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Abstract

In this paper, we discuss a new class of schemes, the residual distribution schemes, adapted to compressible flow problems. They can
be seen as a link between pure finite element methods such as the streamline diffusion method and the high order upwind method finite
volume schemes. In fact they borrow ideas from both classes and this results in very accurate compact schemes. Up to now, they are
mainly adapted to triangular type meshes, but can handle steady and unsteady problems. Since the philosophy is quite different form
standard schemes, we will provide a full description of the schemes and many numerical illustrations. Some still unsolved issues will also
be discussed.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

We are interested in the numerical approximation of the
Euler equations of fluid mechanics in a domain Q with
boundary conditions,

ow .
§+d1vﬁ"(W) =0, t>0andxeQ

xeQ (1)
on 0Q2

W(x,0) = Wo(x),
Boundary conditions

In this paper, we focus on the two-dimensional case only.
The three-dimensional case has, of course, already been
considered elsewhere. Since the problems and the methods
are the same than in the 2D case, and for the sake of sim-
plicity, we have preferred to focus on the lower dimension
case.

The flux & = (F,G) and the conserved variables are
given by
W = (p, pu, pv,E)",
F(W) = (pu, pu* + p, puv,u(E +p))"  and
G(W) = (pv, puv, pr* + p, o(E + p))"

where p is the density, # and v are the components of the
velocity, e the internal energy and E = pe +1p(u? + %) is
the total energy. The system is closed by the equation of
state relating the pressure p to the conserved variables,

p=G=D(E- 300 +) =6~ pe.

In the following the matrix 4 = A(W) (respectively B =
B(W)) is the Jacobian matrix VuF (respectively Vi G)
evaluated at the state . Last, the ratio of specific heats
y is kept constant, y = 1.4 in the applications.

The system (1) has to be supplemented by the entropy
inequality which translates the second law of thermo-
dynamics,

oS 0(uS)  o(uvS)

ot Ox dy

<0 on Q. (2)

Here, the mathematical entropy is given by S = —ph(s) [1],
where s is the physical entropy

s =c,log (p) + 5o 3)
07

and % is any real valued function such that
"

W < '))_1.

H >0 and
In the practical examples, we take /(x) = x. If the flow is
smooth, (3) is equivalent to

% + % + v§ =0
o My T
and E. Tadmor has shown [2] that the solution (if it is
bounded) enjoys the following minimum principle

s(»,0), ()

lloo

(=0) “4)

s(x,¢) =  min
ly—x[|<tlji
where ||x|| is the Euclidean norm of x and ||u]| is the L™
norm of the velocity field.
For introducing and analysing in some details the resid-
ual distributive schemes (RD for short), we often rely on a
scalar version of (1), the transport equation

Ou
ot
This equation is supplemented by Dirichlet boundary con-
ditions on the inflow part I~ of the computational domain

Q that, denoting by n(x) the unit normal vector to 0Q at
x € 09, is defined by

I'' ={x€0Q, n(x)-a<0}

+a-Vu=0. (6)

and also by initial conditions. The steady version of (6) is
a-Vu=0 xeQ,

_ . ()
u=g xel .

In some applications, we need the nonlinear version of (6)
and (7), namely

Ou .
e +divf(u) =0, (8)
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supplemented by initial and boundary conditions, and its
steady version

divf(u) =0 xe€ Q,
u=g xel .

©)
In (8) and (9), the flux f = (f,g) is continuously differentia-
ble with respect to u.

Computing the solutions of (1) has become a routine
task in many modern CFD codes. Many current schemes
use the ideas developed in the 70-80’s for high resolution
schemes by van Leer, Roe, Osher, Harten, Yee, Sweby,
and many others. The list is enormous, and some of the
most significant contributions has been collected in [3].
However, the quality of the solution is still questionable:
some apparently simple problems such as computing the
liftt and drag of an airfoil is still a difficult task. One of
the reasons is that the so-called high resolution schemes
suffer a much too important entropy production. In fact,
they have been devised on scalar 1D problems, then
extended to multiD systems but their construction relies
on “1D ideas”. Another difficult problem is the sensitivity
to the mesh: It is still difficult to construct 3D mesh with a
very good quality and consequently, the quality of the solu-
tion itself may be questionable in many cases. Hence, it is
natural to try to develop methods that are as little as
possible sensitive to the regularity of the mesh.

For these reasons, since several years, some researchers
have tried to incorporate some ideas contained in the 1D
high resolution schemes (upwinding and monotonicity
preservation) in a finite element like framework. Some of
the major contributions has been done by Roe, Deconinck,
Sidilkover and their coauthors. These residual distribution
(or fluctuation splitting) schemes have first been developed
for a scalar transport equation, then formally extended to
the system (see [4,5] for example) by incorporating as much
physics as possible. These schemes share common features
with the SUPG scheme of Hughes or the streamline diffu-
sion methods of Johnson, except for upwinding. These
schemes are not constructed by using any particular direc-
tion of the mesh. One of their advantage is that, at least for
scalar equations, one can construct a fully second order
accurate scheme on triangular meshes with a very compact
stencil: the scheme uses only the neighboring nodes. In the
finite difference context, it is interesting to note the paper
by Ni [6] which is the first, up to our knowledge, where
the idea of splitting an elementwise quantity was splitted
in part to update the solution, and also the work by Lerat
and coworker that share many similarities with the SUPG-
like scheme, [7-9].

The upwind residual distribution schemes have first been
imagined by Roe in [10] and then in collaboration with
Deconinck and collaborators. The status of this work have
been reported in a series of von Karman Institute Lecture
Series in the 90’s, one example is [4], or a series or PhD the-
sis such as Paillere’s [11] or van der Weide’s [12]. Later con-
tributions are [13] or [14-18]. The 2002 state-of-the-art is
reported in a special issue of Computer and Fluids [19]

and in the 33rd Lecture series of the von Karman Institute
[20-22].

This paper is organised as follows. We first give some
generalities on residual distribution schemes. In particular,
we connect them to finite volume schemes and show why
they offer more flexibility. We recall Roe-Struijs—Decon-
inck linearisation [23] give a simple condition that guaran-
tees a Lax Wendroff like theorem and describe the design
principle of our scheme. Then, we recall two important
examples of the system N (narrow) and the LDA (low dif-
fusion advection) system schemes introduced by van der
Weide and Deconinck [24] after their scalar version. We
show that they are well defined for a symmetrizable system.
Barth [25,15] has shown that for a linear symmetrizable
system the N scheme is globally and locally dissipative.
In a next section, we give a different interpretation of the
PSI scheme, and we show how to extend it to (1). The
extension to viscous problems is discussed. Numerical
examples are given to illustrate the scheme. All this mate-
rial is provided in Section 2. Then, following the same lines,
we consider unsteady problems in the scalar and system
case in Section 3. In Section 4 we discuss what we consider
to be the most important problems to solve for RD scheme,
namely the problem of erratic convergence in some situa-
tions and the high order extension of the RD scheme (i.e.
higher than second order accuracy), and then conclude.

2. Residual distribution for steady problems

In this section, we are interested in the steady problem
(1). We consider a conformal mesh which elements are tri-
angles in 2D and tetrahedrons in 3D. In all what follows, in
order to make the notations simpler we assume to work in
two dimensions, but everything can be easily extended to
3D. The triangles are denoted by {7},_; . n,is the num-
ber of elements. The vertices are denoted by {M},_, . n,
the number of vertices. We denote by M, , M;, and M, the
three vertices of 7. In most cases, there is no ambiguity, so
these vertices are simply denoted by M, M, and M3, or 1,
2, 3. In all what follows, we assume that the mesh is regu-
lar. We also denote by / the maximum of the diameters of
the triangles.

2.1. Generalities

In the RD schemes, the data are stored at vertices.
Hence, W, is an approximation of W(M;). Eq. (1) is then
approximated by

> ol =o. (10)
TM;eT

The quantities @] are called residual. In general, they
depend on W; where j € 77(i) a finite set of indices. They
have to fulfill the conservation relation

> o = / div(F(w))"dx := ", (11)

M;eT
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where (F(W))" is an approximation of the continuous
flux F. The system (10) is never solved as it appears, but
via an iterative procedure. One simple example is given
by

et _ g A

> 9, (12)
|Ci| TM;eT

where we seek for the limit, when n — + oo, of W7. The
parameter At can be interpreted as a pseudo-time step,
while |C} is the area of the dual control volume. In other
words, we seek for an approximation of the unsteady Euler
equation when the time goes to infinity. Obviously, local
time stepping can be used, in which case the iterative meth-
od is interpreted as a relaxation method of the Jacobi type.
Last, the boundary conditions are enforced weakly, see [14]
for an example of technique.

2.2. Accuracy, monotonicity and conservation issues

In this section, we provide some design features of the
schemes. Ideally, they should be monotone, stable, accu-
rate, convergent, etc. Here we provide simple conditions
to ensure the monotonicity, accuracy, and simple criteria
that garanties they converge to a solution of the problem,
provided the numerical sequence does converge.

2.2.1. Monotonicity preserving schemes, scalar case
In practice, all the known RD schemes can be written as

of = Y c(u—u). (13)

M;eT Mi#M;
For this scheme to be L™ stable, it is enough that

¢t >0 forallij. (14)

The method is monotone, and the iterative method (12)
At

n+1 n T
= P
1 1 |Cl| 1

TM;eT

u

is monotone under the CFL-like condition

T
At; max @ < 1.
T,eT |T|

The condition (14) is the so-called monotonicity preserving
condition.

2.2.2. Accuracy: the linear preserving (LP) condition

We briefly recall the analysis of [14]. It is shown that a
converged RD scheme (10) produces a formally second
order accurate solution of the steady problem (1) under
the following three requirements:

1. The mesh is regular,

2. The approximation F" is second order accurate on
smooth solutions,

3. For any smooth solution of (1), ®T (W) = O(h’) for any
vertex M; and any triangle T such that M; € T.

For this reason, it is essential that Eq. (10) is exact or
approximately exact with an error at most ¢/(4*) otherwise
accuracy is lost.

In most cases, the third condition is met by imposing
that there exists a family of uniformly bounded coefficients
(or matrices for system problems) ﬂiT such that

of =plo".

Indeed, it is easy to show that
/FWMM:mm,
or

when F'(W") is a second order approximation correspond-
ing to a smooth solution. This is the linearity preservation
(LP) condition introduced in [4] which is satisfied by the
SUPG scheme and the PSI scheme of Struijs [23] that we
recall later.

It is known that it is not possible to have a linear scheme
that is both monotonicity preserving and linearity preserv-
ing: this is Godunov theorem [26]. The schemes that satisfy
both requirements must be nonlinear. The construction of
such schemes is the topic of the next section.

2.2.3. Conservation

The conservation relation (11) garanties under rather
mild assumptions, that the scheme, if it converges, con-
verges to a weak solution of the problem. More precisely,
we temporarily denote by (W}),_, , the solution of (10)
to indicate the mesh dependency. In [27], it is shown that
under the following conditions:

1. the mesh is regular,

2. the approximation (F(W))" is continuous across the
edges of the triangles 7,

3. when the mesh size converges to 0, (F(W))" — F(W) in a
suitable norm (L}, or L),

4. the functions @ = & (W;, j € ¥°(i)) is continuous,

. the conservation condition (11) is satisfied,

6. the solution (W})_,  is bounded in the maximum
norm when the mesh size # — 0 and there exists a locally
square integrable function 1 such that a subsequence of

(W!)._, .., converges to W in LX),

9,

..... n

then W is a weak solution of (1).

Hence, the conservation relation (11) is essential for the
quality of the solution. What about nonlinear problems
like (1) or (9)? Most of the schemes are first constructed
for a linear problem and not for nonlinear ones. So, one
has to find a linearised problem such that its residual on
any triangle is equal to the residual (11). This is, in general,
a nontrivial question, except when the flux depends
quadratically of the conserved variable.

Consider for example the case of the Burger equation

ou 10w

u 1o _ 15
> 2 ox (15)
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The only thing we know how to do is to construct RD
scheme for a linear advection problem,

a, — =0, (16)

a—k

that is to construct residuals

o
<p1+q52+<p3:¢:/ 4, +a, — | dxdy,
T Ox Jy

®; such that

where we have assumed a piecewise linear interpolation.
How can we construct (a,a,) such that conservation holds
for (15), i.e

out  ou out 1@

—+a, dxdy —+= dxdy.
/T(a'ax“a) /T<6y+2 o Y
The answer is obtained via a Roe type linearisation since
the fluxes are quadratic,

up + ur + us

3

In the system case, the answer is the similar, see [26]. In
particular, in the case of the Euler equation with a constant
polytropic coefficient y, it is known that the Roe parameter
vector

Z=/p(l,u,0,H)"

permits to write the fluxes F:=FZ) and G:= G(Z2)
quadraticaly in Z, as well as the conserved variable
W := W(Z). Then, it is possible to construct averaged
Jacobians 4 and B such that

h h
/divF”(W”)dx:A/ aidx—kB/ aW
T

where it is understood that F'(W") := F(Zh), W .= w(z")
and Z” is the linear interpolant of Z in 7. The interesting
point is that the system

ov ov oV

at+Aax+Bay 0 (17)
is also hyperbolic for a constant 7, see for example [14] for
details. This is some sort of a coincidence, because the
hyperbolicity of (17) has nothing to do with the way it
was constructed.

There are several important differences with the one-
dimensional situation. In one dimension, there are several
ways of deriving the Roe linearisation. One is the use of
the Roe parameter vector, another one is to write explicitly
the relation

AAW = AF (18)

with Af:= f7 — f& with the choice 4 = & (W) at some aver-
age state to be determined and to realise that one has to
solve a quadratic equation in # and a linear one in H to
get the result. The quadratic relation has two solutions

a, =1 and a,=

gy = VPRt VP Pk (19)
NIRRT NN

and only one stays bounded whatever the density values:
the Roe average of the velocity.

Another method 1is that the difference operator
Af:=f; — fr that defines the difference of a function f
between two states f; and fz has the same properties as a
derivation. It is known that if fand g are two real valued
functions, then the derivative (fg)’ is

(fg) =f'g + /g
Similarly, for any 4 € [0,1] one has
A(fg) = gAf + fAg, (20)

where f=/ifi+(1-2)fx and g=(1—A)g.+ igxr
Thanks to this relation and the choice
A= L
NZEIN
one gets the Roe average.

In two dimensions, the situation is very different. The
method starting form (18) can be generalised. Instead of
two generic solutions (19), one has in general four solu-
tions, among which only one remains bounded what ever
the density values. Unfortunately, it is very difficult to com-
pute in general and, last but not least, the linearised system
(17) may not be hyperbolic. Thus this of no use, see [28,29]
for details. The second method cannot be extended to the
RD case since the algebraic relation (20) cannot be gener-
alised in several dimensions, so that no “formal” derivation
relation seems to exist. The only solution is the use of the
Roe parameter vector, but it works only for ideal gases

..Some solutions to overcome the problem have been
proposed, see [15,30], the most promission is [30].

This situation is in contrast with what can be done
for finite volume schemes. Here, it is sufficient to define a
continuous numerical flux # that satisfies

'9;(le Wjaﬁtj) = _egj(W” W,',ﬁﬂ)

to ensure conservation in the general case, see [31,32]. In
the RD scheme, one has to establish a global conservation
relation at the level of the triangle 7', which is much more
difficult. We show in Section 4.2 that in fact, when going to
high order schemes, the situation becomes surprisingly
much easier, so that conservation is not any more a
problem.

2.3. First examples

Many very classical schemes can be formulated within
the framework of RD schemes. An example is given by
the finite volume schemes, see [14]. In that case, and what-
ever the order of accuracy of the scheme, the approxima-
tion (F(W))" is defined in each triangle T as the Lagrange
interpolation of the flux F. If /7; is the piecewise linear
shape function associated to the vertex M,, the restriction
of (F(W))" in T'is

=> F(W

ieT
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Fig. 1. Definition of is the inward normal vector opposite to the vertex
M.

In that case, we have

ZF

jET
where 7#; is the inward normal vector opposite to the vertex
M;, see Fig. 1 for the notations.

However, the schemes defined by (10) and (11), where
(F( W))” satisfy the above conditions, represent a much
wider class than the finite volume ones. In particular, the
finite volume are constructed using directions that are only
related to the mesh definition, not the structure of the solu-
tion. Other schemes, that also satisfy (10) and (11), can be
defined without any reference to the geometry of a control
volume and by using more deaply the physical structure of
the local flow.

Among the schemes that cast into the formalism (10)
and (11) are the streamline diffusion method of Johnson
et al. [33] and the SUPG scheme of Hughes et al. [34].
We denote by W" the continuous piecewise linear inter-
polant of (W}),_, , and let V" any continuous piecewise
linear test function. These schemes writes for (1)

for all V", /Vh~divF(W”)dx
Q

+ZhT/ Vi FE(W") -V (Y F(W") - V") dx = 0.

TcQ

In that case, the residual writes

! :/W,--div F(Wh)dx—khr/(VWF(Wh)-VJVl—)
T

T

x (VyF(W") - VW) dx.

The last example of this type we provide in this section is
an extension of the Lax Friedrichs scheme. The residual is

T 1 T
o =3 <q> —or Y (Wi W,)). (21)

JET j#i

Clearly, @] + @, + @; = ®@". The parameter o is chosen
larger than the spectral radius of 4 and B. If the approxi-
mation (F(W))" in (11) is the linear interpolation of the
flux, this is the RD formulation of the finite volume Lax
Friedrichs scheme. If another approximation is chosen, as
the one using the Roe parameter vector [26], this leads to
non finite volume scheme, i.e., no numerical flux associated

with precise directions in the mesh seems to be related to
that scheme.

2.4. Upwind residual distribution schemes

We first recall the construction of these schemes for the
linear scalar problem
We consider the problem

a-Vu=0 xeQ,

22
u=g onl_ (22)
where I'_ is the inflow boundary of I' =0Q. If the un-
known u is piecewise linearly interpolated, the total resid-
ual @7 is given by

3
@T = ijuj,
j=1

where
1
kaiaﬁ}:/aVA/ldx

We notice that Z ~_k; = 0. Here, we drop the superscript T
in® =, because there is no ambiguity.
We briefly describe the N (narrow) scheme [26]. It writes

®; = kf (u; — 1), (23)

where # is obtained by recovering the conservation, i.e.

i = (ij> h (zj:kju]). (24)

In (23), we have set as usually & = max(k;,0) and
k; = min(k;,0) so that k; = k; +k; .

€ scalar n = k. 1S always dcined unless
The scal k) s always defined unl

a=0." This scheme can be considered as a conservative
method of characteristics.

There are two possible types of triangles, the one target
triangles and the two targets triangles, see Fig. 2. In fact,
since Ej.:lkj = 0, either one of the ks is positive and the
others are all negative: this is the one target case, or two
kjs are positive and the last is negative: this is the two target
case.

o One target case. We assume k; > 0 and k», k3 < 0. Then,

@1 :(p, and @2:¢3:O.

e Two targets case. We assume k; = 0 and k, = 0, so
k3 < 0. Thus, @3 =0, and simple calculations lead to

@1 = k1 (u1 — Ll3),
(pz = kz(uz — Ll';)

! Since for any i, ®; — 0 uniformly if a — 0, there is no definition
problem in the case a = 0.
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(a) (b)

Fig. 2. One target and two target cases for the N and LDA schemes.

The relations (23) and (24) ensure a continuous switch
between the one target case and the two target case. Note
that any interior node is always one target with respect
to exactly one of the triangles that surround it. This feature
seems to have an important role in the good behavior of
the N scheme and of its high order counterparts.

Eq. (23) can be rewritten as

JET j#i

with ¢l = knk; > 0. Because of that, the method is
monotone, and the iterative method (12)
n+1 n Ati T

u. = Uu. —

i i i

|Ci| T.M;eT

is monotone under the CFL-like condition

ikt
Af;max | =+ ) < 1.
T,ieT |T|

Another upwind scheme is the LDA scheme (for low
diffusion advection), see [4]. It is defined as

This is an upwind scheme, it is not monotone. Note that
the LDA scheme is identical to the N scheme for one target
triangles. The main difference between the two schemes, be-
sides the monotony problem, is accuracy for steady prob-
lems. The N scheme is only first order, since in general
the ratio % are not uniformly bounded. The LDA scheme
is linear preserving since these ratio are equal to —nk;
and lies in [0, 1]. If the N scheme provides nonoscillatory
solutions, the LDA will be oscillatory, but only near
discontinuities.

2.5. Construction of LP, monotony preserving
second order schemes

The problem is the following. Considering a triangle 7,
we are given residuals that define a first order monotone
scheme, (@, ®,, @3). More precisely, we demand that it sat-
isfies the local monotonicity conditions (14). We want to
construct a second order scheme defined by its residuals
(@7, @3, P;) such that the resulting scheme is still locally

monotonicity preserving under a CFL type conditions, is
also linear preserving and satisfies

b=> & =0.

3
=1 i=1

1

The first remark is that if one defines x; = %, we notice
that

3

Then we define f§; = %, the problem can be reformulated as
finding a mapping (xi, X, X3) — (1, 2, f3) such that

1. Conservation Z?:Iﬂ,- =1
2. Monotonicity: for all i =1,2,3, x,;5; = 0. Using (13) and
(14), this condition comes from the fact that

?; = D a‘pt X ;Ci/(“i —uj) = Zj;éicif(ui - u))

with ¢, = %cij. Since ¢;; > 0, the positivity of ¢j; is equiv-
alent to x;f; = 0.
3. Linear preserving condition: we want f3; bounded for

any I.

In [35], we provide a geometrical interpretations of these
conditions, and several solutions to this problem. We
repeat the argument. The key remark is that since > X =
> jﬂ . =1, we can interpret the coordinates (xy, x,x3) and
(B1, P2, f3) as the barycentric coordinates of points L and
H with respect to a reference triangle (A, 4,, A3) that we
choose to be equilateral for symmetry. The points L and
H are defined by

L = x4, + x24> + x343  or equivalently
AL = x4, 45 + x34, 45,
H = ﬁlAl =+ 52142 + 53143

AH = PoAiAs + B1A1As.

or equivalently

In Fig. 3(a), we have defined seven sub-domains: the trian-
gle (A, A», A3) and the six domains D;. The problem is to
find a mapping that project the point L onto the triangle
(Ay,A45,A43) so that L and H belongs to the same sub-
domain. A geometrical representation of a possible projec-
tion is given in Fig. 3(b). Note that here, the projection
leaves invariant the triangle 7. What is important is that
the coefficients f; be bounded, so any bounded region
can play the role of invariant region onto which the projec-
tion is carried out, for example the disk & of Fig. 3(b).
One of these possible projections is the PSI “limiter”

xt

pi = Z—X,* (25)
J

so that

? = f0. (26)
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Dg

Ag

Do Dy

(A1, Ag, Ag)

Aq Az Dy

D3

(a)

Fig. 3. Geometrical representation of the mapping (xy, x2,x3) — (1, 2, B3)-

We note that there is no difficulty in the definition of f;
(except the fact that @ may vanish, in which case we set
@ = 0) because

D=2 =) x =L
J J J J

This construction can be applied to any monotone
scheme, for example the N scheme, or any finite volume
scheme. When applied to the N scheme, this results into
the PSI scheme of Struijs which was the first monotone,
LP scheme in the literature.

We provide some examples on the Burger equation (15)
in Q =[0,1]x[0, 1] with the boundary conditions

1.5 if x=0,
u(x,y)=¢ 15-2x if y=0, (27)
—-0.5 if x=1

by the N scheme, the PSI scheme, the upwind finite volume
scheme and its PSI version, the Lax Friedrichs scheme and
its PSI modification in Fig. 5, the mesh is displayed in
Fig. 4. As a reference, we provide the results of a second
order ENO scheme on the same problem, in Fig. 6. The
first remark is that the general quality of the RD solutions
is better than that of the ENO scheme. This is particularly
true in the resolution of the discontinuity. The second re-
mark is that there is a very clear improvement of the solu-
tion between the first order ones and the second order
modification of each RD scheme. This is particularly true
for the Lax Friedrichs scheme. The third remark is that
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Fig. 4. Mesh for the scalar problem (15)-(27).

PSI scheme

N scheme

upwind finite volume scheme PSI upwind finite volume scheme

Lax Friedrichs scheme PSI Lax Friedrichs scheme

Fig. 5. Results for the problem (15)-(27).

Fig. 6. Solution for the second order ENO scheme of [28]. This scheme
has been measured to be second order accurate for smooth solutions.
However, the ENO schemes are not particularly tuned for steady
problems.
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there is a ranking in the solutions. The best first order
scheme is the N one, followed by the upwind finite volume
scheme and then the Lax Friedrichs one. The same ranking
applies for the second order scheme, the PSI scheme being
the best, and the PSI upwind finite volume giving almost
identical results. The interesting thing is the occurrence of
wiggles in the smooth part of the solution provided by
the PSI Lax Friedrichs solution. It is interesting to notice
that in general, difficulties for the RD schemes occur not
in the discontinuities of the solutions (as usually), but in
their smooth parts. Coming back to the PSI Lax Fried-
richs, these wiggles are not an indication of any instability:
the scheme is perfectly stable, the results are converged,
and any cut through the fan show that the solution pre-
serves indeed the monotony! The reason of that phenom-
ena is not clear at all. We believe that it is an indication
of the overcompressive nature of the limiter, the way to
avoid this is not yet understood and is a topic of current
research. More generally speaking, the monotonicity con-
dition (14) only ensures that on has, for any vertex i,

min u; < u; < max u;. (28)
JEV (D) JEV (D)

It does not tell anything on the behavior of the solution,
and indeed, an oscillatory behavior is not in compatible
with the inequalities (28). In [36], Breuss shows that even
in one dimension, the Lax Friedrichs scheme may produce
oscillatory solutions: the solution is oscillatory, but its total
variation is not increased.

2.6. Extension to systems

We sketch the work that has been done in [17]. Related
work, in a different spirit, has also be done in [12] and is
also available in [37] and described in more details in
[20]. Another method is described in [14].

2.6.1. The system N scheme

In [17], we have considered only the case of the system N
scheme, and provided a method similar to what is done in
the scalar case to rise the order of accuracy from first to
second order, for steady problems. The system N scheme
has been derived in [12,24] and analysed in part in [15]
and then in [17].

Similarly to the scalar case, it writes for a linear hyper-
bolic system with constant matrices 4 and B as

@O, =K (W, — W),

where, if n’ (respectively n;) are the x- (respectively y-)
components of 7;, we set K; =n‘d + n;B. The matrix K
has the same eigenvectors than K, its eigenvalues being
the positive parts of those of K;. Similarly, we define K
so that K; = K + K, and |K;| = K; — K. Last, the state
W is defined using the conservation principle,

(e (50

In the case of the Euler system (1) where a linearisation is
performed, some care has to be done since the linearisation
relation do not provide

S KW, = / divF(w(Z"))dx.

Let Z = (z1,25,23,24) be the Roe’s parameter vector and let
us write

1 1
W=5D2)z,  FW)=3R(2)Z

where D(Z) is linear in Z, as well as R(Z) = (R(Z), R\(Z)).
There are many possible choice, we choose the one that

ensures D(Z)Z'=D(Z')Z and R(Z2)Z' =(Z')Z. For
example,

Z 0 0

) z) 0
b(z) = z3 0 z 0

;_4 (7; ) Z (*/;/1 ), X %

Then, the total residual is
b= / divF(W(Z"))dx = /R(Zh)VZhdx
T T

1 . 1 . 1 S
= ER(ZI) . I’llZl +§R(Zz) . n1Z2 + ER(Z}) . I’llZ3
=KD Y (2)Z, + K,D N (Z2)Z, + KsD ' (Z2)Z;
=K\W, + KWy + K W5

In the above equation, we have made the convention that
R(Z) -ii = R.(Z)n, + R,(Z)n,.

The parameter vector Z is the arithmetic average of the Z;s
and W = D~'(Z)Z,. This shows that the correct evaluation
of the residual is

& =K W, + K, Wy +KsWs,

so that the system N scheme, in the case of the linearised
Euler equation, writes

with

() (27

The evaluation of W needs to solve a linear system. One
can show that this linear system is always solvable in the
case of a symmetrizable system, as is the Euler system,
see [14] for details. In [15], it is shown that the system N
scheme, applied to a constant symmetrisable system is
energy stable. In the same reference, it is also shown that
under the assumptions of the Lax Wendroff theorem, the
system N scheme, for the nonlinear Euler equation, is
entropy stable in the limit of a mesh refinement.
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2.6.2. Construction of a LP and stable scheme for
symmetrisable systems

The idea in [17]is the following. We consider a symmetr-
izable system, for example the Euler equations. Consider
any triangle 7, and Let {r:}; be the set of eigenvectors of
the matrix cosfr4 + sin67B, for a fixed arbitrary angle
0. In the case of the Euler equations, one of the eigenvec-
tors do not depend on 07: the eigenvector associated to the
transport of entropy. It is the only common eigenvector of
the matrices 4 and B. we denote by {/:}: the set of left
eigenvectors of cosfrA + sin 078, namely

1 1
P . u—ccosfr
=1 s T v—csinfr 7
ubzrnz H — (cos Oru + sin Hrv)c
1
u+ ccoslr
62 = . ’
v+ csinOr
H + (cos Oru + sin O07v)c
0
—sin 0
Uy = !
cos Or

—ucos Oy + vsin Oy

The next step is to project the residuals of the N scheme
against the left eigenvectors of cos07A4 + sin07B. We set

e 4T
(/7? = fg b,
and notice that

Z (p}f = ECTQD = -,
J

Then, for any ¢ =0,...,3, we limit the set {(pf}l_:L3 with
any limiter introduced in Section 2.5, for example (25). The
limited projected residuals are denoted by {¢;"}_,;
according to (26). Then we reconstruct residuals for the
system case according to

D) = Z @7 e

The stability of such a procedure is analysed in [17]. In
practice, the angle 67 is that of the flow velocity because
it seems more natural, but the stability does not depend
on the specific choice of this direction, see [17] for more
details.

2.7. Other methods

There exists another technique for achieving second
order accuracy, namely the blending technique. Several
variants have been illustrated in [14,24,38]. The general
idea is to consider the system N scheme and the system
LDA scheme and to construct the residual defined by

®; = (D) + (Id — )PP~

The last step is to construct the family of matrices ¢ such
that the scheme is second order accurate at steady state
and nonoscillatory. Second order accuracy is achieved if
¢ = O(h) at steady state, following the analysis of Section
2.5.

In [14], the matrix £ is constructed so that the entropy
production of the scheme within one triangle leads to a
(formal) entropy inequality. In [24,38], the blending matrix
is constructed componentwise by extending the scalar
formula

_ @)
o]+ 93] + |95

Itis clear that 0 < ¢ < 1, and that in principle £ = O(h) for a
smooth solution (thus ensuring accuracy), while ¢ = (1)
near a discontinuity, thus ensuring a nonoscillatory behav-
ior. In [14], we show that there exists a family of parameters
that ensures the nonoscillatory behavior of the scheme, but
the choice (29) does not belong to this family. There exists
also a particular choice that enables to recover the scalar
PSI scheme of Struijs.

These schemes work very well, and are simple to imple-
ment. However, in our opinion, but it is a very subjective
opinion, they suffer several drawbacks:

(29)

1. They need to compute two residuals for constructing the
limited one, instead of only one in the previous
construction.

2. The nonoscillatory behavior is only a fact of experience,
no proof have yet been given. It is even possible (and dif-
ficult) to produce counter examples. In our experiments,
difficulties may be encountered for very high Mach num-
ber flows.

. The version of [24,38] is not rotational invariant.

4. We have experimented difficulties in extending this
approach (i.e. [14]’s) to nonsteady problems. Deconinck
et al. report a better success with their blending
approach however, as examples will be given later in
the paper.

5. If one imagines to extend this technique to other choices
of base schemes, for example the upwind finite volume
scheme of Roe instead of the N scheme and the Lax
Wendroff scheme instead of the LDA scheme, it is easy
to see that in general ¢ = (1), so that the resulting
scheme is only first order accurate, see [17] for details.
Such a class of scheme would be interesting since we
could construct schemes from classical ones, and reach
second order accuracy with the most possible compact
stencil, see [39] for details.

w

The idea of approximating (1) using a balance between
element-residual as here, has been used by several authors,
such as Hughes et al. [34], Johnson et al. [33] in the finite
element context. In the finite difference context, up to our
knowledge, the first paper of this type is Ni’s paper [6]. A
very interesting contribution in the finite difference frame-
work, both for steady and unsteady problems, is Lerat
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et al. contribution [7-9]. It shares many similarities with the
SUPG approach, especially concerning the type of artificial
dissipation they use. However, there are some differences,
such as the tuning parameters that are directly related to
the wave structure of (1), so that no shock capturing term,
at least for transonic problems, seem to be needed.

2.8. Numerical applications

We illustrate the schemes of Section 2.6 on the example
of a scramjet-like configuration. The inflow conditions are
M = 3.6. In this example, we have several strong disconti-
nuities and also interactions between these discontinuities
resulting in a quite complex flow. Fig. 7 present the Mach
number isolines for the Roe scheme with van Leer—van
Albada limiter applied on the physical variables on the
right. The results of the PSI scheme for the Mach number
are given in Fig. 8. What is noticeable is a sharper resolu-
tion of the discontinuities. This can be observed in Fig. 9

Fig. 7. Isolines of the Mach number, scramjet problem, MUSCL scheme.
Min = 1.868, Mach = 3.61.

Fig. 8. Isolines of the Mach number, scramjet problem, PSI scheme,
Min = 1.847, Mach = 3.6.

— P8I
3.5 — MUSCL

25

o

0.5

(a) (b)

Fig. 9. Cross-section of the mach number (a) and zoom (b) along a
parallel in the bottom channel.

where a cross-section on the lower part of the computa-
tional domain, parallel to the lower boundary, is given.
The important difference between the results obtained by
the two schemes can be observed on the zooms of Figs. 7
and 8. Besides the sharpness of the discontinuities, we
observe some ‘““oscillations” in the smooth part of the
PSI results. Once more this is not a signal of instability,
but rather an trace of the overcompressive nature of the
limiter. The iterative convergence history of the two
schemes are also different. The MUSCL results are con-
verged, while we are not able to drive the iterative residual
to machine lower than 107>-107>. This seems related to
the behavior of the Lax Friedrichs PSI scheme of Section
2.5.

The RD schemes seems much less dependant on the
quality of the mesh. This point is illustrated in Fig. 11. This
is the NACAOI12 case, the Mach number is M = 0.85 and
the angle of attack is o =1°. The mesh is displayed in
Fig. 10, and is of poor quality, in purpose. The MUSCL
results exhibit a very strong numerical boundary layer that
does not appear in the RD results. The boundary condi-
tions are identical, so this is an indication of the numerical
dissipation of the scheme. Indeed, the boundary conditions
at the nose of the airfoil generates entropy. The MUSCL
scheme convect and increases this, while the RD scheme
has a much lower influence.
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Fig. 10. Mesh for the NACAO12 test case.

MUSCL scheme RD scheme
Fig. 11. Solutions for the NACAOI2 test case.
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2.9. Formulation, FE view point, formulation for viscous
problems

In this section, we provide some bridges between stabi-
lised finite elements methods such as the SUPG method
of Hughes, and the high order residual schemes above.
Indeed we provide several interpretations in the scalar case
that can be easily extended to the system case, and show
that some of these formulations can simplify, and clarify,
the extension to these schemes to convection diffusion
problems.

2.9.1. Finite element formulations

It is interesting to look at (10) from a more abstract
point of view in order to connect the RD schemes to more
known schemes. In the previous sections, the idea was to
increase the formal order of accuracy starting from a first
order scheme in such a way that oscillations are controlled.
This was done by borrowing ideas from the high order
nonoscillatory schemes such as the TVD scheme because
the main trick is to compare the total residual to the first
order residuals.

In what follows, we connect them to the SUPG schemes
and more generally to finite element type schemes. To
make things simple, we consider the advection problem
a-Vu=0 on @ with Dirichlet boundary conditions on
the inflow part of 0Q. We start from (10). If ¢ is any com-
pactly supported continuously differentiable function, we
have equivalently

Zele)

T>M;

that is

Z Z 9,2 =0.

TCQ M;eT

Then we introduce @y :m the value of the
continuous piecewise linear interpolant ¢” of the nodal
values {¢;},_, . Using the conservation relation (11),

,,,,,

we get
Z@T/ a-Vu'de+y (Z(q;j - gof)q;j) =0.
TcQ T TcQ \M;er

Now, because a - Vi is constant over any triangle T, and
because of the exactness of the quadrature formula for
linear functions,

/wwzma
T

this equation can be rewritten as

/Qﬁoha V' dx + Z (Z(¢j —_ QDT)QPI.T> —0.

TCQ \ jeT

The last step is to consider now a LP scheme for which
o = p ", we see that

> (0= )@ = Z‘,—eT(@j —or)B; /T a- Vu'dx

JeT
_ h/(ET Vo')(a- Vu')dy,
T

where

W Ve — S0, on)f" — (z ﬁ;M:c) Ve (30)

JET JET
ie. hér = Z].eTﬂJTM;G. Thus, the scheme results into
/(pha-vuhdx+h/(2-v¢h)(a-wh)dx:o (31)
Q Q

with E‘T = ET. We notice that E is uniformly bounded.
The relation (31) suggests a way to implement the
Dirichlet boundary conditions u = g on I'",*> namely

/vha-Vuhdx—&-Zh/(E-Vvh)(a-Vuh)dx
Q T

TCcQ
— / gr"dl =0 (32)

and v”, " belongs to the set of continuous piecewise linear
functions V.

The relation (32) can be abstractly reformulated as: find
u" € V" such that for all v" € V",

a(u",v") = 1),

with

1) = [ eta

and
a(u,v):/Qva-Vudx—i—h/g(E-Vv)(a-Vu)dx

= / o'a - Vudx,
2

where o is discontinuous across edges.

It is interesting to notice that this formulation is not
unique. In fact, we have followed the inverse path as usu-
ally done. In general, given a PDE, a finite element space
is considered on which a consistent formulation, compati-
ble with the definition of the finite element space and the
PDE, is given. Here we have stated from an algebraic rela-
tion, namely (10) and we have reinterpretated it in a finite
element flavour, with some a priori choices. Here this leads
to (30) and (31) which looks as the SUPG formulation.

Other numerically equivalent formulations can be
obtained. For any triangle 7, the problem is to find a set

2 However, in all the numerical tests of the paper, the Dirichlet
boundary conditions have been enforced strongly.
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of three linearly independent functions ¥ for which we
have

ﬁiT/a-Vuhdx:/‘I’iTquhdx.
T T

Once more we use the fact that u” being linear, a - Vi is
constant, so the constraint is

piir= [ wlax

A solution to this problem is ¥7 = (A4";); + yTb" where b"

is any continuous function such that [;6Tdx >0 and 5"
vanishes on the boundary of 7. An example is given and
described in Fig. 12. The coefficient y; is then defined by

T
,yT _ IBi *%
i T
Jy b dx
We note that the example of Fig. 12 satisfies [;VH" dx = 0
Once 7! is defined, we define the test function ¥, by
(¥;),, = PT and the set of test functions W" as the span
_____ . If once more V), is the set of continuous
piecewise hnear functions, and avoiding the important
problem of the boundary conditions, we have a Petrov—

Galerkin variational formulation of the scheme: find
u" € V" such that for all w" € W,

/wha Vil dx = 1(w), (33)

The main difference between this formulation and the
SUPG like is that the test functions are now continuous
across the edges of the triangulation. The two construc-
tions, SUPG like or with bubble like test functions, can
be generalised to the system problem without major
difficulty.

2.9.2. Application to viscous problems

Once more we focus on the scalar problem
a-Vu—V.-(KVu)=0 xeQ,
(34)
u=g x €08,

where K is a symmetric positive definite constant matrix for
simplicity. We use a variational formulation with the same

B

Fig. 12. An example of a bubble function. b7 vanishes on the boundary of
T and is linear in each of the sub-triangles (4BG), (BCG), (CGA).

test functions as in the previous paragraph. Formally, we
would have to find «" in V" (space of continuous piece-
wise linear test functions) such that for any test function

in W',

[ vitras— [

Of course the term Jw”"V - (KVu)dx has no meaning, so we
integrate by part thanks to the divergence theorem,

th~(KVu)deZ WV - (KVu)dx
/ ")
,Z(/ (KVu)-iido — /VW” (KVuh)dx)

If w" is continuous, then the first term of the last line of
(2.9.2) vanishes because this sum can be rewritten as a
sum on edges, where each term appears twice, once with
a +ii, once with a —i. This property is not true when w"
is not continuous. For this reason, we prefers the formula-
tion (33) where the test functions are continuous by con-
struction. A closer look at [;Vw" - (KVu")dx reveals some
additional simplifications.

- (KVu)dx = 0.

/ V¥ (KVu")dx = / VA (KVU") dx
T T

+ 77 / Vb' - (KVu")dx.
T

Then, KVu is a constant, and since [ 7VbT =0, the second
term vanishes.

In summary, the formulation is to find u” such that for
any vertices,

ool +> /wc (KVu")dx = 0
T T

ToM;

In other words, the convective terms are discretised with
the LP residual distribution scheme and the dissipative
terms are discretised with a classical Galerkin
approximation.

This fact has been used in many papers, but the method
was presented uncorrectly from a mathematical point of
view. The SUPG-like Petrov Galerkin approximation was
used and the viscous terms were approximated by a Galer-
kin formulation, so neglecting all the annoying terms. The
numerical results were good, and even surprisingly good in
term of accuracy: the scheme should have been first order
only, and it was not. Our analysis shows that the
“neglected” terms does not appear indeed, and more over,
the scheme satisfies the variational formulation (2.9.2)
where the test functions have a square integrable gradient.
Then it becomes standard to show that the expected order
of accuracy is indeed met, provided the stability of the
scheme is shown. We do not know how to show the stabil-
ity of the scheme (except in the maximum norm which is
not suitable for this analysis), so the analysis is not com-
plete, but it is a strong indication of the correctness of
our approach.
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3. RD for unsteady problems

This part summarise [18]. An other possible construc-
tion is described in [40].

3.1. Construction

For simplicity, we consider the problem (1) with a con-
stant advection speed. Let 7 be any triangle, we denote by
K the time-space prism K= T X [t,,t,+1]), see Fig. 13. The
numerical solution of (1) is interpolated in K linearly in
time and space, namely

=1, ty —1
) = ) ) =0, 39
where u" (respectively u”“) is the linear interpolation of
{u! ,ul,ur} (vespectively {w!*!,u! ui'}). Then, we

consider the total residual in K,

/’/H»l / <au
= —_ + a
0 r \ Ot

If #; is the inward scaled normal opposite to M; in T,
setting k; = 1a - 7i;, we have

K T : n+l n : n+l
:?g 2 g +u

The idea is to split ®* into sub-residual that the prims K
“sends” to its six vertices, and then for any vertex to gather
the sub-residuals in order to update the solution. Then, the
definition of the sub-residuals @X uses the causality princi-
ple: the past does not depend on the future. This means
that the sub-residuals sent by K to the vertices (M}, 1,);—1 3
are set to zero, i.e., only the residual sent to (M}, 1,41)—13
may be nonzero. They are denoted by dif . This enables
to decouple the time slabs. Then, conservation is garantied
provided the following relation holds

PEKHER AN (36)

M;eT

Vu) dxdr.

| >

Last, the scheme is defined by
> af=o. (37)
T>M;

This represents a system of equations of the form
FU™, U =0 where U" (respectively U""!) represents

1

Fig. 13. A representation of K= T [t,,1,+1]

the vector of unknown variables at time z, (respectively
tni1). Since U" is known, this equation is solved in U""!,
and then we can repeat the procedure to iterate in real time.

The last thing to do is to precisely define the sub-resid-
uals. One guiding principle is that some stability property
holds, for example stability in L, the other one is
accuracy.

3.1.1. Stability requirements
An example of such a scheme is provided by the N
scheme:

At

T
¢1K — %(u;ﬁ)“l _ l/l:q) (k+( n+1 ~n+1) —|—k+(u _ 5!"))

-1
3 3
=1 =1
(38)

The N scheme in (37) leads to an equation of the form
Au""" = Bu" where A and B are constant matrices. A closer
analysis reveals that 4 is a monotone matrix, whatever At,
and that B has positive coefficients provided the CFL-like

"
condition holds Afmaxy Z-‘";‘ka < 1. This shows that the
N scheme is L™ stable under a CFL-like condition. In fact,
the analysis is not sharp enough, and numerical experi-
ments demonstrate that this condition may be violated by
a large factor. A deaper analysis also shows that the N
scheme is unconditionally L* stable, see [18] for details.
Following Ricchiutto [22], a variant of the N scheme is

T
cp;l" — %(u;ﬁl )+ Atk+( n+1

ﬁn+1) (39)

together with (37). This leads to a linear system of the form
Au"™' = " where A is a monotone matrix whatever Af, so
that the scheme is unconditionally L> stable. This is de-
tailed in Appendix A as well as the unconditional L? stabil-
ity of the scheme. This scheme is useful in the sequel, even
though it does not satisfy the conservation property (36).

3.1.2. Accuracy requirement
The technique is identical to the one described in Section
2.2, since we see the unsteady problem (6) as the steady

version of
Ou Ou
=0
ot <6z V”) ’
hence we can use the same tools.

In [14] for steady problems and in [18] for second order
schemes, it is shown that, provided the exact solution of (1)
is smooth, the scheme is formally second order in time and
space provided that for all triangle T and any vertex, we
have

= O(h’, A7),

where / is the maximum radius of the triangles 7. The der-
ivation of this condition also need that the mesh be regular
in the usual finite element meaning. There are several ways



R. Abgrall | Computers & Fluids 35 (2006) 641-669 655

of fulfilling this condition [4,13,18], the easiest one being
the Linear Preserving as in Section 2.5. In the next para-
graph, we sketch how to construct schemes that are both
LP and L™ stable following the same logic as in (2.5).
We only point out the differences.

3.1.3. Accuracy and stability

In order to fulfill this goal, we consider a first order
monotone scheme which residuals are {®}, and we want
to construct a second order scheme {®7} such that
@ = B,@% with B; uniformly bounded so that accuracy is
guaranteed, and such that this scheme, coupled with (37),
still satisfies a maximum principle.

To this end, we use any of the space—time variants of the
N scheme (38) or (39) as a low order scheme <151.L. We note
that the residual sent at the vertices of 7" but for the time 7,
are identically 0 by construction, so it will be the same for
the limited second order scheme. Thus we only have three f§
coefficient, they correspond to the amount of the total
residual

3 3
:gz n+]_ +%Zkl ll+]+u

J=1

sent to the vertices of T at time 7,;. A possible formula is
given by (25) where once more
L
¢i
(e
The rest is similar.

Remark 3.1 (Stability). The scheme we have sketched
here is monotone under a CFL condition, as its scalar
version was. This is a bit disappointing since it is a fully
implicit scheme. In [17], we show that the N scheme above
is unconditionally energy stable, but no such result seems
available in the maximum norm, even though in practice
the CFL constraint can be violated. Csik has imagined in
his PhD thesis a N scheme that is unconditionally stable in
the maximum norm, [41]. This version is more complicated
than the one presented here because instead of the
tetrahedral space-time element for the total residual he
uses prismatic space-time elements resulting in a quite
complex space-time mesh. This idea has been adapted by
Mezine in his thesis [42] to the prismatic space-time
element. The method is successful, results can be seen in
[17]. Very large CFL number can be used. This method has
been further simplified by Ricchiuto, see [21,22].

X; =

3.2. Numerical examples

3.2.1. Scalar problems

3.2.1.1. The rotating cosine hill. The rotating cosine hill is a
classical test-case for numerical schemes of the two-dimen-
sional linear unsteady advection equation. The test consists
in the transport of a cosine shape by a circular solid body
advection field centered at the origin

a—M—Fa-Vuzo
ot

where a = (y,

n[-1,1] x [-1,1], (40)

—x)T. The initial solution is

<1 + cos(4my/ (x +0.5)* + yz)/2>

up(x,y) =

if r=1/(x+0.5)"+)2 <1,

0 else.

The solution is set to zero at the inflow boundaries, at each
time step.

The computation was made on a unstructured grid of
8079 nodes and 15836 elements. The time step was taken
to satisfy the condition:

= —CFL mlln lklj (41)
with CFL = 0.9. The results, using the schemes described
in the previous section and the MUSCL scheme (with min-
mod limiter and Runge—Kutta integration in time) after one
revolution are compared in Fig. 14. We provide the cross-
section at y =0 in Fig. 15. The N-scheme is clearly the
most diffusive (see also Table 1), streamwise and crosswise
diffusion are considerable. The LDA scheme keeps the
height of the peak much better but the monotonicity is
not preserved. This results are much better than those
obtained by the MUSCL scheme.

3.2.1.2. The rotating cylinder. This test case differs from the
previous only for the initial profile

1 for r < 0.25,
uo(x,3) = { o @)
N MUSCL
LDA PSI

Fig. 14. Solutions for the rotating cosine hill after one revolution.
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-0.2 T T T 1 '02 T T T 1
LDA PSI

Fig. 15. Sections at y =0 of the solutions for the rotating cosine.

Table 1

Min and Max solution values for the rotating cosine hill test case
Scheme Min Max

N 0 0.217

MUSCL 0 0.313

LDA —0.03 0.983

PSI 0 0.802

where r = 1/ (x + 0.5)> + »2, which is not continuous, con-

trary to the previous case. The computation was made on
the same grid with a CFL of 0.9, the results after one rev-
olution are displayed in Fig. 16. The solutions exhibit the
same properties as the rotating cosine hill. Cross-sections
of the solutions after one revolution are provided in
Fig. 17. This results are better than MUSCL scheme. The
LDA scheme exhibits spurious oscillations, as expected.

3.2.2. Flow problems

Before giving some numerical examples, let us explain
how we use the results of Section 3.1. In fact, we proceed
exactly as in Section 2.6. For each element 7, we first chose
a direction (in practice the flow direction, but any other
would do). Call 04 the angle so defined, and consider the
eigenvectors of coslrA4 + sin07B where A and B are the
Jacobian matrices in the x- and y-directions evaluated at
the average Roe state. As before we denote these right
eigenvectors by {r:}; and by {{:}: the set of left eigenvec-
tors. Then, given the space-time residuals &, i=1,...,3
and the total residual @ = @ + &, + &3, we project these
quantities onto the right eigenvectors and define directional
space—time residuals,

9 T

N MUSCL

LDA PSI

Fig. 16. Solutions for the rotating cylinder after one revolution.

1 1
0.7 0.74
0.4 0.44
0.1 0.1
02 ‘ ‘ ‘ ‘ -0.2 ‘ ‘ ‘ ‘
-1 0.5 0 0.5 1 -1 0.5 0 0.5 1
N MUSCL
1
1
0.7
0.6+
0.4
0.24
0.1
02 ‘ ‘ ‘ ‘ 02 ‘ ‘ ‘ ‘
-1 -0.5 0 0.5 1 -1 0.5 0 0.5 1
LDA PSI
Fig. 17. Sections at y = 0 of the solutions for the rotating cylinder.

and notice that
Zgof = ngﬁ = ¢
J

The rest follows exactly as in Section 2.6. In the rest of
this section we present results on some classical test
cases.
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3.2.2.1. A two-dimensional Riemann problem. The initial
data are chosen in order to represent a “2D Sod tube” in
the domain [—1,1]x[—1,1]:

{ p=0.1
p=0.1
and the velocity (u,v) was set to zero. The solution is com-
puted at time 7= 0.2 on a structured triangulation where
Ax = Ay =0.01 and the CFL condition has been set to 0.9.

The isolines of the density and pressure are shown in
Figs. 18 and 19 for the N-scheme and the N-modified
scheme.

if xxy<0, 1 otherwise

. (43)
ifxxy<0, 1

otherwise

3.2.2.2. A Mach 3 wind tunnel with a forward facing step.
This test case has been extensively studied by Woodward
and Collela [43], and is widely present in the literature.
The setup of the problem is the following: a right-going
Mach 3 uniform flow enters a wind tunnel of 1 unit width
and 3 units long. The step is 0.2 units high and is located
0.6 units from the left-hand end of the tunnel. The problem
is initialized by a uniform, right going Mach 3 flow. Reflec-
tive boundary conditions are applied along the walls of the
tunnel, and inflow and outflow boundary conditions are
applied at the entrance and the exit of the tunnel. The
results at time ¢ = 4 with the N-scheme and the N-modified
scheme are shown. The simulation was done at CFL = 0.9.

1

H Ml\ '\‘p

= v ——
[
uu.\xﬂ\‘fﬁ \\Lhmﬁml% \l'\k*.

Fig. 18. 2D Riemann problem computed by the N-scheme at time 1 = 0.2,
density (left) and pressure (right).

The corner of the step is a singularity. It is well known
that if no special treatment is done, an entropy production
is observed in the vicinity of the step corner, and it alters
the quality of the second reflected shock. This is not phys-
ical because we have a strong expansion wave, sO no
entropy should be created. However, unlike in [43], we
do not modify our scheme near the corner, because we
are only interested in its stability properties.

An unstructured mesh have been considered, it contains
10868 nodes and 21281 triangles, it is refined near the
corner. Portion of the mesh is shown in Fig. 20.

The quality of the slip line coming out of the triple point
is noticeable, as well as the resolution of the shocks, in par-
ticular at the exit section of the tunnel. The maximum
shock width is no larger than two cells. Between the first
order and the second order results, the quality of the fan
(at the corner) has dramatically been improved: the
reflected shock is now correctly set, the weak compression
shock after the fan appears, and interact with the first
reflected shock, see the slip line coming out of the interac-
tion between the reflected shock and the weak compression
shock (see Figs. 21-24).

Fig. 20. Part of the unstructured grid for the Mach 3 problem.

Fig. 19. 2D Riemann problem computed by the N-modified scheme at time ¢ = 0.2, density (left) and pressure (right).
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Fig. 21. Forward-facing step problem. Density isolines: 30 equally spaced contour lines from 0.09 to 6.23. Top: N scheme. Bottom: N-modified scheme.
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Fig. 22. Forward-facing step problem. Mach number isolines: 25 equally spaced contour lines from 0.02 to 3.82. Top: N scheme. Bottom: N-modified

scheme.

3.2.2.3. Reflection of a shock on a wedge. This problem was
studied by Quirk [44]. A planar shock initially enters from
the left in a quiescent fluid and is reflected from a 45° ramp.
Its Mach number is M,=15.5 and is defined toward the
flow values in the quiescent fluid where the density is set
to 1.4 and the pressure to 1. Reflective boundary conditions

are applied along the ramp and the bottom and the upper
of the problem domain. For such an incident shock wave
Mach number and such a reflecting wedge angle, a double
Mach reflection is expected. The interest of this test case is
that, according to [45], the angle 6§ =45° and M;=15.5is
nearly at the transition between a double Mach reflection
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DA

659

Fig. 23. Forward-facing step problem. Entropy production near the step corner: 17 equally spaced contour lines from 0.63 to 1.5. Top: N scheme. Bottom:

N-modified scheme.
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Fig. 24. Part of the unstructured grid.

and a regular reflection. If the scheme were too diffusive,
we would get a regular reflection instead of a double Mach
reflection. Hence this is a good test of accuracy.

The density is displayed in Fig. 25. The resolution of the
different structure is quite clean, despites the poor resolu-
tion of the mesh.

3.2.2.4. Shock—vortex interaction problem. This test case
describes the interaction between a stationary shock and
a vortex. It was first presented by Pao and Salas [46], and
was studied by Meadows et al. [47] with a TVD scheme
and by Jiang and Shu [48]. The computational domain
is taken to be [0,2]%x[0,1]. A stationary Mach 1.1 shock
is set at x = 0.5 and normal to the x-axis. Its left state is

Fig. 25. Reflection of a planar shock from a ramp. Density 20 contour
lines from 1.18 to 20.12.

(p,u,v,p) = (1,,/7,0,1). A small vortex is superposed to
the flow left to the shock and centers at (x., y.) = (0.5,0.25).
The vortex is described as a perturbation to the velocity
(u,v), temperature T = £ and entropy S = lnﬁ of the mean
flow and denote it by tilde values.

u

S

T_

S

_ 2 .
= ere”'")sin 0,
2
= —ere”"") cos 0,

(“/ 1 )62€2fx(171’2)
4oy

:0,

(46)

(47)

where 1=~ and r = \/(x —x.)’+ (y—,)". Here € indi-
cates the strength of the vortex, o controls the decay rate
of the vortex, and r, is the critical radius for which the
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Fig. 26. Zoom of the mesh for the vortex simulation.

vortex has the maximum strength. We choose the same va-
lue as in [48], i.e. €=0.3, r.=0.05 and o =0.204. The
above defined vortex is a steady solution to the 2D Euler
equation. The upper and lower boundary are set to be
reflective. We use a uniform grid of 251 x 100, a zoom is
shown in Fig. 26. The pressure isolines at three different
times are displayed in Fig. 27.

3.2.2.5. Viscous flows. We extend the scheme to viscous
flows according to the principles described in Section 2.9.
It amounts to “split” the viscous terms and the hyperbolic
terms thanks to the correct choice of test functions in the
finite element interpretation of the RD schemes. Then a lin-
ear interpolation is done in time resulting into a Crank—
Nicholson type of approximation. More details can be
found in [49]. Taken from this reference, we show and

Fig. 28. Isolines of normalized temperature. Figures for ¢ = 40, 80, 120, 160, from [49] with permission.
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example of a transonic vortex pairing in a mixing layer.
This is a well documented test case, see for example [50].
The computation is done in a rectangular box L, x L, with
L,=30and L,=100. The Reynolds number is Re = 1000
(corresponding to a kinematic viscosity vo, = 107°). The
Mach number is M = 0.8 to which is superimposed a per-
turbation periodic in the x-direction, and with an exponen-
tial decay in the y-direction. The inviscid terms are
approximated with the B scheme that corresponds to a
blending between the N scheme and the LDA scheme.
The blending vector is computed from the residuals.
Roughly speaking, the N scheme does no play any role in
the smooth part of the flow, where the LDA scheme is
dominant tanks to the blending, while the situation is the
opposite in discontinuous parts of the flows, see [49,40]
for more details. Note that in the scalar case, a special
choice of the blending parameter leads to the scalar PSI
scheme, see [14] for details.

The solutions at times ¢ = 40, 80, 120, 160 are shown in
Fig. 28, where 30 levels of isolines of the temperature are
plotted. Comparing with the fourth order results of [50],
the method shows all features of flow-field which is very
satisfactory for a method that is only second order accu-
rate, at most.

4. Problems and perspectives
4.1. Problems for second order schemes

As pointed out several time in the text, the RD methods
end up by solving a nonlinear equation of the type

lP(Uv Uboundary) =0
in the steady case and
YU, U", Unoundary) = 0

in the unsteady one. The operator ¥ (i.e. the scheme itself)
is written in such a way that no explicit solution is possible
in the second order limited case. A closer examination of
the equation reveals that for the first order case, the prob-
lem amounts to solve a large linear system, and the same is
true for second order LP scheme that are nonlimited as for
the LDA scheme. It is of fundamental importance that
these equations are solved correctly and efficiently. By cor-
rectly, we mean that the left-hand side, 0 here, may be re-
placed by a small term of the order of the truncation
error, otherwise accuracy is lost.

In practice, these equations are solved by an iterative
method, using a preconditioning technique. For steady
problems, first, we precondition the second order scheme
(limited or unlimited) by a first order scheme. Very often
in the limited case, the convergence behavior of the itera-
tive method, after a very nice startup, becomes chaotic. A
typical example is given in Fig. 29. It represents the conver-
gence history for the PSI scheme of Section 2.5 for the
NACA 012 test case, M., = 0.85 one degree of incidence
and CFL = 50. The implicit phase is solved with GMRES

0 0
2 2
-4 -4
_6 6
0 1000 2000 3000 85 560 1500
PSI scheme LDA scheme

Fig. 29. Convergence history for the PSI scheme of Section 2.5 and the
LDA scheme. We have represented log,, of the L? norm of the density
component of 3., @]

(%4

[l

oA
<] -

Density Residual

Fig. 30. Density field and isolines of the density residual for the NACA
012 case, and the PSI scheme.

with ILU preconditioning. In Fig. 30, we provide the iso-
lines of the density, as well as those of the density compo-
nent of Res =Y., ®!. There is no apparent correlation
between the high values of Res, and the structure of the
density field. In particular, one would expect that the high
values correspond to the shocked regions of the flow-field,
this is not the case.

This chaotic behavior does not exist for the LDA
scheme, see Fig. 29, or the blended scheme in its versions
of [24] or [14] as sketched in Section 2.7, once (29) has been
suitably implemented.

Concerning unsteady problems, we observe similar cha-
otic convergence behavior in the solution of the pseudo-
time marching part of the algorithm.

Fortunately, this behavior does not seem to affect the
quality of the solutions, as demonstrated in the previous
section, but this is not satisfactory. We note that for
unsteady simulations, 4-5 implicit iterations are enough
to reach a low enough residual as experiments indicate.
The fundamental reasons of such a behavior are not well
understood for now, see however [39] for some remedies.

4.2. High order schemes

Until now, we have only considered the case of first and
second order accurate schemes. It is possible to construct
schemes that are higher than second order accurate for
steady and unsteady problems. The case of scalar steady
problems is considered in [35,20], that of scalar unsteady
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problems in [51]. The case of system problems has not yet
been considered.

Let us provide some information about the scalar steady
problem, say

a-Vu=0, xe@Q

u=g, xel~ (48)
and consider the case of third order accuracy to fix the
ideas. The computational domain is triangulated by a fam-
ily of triangles. Third order accuracy can be reached in
principle for quadratic interpolation. A quadratic polyno-
mial is fully described on each triangle 7" with six degrees
of freedom. Here, we define the degrees of freedom as the
values at the vertices of 7 and the values at the mid-points
of the edges of 7, see Fig. 31. We denote by ¢ any of
the degrees of freedom in the mesh. In [35], it is shown
that if, for any triangle 7, one can define residuals

relation holds

Zqﬁ}:/a-vuhdx;: o (49)
T

oeT

where u" is the quadratic interpolant of the data, then, as in
Section 2.1, the limit solution, if it exists and if it satisfies
bounds as in the standard Lax Wendroff theorem, is a weak
solution of (48). This result can be extended to the non-
linear case, of course.

In [35], it is also shown that the scheme is third order
accurate if the residuals satisfy

ol = o(h*™). (50)

In the d-dimensional case, for a r + 1th accurate scheme,
the condition (50) is replaced by

T = O(h'™). (51)

The easiest way of fulfilling conditions (50) (or (51) for
r+ 1th order of accuracy) is that @' = @' where the
fs are uniformly bounded.

To construct a high order scheme, the first idea is to
construct a first order scheme @" and, as in the previous
sections, to upgrade the order of accuracy by defining !
by

1 f 2

Fig. 31. The six degrees of freedom for quadratic interpolation.

By = % (52)
C)

The results (not presented here) are very disappointing, in
fact wiggles similar but more pronounced than what is
visible in Fig. 5 for the Lax Friedrichs—PSI scheme.

A possible explanation may be the following. In order to
define a quadratic polynomials, we need six coefficients.
The information contained in (49) is on a - Vu, so we loose
two degrees of freedom (one for the derivative, one for the
dot product), so we have only four degrees of freedom left.
The relation (52) define residuals that are all proportional
to @", so we do not have enough constraints, and spurious
modes may exist.

In [35], we overcome this by the following strategy.
From Fig. 31, we can define four sub-triangles defined by
T:=(1,4,6), (4,2,5), (5,3,6), (6,5,4). In these four sub-
triangles, we can consider the residuals

Pl :/ a- Vu'dx.
Te

Then, in T, we consider the N scheme @V, and define f:

by
SN\t

B = & (53)
then
T = fEpT (54)
and last, the residual sent by 7 to o is defined by
b, =) o (55)

T¢o

Doing so, the total residual in 7 is splitted in four sub-
residuals, and we have enough constraints. This technique
can be extended to the nonlinear case, and to fourth order
accuracy as well following the same technique, see [35]. We
take some results from the same reference.

The main problem of these schemes is that
ve\

> oer <Z—T> in (53) may be zero because

DK ASE A

€T

in general, contrarily to the second order case. This has
been noticed by Ricchiuto (VKI). In practice, we replace
formula (53) by

g ) "

a Ne\ T ’
<1>0_,“
ZO"ET{» <¢T;:> + 3¢
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where ¢ is a very small number. When ) _, &"V¢
@T: =0, [fﬁ :§, so that the scheme is centered, hence
unstable on such sub-triangles. We have never experience
unstability problems, but we are aware of this unsolved
problem.

4.2.1. Linear advection
We consider the problem

Ou Ou
7ya+xa*0a (x,y)e[*l,l]X[O,l],

o [0 it x ¢1[0.1,0.7], (57)
4090 =9 in (r2=0) x € [0.1,0.7)
The exact solution is, with r=+/x>+)% u(x,y) =

sin(n=5%t) if r €[0.1,0.7] and 0 elsewhere. The numerical

solution is computed with a pseudo-time marching algo-
rithm where the initial solution is ug = 2.

On each sub-triangle 77, we employ the scalar N
scheme. The average velocity is defined by

(=3,%) = / (—y.x) dxdy.

Fig. 32. Mesh for the linear circular advection problem.

Three schemes are compared: the standard second order
PSI scheme, a third order scheme and a fourth order one.
The high order schemes are constructed using P; and Py
interpolation with the scheme (53)—(55). The mesh
has 628 vertices and 1162 elements and is displayed in
Fig. 32.

The isolines of the solutions are displayed in Fig. 33. The
circular shape of the solution is perfectly well respected in
each case. What is more interesting is a plot in the exit sec-
tion, i.e. for x =0 and y < —1. This is given in Fig. 34 with a
comparison with the exact one. We also provide a zoom of
the solution around (x,y) = (0, —0.5) where the solution is
maximum. This figure shows clearly that an increase of
the formal accuracy of the scheme does improve its effective
accuracy. The fourth order scheme is almost perfect.

Last we provide errors for the advection problem
a=(0,1)" and the boundary condition u(x, y) = cos mx on
[—1,1]x[0,1]. On Fig. 35, we provide the L? errors for
the second order PSI scheme (Fig. 35a), the third order
one (Fig. 35b) and the fourth order one (Fig. 35c). We
see that the error slope of the r+ 1 th order scheme is
between r + 1/2 and r + 1. This is not in contradiction with
the expected theoretical r+ 1/2 order of accuracy. In
Fig. 36, we display the L™ errors: the second order PSI
scheme (Fig. 36a), the third order one (Fig. 36b) and the
fourth order one (Fig. 36¢c). We see that the L™ errors
are closer from the slope r + 1/2, which seems to indicate
that there is no clipping phenomena as in “standard”
schemes. However, the fourth order schemes does not
provide the expected accuracy, see Fig. 36¢c. This may be
a implementation error, or some roundoff problem (the
computations have been performed on a 1 GHz Pentium
IV processor with the Intel Fortran 90 compiler, and we
have already experienced similar problems on this
processor).

o

%

Exact

Second order

()

Third order

Fourth order

Fig. 33. Isolines of the exact and computed solutions, rotation test.
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Fig. 34. Plot of the solutions in the interval [—1,0], and zoom around the maximum.
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4.2.2. Burger equation
We consider the Burger equation
10u® du

2o Ty x€0,1] x [0,1],

u(x,y) = 1.5—2x on the inflow boundary.

The exact solution is

ulx,y) =

-0.5

max <70.5,min (15,3)) else.

if y<0.5and —2(x—3)
1.5 ify<05and —2(x—3) +y—

Once more, the solution is computed with a pseudo-time

marching algorithm,

the

initial condition

is

set to

u=—0.5. We represent the solutions computed for the
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Fig. 37. Mesh for the Burger’s equation.

mesh represented in Fig. 37 with 1041 vertices and 1960
triangles.

The isolines of the solutions are displayed in Fig. 38. We
also display cross-sections for y = 0.75 across the disconti-
nuity (Fig. 39) and y = 0.25 across the fan (Fig. 40).

Last, we give a zoom of the cross-section y=0.25
around the corner of the fan in Fig. 41. We see a very clear

665

Exact

Second order

Third order

Fourth order

Fig. 38. Isolines of the exact and computed solutions, Burger’s problem.

improvement of the quality of the solution with the

increase of the accuracy order.
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Plot of the solutions across the fan, y = 0.25.
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Fig. 41. Zoom across the fan, around the corner.

5. Conclusion

In this paper, we have tried to provide an exhaustive
description of the state-of-the art of residual distribution
schemes for the Euler equations of a calorically perfect
gaz. Several issues have not been covered, for example
the case of more general systems, such as the MHD system
(see [30] for details), the problem of linearisation for non-
polytropic gases (see [30]). Very few details on viscous
problems have been given.

The main issues now, besides a better theoretical
understanding of these schemes, including the problems
and partial solution described in Section 4, to construct
efficient schemes for unsteady problems with higher than
second order accuracy. A first version has been described
n [22], a better one in [51], but the situation is far from
being satisfactory. Another issue is to understand how this
type of methodology can be extended to nonconformal
meshes.
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Appendix A. Stability of Ricchiuto’s variant of the N scheme

In this analysis, we assume a compactly supported
solution. Starting from the N scheme (37), (39), we rewrite
it as

|Ci|u:_1+l + Z cij(u?ﬂ n+1) |C |un
i
with
T
= Z Cij
T3i
and
T At
;= Atk; nkj .
Here |Ci| =", ‘? is the area of the dual cell.
A.1. L™ stability
The scheme writes Au""! = " with

+Z"f >0 if j=i,
Cij
Cil

so that 4~ ! is a matrix with positive entries. This guaran-
ties the maximum principle.

<0 ifi#),

a,-jz—

A.2. Energy analysis
After multiplication by «"*! and summation, we get
&l + Z Z%’(“?H _ u;“ U = Z |C |u7 :lill’
i J
where
=3 IC )

Then we rearrange the second term,

n+1 n+1 n+l n+1 n+] n+1
E E (™ —uj E E cU - Jui
i J

i,jeT

The second summation

n+1 n+1y, n+1
E:Cij(ui — U )ui

ijeT

can be rewritten as
1/2) ki)’
J

because we have the relations . (c}; —
back to the problem, we have

én+1 + Z ZkT n+1 + ch/ ntl
=2%" |c,-|u;’+1u;?.

I/ZZCU ntl _ n+1)2

ijeT

c}) = k;. Coming

n+1)2
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Assuming now a constant velocity field, the second sum
vanishes and we get

1

éanJrl < Z |C,-|u:'+lu'7 < 1/2(§n+1 _'_@@n)

so that
ng—l < g)n

unconditionally on At.
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