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tIn this paper, we des
ribe a residual distribution (RD) method where, 
ontrarily to �standard�this type s
hemes, the mesh is not ne
essarily 
onformal. It also enable to use dis
ontinuous elements,
ontrarily to the �standard� 
ase where 
ontinuous elements are requested. More over, if 
ontinuityis for
ed, the s
heme be
omes similar to the standard RD 
ase. Hen
e, the situation be
omes
omparable with the Dis
ontinuous Galerkin (DG) method, but it is simpler to implement than DGand has guaranteed L
∞ bounds. We fo
us on the se
ond order 
ase, but the method 
an be easilygeneralized to higher degree polynomials.1 Introdu
tionThis paper is devoted to the design of an approximation method for steady hyperboli
 problems bymeans of a s
heme whi
h enjoys the most possible 
ompa
t sten
il. There exist many similar methods,for example the Dis
ontinuous Galerkin method, or the 
ontinuous Residual Distribution s
hemes. Inthe �rst 
ase, the solution is represented in ea
h element of the mesh by polynomial fun
tions where no
ontinuity is enfor
ed at the element boundaries. Hen
e, the method is very �exible sin
e the mesh doesnot need to be 
onformal, nor the polynomial degree be the same in ea
h element. Other approximationte
hniques than lo
al polynomial representations 
an be 
hosen In our opinion, one of its disadvantagesis its 
omplexity, espe
ially when one 
onsiders mixed hyperboli
/ellipti
 problems su
h as the NavierStokes equations. Moreover, and this is the point we are interested in here, when dis
ontinuous solutionsare 
omputed, the non linear non os
illatory stabilization me
hanisms are not 
ompletely satisfa
torybe
ause they depend on parameters or are quite 
omplex to design, see [1, 2, 3, 4℄ for example. Eitherthey are very 
omplex to set up, or they introdu
e too mu
h dissipation.In the 
ase of the residual distribution (RD) methods, the solution is also approximated by pie
e-wise polynomial fun
tions, but here the approximation is globally 
ontinuous. Hen
e, the algorithmi

omplexity is lower (in term of memory espe
ially). Another property is that there exists a very generaland systemati
 method that enables us to guaranty a

ura
y formal O(hk+1) a

ura
y, even at lo
alextrema, and L∞ stability. However, the mesh must be 
onformal, see [5, 6, 7℄ among several others.In this note, we des
ribe a residual distribution method where the fun
tional representation doesnot need to be 
ontinuous a
ross edges. The method is general and 
ould be extended to any order ofa

ura
y, following the lines of [8℄, but here, we have only developed it for a lo
al P 1 interpolation inea
h element to present the ideas. Contrary to the �
lassi
al� RD s
hemes, the 
ontinuity a
ross edges isno longer enfor
ed. This method is simpler than the one des
ribed in [9℄. Indeed, the s
heme redu
es tothe one of [5, 10℄ and [6℄ if 
ontinuity is enfor
ed a
ross edges. Compared with standard DG methods,the s
heme non os
illatory properties are obtained without any parameter.The paper is organized as follows. We �rst des
ribe the method for a s
alar problem. Then themethod is extended to the Euler equations for �uid dynami
s. The extension to 3D is straightforwardas well as on non 
onformal meshes. This paper opens the road for h − p adaptation for RD s
hemes.1



This paper is a translation of a 2007 report written in fren
h, [11℄, with some improvements. In themeantime, M. Hubbard [12℄ has published a similar te
hnique. However, the similarity starts and ends inthat we both use dis
ontinuous elements. Hubbard then develops his method using an extension of theN s
heme. We have used Lax Friedri
hs method, but following [13℄, any standard �nite volume s
heme
an be rewritten as a RD s
heme, and hen
e 
an be plugged into our framework. The method is alsomu
h simpler than [9℄.2 The s
alar 
aseLet us 
onsider the following problem, de�ned in Ω ⊂ R
2 to make the presentation simplerdiv f(u) = 0 if x ∈ Ω

u = g if x ∈ Γ−,
(1)

Γ− is the in�ow boundary
Γ− = {x ∈ ∂Ω su
h that ∇uf · ~n(x) < 0}and ~n(x) is the outward unit normal x ∈ ∂Ω.In a �rst step, we 
onsider a 
onformal triangulation of Ω using triangles. We explain the method,and in a se
ond step, we show how to generalize it to non 
onformal triangulations and for non triangularmeshes. The 3D 
ase 
an be dealt with in a similar way.Let us denote by K a generi
 element of Th. The real number h represents the maximum of thediameters of the elements of Th.In K, we say that the degrees of freedom are lo
ated at the verti
es, and we represent the approxi-mated solution in K by the degree one interpolant polynomial at the verti
es of K. Let us denote by uhthis pie
ewise linear approximation, that is in prin
iple dis
ontinuous at a
ross edges. In the following,we use the notations des
ribed in Figure 1.
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Figure 1: Geometri
al elements for de�ning the s
heme.In [9℄, the degrees of freedom are lo
ated at the midpoint of the edges that 
onne
t the 
entroid of Kand its verti
es. This 
hoi
e was motivated by the fa
t that the P 1 basis fun
tions asso
iated to thesenodes are orthogonal in L2(K). This property enables us to reinterpret the DG s
hemes as RD s
hemes,and hen
e to adapt the stabilization te
hniques of RD to DG. In parti
ular, we are able to enfor
e a L∞stability property. However, this method was a bit 
omplex, and it is not straightforward to generalizeit to more general elements than triangles.The geometri
al idea behind the new version of the method is to forget the RD interpretation of theDG s
heme and to let the geometri
al lo
alization of the degrees of freedom move to the verti
es of theelement.With this in mind, we de�ne two types of total residuals:2



• A total residual per element K

ΦK =

∫

∂K

f(u) · ~ndlwhi
h is evaluated thanks to a quadrature formula,
• A total residual per edge Γ, i.e.

ΦΓ =

∫

Γ

[

f(u) · ~n
]

dlwhere [f(u) ·~n] represents the jump of the fun
tion f(u) ·~n a
ross Γ. Here, if ~n is the outward unitnormal to K (see �gure 1), this enables us to de�ne a right side and a left side. Hen
e we set
[f(u) · ~n] = (f(uR) − f(uL)) · ~n.We noti
e that ΦΓ only depends on the values of u on ea
h side of Γ.The idea is to split the total residuals into sub-residuals so that a monotoni
ity preserving s
heme
an be de�ned. Here, we 
hoose the (lo
al) Lax�Friedri
hs s
heme, but other 
hoi
es 
ould be possible,see [13℄ for rephrasing �nite volumes into the RD framework. Thus we 
onsider

• For the element K whi
h verti
es are {i, j, k} and l ∈ {i, j, k},
ΦK

l =
ΦK

3
+ αK(ul − u) (2a)with

u =
ui + uj + uk

3
,and αK ≥ maxx∈K ||f ′(uh(x)|| where || . || is any norm in R

2, for example the Eu
lidian norm.
• and for the edge Γ,

ΦΓ
l =

ΦΓ

4
+ αΓ(ul − u) (2b)with

u =
ui + uj + uk + up

3where ui, uj , uk, up are the values on ea
h side of Γ and αΓ ≥ maxK=K+,K− maxx∈∂K∪Γ ||f ′(uh(x)||,see Figure 1 for a de�nition of K±.We have the following 
onservation relations
∑

i∈K

ΦK
i = ΦK ,

∑

i∈Γ

ΦΓ
i = ΦΓ

(3)The 
hoi
e αK ≥ maxx∈K ||f ′(uh(x)|| and αΓ ≥ maxK=K+,K− maxx∈∂K∪Γ ||f ′(uh(x)|| are justi�ed bythe following standard argument. If we set Q = K or Γ, we 
an rewrite the two residuals as
ΦQ

l =
∑

j∈Q

cQ
ij(ui − uj)with cQ

ij ≥ 0 under the above mentioned 
onditions. Indeed, if we introdu
e the value u that appears inthe formulas, we get (for Q = K for example)
ΦK

l =
ΦK

3
+ αK(ul − u)

=
1

3

∫

∂K

(

f(u) − f(ū)
)

· ~ndl + αK(ul − u)

=
∑

j∈K

1

3

(

∫

∂K

(∫ 1

0

f ′(su + (1 − s)ū)ds · ~ndl

)

ds − αK

)

(ui − uj)3



whi
h proves the result.We get a �rst order s
heme by determining uh the solution of: �nd uh linear in ea
h triangle K su
hthat for any degree of freedom i (i.e. vertex of the triangulation),
∑

K,i∈K

ΦK
i +

∑

Γ,i∈Γ

ΦΓ
i = 0. (4)We spe
ify later the boundary 
onditions.Using standard arguments, as de�ning uh as the limit of the solution of

un+1

i = un
i − ωi

(

∑

K,i∈K

ΦK
i +

∑

Γ,i∈Γ

ΦΓ
i

)with
ωi

(

∑

K,i∈K

cK
ij +

∑

Γ,i∈Γ

cΓ
ij

)

≤ 1,we see that we have a maximum prin
iple.It is possible to 
onstru
t a s
heme that is formally se
ond order a

urate by setting
ΦK,⋆

i = βK
i ΦK and ΦΓ,⋆

i = βΓ
i ΦK (5)with, setting

xK
i =

ΦK
i

ΦK
, xΓ

i =
ΦΓ

i

ΦΓ
,and

βK
i =

max(xK
i , 0)

∑

j∈K

max(xK
j , 0)

, βΓ
i =

max(xΓ
i , 0)

∑

j∈K

max(xΓ
j , 0)

. (6)As in the �
lassi
al� RD framework, the 
oe�
ients β are well de�ned thanks to the 
onservationrelations (3). The s
heme writes as (4) where the residuals ΦK
i (resp. ΦΓ

i ) are repla
ed by ΦK,⋆
i (resp.

ΦΓ,⋆
i .Boundary 
onditions. If Γ is an in�ow boundary edge, we need to set weakly the boundary 
ondition

u = g. Consider a numeri
al �ux, say an upwind �ux, denoted by F(uh, g, ~n(x)). We 
onsider theboundary residual
ΦΓ =

∫

Γ

(F(uh, g, ~n(x)) − f(uh) · ~n)dlthat we split into two parts following the same pro
edure as above. If l and l′ are the two verti
es of Γ,we have de�ned ΦΓ
l and ΦΓ

l′ , and
ΦΓ

l + ΦΓ
l′ = ΦΓ.The s
heme, when we take into a

ount the boundary 
onditions, is again (4) where the list of edgestakes into a

ount the boundary edges, if needed.Conservation and a

ura
y issues. In [9℄, we have shown that a s
heme of the type (4) where theresidual satis�es the 
onservation 
onstraints (3) (in
luding on the boundary) and standard stabilityassumptions (as in the Lax Wendro� theorem) is 
onvergent and the limit solution is a weak solution ofthe PDE (1).The a

ura
y 
onstraint (5) and (6) are also analyzed in the same referen
e [9℄. In that 
ase, theassumption that the problem is steady is essential in showing that the residuals (in
luding the boundaryresiduals) satis�es

ΦQ(uh) = O(hd+1)where uh is the interpolant of the exa
t solution (assuming it is smooth) and d is the dimension of Q:
d = 2 for a triangle and d = 1 for an edge. 4



Figure 2: Example of a non 
onformal mesh.Extension to non 
onformal meshes. In what follows, we refer to �gure 2. The s
heme (4) staysthe same. Only the evaluation of the the residuals need to be pre
ised. The total residuals per elementsor edges remain identi
al. By edge Γ, we mean an edge seen from a given element. In the 
ase of �gure 2,for the element K, we get the edge [i, q], while for K ′, we take [i, j]. Noti
e that the degree of freedom q,again referring to 2, is a
tive of ea
h of the elements of the �gure ex
ept K ′: this explains the de�nitionwe have taken for edges. The rest is identi
al.3 Appli
ation to the s
alar 
ase.We test the s
heme on a standard ben
hmark: the Burgers equations whi
h is non linear. The Burgersproblem is
1

2

∂u2

∂x
+

∂u

∂y
= 0 (x, y) ∈]0, 1[2

u(x, y) =







1 − 2x x ∈ [0, 1], y = 0
1.5 x = 0, y ∈ [0, 1]
−0.5 x = 1, y ∈ [0, 1].

(7)One of the problem we had to deal with is the visualization of the results. We have used a softwarethat is only able to represent point value data ones, not 
ell 
entered data as here. Hen
e to transformour data into 
ell 
entered data, we had to 
ompute, for any vertex Mi,
ui =

∑

K,Mi∈K

uK
i

∑

K,Mi∈K

1where uK
i represents the value at Mi when Mi is seen as belonging to K.The �gure 3 represents the isolines obtained for r (7). The results are non os
illatory and similar tothose obtained by other methods, for example in [9, 6℄.4 Extension to the Euler equationsFor a system, the s
heme remains formally identi
al: we 
an rephrase word to word the de�nitions ofthe total residuals, as well as that of the Lax Friedri
hs s
heme. The parameter α in (2) be
omes

max
||n||=1

ρ
(

Anx + Bby

)where A (resp. B) is the x- (resp. y-) Ja
obian of the Euler �ux and ρ(M) is the spe
tral radius of thematrix M . In the system 
ase, the s
heme is formally identi
al. The only di�eren
e is in the de�nition ofthe �limited� residuals (5) and (6), i.e. in the de�nition of the matri
es βK
i and βΓ

i needs to be pre
ised.5
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Figure 3: Results obtained for (7).The methods is the one des
ribed by [5℄ that we re
all. The Euler equations write
∂U

∂t
+

∂F (U)

∂x
+

∂G(U)

∂y
= 0where the ve
tor of 
onserved variables is

U =









ρ
ρu
ρv
E









,and the �uxes F and G are
F (U) =









ρu
ρu2 + p

ρuv
u(E + p)









, G(U) =









ρv
ρuv

ρv2 + p
v(E + p)









.Here, as usual, ρ represents the density, u and v are the two 
omponents of the velo
ity ve
tor, E is thetotal energy and p is the pressure. The system is 
losed by an equation of state, here we assume thatthe �uid is a 
alori
aly perfe
t gas,
p = (γ − 1)

(

E −
1

2
ρ(u2 + v2)

)

.The ratio of spe
i�
 heats γ is set to 1.4.Let us 
onsider a dire
tion (in pra
ti
e the velo
ity ve
tor) ~n whi
h 
omponents are nx and ny.Denoting A and B the Ja
obian matri
es of the �ux F and G with respe
t to U , we know that thematrix
Anx + Bny6



is diagonalizable with distin
t real eigenvalues: the system is stri
tly hyperboli
. The eigenvalues are
λ1 = ~u · ~n whi
h is double and λ± = ~u · ~n ± c. As usual, c represents the speed of sound,

c2 = γ
p

ρ
.Let us denote by r1, r2 the eigenve
tors asso
iated to λ1 and r3,4 those asso
iated to λ±. More pre
isely,if H represents the total enthalpy, un = ~u · ~n and ut = −nyu + nxv, we have

r1 =









1
u
v

u2
+v2

2









, r2 =









0
−ny

nx

ut









, r3 =









1
u − cnx

v − cny

H − unc









, r4 =









1
u + cnx

v + cny

H + unc









.By itself, the 
hoi
e of the eigenve
tors is not important, what is important is that these eigenve
tors areorthonormal for the quadrati
 form de�ned by the Hessian of the entropy. Here, the quantities involvedin the de�nition of the eigenve
tors, i.e. the speed of sound, the velo
ity, the enthalpy, are evaluated atan average state. Many 
hoi
es have been tested, and these experien
es have revealed that the 
hoi
eis not very important. We have taken a state de�ned by the primitive variables that are the arithmeti
averages of the states at the verti
es of K or Γ, the elements for whi
h we are 
omputing the se
ondorder residuals.On
e this is done, we pro
eed as follows, for the element Q = K or Γ.1. We de
ompose ΦQ
l , l = 1, . . . , N (N=3 for a triangle, 4 for an edge), in the eigen-basis

ΦQ
l =

∑

ℓ=1,4

(ΦQ
l )ℓrℓ,2. For ea
h parameter ℓ (hen
e for any eigenve
tor rℓ), we noti
e that

N
∑

l=1

(ΦQ
l )ℓ = (ΦQ)ℓand we de�ne (ΦQ

l )⋆
ℓ by

(ΦQ
l )⋆

ℓ =

(

(ΦQ
l )ℓ/(ΦQ)ℓ

)+

N
∑

j=1

(

(ΦQ
j )ℓ/(ΦQ)ℓ

)+
(ΦQ)ℓ,with x+ = max(x, 0).3. Then

(ΦQ
l )⋆ =

4
∑

ℓ=1

(ΦQ
l )⋆

ℓrℓ.In any of the results that we have obtained, we have not added any �ltering term as it was ne
essaryin [6℄. For the moment, it is not possible to tell if su
h a term is needed or not for the following reason:The graphi
 software we have used needs data at the verti
es of the mesh. Here, a vertex 
arries severaldegrees of freedom (one per element), and we have made an arithmeti
 average. This 
ertainly smoothesthe results.We have run a quite 
omplex 
ase, that has been already do
umented in [6℄. It is a s
ramjet whi
h
onditions are
• Left and right boundary: supersoni
 in�ow and out�ow 
onditions. The in�ow 
onditions are

ρ = 1.4, u = 3.6, v = 0, p = 1.

• The other boundaries are solid walls. 7
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3Continuous elements Dis
ontinuous element.Figure 4: Density isolines for the �
lassi
al� s
heme (left) and the s
heme des
ribed in this paper (right).30 isolines are represented.The boundary 
onditions at the solid walls are obtained by mirror 
onditions.The density isolines (Figure 4), pressure isolines (Figure 5) and Ma
h number isolines(Figure 6) aregiven. They are 
ompared with the results obtained by the 
ontinuous residual distribution method of[6℄, whi
h is also se
ond order in spa
e. The isolines are almost identi
al for the two s
hemes. Figure 7represents a zoom of the Ma
h number isolines at the exit of the s
ramjet. On
e again, the quality ofthe results is similar.
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ontinuous element.Figure 5: Pressure �eld for the �
lassi
al� s
heme (left) and the s
heme des
ribed in this paper (right).30 isolines are represented.5 Con
lusions and perspe
tivesWe have des
ribed an extension of the Residual distribution s
hemes using dis
ontinuous elements.The main di�eren
e between these s
hemes and the dis
ontinuous Galerkin ones is in the stabilizationme
hanism. For s
alar problems we are able to prove L∞ stability. Extension to more than se
ond ordera

ura
y, following the lines of [14℄ should be straightforward as well as for meshes using non triangularelements. After this work (a preliminary version is in [11℄) and [9℄ was 
ompleted, the referen
e [12℄has been published. Though some similarities, we believe that our approa
h is more general and more8
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