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CONSTRUCTION OF SIMPLE, STABLE, AND CONVERGENT
HIGH ORDER SCHEMES FOR STEADY FIRST ORDER
HAMILTON-JACOBI EQUATIONS*
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Abstract. We develop a very simple algorithm that permits to construct compact, high order
schemes for steady first order Hamilton—Jacobi equations. The algorithm relies on the blending of a
first order scheme and a compact high order scheme. The blending is conducted in such a way that
the scheme is formally high order accurate. A convergence proof without error estimate is given. We
provide several numerical illustrations that demonstrate the effective accuracy of the scheme. The
numerical examples use triangular unstructured meshes, but our method may be applied to other
kind of meshes. Several implementation remarks are also given.
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1. Introduction. We consider the following Cauchy problem: find u € C°(Q),
the space of continuous function on the open subset Q C R? such that

(1.1) H(z,u,Du) =0 x€QCR?
' u=g x €,

in the viscosity sense. In (1.1), (z,s,p) € Q x R x RY s H(x,s,p) is uniformly

continuous.

Before going further, let us briefly review the notion of viscosity solution for
(1.1). For any function z, we consider the upper semicontinuous (u.s.c.) and lower
semicontinuous (l.s.c.) envelopes of z with respect to all the variables. They are
defined by

z*(z) = limsup z(y) and z.(x) = 1i£n_3?1!1f z(y).
T—y

Following [1], we introduce the function G:

H(x,s,p) x€Q,
)

G(x’s’p):{s—g(x x € 0N.

The computation of G, and G* is easy, and we have

G*(Qf,S,p):G*(ZE,S,p):H(Qf,S,p) lfﬂfEQ,
(1.2) G.(z,s,p) = min(H (x,s,p),s — g(x)) if x € 9Q,
G*(z,s,p) = max(H(z,s,p),s — g(z)) if z € 9.
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2420 R. ABGRALL

A locally bounded upper semicontinuous function u defined on Q is a viscosity
subsolution of (1.1) if and only if, for any ¢ € C*(Q), if 2o € Q is a local maximum
of u — ¢, then

(1.3) G (o, u(zo), Dé(z0)) < 0.

Similarly, u, a locally bounded, l.s.c. function defined on Q is a viscosity supersolution
of (1.1) if and only if, for any ¢ € C1(Q), if 2o € Q is a local minimum of u — ¢, then

(1.4) G* (20, u(z0), Dp(0)) = 0.

A viscosity solution is simultaneously a subsolution and a supersolution of (1.1).

This can be generalized to other types of boundary conditions such as Neumann,
etc.

Under standard assumptions on the open subset €2, g, and H, one can prove
existence and uniqueness of the viscosity solutions of (1.1); see [1]. In particular, this
is true if the Hamiltonian H is convex in p € R? and if 9Q Lipschitz continuous.

In this paper, we assume that (1.1) has a uniqueness principle, that is, any sub-
solution u and any supersolution v of (1.1) satisfy

Vo € Q, u(z) < ov(z).

Throughout the paper, we consider a family of regular triangulations. The tri-
angulations are denoted by 7", h is the maximum diameter of the elements K i
j=1,...,n, and {z;};=1,..n, is the set of vertices of T". The family of triangu-
lations is also assumed to be shape regular, that is, there exist constants C; and Cs
such that the diameter of K; satisfy

(15) C’lhgdlam(Kj) S Ozh \V/_] = 1,...,77,@.

For a given triangulation, the solution of (1.1) is approximated on a family of degree
of freedom denoted by ¥ = {0;}i=1,... ny. Typically, in each element K, we consider
a family of points that are unisolvant for some interpolation spaces that are defined
later in the text, typically subsets of P¥(K), the set of polynomials of degree k € N.
The set X is the collection of these degrees of freedom. This enables us to define, from
{u;}s,ex, an interpolant u" that we assume to be continuous. This is only possible
under constraints on the degrees of freedom; examples are given in section 4.2. It
is not necessary yet to go in more details. Last, for any o;, V; denote the set of its
neighbors.

We are interested in constructing high order convergent schemes for (1.1), that is,
a functional H which is defined for any o € X, such that the approximation u; >~ u(c;)
of u at o; satisfies, for i =1,...,ny,

(16) H(O’i,ui, {uj,j € Vl}) =0.

In (1.6), V; is the set of neighbors of ¢;. This Hamiltonian has to be consistent in
the meaning of Definition 1.1; this brings an implicit dependency with respect to the
mesh and in particular, in A.

For technical reasons only, we need to extend the definition of the scheme to any
point of €. This can be done as follows. We consider a subdivision of 2 of “control
volumes” C;, ) = u;?glcj such that any control volume contains one and only one
degree of freedom and conversely, any degree of freedom is contained in one and only
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HIGH ORDER SCHEMES FOR HAMILTON-JACOBI EQUATIONS 2421

one control volume. After a convenient numbering, we can assume o; € C;. We can
also assume that a property similar to (1.5) also holds for this family of control volume.
A possible construction of such control volume is given by a Voronoi diagram; see [2],
for example. The functional Hj, is extended on Q by the following: if z € Q, consider
o € ¥ such that x € C,, and we set

H (z,u"(2), u") = H(os, ui, {uj, j € Vi}).

The approximation scheme (1.6) needs to be consistent with (1.1). We follow
Barles and Souganidis’ [3] definition.

DEFINITION 1.1 (consistant Hamiltonians). We say that the Hamiltonian H is
weakly consistent if for all z € Q and ¢ € C°(Q) (the set of C™ bounded functions),

(1.7) limsup  H(y, ¢(y) +& ¢ + &) < G (z, ¢(x), Do(x))

h—0,y—x,£—0

and

(1.8) liminf  H(y, ¢(y) + &, ¢+ &) > Gu(z, ¢(z), Dp(x)).

p—0,y—z,£—0

We say that H is strongly consistent if, whenever ¢ is linear (constant gradient),
whatever o € ¥, o € (),

H(o,9(0),¢) = H(o,¢(0), Dp(0)).

Note that if H is weakly consistent, H is strongly consistent.
DEFINITION 1.2 (monotone Hamiltonians). We say that H is monotone if, when-
ever 0; € X, u; < vj and for any s € R,

H(oi, s, {u;}jev:) = H(oi, s, {vj}jev,)-

There exists many numerical schemes devoted to the resolution of (1.1); examples
are given by references [4, 5, 6, 7, 8], where the problem (1.1) is directly tackled.

One quite standard way of constructing a scheme for (1.1) is to consider the
unsteady problem

%—i—H(x,v(x),Du):O reQCRYLt>0,
(1.9) o(a,t) = gl.t) x>0,
v(x,0) = vo(x) ret=0

for some suitable initial condition ug such that the solution of (1.1) is obtained as the
limit when ¢t — +o00 of the solution of (1.9). There is a whole industry of numerical
schemes for (1.9). Omitting the boundary conditions and in their simplest form, they
are of the type

U?Jrl = U? - AtH(Ula U?, {U;L,] € VZ})v

with u{ = ug(0;). Along these lines, one may quote the work of [9, 6, 10] and among
many others [11, 12] for Cartesian meshes and [13, 14, 15, 16] for unstructured meshes.
To the best of our knowledge, the only convergence results, with error estimates, are
for first order schemes; see [9, 17, 18] for structured meshes and [13] for unstructured
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2422 R. ABGRALL

meshes. A general method for proving convergence, without error estimates, is given
in [3]. All these constructions are strongly related to the different techniques that
have been devised for constructing high order accurate, Godunov-type schemes for
conservation laws.

Here, starting from a different construction, we explain how it is possible to
construct simple, convergent, high order accurate schemes for the problem (1.1). We
also show examples for which the computational stencil is the most possible compact.
Our construction relies on the blending of a low order accurate scheme and a high
order stable scheme. The structure of the blending parameter is analyzed so that
high order accuracy is obtained as well as a convergence proof, however, without error
estimate. These schemes are, of course, not monotone but monotonicity preserving.
Up to our knowledge, it is the first time where both properties can simultaneously be
achieved. We also study the practical implementation of the scheme and demonstrate
its effectiveness on one-dimensional and two-dimensional examples. In this paper, we
focus on unstructured triangular-type meshes. It is clear, however, that the main
result of the paper (i.e., the form of the scheme and the convergence proof) can be
used in a more general context.

The structure of this paper is the following: we first start by a general derivation
of the scheme. We discuss in detail the structure of the blending parameter. We then
provide a convergence proof. The next section is devoted to showing some examples
of schemes, and we also discuss the practical implementation of the scheme. The last
section is devoted to numerical examples.

2. Derivation of the schemes. We first discuss the scheme for the mesh points
in the open set 2. The boundary conditions are discussed at the end of this section.

We consider HM := HM (0, u;, {u;}jev;) a monotone consistent Hamiltonian and
HE .= HH (0, ui, {u;}jev,) a high order consistent Hamiltonian. By high order we
mean that if u is a smooth solution of (1.1), then

(21) HH(ai,ui, {uj}jGVi) = O (hk)
for £ > 1.

Next we consider for some ¢ € R the following Hamiltonian:
(2.2)

H(oi, ui, {ujtiev,) = GHY (05,ui, {us}jev,) + (L= L) H (05, us, {us}jev,) + ().

We have the simple lemma, which proof is immediate.

LeMMA 2.1. If HM and HH are strongly consistent, H defined by (2.2) is weakly
consistent.

We assume that e(h) = O(R¥). In order to define ¢, we introduce the ratio

HH .
ri := 4 and rewrite (2.2) as
(2.3) H(ow, wi, {ujtjev,) = (b + (1= L)rd) HY (04, ui{u; bjev,) +e(h)
and choose ¢ such that
(24) l; + (1 — él)’l“l > 6/(}1),

where €'(h)~'e(h) = o(1) . The locus of the points (r, ) that satisfy condition (2.4)
lies between the two branches of the hyperbola £+ (1 —¢)r = 0 displayed in Figure 2.1.
Then, we can rewrite

(2.5) [H(x,t, {u;}jev,)

12
< ‘?4'1_4 | HM (2,8, {uj}jev)| + le(h)]
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L

Fi1G. 2.1. Graph of £+ (1 — £)r = 0.

Since £(h) = O(h¥) and if £ € [0, 1], if there exists C' > 0 such that
l

2. - <

(2:6) <c

then the scheme defined by the Hamiltonian (2.2) satisfies
H(Uia Us, {uj}jEVi) =0 (hk)

for any smooth solution of (1.1).
Since the tangent at origin of the hyperbola {(r,¢) € R?, £+ (1 — £)r = 0} is —1,
a solution of the problem (2.6) is £ = max(¢*,¢'(h)), where

. {0 ifr >0,
(2.7) &= {min (1,afr])  else,

for any a > 1.
We have an additional constraint on £. It comes from the iterative scheme that
is needed to compute the solution of

H(Jia U, {U’j}jevz) = 07
where H is defined by (2.2). In this paper, we employ the following explicit scheme:

’U,?Jrl = ’U/;’:L - AtH (xiatau;lﬂ {u?}Jevl) for n 2 17

(2:8) ud = uo(M;).

Up to our knowledge, all first order monotone Hamiltonians satisfy an L°° stability
condition under a constraint on the time step of the type

(2.9) At < Ch,

where C'is a constant that depends only on ug and H, not on h the maximum diameter
of the mesh elements. From (2.8), (2.3), and (2.4) we also have

uftt =l — A6+ (1= 6)r) K (04, wi, {u;}jev,) + e(h)]
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L
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~

N

F1a. 2.2. Graph of £(r) corresponding to (2.10).

so that the scheme is L* stable if
At (& + (1 - 61)7"1) S Ch.

In order to have At not too small, we consider C’ > 0 and (r;,4;) and 0 < ¢; < 1 such
that

Ogﬂz—i-(l—él)n SC/

This imposes an additional condition only for r; > 0. There are many ways of imposing
this constraint in conjunction with (2.4). For simplicity reasons, given constants
a_ >1, ay >0, and B > 0, we choose the following form for £*:

min(1, a_|r|) if r <0,
(2.10) = 0 if0<r<p,
min(1,ay (r — ) else.

The graph of such a function for C' = 1 is displayed on Figure 2.2. With ¢ defined as
in (2.10), there exists C” such that for

(2.11) 0 < AtC'h,

the scheme defined by (2.8), (2.3), and (2.4) is L* bounded.
Other choices are possible, such as

|
1+ |r|

" =(r) =
or, more generally,

" = p(p(r)),

with ¢(r) > r and ¢’(0) = 1. An example is ¥(r) = r + r2. These possibilities have
not been explored.

Since (1.1) does not depend on time, boundary conditions must be specified,
otherwise the problem is meaningless. Here we follow the technique described in [19].
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In order to simplify the text, we consider only first order accurate discretization of
the boundary conditions.

We consider a boundary numerical Hamiltonian H; that is consistent with a
boundary Hamiltonian Hj,. It is defined for z € 99, s € R, and p € R? and also
satisfies

Vo e 9Q,s € R, p € RY, Hy(z,s,p) < H(z,s,p).

The resulting scheme is as follows: find {u;}j=1, . ny such that

(2.12a)
ifo; € Q LHM (04, ui, {uj}jev,) + (1= L)HT (03w, {u;}jev,) + (k) = 0,
(212b) if o; € 89, max (Hb (Ui, U;, {Uj}jevi) , Uy — g((fi)) =0.

The solution of (2.12) is not an easy task. Following standard techniques, we
compute it as the limit when n — +oco, if this limit ewists, of {u?}j:17,,,,nz, n €N
defined by uY = ug(z;) and

(2.13a) ifor e uftt = = AHGHY (04, ui, {us}jev,)
(2.13b)
i U:H_l _ u? b n+1
if o; € o, max ( =—x— +H (05, wi, {ujtjev,)  ui™ —g(xi) | =0.

In (2.12) and (2.13), ¢ is defined by (2.10).
In the following, we extend the definition of ¢ to any = € Q as we have done for
the Hamiltonian via the explicit dependency of the ratio r in .

3. Convergence proof. We denote by S the operator

Uz)HM (2, up (), up) + (1 — €(2))HE (2, up(z),up) + e(h) if x € Q,

S(h’ - Uh) - {maX (Hb (Zli,uh(ﬂ?), Uh) ,Uh(ZII) - g(ﬂ?)) =0ifz € 89

We have the following result.
THEOREM 3.1. We consider the scheme (2.12) and assume that
1. HM, HY, and Hy are strongly consistent;
2. HM and Hy are monotone Hamiltonians;
3. Hy < H;
4. the blending parameter £ belongs to [0,1] and satisfies
H (2, up (), up)

= HM (2, up(x),up)’ 0(x) + (1 —L(z))r >€'(h),

where the parameters (h) and &'(h) satisfy €' (h)~te(h) = o(1);
5. there exists a unique solution of (2.12) uyp that satisfies L™ bound that is
uniform in h;
6. Equation (1.1) has a uniqueness principle.
Then the family uy, defined by (2.12) converges locally uniformly to the solution of
(1.1) in Q2.
Remark 1. An essential ingredient in Theorem 3.1 is that the scheme (2.12) has
a unique solution which is bounded in L*° uniformly in h. In practical calculations,
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2426 R. ABGRALL

the solution is obtained by an iterative scheme: we look for the limit, when n — 400,
of the iterative scheme (2.13) (for example, (2.13)), if such limit exists. If such a limit
exists, the L>° bound comes from the CFL condition (2.11), but the existence of the
limit is not a trivial statement.

Proof of Theorem 3.1. We proceed as in [1]. The sequence uy, is bounded, so we
can define

u(z) = limsup up(y) and u(x) = liminf wup(y).
y—x,h—0 y—z,h—0

They are defined on Q because u;, has bounds independent of h. We show that the
functions u and u are, respectively, subsolutions and supersolutions of (1.1). We
proceed in two parts: first, we consider the case of an interior point, then the case of
a boundary point.

Case of an interior point. In fact, we show first that if zy € € is a local maximum
of W — ¢ for some ¢ € C% (), then

(3.1) H{(xo, p(x0) Dip(0)) <0,

while if zg € € is a local minimum of u — ¢,

(3.2) H{(xo, p(x0) Dep(20)) = 0.

To show the inequality (3.2), we repeat Barles and Souganidis’ arguments; the
inequality (3.2) is obtained in the same way. We may assume that xg is a strict
minimum u(zg) = ¢(x), ¢ < 2infy, ||up||eo outside of B(xg, ), where r is such that

uw(x) — ¢(x) > u(wo) — (o) = 0 in B(zo, 7).

There exists sequences h, and vy, € Q such that n — +oo0, h, — O, Yn — X0,
up, (Yyn) — u(xo), and y, is a global minimum of uy, — ¢. We denote by &, the
quantity up,, (yn) — &(yn). We have &, — 0, up, (y) > é(y) + &, in B(xo, 7).

HE (youn(yn) un)

Defining r,, = T (o G

we get

0 = £(yn) M, (Y, un(yn),un) + (1= L(yn) /KT (g, un(yn), un) +(hn)

3.3
33 (Elyn) + (1= Llyn))rn) HM (Y, un(yn), un) + (hn).
Since

e(hy) e(hy)
O Mo+ (0= o) = ()

we have since £(y,,) + (1 — £(y,))r > €'(h) > 0, we get all in all

(hn)
Uyn) + (1 = L(yn))rn

= o(1),

=o(1),

because HM is monotone and ¢’(h) > 0. Hence, if we divide the last equality of (3.3)
by £(yn) + (1 — £(yn))rsn > €'(hn) > 0, we get

(3.4) 0 < Hy" (Y, un(yn), un) + o(1).
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Last, using the monotonicity of Hth , we end up to

(3.5) 0 < Myl (Yn, d(yn) + &ns &+ &n) + 0(1).

Note that in passing from (3.4) to (3.5), we have used the uniform continuity of H.
Thus

0 < limsup HM (ym (b(yn) +&n, 0+ fn)
< H(zo, ¢(20), Dep(20)).

This shows that u is a supersolution of (1.1). The same arguments applied to u show
that it is a subsolution of (1.1) in Q.

Case of a boundary point. Now we consider the case of xg € 92. The first remark
is that for € 90 and any ¢ € C°(Q),

limsup  S(h, .+ €) = max(H(w,p(2), Dy),
h—0,y—x,6—0

max(Hy(x, ¢(x), Do(x)), o) — g(x))),
,dminf S(hz,p+ ) = min(H (x,p(a). D),
max(Hy(z, ¢(x), Dp(x)), o) — g(a))).

The proof for showing that if zg € JN is a local maximum of w — ¢ for some
¢ € C% (Q), then

(3.6)  min(H (0, (o) Dp(x0)), max(Hy(zo, p(x0), De(20)), ¢(20) — g(20))) <0,

while if zg € Q is a local minimum of u — ¢,

(3.7)  max(H (xo,p(x0) Dp(x0)), max(Hy(zo, p(0), Dp(20)), p(0) — g(20))) = 0

can easily be obtained by combining the same arguments and those of [19, Theo-
rem 2.2].
Since S is monotone, we get

0 <limsup S(hn,Yn, d(yn) + &) < limsup  S(h,y, ¢ +§)
n h4>07y~>w7§~>0

= max(H (zo, (o), De(x0)),
max(Hy (o, p(z0), Dp(z0)),
F(z,p(x0), De(x)))).

Now we have to check that the condition (3.6) (resp. (3.7)) implies the supersolution
(resp. subsolution) condition.
e Inequality (3.6). If F(zo,u(zo), Dp(xo)) < 0, there is nothing to prove.
We assume F(xzq,u(xo), Dp(xg)) > 0. We have either

(3.8) H (zo,¢(20), Dp(x0)) <0
max(Hy (2o, u(zo), Dd(20)), F' (w0, u(z0), Dp(20)) < 0.

In the second case, we have necessarily (3.8) and in both cases, the inequality
holds.
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e Inequality (3.7). If F(xo,u(zo), Dé(xo)) > 0, there is nothing to prove.
Assume F(xg,u(zo), Dp(xo)) < 0, then we must have either H(xo,u(xo),
D¢(zp)) >0 or

max(Hy (2o, u(zo), Dé(20)), F (w0, u(zo), Dd(20))) > 0.
Since F' < 0, this inequality implies H, > 0 so that
H(z0,u(z0), Dd(20)) = Hp(xo, u(wo), Dp(z0)) = 0.

Thus, in both cases, we get H (g, u(xo), Déd(x9)) > 0, which is what we

wanted.
Conclusion. All this shows that u is a supersolution and @ is a subsolution of
(1.1). The strong uniqueness principle enables us to conclude. O
Remark 2.

1. Choice of e(h) and €'(h). Since we must have £(h) = O(h*), £ = O(R¥), and
e’(h)~te(h) = o(1), a good choice for e(h) and &’(h) is e(h) = Ch**! and
e(h) = C'h* for any constants C, C.

In the numerical applications, however, we have chosen &'(h) = 0; that seems
to work fine.

2. Consistency of Hf. The proof does not make any use of the consistency
of H”. Only HM matters. However, since H¥ satisfies (2.1), it must be
consistent.

4. Examples of schemes and practical implementation.

4.1. First order numerical schemes. We consider two kinds of first order
schemes: the Godunov scheme and the Lax—Friedrichs scheme. We recall briefly their
construction here. We describe their construction for elements, and the degrees of
freedom are the vertices of these elements. To make the text simpler, we implicitly
assume that the elements are triangles in two dimensions (2D), but this is absolutely
not essential.

Godunov Hamiltonian. If H = Hy + Ha, where H; (resp. Hs) is convex (resp.
concave), then we set

4.1 HS (p1,...,pr,) = inf max su i+ (y —q) — Hy(y) — H3 ,
(4.1) R (P15, Pr;) qewoggkiye_ﬂgﬂ[p (v —a) — Hi(y) — H3(q)]

where Q;, I =1,...,k; are the angular sectors defined by the triangles T1,..., Tk, at
node M;, H{, and Hj are the Legendre transforms of H; and Hy. We have denoted
by x - y the dot product of  and y.

If h is the smallest radius of the circles of center M; contained in U¥, Tj, if L,
and Lo are Lipschitz constants for H; and Hs, then the scheme is monotone provided
that the time step satisfies

At
T(Ll +Ly) <

)

N | =

one can consult [13] for more details.
In most of the numerical examples below, the Hamiltonian is convex, so (4.1)
becomes simpler:

G — oy — HF
(42) Py opi) = max sup [pi-y = Hi(y)]-
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T4

Fic. 4.1. The angular sector in the element K at o;.

We denote by Hr the term sup,c_q, [pi -y — Hi (y)], where the angular sector € is
the sector of 1" seen from the vertex M.

Remark 3. The implementation of this Hamiltonian is very easy if the evaluation
of

sup [pi -y — Hi(y)]
ye—

is simple. We first need to initialize H{ := H (s, ul, up) to a large negative value.
We then make a loop over the elements of the mesh, evaluate for each element the

gradient of the piecewise linear interpolant uy,, evaluate for each vertex of the element
the quantity

H = sup [p; - y— Hi(y)],
yeE—Q

where, for the vertex o;, €); is the sector of the element as in Figure 4.1.
Laxz—Friedrichs Hamiltonian. Here we set

(4.32) HEF (Dug,, ..., Dug,,) = H (U) — % 3 [u(M) — u(M;)]dl,

where C}, (resp. Dp,) is a circle (disk) of center M; and radius h,

5o th Du dxdy
mh? ’

and e is larger than any Lipschitz constant of H divided by 2.
A different version of the Lax—Friedrichs Hamiltonian that is monotone under the
same constraint is the following:

H(Du)

(4.3b) HEF (Dug,., ..., Dug,,) = 20— — S d [u(M) — u(M;)]dl.
7Th h Ch
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F1G. 4.2. lllustration of the angular sectors Q; and the vectors fi;11 /o that are needed in (4.3a).

This version can be rewritten as
.
T2

0; i)y

LF l /2

Hy, " (Dugy, ..., Dug,,) = Z %H (DuQ;)—FE Z tan 6]
0<i<k; 0<i<k;

The vector 7i;11 /7 is the unit vector of the edge that separates the angular sectors €

and €41, the angle 6} is the angle of the angular sector at o;; see Figure 4.2. The

parameter ¢ is the same as in the previous version.

A third version, which is the one we have used in the simulations, is

Z |T|H(DU|T) + « Z (ul — Uj)

T>M; MjeT

> IT]

T>M;

(4.3¢) HEE (Dugl, cee DUQM) =

and a > hp max, ||DpH||, where hr is the largest edge of T.

The main difference between these different formulas is that (4.3a) and (4.3b) are
intrinsic in the sense given in [13], while (4.3c) is not. By the way, the same is true for
(4.1). Hence, following the same reference, (4.3a) and (4.3b) are convergent, and the
error estimate is O(h'/2). For (4.3c), such an error estimate is not available (at least
when following the technique of [13]), but it is convergent: this is a simple application
of [3].

The advantage of (4.3c) over the other two versions is its simplicity in coding.
As (4.3b), we need to make a loop over the element. For each element, we compute
Duyr, o and evaluate for each degree of freedom in the element

(TIH(Dujr) + ofus — u;).

The numerical Hamiltonian is the arithmetic average of these quantities.

The dissipation mechanisms are much simpler than for (4.3b). Considering (4.3a),
the loop has to be carried out over each degree of freedom. Then for each of them,
we need to make a loop over its neighbors. In the case of (4.3c), the coding is much
simpler; this is why we prefer (4.3c).
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1 1

’[‘:]_ 7':2

F1G. 4.3. Degrees of freedom forr =1, r = 2.

4.2. High order Hamiltonians. There are many formally high order numerical
Hamiltonians, but it is more difficult to construct stable and high order Hamiltonians.
For example, if a discrete L2-like stability property is sought, one has to realize that
there is no natural counterpart on the continuous side because of the nature of the
viscosity solutions: the test functions are not integrated by part as for standard
hyperbolic problems. The natural L?-like stability property has to be written on Du.
This causes some difficulties that may be overcome; see, for example, [14] and more
recently [20]. In the following, we first consider a formally high order scheme that
appears to be stable as long as no singularity of Du appear. It is in the spirit of the
ENO-like scheme of [6, 21] and [13]. A second example is also considered following
[15]. The scheme is more compact but adapted only to homogeneous Hamiltonians.
However, we propose an ad hoc extension to the inhomogeneous case in this paper.

Notations. In this paragraph, we consider elements that are implicitly thought as
triangular elements, but this restriction is not essential. We first precise the type of
interpolant (reconstruction) of {u;};=1,.. ny Wwe consider in the examples.

Two kinds of Lagrange-type interpolants are considered. Since there is no ambi-
guity when we consider a given interpolation, u” represents the interpolation of the
continuous function wu.

In the first case, in each triangle T', the solution is approximated by a polynomial
of degree r; their set is P*(T"). Hence, the solution is described by % degrees of

freedom. It is known that the points of T" which barycentric coordinates are (%, %, %),
with ¢, j, k positive integers, and i + j + k = r are unisolvant. Examples for r = 1, 2
are displayed on Figure 4.3. The degrees of freedom o in the mesh is the collection of
these new points.

Other choices are possible, such as the interpolants defined in [22]. The simplest
example is described, in any triangle, by the degrees of freedom consisting of those
of the P? interpolation plus the centroid of the triangle; see Figure 4.4. Denoting
by vec(b) the set of functions of the type A\b where A € R, the interpolation space is
P2(T) = P%(T) € vect(b). The bubble function is, if {A;};=1,3 denotes the barycentric
coordinates in T', b = A1 AsA3. This interpolation space is used in the two-dimensional
examples. It yields a third order accurate interpolation and enjoys the following
quadrature relation:

(4.4 | sz = 111w 50w,
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3

1 4 2

F1G. 4.4. Location of the degrees of freedom for the third order accurate example of [22].

with w; = 2% for j =1,...,3, wj = 1—25 for j = 4,...,6, and wy = 2%. See [22] for
more details and other examples. _
We describe the basis functions for PY(T), P*(T), and P?(T). We follow the
notations of Figures 4.3 and 4.4.
e Case P(T). We have N; = A;.
e Case P*(T). We have N7 = A;(2A; — 1) and similar formula for i = 2,3;
Ny = 4A; A4 and similar formula for i = 5, 6.
e Case of P2(T). The basis functions are N7 = A1(2A;)+3b and similar formula
for i = 2,3; Ny = 4A1A3 — 12b and similar formula for i = 5,6; N7 = 27b.
The main difference between the basis functions of P2(T) and those of P?(T) is that
JpNodz =0 for o = 1,2,3 in PX(T), while [, N,dz > 0 for any o in P*(T"). This
behavior plays an important role in the next paragraph.
Other types of Lagrange interpolants could have been considered.

4.2.1. ENO/WENO-like schemes. Consider any degree of freedom o. It
belongs to several triangles T', possibly only one if » > 3. Denote by V, the list of
these triangles. We define the high order Hamiltonian as

(4.5) HI = HM (Dul, T € V),

where HM is any of the low order Hamiltonians defined above by (4.1), (4.2), (4.3a),
or (4.3b). Other high order Hamiltonians, such as the high order central one of [23, 16]
could have been considered.

In the very early draft of this work, (4.5) has been implemented and tested. We
do not present the results here, mainly because we want to stress the simplicity aspect
of our derivation. In the case of ENO/WENO-type scheme, the reconstruction step
is very complex, especially for unstructured meshes. In the next section, we present a

much simpler method for constructing high order scheme, which has led us to abandon
the ENO one.

4.2.2. Compact schemes numerical Hamiltonians. In this section, for any

triangle, the interpolant u” belongs to P*(T') or P2(T).
Derivation. We follow [15]: in the case of a homogeneous Hamiltonian of degree
k in p, for example,

H(x,u,p) = H(p) —f(x),

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



HIGH ORDER SCHEMES FOR HAMILTON-JACOBI EQUATIONS 2433

with

H(p) = %DpH(p) P,

we can look at

H(z,Du) =0
as a convection problem with source term
(4.6) X-Du = f(),
where X = +DpH (Du).

Then we consider the unsteady problem associated to this equation (without the
boundary conditions)

ou 1
o + ]_QHP(DU) - Du = f(z),

i.e., a convection-like problem which is approximated, via the streamline upwind
Petrov—Galerkin (SUPG) method [24], as

/ w (% + H(zx, Du)) dx
QX[tn7tn+1] 8t

ow ou
+ — +DH -Dw| 7 | — + H(z,Du) | =0,
»/S2><[tn,tn+1] ( at ) <at ( ))

where w is any linear combination of the basis functions A, (z)¢(t), with ¢ linear in
time. The positive real number 7 is typically chosen as

(@)

a_w _ W(x,tn+1) —U)(Qf,tn)
ot At ’

(4.7)

Noticing that

using (4.4) we apply mass lumping and get

unJrl —um

UTtU +Hs (a, ug,uQeva) =0,

with

Ho (0, U, uﬁgevg)

(4.8) = </QH(O', Duh) Nydz

+h/Q [”%’)ﬂ% -D/\fg] H (o, Du") dx) (/QNgdx> 71.
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n (4.8), h is the maximum diameter of the triangle of the mesh. The Hamiltonian
(4.8) will be used for (1.1) when H is homogeneous in p = Du. Modifications for the
inhomogeneous case are considered later.

We have the simple lemma, which can easily be generalized to other types of
interpolants.

LEMMA 4.1. Assume H is C* and consider the interpolant in P*(T) or P2(T)
where linear functions are preserved. Away from the boundaries, relation (4.8) defines
a consistent Hamiltonian in the meaning given by Definition 1.1.

Proof. If u is linear, u" = u. For any degree of freedom o, we have

1

(4.92) ( /Q H (o, Duh)J\/:,dx) ( /Q Ngda:>_ — H(o, Du(0))

because Du is constant.
Since o is not on the boundary of Q, the support of N, lies inside of , and thus

/ DN,dx = 0.
Q

The second term in (4.8) gives

[DpH (o, Dul)|

(4.95) = H(o, Du) l Dyl (o 1 / DN, dx

/ lw : DNgl H (o, Du") dx

|DpH (o
=0.

Using (4.9a) and (4.9b) and Definition 1.1, the Hamiltonian (4.8) is consist-
ent. a

Remark 4.

1. The choice of the basis functions is fundamental because [, N,;dz needs to
be nonzero.
2. The proof does not depend on the fact that the Hamiltonian is homoge-
neous. It can be easily adapted to the case where the “dissipation” parameter
Dy H(z,Du)
[[Dp H(z,DuM)]]

We first review the stability properties of (4.8) for homogeneous Hamiltonians
from [15].

Stability property. As mentioned several times earlier in the text, the Hamiltonian
(4.8) must satisfy some stability property. Here, we recall some results of [15] where
they show that this is, indeed, the case, at least when a particular integration scheme
of (4.7) is chosen.

In [15], the Hamiltonian (4.8), introduced for Hamiltonians that are homogeneous
of degree k in the Du variable, have the property that (4.8) and (4.7) satisfy a min-
imization principle for f = 0. Their remark is trivially extended to f # 0. This
ensures a stability condition. For example, the following inequality is shown in [15]:

is replaced by DH, a continuous vector-valued function.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



HIGH ORDER SCHEMES FOR HAMILTON-JACOBI EQUATIONS 2435

Setting t,, = nAt, we have

(4.10)
1 2
5w () 5+ Z o (1) — (27) (_+H<x “ Du))
QX [tn,tnt1]
+ ZZ/"+1/ (D- DH)dzdt
n=0 TeT
1
= )2

This relation shows that the (implicit in time) Petrov—Galerkin scheme (4.7) is energy
stable.

Accuracy arguments. We show now that the scheme (4.8) is high order accurate
for the steady problem (1.1) in which we omit the boundary conditions. We assume
that the solution w is smooth enough so that this formal calculation is, indeed, valid.
We have, strongly, that for any =, H(z,u(x), Du(x)) = 0. So, if I"u denotes the
interpolant of the exact solution, we see that the truncation error in terms of the
gradient of the error e = u — I"u satisfies

/ [H (x,uh,Duh) - H (a:,Ihu,DIhu) ]Ng
Q

o [IIHp(Duh)II DN, | [ (2.0, D) = H (21", DI"0)

=0 (k") x L/Q/\fg}dx

if w — I"u = O(h¥) in a suitable norm, k = 2 for P1(T), and k = 3 for P2(T). This
relation indicates that H(z,u", Du") — H(x, I"u, DI"u) = O(h¥) in the same norm,
so that De" = O(h*). This is clearly not a proof, only an indication of the formal
accuracy of the scheme. We see that we get an extra order, thanks to the fact that
the exact solution u satisfies, for any o, the residual property

D H(x ul Duh)
H Du)N,, P A DN, | H D =0.
/Q (x,u, Du)N, clx—|—h/Q ['DpH (@, D) N, (x,u, Du)dz =0

Case of inhomogeneous Hamiltonians. The difficult problem is to control the term

aw (] |y o | ) ( f )

of (4.8). For a homogeneous Hamiltonian of the type H(z,u,p) = H(p) — f(x), with
H homogeneous of degree > 0, this term clearly brings dissipation because

DpH (z,Du") - DN, H (z,Du") = — (DpH (z,Du") - DN,,) (DpH (z,Du") - Du")

"=

—~DpH (z,Du") - DN, f(x).

The second term plays the role of a source term and does not affect the stability.
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In the inhomogeneous case, this argument does not work any longer, but if we
write

H (CE, u, Duh) _ DH (CE, Uh) . (Duh _pref) + H (x7u’pref) ,

where pf is any reference vector, if the mapping Du” +— DH(z,u") is continuous
(so that the numerical Hamiltonian remains consistent), we can repeat formally the
stability argument by replacing (4.11) in (4.8) by

/ DH (x, uh)
LJo IDH (2, u")]|

-D./\/'g] H (m,uh,Duh) dx

/ Nydz
Q

1
(113 DI () = [ Dl (aa sDul + (1= ™) ds
0

(4.12)

A natural choice for DH (z, u") is

and then, instead of (4.8), we consider the numerical Hamiltonian and the Hamilto-
nian
(4.14)

Ho (Ua Ug, uffeyg)

(/HUDMMM/
(fpo)

where p"¢f is an arbitrary vector. Note that the accuracy arguments of the previous
paragraph still hold, as well as Lemma 4.1.

Implementation details. We end this section by giving some details about the
implementation of (4.8). We follow [15]. From (4.8), we see that the numerator and the
denominator can be computed following an element-based approach. In pseudocode,
this gives

1. initialize H, = 0 and 1, = 0 for any degree of freedom;
2. loop over elements T', j; = 1,...,n,

(a) compute N, for each degree of freedom on T,

(b) compute u and Du,

(c) evaluate

DH (0, Dul)
IDH (o, Dul)||

: DJ\/O.} H (o, Du") dx)

Ho, =Hs —|—/ H (x,uh,Duh) Nydzx

Dqu
-DN,, D,H h DuM) . Du
+h/ HD'quh H No DpH (z,u”, Du") - Du"da

via high order quadrature formula and thanks to (4.13),
(d) evaluate

Vg :wg+/./\/gda:
T

via high order quadrature formula;
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Fic. 4.5. Subtriangulation used for the low order schemes.

3. compute

_ M
Yo

Remark 5. When implementing the blended scheme (2.12a), the low order Hamil-
tonians are implemented by using a subtriangulation. In the case of P2(T), we use
the subtriangulation of Figure 4.5.

4.3. Practical implementation of the scheme (2.12)—(2.13)—(2.10). The
most straightforward implementation is to use the pseudotime-inconsistent scheme
like

L%

u™ = U — AtH,,

where the time step is limited by a CFL-type condition. Since we are computing steady
solution, the time step and the time t,, are only relaxation and iterative parameters.
Hence, a better strategy is to use a local time step.

Remember, we are using the limiter (2.10); it is useful to see exactly how the
scheme is written. Following the notations of section (2), we see that if a— =1,

1 1
o ifr>p+— H, =vHE, withy==<1if 3>0;
ay g

A-nr=-5 [0,1] if

1
«ifre {5,5+—}, My = yHY, with v = 1+ as
oy
B =1
o if r €[0,3], H, = HE;
HH
o ifre [—1,0],Hg=’ny,W1th’y:—H;I € [0,1];

g

1
° ifr<——,'Hg=Hg/I.
o

Thus, we see that if 3 > 1 and a_ = 1, we can always write H, = H or H, = yHZ,

with o € [0,1]. The scheme, omitting the boundary conditions, is written as

HM ifr < -1,

HH > Atxeh),

= g = A, {

with 0 < ~(u™) < 1. This leads to the following choice of the local time step:
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Aty = Aty(u™),. The optimal stability condition is

AtE

max

if r < —1,

At

max

(4.15) At, = CFL x
if r > —1,

where At (resp. AtZ ) is the maximum time step allowed by the first order scheme
(resp. the high order scheme).

Hence, in practice, we implement the following scheme (using the fact that e(h) =
ChF, with C > 0 arbitrary, so we can redefine ¢):

1. For an internal degree of freedom,
(4.16) ut =l — At,H,,

where

M : _
(4.17) M, = {HU +e(h) ifr<-—1,

HE +e(h)  else.

2. For a degree of freedom on the boundary, u”*! is defined as the solution of

ugtt — uy L, n+l _
(4.18) max | = — +H ug —g(o) | =0,

with At, = CFL x AtL, .

We see that, thanks to the local time stepping strategy, we can use almost every-
where the high order unlimited scheme, without creating spurious oscillations in the
solution. In order to illustrate this remark, and the way we have defined the various

schemes throughout the paper, we provide now some numerical illustrations.
5. Numerical illustrations.

5.1. Computational strategy. If ¢(h) = 0, a close examination of (2.2) and
(2.8) reveals that if one initializes the calculation with a converged first order solution
(resp. a converged second order solution), we get £ = 1 (resp. £ = 0) in general.
In other words, the high order scheme will provide either a first order solution or a
second order solution possibly with oscillations! The role of the parameter £(h) # 0
is precisely to avoid this situation.

In practice, either we initialize by a constant function and we run the high order
scheme from scratch. This strategy works well for the one-dimensional examples
below because there is no particular difficulties in the evaluation of H. In the two-
dimensional cases, because a DpH (resp. DH) appears in the denominator of (4.8)
(resp. (4.14)), we have to first run the first order scheme up to a point where there is
no difficulty in the evaluation of H, awen we run the high order schemes.

Except in subsection 5.3.2 where P2(T') is used, the interpolation is always in
PY(T).

5.2. One-dimensional examples. In this example, we consider the Lax—Fried-
richs scheme and the one-dimensional version of the high order schemes (4.8) and
(4.14). The test problem is

|u'|—n(x)=0 x€][0,1],

(5.1) w(0) = u(1) = 0,
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Fic. 5.1.
points.

Problem (5.1): ezxact solution and solution obtained by the blended scheme, 50 mesh

where n(z) = 322 + a, with a = ;;ff% and zg = \315%2. The solution is
u(w) = 23+ ax if x € [0, zo],
T l+a—axr—2 ifxeE |z,

In this example, the solution is computed by a blending between the first order Lax—
Friedrichs scheme and the compact scheme of section 4.2.2 adapted to the one-dimen-
sional case. The scheme should be formally second order accurate. Since the Hamil-
tonian x +— |z| is homogeneous of degree 1, we use the original formula of [15].

We have represented the solution on Figure 5.1 for only 50 mesh points as well
as zooms in [0.4,0.6] where the solution is smooth (see Figure 5.2) and around the
maximum (see Figure 5.3).

We have also computed the L error in [0, 1] (Figure 5.4) and L® error in [%, 3]
where the solution is still smooth (Figure 5.4). We see that the expected order of
accuracy is obtained. The convergence behavior of the blended scheme seems better
than those of the unlimited second order scheme.

Then we consider an inhomogeneous and nonconvex Hamiltonian, namely,

H(z,p) = cos(p)* + |p|.
The problem reads
H(z,u')=01in z € [0,1], with u(0) = u(1) = 0.

On Figure 5.5, we display H in the range x € [—1,1]. The numerical solutions are
displayed in Figure 5.6 in the range = € [0.5,0.8]. The mesh has 50 points. We
have numerically checked that the gradient of the solution may be larger than 1 in
absolute value, so that nonconvex effects do occur. We have chosen p,..y = 0 in the
one-dimensional version of (4.14).
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09

0.7 |

<& - - < Second order, blended
— — - Second order, unlimited
—— Exact solution

0.5 -
0.4 0.6

F1G. 5.2. Zoom in [0.4,0.6] for (5.1).

G—oO first order
*—-% blended

-=- unlimited
— exact

|
0.5 0.6 0.7 0.8

F1G. 5.3. Zoom around the mazimum for (5.1).

The iterative convergence has been run to machine accuracy. Once again, the
blended solution lies between the first order and second order unlimited solution. In
the smooth regions, the two second order solutions are indistinguishable, while at the
extrema, the quality of the first order and blended solutions are comparable. We note
an overshoot for the second order unlimited solution.
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G—®©First order
G—H Second order unlimited
©— Second order limited
---- Slope 1
——- Slope 2

3 F

-4 b

_-*” G—©First order
G—=8 Second order unlimited
©— Second order limited

===~ Slope 2 J 5
—-— slope 1

-3 -25 -2 -15 -1 -3 -25 -2 -15 -1

L' norm L norm

FIG. 5.4. Error in the L' and L norm for the first order, blended, and second order unlimited
scheme. The error in the L norm is evaluated in [1/%/2,1/2]. The slope —1 and —2 are represented.

1.3

1 1 1
-1 -0.5 0 0.5 1

FI1G. 5.5. Plot of H(p) = cos(p)? + |p| in x € [-1,1].

5.3. Two-dimensional examples. First, we consider an example of a homo-
geneous Hamiltonian (the Eikonal Hamiltonian) and second, an inhomogeneous but
still convex one. We have not considered any nonconvex case, since it seems difficult
to construct an example for which existence and uniqueness, with Dirichlet boundary
conditions, can be proved, at least from the information provided in [1].

5.3.1. Eikonal equation. We consider the Eikonal equation with a Dirichlet
boundary condition on the inner boundary of the geometry considered in Figure 5.7
The solution is nothing more than the distance function to this boundary. On Fig-
ure 5.8, we superimpose the first order solution, the second order unlimited solution,
and the limited one. This figure shows that the two second order solutions super-
impose in the area where the solution is smooth, that the unlimited exhibits slight
oscillations as expected. They are totally cured by the limitation procedure.
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F1G. 5.6. Plot of the first order, second order, and blended solutions in x € [0.5,0.8].
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1MENSION Q.

Fic. 5.7. Mesh and geometry for the two-d:

[0,1] x[0,1]—-C,

where C' = {(z,y) € [0,1/2] x [0,1/2] and (2 — 1/2)? + (y — 1/2)? > 1}, solution of

5.3.2. Inhomogeneous case. The problem is to find u in £

Y(Du) —1=01in Q and u = 0 on ON.

(5.2)

In (5.2), ¢ is defined as

flpll <1,
else.

i

pll* +1
2
12l
In that case, the third order accurate interpolant of [22] is used

yielding a formally third order accurate solution. Our purpose

¥(p)

see section 4.2,
t to check a third

)

1S Nno

order accurate error behavior but to show that other interpolation techniques are
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Fic. 5.8. First order solution (dashed lines), second order unlimited solution (dash-dotted
lines), and second order limited solution (plain lines lines).

N
N

2
=

1’:7

F1G. 5.9. Mesh for the inhomogeneous test case. Only the vertices of the mesh are displayed;
the other degrees of freedom (midpoint of edges and centroids) are omitted.

possible, and the resulting scheme is still simple to implement. The vector DH is
chosen to be ng—ﬁzu as in the homogeneous case because ¢’ > 0. The mesh is very
crude; see Figure 5.9.

In Figure 5.10, we have plotted the first order (Lax—Friedrich), the second order
unlimited, and the blended solution. On Figure 5.10 we have plotted the solution of
all the degrees of freedom.

First, we see a very clear improvement of the solution between the first order and
higher order solution. The resolution of discontinuities is very sharp.

The second order solution is already very good. We have small wiggles or what
look like small wiggles.

Remark 6 (does the boundary condition spoil the accuracy?). One of the referees
has pointed out the question whether the effective accuracy is governed by the accu-
racy at the boundary. At least in the case of convex (at the boundary) Hamiltonians
and with the Godunov boundary Hamiltonian as in all the numerical examples of
this paper, this is not the case. The reason is the following. At a boundary, except
perhaps at exceptional points, either the characteristics of the steady problems (1.1)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



2444 R. ABGRALL

First order, u € [0, 0.4364] Second order, u € [0,0.4922]

Blended solution, u € [0.4848]

Fic. 5.10. Solution displayed on the vertices of the mesh of Figure 5.9.

are ingoing or outgoing. If they are ingoing, because the Hamiltonian is convex and
because of the choice of the boundary Hamiltiona, our BCs amount to impose strongly
the boundary condition. This is a simple convexity argument. If the characteristics
are outgoing, then the boundary Hamiltonian plays no role. If we had taken Neumann
boundary, then the situation is simpler since we can impose strongly the boundary
condition, and the question becomes that of how accurate we are to approximate the
normal derivative; see [19]. Hence the accuracy at the boundary cannot be spoiled.

6. Conclusion, further work. In this paper, we have presented a general and
simple method for increasing the order of accuracy of schemes for first order Hamilton—
Jacobi equations. It relies on a simple blending of a low order and a high order scheme.
The structure of the blending has been studied so that the original stability properties
of the original first order scheme are kept. The main difficulty is to construct high
order schemes that are stable in a meaning too precise. We have presented some
examples, but our examples are clearly not optimal.

This work can be extended in two directions. The first one is about the con-
struction of better high order schemes. There is lots of flexibility in the construction:
the only constraint is the consistency of the high order scheme; there is no conser-
vation-related constraints as for conservation equations, since these constraints are
meaningless. Due to the generality of our method, we can adapt it of blended low
order schemes and discontinuous Galerkin-like schemes such as those of [14, 20]. This
will be done in a future work.
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The second direction is about unsteady problems. Consider

0
8_1; + H(z,u, Du) = 0.
We can prediscretize it in time first, for example, by doing
3 1
3 (™t — ™) — 3 (u —u"" 1) + AtH (z,u", Du") =0,

which is a second order in time approximation of the true problem. This equation
can be seen as a steady Hamilton—Jacobi problem in the variable v := u"*!. Other,
and more accurate prediscretization, leading to problems like

au™ Tt + BAtH (x,u"“,Du"“) =F ({uk,k =nn-—1,...,n —p}) = F(z),

with «, 8 > 0 and for p integer, exist. Because our technique needs only the consis-
tency of the Hamiltonian, it can be applied in this context and will lead to high order
accuracy in space and time schemes. This will also be investigated in future research.
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