resolution to the variation of the solution.

Unstructured meshes have been used primarily for two purposes: (1) to have
a faithful description of the boundary in order to accurately impose the boundary
conditions which determine the solution; (2) to serve as an implementation of adaptive
grid ideas. Unfortunately the computation of numerical solutions on unstructured
grids is considerably more expensive than that on Cartesian grids. Since we can
accomplish the adaptivity part by using multiresolution schemes on uniform grids,
what remains is the use of unstructured meshes to describe the geometry of the
boundary. In the future, we plan to use a relatively thin layer of unstuctured mesh
around the airplane and to switch to a more regular grid further away. In [2] we
present preliminary results on multiresolution schemes for hyperbolic conservation
laws on unstructured grids.

In the present paper, we describe multiresolution representation (MR) schemes for
data which are obtained by discretization of functions in unstructured meshes either
by taking point values at the “nodes” or by taking averages over the “cells” of the
mesh. We pay special attention to the description of the boundary of the domain in
the process of coarsening/refinement which is associated with generating the various
levels of resolution.

Since the preliminary version of this paper [3] has been written, several authors
have developed algorithms to allow multiresolution analysis on unstructured meshes.
One may mention the “lifting schemes” of Sweldens [22] which allow definition of
biorthogonal decompositions in the setting of unstructured grids (see [20] for appli-
cations to image processing). Hierarchical finite elements wavelet basis have been
constructed by Oswald and Lorenz [19] and Stevenson [21]. These algorithms work
on structured triangulation. As the situation is rather different than in the present
paper, they can push the analysis much farther.

2. General framework for MR. In this section we describe the abstract gen-
eral framework for MR of data. We consider discrete data which is associated with a
nested sequence of discretization {Dk}Lk=0 and show how to design schemes for its MR.
Later we shall apply this general framework to data which correspond to discretization
of functions in unstructured grids.

Definition 2.1. Let F be a vector space and (Vk)∞k=0 be a sequence of finite
dimensional vector spaces, dimVk = Jk. We say that a sequence of linear oper-
ators {Dk}∞k=0, Dk : F−→V k, is a nested sequence of discretization if for any
k = 0, . . . ,+∞,

1. Dk is onto,
2. the null spaces satisfy N (Dk) ⊂ N (Dk+1).

In the following we show how to obtain MR of any discrete data vL = DLf , where
the scale-decomposition corresponds to the levels of resolution which are introduced
in Definition 2.1. This is a very general framework which allows for discretizations
corresponding to unstructured grids in several space dimensions.

First we show that a nested sequence of discretization comes equipped with a
decimation operator Dk−1

k , which is a linear mapping from V k = Dk(F) onto V k−1 =
Dk−1(F):

Dk−1
k : V k

onto−→ V k−1.(2.1)
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This decimation operator is defined as follows. For any v in V k there is at least one
f ∈ F such that Dkf = v; the decimation of v is Dk−1f ∈ V k−1, i.e.,

v ∈ V k, v = Dkf, Dk−1
k v = Dk−1f.(2.2)

It follows from Definition 2.1 that Dk−1
k is well defined by (2.2); i.e., its definition is

independent of the particular f .
Given vL ∈ V L, we can evaluate {vk}L−1

k=0 by repeated decimation

vk−1 = Dk−1
k vk, k = L, . . . , 1.(2.3)

Since (2.2) implies that

Dk−1
k (Dkf) = Dk−1f for any f ∈ F ,(2.4)

we get for any f ∈ F for which vL = DLf , that vk = Dkf for all k in (2.3). We would
like to stress the point that this decimation is done without explicit knowledge of f .

Since by Definition 2.1 V k = Dk(F), it follows that Dk has a right-inverse (at
least one), which we denote by Rk:

Rk : V k → F , DkRk = Ik,(2.5)

where Ik denotes the identity operator in V k. Since (Rkvk) ∈ F is an approximation
to any f ∈ F for which Dkf = vk, we refer to Rk as a reconstruction of Dk.

Next we show that any sequence of corresponding reconstruction operators
{Rk}Lk=0 defines an MR scheme for discrete data vL in V L. Starting from vk−1

in (2.3) we can get an approximation to vk by

vk ≈ Dk(Rk−1v
k−1).(2.6)

We denote

P kk−1 =: DkRk−1, P kk−1 : V k−1 → V k

and refer to it as prediction operator. It follows immediately from taking f =
Rk−1v

k−1 in (2.4) and using (2.5) that P kk−1 is a right-inverse of the decimation

Dk−1
k :

Dk−1
k P kk−1 = Ik−1.

We observe that the prediction error ek,

ek = vk − P kk−1v
k−1 = (Ik − P kk−1D

k−1
k )vk,(2.7)

satisfies the relation

Dk−1
k ek = Dk−1

k vk − (Dk−1
k P kk−1)vk−1 = vk−1 − vk−1 = 0,

and therefore it is in the null space of the decimation operator

ek ∈ N (Dk−1
k ) = {v| v ∈ V k, Dk−1

k v = 0}.
It follows from (2.1) that

dimN (Dk−1
k ) = Jk − Jk−1,
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and therefore the prediction error ek, which is described in terms of Jk components

in V k, can be represented by (Jk−Jk−1) scale-coefficients dk = {dkj }Jk−Jk−1

j=1 . Specif-

ically, let {µkj }Jk−Jk−1

j=1 be any basis of N (Dk−1
k ),

N (Dk−1
k ) = span{µkj }Jk−Jk−1

j=1 ,

and let dk denote the coordinates of ek in this basis:

ek =

Jk−Jk−1∑
j=1

dkjµ
k
j =: Ekd

k, dk =: Gke
k.

Here Gk denotes the operator which assigns to ek ∈ N (Dk−1
k ) its coordinates dk in

the basis {µkj }Jk−Jk−1

j=1 ; observe that EkGk is the projection operator onto N (Dk−1
k ).

Next we show that there is a one-to-one correspondence between vk and
{dk, vk−1}. Given vk, we evaluate vk−1 = Dk−1

k vk,

dk = Gk(Ik − P kk−1D
k−1
k )vk;

given vk−1 and dk, we recover vk by

P kk−1v
k−1 + Ekd

k = P kk−1D
k−1
k vk + EkGk(Ik − P kk−1D

k−1
k )vk

= P kk−1D
k−1
k vk + (Ik − P kk−1D

k−1
k )vk

= vk.

Applying the above for k = L, . . . , 1, we get that

vL
1:1←→ {dL, . . . , d1, v0} =: v̂M ;

we refer to v̂M as the MR of vL.
The direct MR transform v̂M = M · vL is given by the algorithm

Do k = L, . . . , 1,

vk−1 = Dk−1
k vk,

dk = Gk(Ik − P kk−1D
k−1
k )vk =: GDk v

k.

(2.8)

The inverse MR transform vL = M−1 · v̂M is given by
Do k = 1, . . . , L,

vk = P kk−1v
k−1 + Ekd

k.

We remark that in multigrid terminology, Dk−1
k is “restriction” and P kk−1 is “pro-

longation.” In signal processing, Dk−1
k plays the role of “low-pass filter” while GDk ,

which is defined in (2.8), plays the role of “high-pass filter.”
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In order to apply this MR to real-life problems for purposes of analysis and data
compression, we have to make sure that the direct MR transform and its inverse are
stable with respect to perturbations. In [13], we present stability analysis for MR
schemes through the different scales and derive a sufficient condition which seems
to be “close” to necessary; this condition also implies existence of a multiresolution
basis for functions in F . In Appendix B, we review some elements of this analysis
and relate them to the particular examples of the present paper.

In the following we describe techniques to generate a nested sequence of dis-
cretization which corresponds to unstructured meshes in Rm, and present specific
algorithms for R2. The main application of this methodology is to the numerical
solution of PDEs in complex geometries. Our basic approach to this application is
that “the user” should provide a mesh and an appropriate numerical method, and we
assume that he is satisfied with the quality of these numerical results; furthermore, we
assume that the solution is overresolved in large parts of the computational domain
(this may be due to propagation in time of existing regions of large variation or due
to the natural laziness of a “user”). Our task is to provide an MR scheme which will
enable us to calculate these same results, within a user-supplied tolerance for error
but in a much faster way, by performing the computation in the suitable local level of
resolution. To do so we apply a coarsening procedure to the given mesh to generate a
nested sequence of discretization, and find an appropriate sequence of reconstruction
operators. Once this is accomplished we use the machinery of this section to obtain
multiresolution representation of data in the user-supplied mesh. We remark that
the preliminary results of applying this program to hyperbolic conservation laws are
encouraging (see [12, 11, 6, 5]).

A more ambitious program is to endow the MR scheme with the capability to
increase the level of resolution above that of the user-supplied mesh if the analysis of
the scale coefficients indicates the need to do so due to development of large variation
on a smaller scale (of course the user has to supply a limit on the smallest scale that
he is willing to pay for). At present we are not doing that, and therefore the main
interest in this paper is in developing coarsening procedures that result in a sequence
of nested discretization; however, we shall also consider the question of refinement.
We would like to point out again that the main use of unstructured grids is for the
geometry of the problem, and thus in both coarsening and refinement, one has to
pay special attention to the boundaries and make sure that they are appropriately
resolved.

In this report, we present some numerical experiments of data compression in
unstructured meshes and compare them to similar experiments with MR schemes for
uniform tensor-product grids (which are known to be stable). These experiments
indicate that, in spite of the strong nonuniformity in our unstructured meshes, the
compression ratio and the compression error are of the same order as those of the
uniform tensor-product grids.

3. MR schemes for point value discretization. Consider bounded functions
f ∈ F ,

f : Ω ⊂ Rm −→ R, F = B(Ω),

where Ω is a bounded domain; take any sequence

Xk = {xki }Jki=0, x
k
i ∈ Ω;(3.1)
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and define vk = Dkf by

vki = (Dkf)i = f(xki ), vk = {vki }Jki=0.(3.2)

We refer to (3.1)–(3.2) as discretization by point value. Note that here the index
starts from i = 0, and thus there are Jk + 1 elements in Xk.

The sequence of discretization {Dk} in (3.1)–(3.2) is nested if and only if for all k

Xk−1 ⊂ Xk;

decimation in this case amounts to removing from vk components vki = f(xki ) for
xki /∈ Xk−1. Note that the decimation operator Dk−1

k is defined directly from the
sequence {Dk}.

Let Ik(x; vk) denote any interpolation of {vki } at the corresponding nodes {xki },
i.e.,

Ik(xki ; vk) = vki for all xki ∈ Xk,(3.3)

and observe that

DkIk(·; vk) = vk.(3.4)

The above relation shows that reconstruction in this case amounts to a selection
of an interpolation technique in (3.3). Given vk−1 we approximate vk by (2.6), and
get the prediction error ek (2.7),

eki = vki − Ik−1(xki ; vk−1) for all xki ∈ Xk.

Using multigrid terminology, this prediction can be expressed by saying that we use
injection of the values corresponding to xki which are in Xk−1 and interpolation for
those which are not in Xk−1. Observe that the prediction error eki = 0 for all i such
that xki ∈ Xk−1. We define the scale-coefficients dk = {dkj } as the prediction error in

Xk −Xk−1, i.e.,

dkj = ekij for all xkij /∈ Xk−1,

where ij for j = 1, . . . , (Jk − Jk−1) is some ordering of the points in Xk −Xk−1:

{xkij}
Jk−Jk−1

j=1 = Xk −Xk−1.(3.5)

Example 3.1. Triangulation in R2. As a result of the success of the finite element
method for the numerical solution of PDEs, we have many triangulation techniques
(some of them are packaged as computer codes) to construct a mesh of desired res-
olution with a good description of the boundary for complex geometries, and also
corresponding interpolation methods for the nodes. Let us denote the triangles in
such a mesh by T ki ⊆ Ω, 1 ≤ i ≤ nt, and denote by Xk the set of vertices in
these triangles; we refer to T k =: {T ki }nti=1 as the triangulation of Ω. Observe that
Ωk =: ∪nti=1T

k
i ⊆ Ω is a polygon and that ∂Ωk is a piecewise-linear approximation to

∂Ω.
In our particular application, we are interested in local approximations. Once the

discretization operators are defined, the only degree of freedom left is the choice of the
reconstruction operators. For this purpose we use the following piecewise-polynomial
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interpolation. Let Ski be a stencil of s = r(r + 1)/2 points of Xk which is assigned
to the triangle T ki ∈ T k and includes its vertices. Let pki (x;Dkf) denote the unique
polynomial of degree (r − 1) for r ≥ 2 which interpolates f(x) at the points of the
stencil Ski , and define

Ik(x;Dkf) = pki (x;Dkf) for x ∈ T ki .(3.6)

Clearly this technique is exact for data of polynomial functions of degree less or
equal to r− 1. Observe, however, that unlike 1D, Ik is not necessarily continuous on
the boundary of T ki ; in this case, we take F to be the space B(Ω) with the sup norm
rather than C0(Ω).

For r = 2, the 3 points of Ski are necessarily the vertices of T ki , and pki (x;Dkf)
is the piecewise-linear function which interpolates f at these three points. Observe
that in this case, {Ik(x;Dkf)} is a sequence of continuous functions which forms a
hierarchic sequence of approximation in C0(Ω).

For r > 2, we have several reasonable choices of stencils; one can use this freedom
to adapt the interpolation to the nature of the data by choosing the stencil in which
the data is smoothest, and thus avoid the Gibbs’ phenomenon (see [1] and [14]).

In Appendix A, we describe a simple strategy to select a “centered” stencil of six
vertices for piecewise-quadratic interpolation (r = 3).

Our main problem is to design procedures for coarsening and refinement for which
the vertices of T k−1 are contained in those of T k. The design of such procedures (in
the case r = 3) is the topic of section A.

4. MR schemes for cell-average discretization. Consider absolutely inte-
grable functions f ∈ F ,

f : Ω ⊂ Rm −→ R, F = L1(Ω),

where Ω is a compact set, and let Ck = {Cki }Jki=1 be a set of cells such that

Ωk =: ∪Jki=1C
k
i ⊆ Ω, Cki ∩ Ckj = ∅ for i 6= j.

We define the cell-average discretization of f by

(Dkf)i =
1

|Cki |
∫
Cki

f(x)dx, |Cki | =
∫
Cki

dx.

Next let us consider a refinement sequence {Ck}Lk=0, in which Ck is formed from
Ck−1 by dividing each cell Ck−1

i into, say q, disjoint cells {Cki`}q`=1,

∪q`=1C
k
i`

= Ck−1
i .(4.1)

Alternatively, we can consider (4.1) to be a coarsening procedure in which we
agglomerate every q cells of Ck into a larger cell of Ck−1; the only reason that we take
here a fixed q is to simplify the notations. In any case, the sequence of discretization
{Dk}Lk=0 is nested, and it follows from the additivity of the integral that

(Dk−1f)i =
1

|Ck−1
i |

q∑
`=1

|Cki` |(Dkf)i` = (Dk−1
k Dkf)i,

which directly defines the decimation operator in (2.1)–(2.2). Let Rk denote any
reconstruction from cell-averages, linear or not, and let ek denote the prediction error
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in (2.7). In this particular example, ek is defined by the local errors eki on the cells
Cki . Since ek ∈ N (Dk−1

k ), we have in this particular case

q∑
`=1

|Cki` |eki` = 0.(4.2)

This relation shows that we can define the scale-coefficients dk by taking (q − 1)
properly chosen linear combinations of the q prediction errors {eki`}q`=1 in each cell

Ck−1
i . These linear combinations should be chosen so that together with (4.2) they

constitute an invertible system of q linear equations for the prediction errors {eki`}q`=1

in the cell Ck−1
i (e.g., see [15] for such combinations in representation of matrices).

Example 4.1. Unstructured meshes in Rm. Using agglomeration as a coarsening
technique may result in cells which are general polygons. As in section 3, the only
degree of freedom left is the reconstruction. As before, we are interested in local
approximations. In the following, we describe a piecewise-polynomial reconstruction
technique which is suitable for our purpose (see [14]). Let us denote by Ski a stencil
of s(r) cells in Ck which includes Cki , i.e.,

Ski = {Ckim}s(r)m=1, Cki ∈ Ski .(4.3)

Here s(r) is the number of coefficients in a polynomial of degree (r − 1) in Rm. Let
pki (x;Dkf) denote the unique polynomial of degree (r− 1) which attains the averages
(Dkf)im in Ski , i.e., the one which satisfies the system of s(r) linear equations for its
s(r) coefficients,

1

|Ckim |
∫
Ckim

pki (x;Dkf)dx = (Dkf)im , m = 1, . . . , s(r),(4.4)

and define

(RkDkf)(x) = pki (x;Dkf) for x ∈ Cki .(4.5)

Clearly (4.3)–(4.5) define a reconstruction of Dkf which is exact for polynomial
functions of degree less than or equal to (r − 1) and thus is rth order accurate. Such
a polynomial exists if (a) s(r) = r(r+ 1)/2 and (b) a Vandermonde-type condition on
Ski is satisfied.

A general discussion on this kind of polynomial approximation and its computa-
tion appears in [1] and [14]. In the following, we always assume that the stencils we
construct are admissible. In practice, there is no particular restriction, (see [1]).

Note that for r = 1 in (4.3)–(4.5), we have s(r) = 1 and we get the piecewise-
constant reconstruction

(RkDkf)(x) =
∑
i

(Dkf)iχCki (x),

where χ
C

(x) denotes the characteristic function of the set C,

χC(x) =

{
1, x ∈ C,
0, otherwise.

In [14], we present a hierarchial algorithm for the selection of a “centered” stencil,
which is applicable even to completely unstructured meshes in Rm. In this context
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the “centered” stencil is defined as the one which minimizes the reconstruction error
for the one-higher degree polynomials (i.e., degree r). This algorithm is of “crystal
growth” type: starting with the cell Cki , we begin to add successively, one cell at a
time, to the cluster of cells that we have at the beginning of each step. The cell which
is being added is selected from the set of all side-neighbors of the existing cluster
by the requirement that it will minimize the reconstruction error of suitably chosen
monomials.

In [14], we also present an adaptive “crystal growth” algorithm which is designed
to assign a stencil Ski from the smooth part of f(x), if available, to all cells Cki which
are themselves in the smooth part of f(x). In this way a Gibbs-like phenomenon is
avoided, and the resulting approximation is rth order accurate everywhere, except at
cells which contain a discontinuity. This is accomplished by selecting the cell from the
set of side-neighbors which minimizes the derivatives of the so-defined reconstruction.

We refer the reader to [1] for details of special essentially nonoscillatory (ENO)
reconstruction techniques for triangulated meshes. Following the same principles, we
present in Appendix A a simple technique to compute a “central” stencil that works
on triangulated meshes. This central stencil is then used to define the polynomial
pki (x;Dkf) of (4.4) in section 5.

5. Numerical results. We have performed two kinds of numerical tests: for
the point value discretization, we have tested the two methods of sections 3 and 4;
for the cell average discretization, only the general method has been tested. In this
case, we also compare our results with a multiresolution scheme where centered tensor
product stencils and a regular grid diadic Cartesian grid is used.

As described in section 2, the method involve three steps: decoding, truncation,
and encoding. The data vL on the fine level are represented as follows:

MvL = (v0, d1, . . . , dL−1)T ,

where v0 is the representation of vL on the coarsest level and dl are scale coefficients.
In the truncation step, we truncate the scale coefficients according to

d̃li =

{
0 if |dli| ≤ εk,
dli else.

In the numerical experiments to follow, we take εk to be the following.
• For point values, εk = ε.
• For cell averages,

εk = αkεk+1

with αk defined by

αk = max
Cki ∈Ck

{√
|Ck+1
j |
|Cki |

, where Cki =
⋃
j∈Iki

Ck+1
j

}
,

that is, the maximum ratio of the area between a cell of level k and all the
cells of level k + 1 that have been agglomerated in it. For Cartesian grid, we
take αk = 2.

We define the compression factor µ to be

µ =
NL

N0 +
∣∣{(i, l) such that |dli| > εk}

∣∣ .
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We have performed numerical tests on two functions:
1. f1(x, y) = cos 2π(x2 + y2) in [0, 1]2,
2. f2, shown on Figure 5.1, is defined in [−1, 1]2 by

if x ≤ 1
2 cos (πy), f2(x, y) = u√

π/2
(x, y),

if x > 1
2 cos (πy), f2(x, y) = u−

√
π/2

(x, y) + cos (2πy),

where uφ is

if r ≤ −1
3 , uφ(x, y) = −r sin (π2 r

2),

if r ≥ 1
3 , uφ(x, y) = 2r − 1 + 1

6 sin (3πr),

if |r| < 1
3 , uφ(x, y) = | sin (2πr)|,

 where r = x+ tan (φ)y.

(a) (b)

Fig. 5.1. (a) Isolines of f2; (b) zoom of the upper left corner of the mesh.

5.1. Point value discretization. In a first example, the mesh has been ob-
tained by refining four times a coarse mesh according to the procedure of Appendix
A.1, with n = 2. It has 56, 633 nodes and 112, 384 triangles. The maximum radius
of the triangles is ρ ' 9 10−3 ' 1/156 and JL ' 2402. We use 3 levels. The results
are displayed in Table 5.1. For comparison sake, we show in Table 5.2 results which
are obtained from a Cartesian regular grid. From the approximation error point of
view, we should consider the maximal radius. In this respect we have to compare to a
grid of 156× 156. From the point of view of number of elements, we have to compare
to a grid of 240 × 240. Therefore we should compare these results to the entries for
128× 128 and 256× 256 in Table 5.2.

Table 5.1
Results for the refined grid.

Function ε µ error (L∞)

f1 10−2 57.43 1.28 10−2

10−3 25.08 1.59 10−3

10−4 5.85 1.84 10−4

f2 10−2 11.75 1.54 10−2

10−3 7.96 1.63 10−3

10−4 3.45 1.71 10−4
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Table 5.2
Results for Cartesian grids, point value discretization.

Function 64× 64 128× 128 256× 256
ε µ error (L∞) µ error (L∞) µ error (L∞)

f1 10−2 7.37 1.85 10−2 29.04 3.37 10−2 115.3 4.33 10−2

10−3 1.94 2.0 10−3 7.06 2.64 10−3 28.02 3.09 10−3

10−4 1.11 1.28 10−4 1.83 1.95 10−4 6.9 2.12 10−4

f2 10−2 2.55 2.34 10−2 5.57 3.70 10−2 11.81 4.6 10−2

10−3 1.26 1.27 10−3 3.10 1.61 10−3 7.96 2.54 10−3

10−4 1.08 9.75 10−5 1.28 1.50 10−4 3.51 1.80 10−4

In a second example, we use a random mesh. The mesh generator ensures a
certain regularity: the ratio of the circumcircle and the inner circle are controlled.
Here three levels are used, with 12, 526, 2, 992, 706 nodes and 24, 650, 5, 782, and
1, 310 triangles, respectively. The results are displayed in Table 5.3. The maximum
radius of the triangles of the finest level is ' 1.8 10−2 ' 1/55 and JL ' 1102. From
the approximation error point of view, we consider the maximal radius and therefore
we have to compare to a grid of 55×55. From the point of view of number of elements,
we have to compare to a grid of 110×110. Therefore, we should compare these results
to the entries for 64× 64 and 128× 128 in Table 5.2.

These two examples, and many others that are not presented here indicate that the
multiresolution analysis is stable. Furthermore, the MR scheme for the unstructured
grid seems to be comparable in performance to corresponding Cartesian grids.

5.2. Cell-average discretization. In a first set of experiments, we have com-
pared the compression and relative error for the functions f1 and f2 on [−1, 1]2,
our general agglomeration method to corresponding MR schemes for cell-average dis-
cretization on Cartesian grids. We start with a fine mesh which is generated from the
triangulation of the previous example by finite element cells which are described as
choice (c) in section 5.2.1; therefore, the number of cells is the same as the number
of nodes in the triangulation, namely, JL = 12, 526. It corresponds to JL ' 1102.
The size of the maximal cell is of the order of 1/50. Using five levels, the process
of agglomeration generates successively 1, 980, 322, 57, and 11 cells. As in the pre-
vious example, this should be compared with Cartesian grids between 64 × 64 and
128× 128. The results are displayed in Table 5.4 (agglomeration procedure) and 5.5
(regular analysis).

As we can see, the compression factors are very similar for both methods. Figure
5.2 shows the multiresolution representation of f2 (on a 512×512 mesh), and ε = 10−3.

The encoding/decoding procedure for the agglomeration procedure is illustrated
on Figure 5.3. We analyze the same function, on the same mesh, with only three levels

Table 5.3
Results for the coarsening procedure.

Function ε µ error (L∞)

f1 10−2 16.03 5.03 10−2

10−3 5.43 1.76 10−3

10−4 1.50 1.77 10−4

f2 10−2 4.22 1.23 10−1

10−3 2.43 2.29 10−3

10−4 1.17 1.36 10−4
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Table 5.4
Results for the agglomeration procedure.

Function ε µ error (L∞) error (L1)

f1 10−2 16.45 7.75 10−2 5.37 10−3

10−3 4.05 3.06 10−3 4.46 10−4

10−4 1.15 2.98 10−4 1.61 10−6

f2 10−2 2.85 4.83 10−2 2.56 10−3

10−3 1.71 2.97 10−3 3.42 10−4

10−4 1.02 2.92 10−4 3.1 10−6

Table 5.5
Results for Cartesian grid, cell average discretization.

Function 64× 64 128× 128

ε µ error (L∞) error (L1) µ error (L∞) error (L1)

f1 10−2 7.69 8.9 10−3 1.75 10−3 21.79 6.57 10−3 1.14 10−3

10−3 2.32 1.11 10−3 2.29 10−4 6.97 8.99 10−4 1.75 10−4

10−4 1.29 9.20 10−5 1.66 10−5 2.23 1.09 10−4 2.19 10−5

f2 10−2 2.45 1.13 10−2 1.81 10−3 4.74 1.07 10−2 1.49 10−3

10−3 1.38 7.39 10−4 0.95 10−4 3.00 1.16 10−3 1.92 10−4

10−4 1.09 6.27 10−5 0.92 10−5 1.52 8.86 10−5 1.12 10−5

this time. The first line of the figure (noted (a)) represents the effect of the decimation
operator. One starts from the representation of f2 on the fine level, then decimates
and gets the figures medium-(a) and coarse-(a). The errors between two consecutive
levels are plotted on the second line. For example, the first (b)-picture represents
the (truncated) error between the (a)-fine plot and what is reconstructed from the
(a)-medium plot. The third line represents what is obtained by reconstruction and
correction with the truncated errors from the coarsest representation of f2, plotted
on coarse-(c) and coarse-(a).

In a second set of experiments, we show all the advantages of using an unstruc-
tured mesh: the geometrical flexibility. The same functions are analyzed on a domain
similar to a smiling face. Four levels are used. The mesh has 12, 962 cells, the agglom-
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Fig. 5.2. Multiresolution representation of f2 on a 512× 512 mesh.
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Fine level Medium level Coarse level

(a)

→ →

(b)

↓ ↓

↓ ↓

(c)

← ←
Fig. 5.3. Encoding/decoding procedure: (a) Decimation, (b) truncated errors, (a) + (b) =

decoding, (c) encoding.

erated meshes have 2, 122, 369, and 68 cells. On Figure 5.4, we show the cells of the
coarsest level. Some figures concerning f2 are given. Figure 5.5 shows the encoded
function on the first line. The coarsest level is plotted on the right, and the finest on
the left. On the second line of Figure 5.5, we show the truncated errors.

Last, on Table 5.6, we give the compression factor and L1 error for this particular
domain.

6. Conclusions. In this paper, we have demonstrated the feasibility of designing
MR schemes for discrete data which originate from discretizations by point values or
cell-averages in unstructured meshes.

The main ingredient which is needed to accomplish this task is a reliable procedure
to generate a nested sequence of discretization either by coarsening a given fine mesh,
or by refining a given coarse mesh. The procedures that we used in this paper are
probably far from being a final product, and they were used in order to explore the
considerations associated with this problem.
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Fig. 5.4. Agglomerated cells, third level.

Fig. 5.5. Reconstructed function and scale coefficients.

Although the only theory which we can apply at this stage to the analysis of
stability of the data compression algorithms is for hierarchic approximations, our
numerical results indicate that the compression error is proportional to the tolerance
ε with a constant which is of order 1, even for randomly generated meshes. The
compression ratio, however, depends strongly on the “quality” of the mesh: since
the scale coefficients are really approximation errors, their size depends on both the
regularity of the function and the regularity of the grid.

We conclude that the main effect of lack of regularity of the mesh is on the rate
of compression, and it does not seriously affect the compression error. However, we
have not been able to quantify this conjecture yet.

Appendix A. Implementation. In this section, we show how to apply the
general framework presented above to two kinds of representation of functions on un-
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Table 5.6
Results for the agglomeration procedure on the domain with holes.

function ε µ error (L∞) error (L1)

f1 10−2 13.67 2.21 10−2 1.11 10−3

10−3 3.31 8.67 10−4 1.04 10−4

10−4 1.17 7.05 10−5 3.37 10−6

f2 10−2 2.65 2.15 10−2 6.48 10−4

10−3 1.50 9.17 10−4 6.61 10−5

10−4 1.02 6.97 10−5 5.27 10−7

T

T1

T2

T3

A B

C

A3

A2

A1

Fig. A.1.

structured meshes: point values and average values. In both cases, we describe the
reconstruction operator. The most challenging task is the definition of the stencil on
which the reconstruction relies. In order to simplify the discussion, we have limited
ourselves to a quadratic reconstruction. We do not describe the procedures to elimi-
nate points (in the case of the discretization by point values) or to agglomerate cells
(in the case of the discretization by cell average). We have used exactly the same
algorithms as for multigrid techniques; see [9, 16, 23] for details. When refinement is
needed, we refine each triangle by adding the midpoint of the triangle edges.

We start with notations: let Ω be the computational domain, and assume that it
is bounded. The set Ω is approximated by a polygon ΩL which is triangulated; let
T L denote the triangulation and let XL = {Mi}1≤i≤JL denote its nodes. As before
we denote by k = L the finest level of resolution in the sequence and by k = 0 is the
coarsest. In general we shall refer to the number of nodes by ns and to the number
of triangles by nt .

A.1. Discretization by point values. For the purpose of MR one needs a
right-inverse to Dk. Here it is the Lagrange interpolation which is uniquely defined
once we provide the stencils Ski in (3.6). In order to simplify the presentation, we
describe only what can be done for a third order interpolation. At the end of this
paragraph, we indicate how this can be extended to more general situations.

In order to define the stencils, we have chosen a rather heuristic approach. We
consider a triangulation T , and let T be any of its triangles.
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We first assume that T is an interior triangle; i.e., none of its edges are on the
boundary. Then there exists a triangle on the other side of each side of T , namely, T1,
T2, T3 (Figure A.1), which we refer to as side-neighbors. The set of all the vertices
of T , T1, T2, T3 has six elements. In general, this set is not geometrically degenerate;
i.e., there is a unique solution to the Lagrange interpolation problem. It would not
be the case if these points were on a conic.

Now, if T is on the boundary, we may make a similar construction in general. If
not, T certainly belongs to a family of triangles assigned to a triangle T ′ as in the
previous discussion. We assign to T the stencil constructed for T ′. In all the practical
examples we have considered, this has been enough. However, we are very well aware
that counterexamples can be constructed, and additional heuristics must be added in
these special cases.

Let us mention that this method of constructing stencils can be generalized to
higher degree polynomials; for example, see [1].

(a) (b)

Fig. A.2. (a) Convex boundary and (b) concave boundary.

In all cases, the stencil is used to have an approximation in T . Depending on
the local concavity of the boundary, it is possible for some points of T k to be in the
exterior of the coarser triangulation T k−1; see Figure A.2. Note that this does not
contradict the requirement of nestedness. In this case, we predict the corresponding
values by extrapolation from the closest triangle in T k−1.

A.2. Discretization by cell average. In this section, we assume that we are
given a partition of Ω by disjoint cells CL = {CLi }JLi=1 such that

ΩL =: ∪JLi=1C
L
i ⊆ Ω, CLi ∩ CLj = ∅ for i 6= j.(A.1)

The decimation and prediction operators are defined in section 4. We provide
here a description of a procedure to assign the stencil Ski to the cell Cki for a quadratic
reconstruction as defined by (4.3)–(4.5). For the sake of clarity, we give the details
of the case r = 3 which corresponds to piecewise-quadratic reconstruction, though a
more general discussion can be given.

We follow the procedure of subsection A.1. For that, we identify each of the
cells Cki with a point which we take to be the centroid of Cki (even though it may
not belong to Cki ). For this set of points we construct a triangulation T ′, here a
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Delaunay mesh. It is clear that some constraints, coming from the geometry of the
problem have to be added. The most obvious constraint is that two cells that are
not close (because they are separated by a hole) should not be connected (see Figure
A.3). We decide that a triangle is inadmissible if its centroid does not belong to
the fine triangulation T L. For example, in Figure A.3 the exact domain is inside

T1

T2

T3

Fig. A.3.

the dotted line. The partition is made of the cells which are bounded by the thick
lines. The corresponding triangulation of these cells is represented by the thin lines.
The triangles T1 and T2 are not accepted because their centroid is outside of the
computational domain, while T3 is accepted. Another constraint is that the accepted
triangles should not be too flat. This case may be encountered at an almost flat
boundary. The boundary triangles are tested as follows: we consider all the boundary
points of T ′l . For any of these points we consider the triangles having it as vertex. We
compute the average ratio (hρ )av of its circumcircle and its inner circle. If this ratio
for a boundary triangle is too far from the average one,∣∣∣∣1− h/ρ

(h/ρ)av

∣∣∣∣ > δ,

we remove this triangle. We have chosen δ = 0.1. This choice of stencil is so that this
reconstruction procedure is not hierarchical in general.

Appendix B. Stability analysis and existence of MR bases. We assume
that the sequence {RkDk)}∞k=0,

(RkDk) : F → F ,(B.1)

is a sequence of (discrete) approximation in the Banach space F , i.e., that for any
f ∈ F ,

(i)

‖RkDkf‖ ≤ CkA‖f‖,(B.2)

(ii)

‖RkDkf − f‖ → 0 as k →∞ .(B.3)
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Using the principle of uniform boundedness we conclude that there exists a con-
stant CA such that for all k

CkA ≤ CA.(B.4)

If (B.1) is a nested sequence of discretization, we get that the direct MR transform
(2.8) is stable with respect to perturbations in the input data vL and that

〈δ(dk)〉k = |δ(ek)|k ≤ CA(1 + CA)|δ(vL)|L,

|δ(v0)|0 ≤ CA|δ(vL)|L,
(B.5)

where δ(·) denotes the perturbation, and the discrete norms above are defined as
follows:

|vk|k = ‖Rkvk‖ ;(B.6)

〈dk〉k = |Ekdk|k .(B.7)

In the case of point value discretization we consider the sequence {Ik(x;Dkf)}∞k=0

in the Banach space which consists of continuous functions in Ω with the maximum
norm

‖f‖ = ‖f‖∞ =: max
x∈Ω
|f(x)|.(B.8)

The conditions (B.2) and (B.3), which are required of a sequence of approximation
in this space, state that for any f which is continuous in Ω

max
x∈Ω
|Ik(x;Dkf)| ≤ CkA ·max

x∈Ω
|f(x)|,(B.9)

and

lim
k→∞

max
x∈Ω
|Ik(x;Dkf)− f(x)| = 0.(B.10)

The “natural” function space for cell-average discretization is F = L1(Ω), and
there (B.2)–(B.3) take the following form:∫

Ω
|(RkDkf)(x)|dx ≤ CkA

∫
Ω
|f(x)|dx,(B.11)

lim
k→∞

∫
Ω
|(RkDkf)(x)− f(x)|dx = 0.(B.12)

Experimentally, we have seen that these conditions (B.9), (B.11), (B.10), (B.12) seem
true when the stencil needed to define Ik is not too distorted but also if the size of
consecutive stencils for consecutive levels grow smoothly, say at most as a geometrical
progression. If the first condition is well known to ensure convergence at fixed levels,
the second one, even though stated here in a rather vague fashion, seems to ensure
the stability through scales. Some indications towards this are given in [1].

In [13] we investigate the stability of the inverse MR transform and the related
question of existence of MR bases for mappings in F .
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