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We propose a new model and a solution method for two-phase compressible flows.
The model involves six equations obtained from conservation principles applied to
each phase, completed by a seventh equation for the evolution of the volume fraction.
This equation is necessary to close the overall system. The model is valid for fluid
mixtures, as well as for pure fluids. The system of partial differential equations
is hyperbolic. Hyperbolicity is obtained because each phase is considered to be
compressible. Two difficulties arise for the solution: one of the equations is written
in non-conservative form; non-conservative terms exist in the momentum and energy
equations. We propose robust and accurate discretisation of these terms. The method
solves the same system at each mesh point with the same algorithm. It allows the
simulation of interface problems between pure fluids as well as multiphase mixtures.
Several test cases where fluids have compressible behavior are shown as well as some
other test problems where one of the phases is incompressible. The method provides
reliable results, is able to compute strong shock waves, and deals with complex
equations of state. «© 1999 Academic Press

Key Words:multiphase flows; hyperbolic models; interfaces; Godunov methods;
non-conservative equations; shock waves; Eulerian methods.

1. INTRODUCTION

Compressible multifluid flows occur in many situations in which fluids have differe
physical or thermodynamic properties and are separated by interfaces. A classical ex
is an interface between air and helium under shock wave. Other well-known example
the Richtmyer—Meshkov instabilities between two gases and the behavior of a gas b
in a liquid under shock wave. Many numerical simulations of such processes are bas
the Euler or Navier—Stokes equations augmented by one or several species of consel
equationsin orderto build reasonable equation of state parameters at the interface. Inde
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classical numerical methods produce artificial diffusion of contact discontinuities, resulti
in artificial fluid mixing at the interface. In this artificial mixture, pressure and temperatu
computations are inaccurate with this approach. When the fluid properties are close |
density variations and low parameters of the equation of state changes), the classical me
induce low deviations. But in many circumstances, the fluid parameters are very differe
as are the densities from one fluid to another. Consider, for example, an interface separ
a liquid and a gas, or as in many applications with detonations, an interface between &
and a solid. Under such conditions, methods based on the Euler equations augmente
species conservation equations are ill-adapted. These methods fail at the second time
Abgrall [1], Karni [26], and Abgrall [2] showed that even when the fluid properties ar
close, standard algorithms based upon species conservation equations induce large
in the pressure and velocity computation.

Often, the equations of state found in the literature have only a limited range of valid
(especially for solids and liquids). When the thermodynamic parameters provided b
numerical method are slightly outside this domain of validity, the pressure, entropy, sol
speed, etc., that are computed have no physical meaning (negative pressure, etc.). In
cases, an interface is the physical location where the flow parameters are close to the |
of validity of the equation of state. Hence a careful and clean treatment of interface:
mandatory. In a previous paper, we detailed how to circumvent these problems for flL
governed by the Stiffened gas equation of state (EOS) (Harlow and Amsden [24], Godu
et al. [19]) with interfaces between them. Our objective was, and is still, to solve in ea
space location the same equations with the same numerical methods. Of course, it is pos
to solve the same equations everywhere with different numerical schemes, as done
example, with front tracking methods (see, for example, Cocchiand Saurel [8]). A discuss
of the various alternatives for solving multifluid flows is given in Saurel and Abgrall [40
Our opinion is that it is much simpler and more efficient to solve the same equations w
the same numerical method. A way to do this in the simplified situation of fluids und
hydrodynamic regime, governed by the Stiffened gas EOS, was proposed in Saurel
Abgrall [40], but this method was restricted to fluids governed by the Stiffened gas equat
of state only. Also, the way to include other physical effects such as mass transfer at
interface was unclear. This is why we now propose another model, relying on two-ph
flow equations. Two-phase flow equations allow determination of the thermodynamic ¢
kinematic variables of each fluid (or phase). This set of equations enables us to have an
look at the problem.

The first step consists in building a two-phase flow model in which both phases
compressible. Only a few attempts to do this exist in the literature. They are relatec
studies on detonation waves in granular materials (Bateal [7], Powerset al. [30],
Saurelet al. [36]). In these works, the various models were not suitable for solution
interface problems, which is why we have built a new model that allows the treatment
interface problems, as well as homogeneous two-phase flows.

Compressible homogeneous two-phase flows are our second domain of interest. T
flows consist in general of a carrier phase (gas or liquid) with suspended or packed partic
droplets, or bubbles. This situation is rather different from that of multifluid flows, whel
the phases are separated by well-defined interfaces. In multiphase flows, a control vol
contains a large number or individual particles (or bubbles, etc.) with many interfac
while in multifluid flows, nearly all control volumes contain pure phases, except for tf
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FIG. 1. Schematic representation of a “numerical” multifluid flow (left) and several multiphase flows (right

computational cells around the interface. The distinction we make between multifluid
multiphase flows can be represented schematically as shown in Fig. 1.

Of course, amultiphase flow can be considered as a multifluid flow with an extremely le
number of interfaces. But, for computational purposes, itis better to consider homoger
equations where all physical phenomena occurring in a control volume have been avel
with the help of suitable physical assumptions, and mathematical tools.

The model we develop in this paper follows these principles. It applies both to multifl
flows and to multiphase flows. The model is hyperbolic. It tends to the Euler equation
each pure fluid zone. When summing mass, momentum, and energy equations of th
phases, we get back the Euler equations for the mixture. Our system of partial differe
equations cannot be written in conservative form. This drawback usually leads to theore
and practical difficulties in defining the weak solutions of the problem and in comput
them. Here, we develop an original numerical method that relies on knowledge of partic
features of some physical solutions. In doing this, we generalize a criterion develope
Abgrall [2] and Saurel and Abgrall [40]. Thanks to this procedure, we are able to ac
methods based on the classical Riemann problem to our problem: the resulting schem
robust and accurate.

2. WHY MULTISPECIES ALGORITHMS FAIL FOR MULTIFLUID FLOWS

For numerical simulation of multispecies flows, as done, for example, in combus
problems, the model that is used most often is written in terms of mass fraction equa
and partial pressures. But the notion of partial pressures is valid only at local thermodyn:
equilibrium. When a control volume contains several gases perfectly mixed together,
notion is valid in most cases (in the absence of non-equilibrium effects such as vibra
or chemical reactions) because the number of collision between molecules is so large
the temperature is rapidly homogenized. Temperature is homogenized as a result
occurrence of a large number of collisions between the various molecules. When fluid
notinitially well mixed, as when an interface exists, collisions occur only in a tiny part of t
control volume: at the interface. So each fluid has its own temperature and the assumpt
local thermodynamic equilibrium no longer holds. The numerical errors induced by suc
assumption were pointed out by Abgrall [1] on a one-dimensional shock tube test case
two gases of different specific heat ratios. To illustrate what happens with these model:
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FIG. 2. A two-fluid control volume.

examine a simplified example using the notion of mass fractions and partial pressures. (
sider a control volum¥ filled with a volumeV; of fluid 1 and a volum&/, of fluid 2 (Fig. 2).

Volume Vi contains the mashl, = n My, wheren, and M represent respectively the
number of moles and the molar mass of flkigk = 1 or 2). The notion of partial pressures
is base d on local thermodynamic equilibrium. In this simplified problem, this yield t
consider local thermal equilibriunTi = T. Partial pressur®, is the pressure that fluid 1
would have if it occupied all of volum¥ . Assuming that all fluid is governed by the ideal
gas law, and noting thak is the molar gas constant (Avogadro constant), we get

Pok = NkRT/ V. 1)
The mixture pressure is defined By= "’ P,«. Equation (1) can be rewritten as
Pok = (cMi/ V)(R/MT = ppiRT, 2

where ppi represents the partial density, that is, the density that Ruidbuld have if it
occupied all of volumé&/. R represents the gas constant per unit mass. The mixture dens
then readp = > pp«.

It is convenient to introduce mass fractiois= ppk/p. Then the pressure reads

P =pRT, 3)

where the gas constant®= R/M with M = 1/ 3(Y/M). Imagine now that volum¥
corresponds to acomputational cellin the numerical diffusion zone of a contact discontini
(or interface). For example, fluid 1 is air and fluid 2 is liquid water. There is no reason w
the temperatures of these fluids should be in equilibrium during the numerical diffusi
process of the computational method. The same remark holds even if the two fluids
two gases. But the Euler or Navier—Stokes equations provide a single temperature fou
mixture, and so force the two fluids to be in thermal equilibrium even if physically it |
impossible. This error results in the well-known pressure and velocity oscillations in t
shock tube test problem with two gamma (Abgrall [1]).

These indications have caused us to consider another approach, that adopted by scie
working on multiphase flows. This approach is based on the notion of volume fractio
ax = Vk/V. The mixture density is obtained hy= > axpk, where the densities of each
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phase are defined by =M,/ Vi = My/Vi. The pressure of each phase is given b
P« = ok R« Tk and the mixture pressure is defined by

P=> aP. @)

Note that if the temperatures are in equilibriufq= T, then the pressure given by (4) is
equal to the pressure given by (3). The advantage of the formulation using volume frac
is clear: it is not necessary to have temperature equilibrium to compute the pressure
the other hand, this formulation necessitates knowledge of the two temperatures or int
energies and also of the two densities. The model that is developed in the following all
determination of these variables.

3. THE TWO-PHASE FLOW MODEL

3.1. Physical Properties

To obtain the two-phase flow model we follow the method and assumptions propc
by Drew [13] for incompressible two-phase flows and apply these principles to compr:
ible flows. For the sake of simplicity we do not detail the various steps before obtain
the following averaged equations. Details may be found in Saurel and Gallouet [42].
start from the single-phase Navier—Stokes equations in each phase and apply the a
ing procedure of Drew. We then neglect all dissipative terms everywhere except at
interfaces.

-9 90 5a
at TV x (5a)
dagpg | dagpglg _ .
ot + X (5b)
dagpglg 8 (agpguy + agPy) dag |
=P—=+mMV +F 5c
ot X oy TVt Fa (5¢)
=PRViZ9 4 B + RV + Q 5d
ot + ax i Vi Ix% +mE + RV + Q; ( )
donpr | doupth o (5€)
ot x
dapu (U +aR) dog
=P _mV-F 5f
ot + Ix I ax i d (59
dap B ou(pE +oP) dag .
=RV _ME-FV,—-Q. (5
ot + Ix Vi E d Vi Qi (59)

whereag + oy = 1. The notations are classic&y represents the total enerdyy = e +
1/2u?.

We have posed that the two-phase flow be composed of gas (sulmcept! liquid
(subscript). The interfacial variables have the subscripThe left-hand sides of the last
six equations are classical. On the right-hand sides of the same equations are terms r
to mass transfem, drag forcelq, convective heat exchan@g, and the non-conservative
termsP, (dag/9x) andP, V; (dag/0X). The pressur® and the velocity; represent averaged
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values of the interfacial pressure and velocity over the two-phase control volume. They n
be modeled. The gas and liquid pressures are given by appropriate equations of state.

Modeling of the averaged interfacial variables is rather delicate, and we discuss this p
in the following sections. Equation (5a) expresses the evolution of the volume fraction
is obtained by the averaging procedure of Drew [13]; see also Saurel and Gallouet [42]. "
equation indicates that the volume fraction propagates with the mean interfacial veloc
which is not equal to the local fluid velocity.

The problem now is expressing the various interfacial terms. Mass transfieag force
Fg4, and convective heat exchan@e are usually given by empirical relations depending or
the process under study: evaporation, condensation, combustion, etc. Often, these cl
models necessitate determination of characteristic size parameters of individual “partic
constituting the flow: for example, droplet size or bubble size. In this situation, conservat
equations for the number density of individual particles may be added (see, for exam
Saurel [39]:

0Ny 9 NgUug .
—2 + —2F =N,
ot ax ©6)
oN n oNu . N
at ax

The closure Iawsl,\'lg andN,, express fragmentation laws, for example, and are given al
by empirical relations. Relations (6) are uncoupled from system (5). So, they do not cha
its mathematical properties, nor its solution.

The non-conservative terms are always present, whatever the physical processes occl
at the interfaces. Hence their modeling must be independent of the other processes re
to mass, momentum, or energy transfers. Their modeling must be achieved carefull
order to obtain a well-posed mathematical model: hyperbolic. Usually, in dealing w
two-phase gas-liquid flows, most authors consider the liquid as incompressible. So, 1
write that the liquid and interfacial pressure equals the gas pressure. This choice yi
ill-posed mathematical models. This results in numerical instabilities during numeric
solution, or in the necessity of using an extremely large numerical viscosity. Others autt
(Toro [46], Sainsaulieu [35]) propose introducing a pressure non-equilibrium effect suct
P = Py + 0(ag). For Sainsauliel) («g) is a perturbation term that enables the system to b
hyperbolic. For Toro, thisis aterm due to compaction effects in a packed powder bed. Otl
authors (Powerst al.[30]) assume thal®, = 0. This non-justifiable choice yields however
to a hyperbolic system. In our approach, since we consider each phase as compres
there is no need to make an artificial choice. A way to estimate the mean interfacial pres:
is to consider it equal to the mixture pressure (other estimates are possible),

P=> P (7

The phase pressur@ are given by appropriate equations of st&e—= Py (e, k).
Considering each phase as compressible can be seen as an unrealistic assumption in
two-phase flow problems. However, we are mostly interested in very high pressure flc
involving gases, liquids, and solids. Our typical situations are related to detonation proble
with high explosives. Under the pressure range in which we are interested, compressibili
each material must be taken into account. However, in the general case, it is always pos
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to consider materials, even liquid or solid, as compressible. All materials are compress
even if in most situations at moderated pressures, compressibility effects of liquids
solids are negligible. Since considering each phase as compressible yields a well-f
model, one can use physically valid equations of state for liquid and solid, or build artifi
equations of state for these materials when they behave as incompressible fluids. Of c«
this poses new theoretical problems for the building of judicious equations of state, and
numerical difficulties for the solution of the equations. When a liquid or a solid is conside
to be compressible and the flow velocity is relatively low, we are facing the difficult proble
of low Mach number resolution. We do not enter into these difficulties here. In Sectiot
we will show several test problems in which the behavior of incompressible fluids |
been reproduced by considering them as compressible. The second difficulty with |
conservative terms and equations lies in the estimate of the averaged interfacial vel
Vi. In most referencesy; is taken equal to the velocity of the incompressible or the le
compressible phase (Butletal.[7], Baer and Nunziato [3], Sauret al.[36], Saurel [39],
Sainsaulieu [35]). Delhaye and Bau12] proposed an estimate for the interface velocit
the velocity of the center volumé = Y axuyx. We prefer the estimate corresponding t
the center of mass velocity. This velocity corresponds to the one where all non-equilibr
systems will relax. In particular, the flow regions where the velocity equilibrium is react
propagate with the center of mass velocity:

Vi = Zakpkuk/zakpk~ 8)

We will come back to the concept of equilibrium state in the following. Keep in mir
that our choices foP, andV; are only estimates. We will examine the errors induced k
such approximations by examining shock solutions in these media. Before doing this
examine some mathematical properties of the model.

3.2. Mathematical Properties

The following mathematical analysis is done without exchange térm$4, Q;). We
consider system (5) written with primitive variables.

AW AW
AW =0 9
s+ ( )8x 9

with W = (ag, pg, Ug, Py, o1, Ui, )T and

Vi 0 0 O
B(Vi—ug) Ug pg O
Lz} 0 ug 1/pg 0 0 O
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2

A(W) = ”fT‘;gi(\/i—ug) 0 pec? ug 0O 0 0 |,
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o pl

28NV -u) 0 0 0 0 pF u
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where
&2 _ o0& Blz _ o0&
I 9px n 9ok
Cﬁ — kipk and Cl%i — kipk
e dec
L Pk L Pk

represent the sound speed of phlasend the sound speed of phdsat the interface, res-
pectively. By comparison with system (5) without the non-conservative terms
Egs. (5¢)—(5f), the only modification lies in the terms multiplieddloy /9x (first column).
Thanks to this remark, the matrixadmits real eigenvaluég,; = Vint, kg =Ug+Cq, Ag =

Ug — Cg, Ag=Ug, A" =ui 4+, A7 =u — ¢, A? =u;. Since they are distinc# is diago-
nalizable: the model is strictly hyperbolic (except of course when locally some eigenv
ues are degenerate). Moreover, it can be easily shown that our system is frame invar

3.3. On the Shock Relations

The analysis of system (5) shows that classical Rankine—Hugoniot relations do not e
for such a system: non-conservative terms are present on the right-hand side of the equa
This is a well-known fact in non-conservative systems of PDE. On the other hand, wt
the gas volume fraction tends to zero or to unity, we recover the classical Euler equati
for each phase for which we have well-known Rankine—Hugoniot relations. Moreov
summation over the two phases of the mass, momentum, and energy equations yield
Euler equations written in mixture variables (mixture density, momentum, and energy). 1
mixture Euler equations admit well-defined Rankine—Hugoniot relations.

Now, we examine an example that will explain why such a media and equation syst
does not admit classical Rankine—Hugoniot relations. This example will also show so
limitations of theP, andV, estimates given by relations (7) and (8). Consider a colum
filled with liquid containing bubbles. The column is impacted by a high velocity piston o
its left side. Since there are no mass, momentum, and energy exchanges between liqui
gas, the exchange surface between phases has no influence. Hence, the liquid columr
bubbles can be considered as a separate two-phase flow with an interface, as sketct
Fig. 3b. Since the two fluids are compressible, there are two shock waves that propaga
the liquid and in the gas. Since each fluid has its own physical properties and equatior
state, the shock waves have two distinct velocities, and the fluids have two distinct pressi
The two fluids cannot retain this pressure difference for a long period. Transverse wave:s
propagating in the gas and the liquid in order that pressures may tend toward equilibri

@) (b)
N shock Gas
00 Ogo0 0o 0 O 4 % —:\\)
b0 0 00 0 0O O 0 0 <& Piston R - - shock
0 0 0 |, Liquid
o 0 o 0 o0 O

Piston

FIG. 3. Aliquid column with bubbles impacted by a piston, and its equivalent configuration for the physic
model.
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During this pressure relaxation process, the interface moves with a two- or three-dimens
motion. After transverse wave propagation, the two shock waves collapse into a si
two-dimensional curved wave for the configuration represented in Fig. 3b. In Fig. 3a,
processes detailed previously occur at each bubble interface and the resulting “shock v
is a very complicated wave affected by the multidimensional microscopic dynamics
bubbles. A one-dimensional average made over these complex waves does not corre
to a classical shock wave.

An experimental study of a situation similar to that represented in Fig. 3a, with (
bubbles in another gas under shock waves, may be found in Haas [21]. Pressure re
show clearly a shock wave that does not at all fulfill the Rankine—Hugoniot conditions
simpler situation with cylindrical or spherical gas bubbles is reported in Haas and Sturte
[22]. This situation is closer to the one represented in Fig. 3b with refracted shock we
from an interface. Computation of a similar problem with a gas bubble in a liquid may
found in Saurel and Abgrall [40].

Direct simulation of the situation represented in Fig. 3b may be done with the met
described in the latter reference. We model exactly the situation represented in this fi
with a copper piston impacting the column at 1000 m/s. The computational domain is
long and 0.2 m high. On the first 0.15 m in theirection we initially set a liquid and on
the other 0.05 m we initially set a gas. Liquid (water), gas (air), and copper are mod
by the Stiffened gas equation of state with the parameters given in Saurel and Abgrall |
The copper, liquid, and gas densities are initially 8900, 1000, and 10F kg#apectively.
So the initial flow contains densities and material (EOS parameter) discontinuities. Fo
present computations we use the method described in Saurel and Abgrall [40] with se
order variant and exact Riemann solver. The results at timeus5%re shown Fig. 4. The
two distinct shock waves are clearly visible. The liquid shock wave is curved while the:
flow is very difficult to analyze due to the presence of many transverse waves and con
interactions. As predicted, the gas—liquid interface is displaced by a two-dimensional mc
in order that the pressure may be uniform.

This multidimensional interface motion has not been taken into account by the defini
of mean interface velocity given by (8). Hence corrections terms must be added to sy
(5) in order to restore the relaxation processes. Before giving details of these relax:
terms, we examine another situation that will point out the need to introduce relaxa
terms.

3.4. The Interface Problem

Our goal is to solve homogeneous two-phase flows governed by a set of averaged
tions like system (5) as well as an interface problem occurring in multifluid flows. T
interfaces we are interested in can separate two pure fluids, or a two-phase mixture .
pure fluid. In one of these applications a fundamental difficulty appears at the interf
during resolution.

Consider, first, an interface separating two pure fluid flows that we want to solve with
two-phase flow equations. In order to use these equations, pure fluids must be mode!
a mixture of the two fluids that contains a negligible amount of one of the fluids. Typica
ag=1— ¢ in the gas, and; =1 — ¢ in the liquid withe of the order of 10°. The wave
configuration at the interface can be sketched as in Fig. 5.
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FIG. 4. Numerical simulation of the problem represented in Fig.Téfm density contoursBottom pressure
contours. Time: 15@:s after the impact of the copper plate on the liquid—gas column.
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FIG.5. Wave pattern at the interface.
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The volume fraction evolves discontinuously across the interface. In particular, as
have mentionedyg is close to 1 in the gas, and close to zero in the liquid. Singes
close to zero in the liquid, the characteristic direcb‘i@propagates a wave with negligible
amplitude, which corresponds to a missed wave for the gas system. For the same reas
characteristic wave, is also missing too. Hence, system (5) is not closed at the interfa
In the Euler system, this situation is similar to the treatment of a boundary condition wt
one of the three characteristic directions falls into a vacuum. Here, to close the sy:
two boundary conditions must be supplemented. When the interface separates a two-
mixture and a pure fluid zone, the problem is similar: one of the two previous character
directions is missing.

In the following, we propose closure relations and relaxation terms in order to res
boundary conditions at the interface, and to take into account relaxation pressure prt
behind shock or pressure waves.

4. CLOSING THE MODEL

We have previously mentioned two particular problems for which the model was
adapted:

—relaxation phenomena behind shock and pressure waves in two-phase mixture
—interface conditions between pure fluids or mixtures.

We now examine separate ways to solve these problems, and we will show that it is pos
to derive a general formulation.

4.1. Pressure Relaxation and Interface Pressure Condition

Pressure relaxation. We first reexamine the problem schematized in Fig. 3. After pro
agation of the shock waves, the system will evolve after a more or less lengthy time pe
to an equilibrium state where

Pg—R =0 if the two fluids are perfect,

20 . . .
Ph+—=-R=0 if the surface tension effects are consideredgpresents

R the surface tension arid the bubble radius) (10)

Py + T(ag) —-R=0 if the two-phase mixture is composed of solid packed
powder grains and gas.

T (ag) represents the intergranular stress tensor. Itis due to contact stresses between pe
under packing (Toro [46], Sauret al.[36]).

In the following, for the sake of clarity, we no longer consider the effects due to surf:
tension or to the intergranular stress tensor.

After wave propagation, the fluids are in a non-equilibrium pressure fgtg (R) and
a pressure relaxation process will develop so that pressure will tend to equilifjunB .
Locally, after the wave propagation, the fluids undergo a two- or three-dimensional
tion as represented in Fig. 3. This 2D or 3D motion, at microscopic scale (bubble sc
for example) creates a volume variation of each fluid, accompanied by an internal en
variation, so that pressures tends to equilibrium. This motion is due to the 3D prop:
tion of the various waves. As indicated by Baer and Nunziato [3], this complex mot
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can be summarized by a homogenization variable that expresses the velocity at w
pressure equilibrium is reached. This homogenization variab{dynamic compaction
viscosity) depends on the compressibility of each fluid (and so of their equations of sta
on the nature of each fluid, and on the two-phase mixture topology. Existence of t
variable has been shown theoretically, following the second law of thermodynamics :
mechanics of irreversible processes, by Baer and Nunziato [3]. Experimental meas
ment of this variable has been done by Baer [4] for a medium composed of polyureth
foam.

Locally, after wave propagation, the pressure relaxation process undergoes a vol
variation given by the equation

dag _ B
W—M(Pg P). (11)

This volume variation induces energy variations due to the interfacial pressure work:

dogpgE

% = —uPR(Py—R)

St o E (12)
(64
'3‘;' "= —uR(Py - R).

The dynamic compaction viscosityis a positive coefficient or a more complicated positive
function (Pa®s1). The right-hand side of Eq. (12) represents the pressure work during t
pressure relaxation process.

Pressure interface condition.We now reexamine the wave pattern occurring at the intel
face when two-phase flow equations are solved (Fig. 5). We have seen that two characte
directions were missed, corresponding to an ill-posed moving boundary problem. It is v
known that the interface pressure condition under two pure fluids consists in equality
pressure across the interface. When two-phase flow equations are solved, the two f
are mixed initially and mixed again by the numerical diffusion at the interface. Hence,
restore the pressure interface condition, it is necessary to impose pressure equality bet
phasesPy = R. It is important to note that this condition corresponds to the equilibriur
condition (10) after pressure relaxation in the two-phase mixture. Thus, it is possible
force pressure equality at the interface, after wave propagation, by solving the same sy
as that proposed previously, (11)—(12). However, since pressure equality must be satisfi
each time, it is necessary that the pressure relaxation be instantaneous, so that the dyi
compaction viscosity tends to infinity. When the interface separates a two-phase mixture
a single-phase fluid, the pressure equality condition is still valid. The previous procedur
unchanged.

To summarize, the wave dynamics in the two-phase mixture or at the interface is gi
by system (5). The relaxation pressure process in the two-phase mixture and the intel
conditions are given by system (11)—(12) . The terms appearing in system (11)—(12) mus
added to system (5). The dynamic compaction viscosity has a finite value in the two-pt
zones, while it becomes infinite at the interface. When the right-hand side of Eq. (11
added to the first equation of system (5), the ter(®y — P) can be also considered as a
correction for the 1D estimate of the interfacial velocity given by (8), accounting for t
2D or 3D interfacial or microscopic motion.
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4.2. Velocity Relaxation and Interface Velocity Condition

The velocity relaxation process in the two-phase mixture may have a long charactel
time compared to that of the pressure relaxation. On one hand it depends on the pre
relaxation process, which in general is fast compared to the longitudinal wave propag:
dynamics; on the other hand it depends on effects related to fluid viscosity. These last et
may be very slow compared to the others. The velocity relaxation process has already
expressed in Egs. (5). Terms related to the drag fBg@e responsible for it. The drag force
may be written in the same form as the pressure relaxation term: a relaxation coeffit
multiplied by the velocity difference

Fa=A(u — Ug), (13)

wherel is a positive parameter or function. In two-phase flow zohdgs a finite value.

We now consider the interface problem. When the interface separates two pure fluids
second interface condition imposes velocity equality at the interface. By the same reasc
as that for pressures, it implies that fluid velocities are in equilibriugn=u;. A way to
impose this condition, and consequently to restore the missed characteristic direction,
solve system (5) with the drag force and an infinite velocity relaxation coeffiziaihen
the interface separates atwo-phase medium and a pure fluid, this condition no longer ar
The drag force then furnishes information on the velocity difference between phases.
can be considered as a closure relation at the interface.

Summary
To summarize, the overall system that must be solved can be written as

dag ' dag _

i) 79 P, —
It +V Ix u( g R)
dagpg | degpgUg _
at ax
= P— A(u—u
it ax ax AU~ Ug)
0agpgEq  OUg(agpgEq+ agPy) oa
ot =RV R uR(Pg = R) AU —Ug)
dajp | douply 0 (14)
ot ax
dogpiuy (o pUZ+ o ) dag
— -p= —A(U—u
ot ax "ax (U= Ug)
daip By Ou(up B+ R) dag
m + % = _PI\/ia—X —nR(Pg—R) —AVi(u —ug)
Hyperbolic system Pressure Velocity

relaxation relaxation
Interface conditions

Mass and energy transfer terms have been omitted. They are not essential and are mer
in system (5). The system is thus composed of a hyperbolic part, supplemented by pre
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relaxation terms to account for the microscopic motion behind the pressure waves
the pressure interface condition, and velocity relaxation terms, to account for drag for
in the two-phase mixture, and the velocity interface condition. The relaxation paramei
are positive. The dynamic compaction viscogitys finite within two-phase flow regions,
and infinite at the interface. If pressure non-equilibrium effects are not interesting fron
physical point of view, the parametgrcan be assumed to be infinite in the two-phase
mixture too. The same remark stands for the relaxation velocity coefficient

We will see in the following how to solve the equations when the relaxation paramet
A andu tend to infinity.

In many physical situations, it is reasonable to assume that pressure tends to equilib
instantaneously. This corresponds to an infinite value ofutlparameter. In this context,
the solution is evolved over time by solution of a strictly hyperbolic system, followed by
pressure relaxation step. This is completely different from assuming pressure equilibriur
the original equations and trying to solve such equations. When such an assumptionis nr
the corresponding system is not hyperbolic, and the solution is not accurate. In partict
with interface problems in which the volume fraction varies discontinuously, such a mot
with a single pressure would fail at the second time step.

So, our approach is close to that followed in gaseous reacting flows:

—solution of the gas dynamic equations with a hyperbolic solver;
—integration of the chemical kinetics effects, or calculation of local thermodynam
equilibrium to find thermodynamic properties and composition of the gas mixture.

Here, we solve:

—the two-phase flow equations with a hyperbolic solver;
—pressure and velocity relaxation effects, or assume instantaneous pressure eq
rium.

We begin in the next section by first detailing the hyperbolic solver.

5. THE NUMERICAL METHOD

The numerical method we develop here applies at mesh point: single-phase, two-pt
and at the interfaces. For the sake of simplicity and generality regarding complex equat
of state for the various fluids, we have retained the simplest ingredients for the construc
of a high-resolution scheme for two-phase flows with arbitrary equations of state. Riem:
solvers are chosen for easy implementation with various models and equations of state,
though their accuracy is imperfect. We have excluded accurate but overcomplex Riem
solvers as presented in Saugtlal. [37]. More accurate handling of the mathematical
properties of our two-phase flow models could probably be done with the approxim
Roe solver following Sainsaulieu [35]. Another method, both simple and accurate, co
be examined and extended for the seven-equation model: the Gallouet and Masella me
[17]. Here, classical ingredients are retained.

The model we propose is hyperbolic. In particular, the same techniques as those
single-phase gas dynamics equations can be used. However, the hyperbolic systen
volve non-conservative terms and a non-conservative equation (the volume fraction ev
tion equation). Their solution poses particular problems. Here, we reuse the basic ide
Abgrall [2] and apply it to non-conservative systems. We showed previously that numeri
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schemes that fulfill the basic criterion of Abgrall [2] were able to solve simplified multiflu
problems (Saurel and Abgrall [40]). Here, this criterion provides an accurate and rol
discretisation scheme for non-conservative terms and volume fraction evolution equa
We examine the method in 1D, with a first order numerical scheme. The solution is obta
by a succession of operators (Strang [45]),

Uin+l — LSAt LﬁtUins

whereL{! denotes the hyperbolic operator, containing non-conservative termg, Znd
denotes the integration operator for source and relaxation terms.
First, we examine the hyperbolic operator, which poses the main difficulties.

5.1. Hyperbolic Operator

The major idea that serves as a guide for the building of the numerical scheme is a
eralization of the Abgrall [2] criterion. It is stated as follows: “A two phase flow, uniform i
pressure and velocity must remain uniform on the same variables during its temporal
lution.” It can be shown in system (14) thati=ug=u; =V; aswellasP=P;=R =R,
is uniform at timet =0, then the velocities and the pressure will keep the same valu
Consider, for example, system (14), under the primitive variable formulation (9). Si
u=ug=u =V; andP = Py = B = P, most spatial derivative terms cancel and we get

dag 0% _ o Opg 09 _g Mg _o IR _
ot aX ot

3 ’

ot ax ’ ot

d a au ad
Py Z oo _Hzo.
at ax at at
It is clear that no pressure or velocity variations appear.

This guide has been systematically exploited in the context of the Euler equation
has shown that it provides an efficient discretisation scheme for non-conservative eque
even when velocity and pressure are not initially uniform (Saurel and Abgrall [40]). Inde
all non-equilibrium system will relax to an equilibrium state where velocities and presst
are locally uniform.

Modification of the Godunov—Rusanov Scheme

As in Saurel and Abgrall [40], we reuse the essential elements for the building c
Godunov-type scheme with a flux function that we want to be simple as possible. T
is necessary for a better understanding of the basic ideas. So the numerical flux we
retained is that of Rusanov [34]. In a later section, we will develop another method wi
more accurate flux function.

We consider only the first four equations of system (14). The last three equation
the seven-equation model represent a subsystem identical to the last three equatic
the submodel with four equations. The system under consideration reads (we suppre
indexesg andl)

0 d
3t Vi =0
U aFU) 9 (15)
o
— =HU)—
ot + X ( )8x
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with U = (ap, apu, 2pE)T, F = (apu, apu?+aP, u(epE +aP))T, andH =(0, P,
P Vi)T. We consider a constant mesh spacixx; The solution is evolved with a constant
time stepAt. The Godunov scheme reads

Ut = g - 2

T Ax (Fhaz — Flyz) + AtH(U) A, (16)

where A represents the discrete form of the tebma,/dx. The numerical flux for the
conservative fluxes is given by the Rusanov [34] formula

Flli2=FUi,Ui;1) =3 (F + Fip1— SUij— Up), (17)

where S=max{|A;'], |4 |, |)Li++1|, |Ai;11}. We now assume that the velocity and pressure
are uniform. We note that= At/Ax and we decompose the various operations made t
the numerical scheme over a time step. For the mass conservation equation, after n
that the velocity is uniform, we get

Olpin+l = O‘Pin -1/2 {U (apin+1 - a,oi”il) - S+1/2 (api”H - otpi”) +9 —-1/2 (a,oi” - “Pinfl)J .
(18)

With the same development for the momentum equation, we obtain
apuM™!t = apu? — 1/2[((@pu? + aP)!'.; — (@pu® + aP)! ;)
— Sy2(apulyy — apul') + S_yp(@pu] —apul )] + AtPA. (19)

If (18) and (19) are combined and the uniformity of pressure and velocity is used, it appe
that

uMtt=u (20)

A= (ofyy—af'1)/(2 AX). (21)

The simple central difference formula (21) provides the numerical scheme for the discr
sation of the non-conservative term, when the conservative fluxes are given by the Rus:
flux function. We will see, henceforth, that for another flux function, the discretisation
the non-conservative term is not so simple, and depends on the choice of the flux func
for the conservative fluxes.

We now consider the energy equation

apEM = apE! — 1/2 [((@pEu+aPW),, — (@pEu+aPw)’ ;)
— Su172(p By —apEl) + S-12(ap B —apEL)]
+A1/2Pu(ofy — o 4). (22)
Using (18), (20), and pressure uniformity we get for the internal energy

n+1

ap€™ = ap€ —1/2[u] (apelyy —apdl ) — Si1/2(ap€l; —apel)

+ S_1/2(ape — apd 4)]. (23)
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We now use the equation of state. The pressure of each fluid is given by an equation of
P« = Px(ex, px). HeuZ [25] showed that nearly all equations of state can be written un
the Mie—Gruneisen form

P = (y(p) — Dpe—y(p)m(p). (24)

The Mie—Gruneisen EOS can be written as

pe=B(p)P +n(p) (25)

with=1/(y —1) andn =y x/(y —1). We now replace the product of density and interne
energy in Eq. (23) by expression (25):

a(BP + )t
=a(BP +n)] —1/2[ul (a(BP + 'y — @ (BP + 0] 1) — St12((BP + )4
—a(BP +n)) + S_12(x(BP + )] —a(BP +n)1)].

In the particular case of the ideal gas EOS or the Stiffened gas EOS, the pargfrexters
n are constants in each fluid. We then gt = P, under the condition

ot =al —1/2[ul (o — o' y) — Sta2(efy — o) + Sa2(f —af4)]. (26)

Equation (26) gives the numerical scheme that must be used to solve the first €
tion of system (14), the non-conservative equation. It is easy to note, in scheme |
the classical dicretised form of the convective teuffic,; — o' ;). The others terms,
—S1200 1 — o) + S_12(0 — 1), represent a viscosity term, which is a direct func
tion of the viscosity of the flux function used for the conservative terms. It can also
noticed that this scheme is identical to the one obtained by Saurel and Abgrall [40]
determining the equation of state parameters inside the numerical diffusion zone of a
terface separating two materials and a model based on the Euler equations. So, by ¢
different approach we recover the same scheme, used here for the computation of the v
fraction. It can be shown, but it is not the purpose of the present paper, that the methoc
proposed in Abgrall [2] and Saurel and Abgrall [40] is included in the present approact
a more general context.

In the general case of the Mie—Gruneisen EOS, the coefficteatsln are functions of
density. To derive a numerical scheme, we assume that these coefficients are local con:
Indeed, density spatial variations in the multiphase formulation are in general relati
weak. It is common for conservative variables such@s) to have large variations (in
particular at an interface), but these variations are due essentially to large variations
but not inp. This is even more true when the flow is uniform in velocity and pressure.
example, when an interface separates two single-phase medhaies from 0 to 1 in the
numerical diffusion zone. In fact, as previously mentioned, our model is valid only whe
varies frome to 1— ¢ (¢ being of the order of 1). Inside the numerical diffusion zone, the
density of the fluid under consideration will be between the densities of the same fluid or
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right and left sides of the interface. These densities are in general relatively close, bec
we stay in the same fluid. For example, if the zone whetel — ¢ contains essentially
a high density liquid, the opposite zone, where- ¢, contains a volume faction of the
same fluid at the same density (or relatively close). Under these assumptions, Eq. (2
an accurate approximation of the first equation of system (14). We will see, in several
problems where coefficiensandyn are functions of density, that accuracy is sufficient tc
obtain reliable results.

To summarize, when the Rusanov numerical flux replaces the conservative flux,
resulting scheme reads

At
UMt =uf - Ax( 2 — Firll/Z) +AtH(U") A

with
1
Flyp=FUi, Ui = é(Fi + Fiy1— SUiy1 — Up)),

A= (o —af1)/@2-AX),

(27)

and

of ™= o = 1/2[u (e g — o 1) — Suja(afyy — x") + S-12(ef — o 4)].

Modification of the Godunov—HLL Scheme

In this section, we show how to modify the Godunov scheme when the HLL approxim:
Riemann solver is used (Hartenal. [23]). The numerical flux in the HLL approximation
reads

S"FL—-S FrR+S'S(Us—-U
Faw = L SR+—S— s L)~ (28)

The indexes R and L are related to the right and left sides of a cell bouridary/2).
Various choices are possible for the wave speed estimates; see Toro [48], for example.
we use the Davis [11] estimates

St =max0, A", AT ST =max0, A, A )

Following exactly the same developments that we followed with the Rusanov flux functic
we get

At
U'ﬂ"'l Un Ax (Fill/z - Fin—l/z) + AtH (Uin)A

with
311/2 Fi — Sh10Fit1+ §h125512WUia — Ui )
Fiy12 =
311/2 Si12
A — i S:—l/Zain - S+1/205i+1 _ Stl/zain—l - S_—l/z‘)‘in
AX Shi2— Siap2 S 12— S ’

(29)
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and

ot =o' — )‘[{Uin(sil/zain - 311/2%11) + 3+-+1/251_+1/2(“P+1 —a')}/
(S:*l/Z - Si12) — {uin(stl/zain—l - 311/20‘{1)
+ 57125 10(e - o ) }/(551/2 - 311/2)]-

It appears clear that the discretisation of the non-conservative terms and equation str
depends on the flux function used for the computation of the conservative fluxes.

Extension to Second Order

Extension to second order is done following the basic ideas of Van Leer [50]. The f
variables are characterized by a mean valfleand a slopeSU". In order to preserve a
uniform solution regarding pressure and velocity at the end of the predictor step of the
Leer scheme, it is necessary to perform this step with the primitive variable formulat
So, we consider primitive variable vectdf" and associated slop&gv".

When the flow is uniform in velocity and pressure, thand P slopes are zero. The
primitive variables on a cell boundary are computed by

WP = WO £ 1/25W" — At/2A(W")SW. (30)

This automatically satisfies the conditions of pressure and velocity uniformity at'tirté.
The conservative variable vector is then deduced from the primitive one. The corrector
when the HLL Riemann solver is used, then reads

UMt = UM — A (F(UNS UNSL) — F(UM s UMy ,)) + ALH (UM% A

with
n+1/2 n+1/2 n+1/2 n+1/2
A= Slttl/z“wl/z— $+1/20‘|+1/2+ _ SH/Z“. —-1/2,— -S- 1/2%-1/2,+ 31)
AX Shi2 — Saap2 St12— Sy
and
1 n+1/2 n+1/2 n+1/2 n+1/2
o =af [{U (311/20‘|+1/2 - S1_+1/201|+1/2 +) + 311/2311/2( ¥it1/2,+

:1:11//22 )}/(S:-l/z - 511/2) - {u?+1/2(st1/2arj11//§_ S- 1/20‘P+11//22+)
+ Stl/ZSZI/Z (ainjll//22,+ |n+11//22 )}/($ 12~ 311/2)]

This scheme is stable under the standard CFL condition, based on the largest absolute
speed.

5.2. Source and Relaxation Operators

In the previous sections, we developed the resolution procedure for the hyperbolic
tems, without accounting for source and relaxation terms. The relaxation terms are pa
larly important since they allow solution of the boundary conditions, at the interface. T
step is of paramount importance.
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First, recall that the complete solution is obtained by the succession of operators
U.”+l _ LAtLhAtu_n
1 - S [
when the hyperbolic solver is first order, and
1 2 2
Uin+ — LSAt/ LﬁthAt/ Uinv
when the hyperbolic solver is second order (Strang [45]). We now give details of the oper:

Ls. It approximates the solution of an ordinary differential system. For system (14), wh
mass and energy transfer terms are considered, it reads

au
=~ — U
o = SU)
U= ((xg,agpg,(xgpgug,o{gngg,0[|,O|,05|,0|U|,06|,O| E|)T (32)

S(U) = (u(Pg — B), m, A(u — Ug) + MM, ViA(u — Ug) — Pu(Py — R) + ME,
—m, —A(U — Ug) — MM, =ViA(U — Ug) + Pu(Py— P) —mE)".

For the sake of clarity, we decompdS@J ) into three vectors containing the various source
terms,

S(U) =MHU) + V() + PRU), (33)

where MH(U) = (0, m, mV{, ME + Q;, —m, —mV{, —mE — Q;)" is associated with
mass and heat transfer, whid(U) = (0, 0, A(uj — ug), ViA(uj — ug), 0, —A (U — Ug),
—ViA(u —ug))T is associated with the velocity non-equilibrium terms and the pressu
non-equilibrium terms are grouped in

PRU) = (4(Py — P1),0,0, =P 1(Py — P1),0,0, Ppu(Pyg — R ™.

Solution of the differential problem (32) can be considered to be succession of three
tegration operatork i, L', andL 3k, associated with the corresponding source vector:
The solution of problem (32) is then given by

U = L L LAY 4

In general, mass transfer and heat exchange terms are given by finite rate physical |
So, the operatok  consists in an appropriate differential integrator for solving the ODI
system involving mass and heat exchanges terms.
When the velocity and pressure related source terms involve finite rate lawfiaite

W, integration can be performed with the same kind of ODE solver. The distinction appe
when A or u is infinite. The source terms are now relaxation terms. These coefficier
are infinite when we are dealing, for example, with an interface, as previously mention
We now describe the method for solving these ODE problems with infinite relaxati
coefficients.
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Instantaneous Velocity Relaxation

Whena is infinite (instantaneous velocity relaxation), solution of the integration proble
UMt = L§'U! possesses the following analytic solution. The ODE system to consider
be written in full as

dag
% _ o
ot
dagpg _ 0
ot
dagpgUg
——— =AU — Ugy)
at
0 E
T29P979 — AV (ur — ug) (35)
ot
dajp 0
at
doy pry
=—A(u —u
9t ( | g)
day o Ey
T = —AVi (U — ug).

Combination of the mass and momentum equations for each phase yields the differe
system

0
% = A(U — Ug)/etgpg (36)
d
% = —A(U — Ug) /. (37)

Subtracting Eq. (36) from Eq. (37) and integrating yield the result

1 1
Ui — Ug = (Ujp — Ugp) exp(—k {— + —}t)

HgPg A0

where variables with the subscript O represent the solution obtained after the hyper|
step (or previous source steps). The solution of this equation wiemds to infinity for a
finite time incremental is the same as considering a finite value Xand looking at the
steady state solution. Singds a positive parameter, the solution is obvious:

u —ug=0. (38)
Now, summing Egs. (36) and (37) gives

au oy
O[gpga—tg + a1 W =0.

Integration of this equation yields the result

Olgpg(ug - UgO) + a0 (U — U) =0. (39)
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The variables with index 0 represent the solution obtained after solution of the hyperb«
system. Now, using (38) in (39) gives the relaxed solution for the velocities:

_ gpgUgo + a1 o1 Ujo

U=Ug=U
g UgPg + a1 0]

(40)

This result justifies the choice made for the mean interface veldiEq. (8)) since it
corresponds to the equilibrium velocity of the two-phase system.

It now remains to account for velocity changes of the total and internal energies of e
phase. Indeed, the energy equations contain velocity relaxation terms

dark ok Ex

m =£AVi(U — Ug).

By combining the energy equation with the mass and momentum equations

dak Pk Uik
=0 and — =4A (U —u
P Pk (u g9)
we get
9€
e £ Aug (U — Ug) = AV (U — Ug),
that is,
06 dUk
— = (M — U —,
P (Vi —u) P
or also,
d du,  duZ/2
da _\, duc _ uic/2 (41)
at ot at
We make an approximate integration of this equation,
& = 8o+ Vi (U — Uko) — 3 (Uf — UZy).
By estimatingV; asV; = (V" + V\""1)/2 andV,""* = u, we get
& = 8o £ 3 Uk — Uko) (V" — Uio). (42)

After correction of the velocities and internal energies by Egs. (40) and (42), respective
the conservative vector can be rebuilt.

It finally remains to solve the last ODE problem, when the pressure relaxation coeffici
tends to infinity.

Instantaneous Pressure Relaxation

Here we give details of the operatbpg when i tends to infinity. The assumption of
instantaneous pressure relaxation is absolutely necessary for interface resolution. It is
necessary when the variable has not been determined physically or experimentally ar
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is unknown. The best estimate for this variable in such a case is to consider it infir
Considering the dynamic compaction viscosity as infinite and looking at the solution .
finite time is identical to considering as finite and to looking at the steady state solutio
of the differential problem (43):

U

— = PRU). 43
o = PRU) (43)
For the gas phase, we have
dag
79 _ P, —
at a( g R)
dagpg _ 0
ot
44
dagpgUg _ 0 @9
ot
E
0P _ uRy(Py— )

By combining the energy equation with the volume fraction equation we get

dagpgEg darg
S _p =2
ot at
We recover here awell-known result that is nothing else than the first law of thermodynat
for an isentropic transformation in a closed system. Integration of this equation yields

o
(Olgpg Eg)* - (agpg Eg)o = - /0 P dag (45)

9

and a similar result is obtained for the other phase:

ag
(P EN* — (p EN® = +/O R dag.

g

The state with superscript O corresponds again to the state obtained after the pre
integration steps : hyperbolic or relaxation. The state with superscifpthe one we are
looking for. So, we are looking fatg such that the two pressures are eqigl= R. The
procedure can be summarized as follows:

(@) Make an initial guess farg.

(b) Compute the integralggoqEg)* and(w o E))* by a suitable method.

(c) Compute the pressurd% and B. Knowledge of(agpgEg)* and (agpg) that is a
constant during the entire relaxation process allows easy computation of the total er
Ej and also of the internal energy. Simultaneously, knowledge of; allows computation
of pg. Then, the pressure; is easily computed from the EO8; = Py(pg, &)

(d) Iterate this procedure untily = R .

This procedure is very accurate, but expensive when the integrals of step (b) need
computed with a specific integrator. For nearly all test problems presented in Section 6
is not necessary, and the approximate method that follows is sufficient.
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Combination of mass, momentum, and energy equations yields

0y do
WZ—R/“gpga_tg- (46)

Approximate integration of this equation yields the result
& = & — Pi/(agog) (a — af). (47)

P, represents the mean interfacial pressure between sigtes), €3) and(ag, pg, €9)*. An
equation similar to (47) is easily obtained for the liquid phase. So, the steady state solu
of Eg. (43) now consists in finding the solution of

f(ag) = Py(py. &) — R(pr, @) =0.

The pressures are given by their equations of state, with it (cuk o) © otk ande =
&) — Py /(okpk)®(ak — @2). The mean interfacial pressuf@ is approximated byP; =
0.5(P: + P?%), wherePR? is computed at staterg, pg, €)) andP; is estimated atg, pg, €9)
during the iterative procedure for solvirfgog) = 0.

6. TEST PROBLEMS

Test problems for multiphase flows (two velocities) are rather rare. We have selected i
multiphase flow problems that will be presented at the end of this section. It is easierto
multifluid test problems (one velocity), with accurate reference solutions. The corresponc
test problems are presented in order of increasing rate of difficulty for the algorithm. Ee
test problem is solved with the new numerical method, with the HLL Riemann solve
and is extended to second order as detailed previously. All computations are made w
CFL number of 0.8. They all use the approximate pressure relaxation procedure givel
Eq. (47), except for the last test case, which uses the more accurate procedure give
Eq. (45).

6.1. Multifluid/Interface Test Problems (Instantaneous Pressure
and Velocity Relaxation)

Water—Air Shock Tube

We consider a shock tube filled on the left side with high-pressure liquid water and
the right side with air. This test problem consists of a classical shock tube with two flui
and admits an exact solution. In this test problem, classical methods fail at the second
step. Each fluid is governed by the Stiffened gas equation of state (Godtiaby19]),

P=(y—1pe—ym, (48)
wherey ands are constant parameters. The initial data are

o =1000kg/mi, AR =10° Pau =0m/s y =44, 1 =61FPaa =1—¢c (¢ =109
if x < 0.7;
pg = 50 kg/n?, Py = 10° Paug =0m/s yg = 1.4, 7y =0Paag=1—¢  otherwise
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FIG. 6. Comparison between exact and numerical solutions in the water—air shock tube test case witt
computational cells.

For afirstrun, we use a mesh with 100 cells. The corresponding results are showninF
at time 229us. In this test case, the right and left chambers contain nearly pure fluids:
volume fraction of gas in the water chamber is only4@nd inversely in the gas chamber.
The phases densities and internal energies are not compared with the exact solution be
no exact solution exists for the variables. But the mixture density, phases pressures
velocities can be compared with the exact solution. The graphs showing the pressure
velocities show in fact three curves: two numerical curves and the exact solution. The
curves representing gas and liquid pressure and velocities are indiscernible. This is a
of the pressure and velocity relaxation procedures, which give an accurate relaxed stc

The lower curve on the internal energy graph corresponds to the liquid phase an
upper curve to the gaseous phase. The gas internal energy is particularly high in the
pressure chamber because the gas density is low (and the pressure high). The density
shows two curves. The upper curve corresponds to the liquid phase, and the lower cui
the gas phase. The shock wave propagating in the gas and the rarefaction wave in the
are clearly visible. In the liquid phase, some oscillations appear at the shock front. Ins
of a density jump at the shock front in the liquid phase, there is a density decrease d
the pressure relaxation process. The liquid must have a density decrease in order to
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the same pressure as that of the gas phase. The density oscillations at the liquid shock
have no influence since they are weighted by the liquid volume fraction, which is nea
zero in this zone.

Pressures, velocities, and mixture densities are compared with the exact solution
resented by lines, while the numerical solution is represented by symbols. The mixt
density is obtained by combination of the phase densities, which are summed and weig
by the volume fraction. The graph representing the mixture density shows an exces
numerical diffusion of the discontinuities. This is a result of the stiffness of this probler
The two materials, air and water, are very different in behavior and in EOS parameters,
the pressure ratio is excessively high (see the pressure graph). This situation for the li
phase is close to a situation where the liquid should be connected to a vacuum. Also
excessive numerical diffusion is a result of our approximate Riemann solver. It uses C
two waves instead of seven, which for this practical application, because the sound sp
of the materials are very different, causes excessive smearing of the slowest waves.
can be remedied by following the method proposed by Gallouet and Masella [17]. To st
mesh convergence of the results, the same computation is now made on a mesh invo
1000 cells. The results are shown in Fig. 7. It appears clear that the correct wave speed
reproduced by the method, and that it converges to the correct solution.
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FIG. 7. Comparison between exact and numerical solutions in the water—air shock tube test case with !
computational cells.
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copper inert explosive

—

V = 1500/m/s

v

x = 0.5m

FIG. 8. Schematic representation of the impact of a copper plate on an inert explosive.

Real Material Interactions

In order to show that the method works correctly with complex equations of state, we f
retained difficult test problems, representative of detonation physics. The first test prot
involves two materials governed by the Cochran and Chan [9] equation of state. It is wit
used to describe solids under high-pressure shock wave and is more accurate than the
ened gas EOS under these conditions. This EOS can be written in the Mie—Gruneisen

P = Px(p) + pI'(e — &(p)), (49)

whereP, ande, read

()__L (@)1_E1_1 +L (@)1_E2_1 _C.T
&Py = po(l—Ep) |\ p po(l—Ez) |\ p Ve
(50)
po\ po\
Pe(p) = A1<—> - A2<—> .
p p

This EOS has a limited domain of validity. When the density decreases slightly below
standard densityg, the pressure becomes unrealistic (negative). So, it is important to h
an accurate solution of the fluid properties at the interface. A more detailed present:
of the equations of state and their application is given in Saurel and Massoni [41].
test problem considered here consists of the impact of a copper plate on a solid expl
considered as an inert material. The copper has an initial velocity of 1500 m/s, while
explosive is at rest (Fig. 8).

The two materials are under atmospheric conditions and their EOS parameters are
marized in Table I. The solution of this impact problem consists of a shock wave facin

TABLE |
Material Properties for the Mie—Gruneisen EOS

Copper Explosive

oo (kg/m?) 8900 1840
Cv (J/kg- K) 393 1087

To 300 300

E; 2.994 4.1

E, 1.994 3.1

A (Pa) 1.4566% 10'* 1.2871x 10%°
A; (Pa) 1.4775% 101 1.34253x 10%°

r 2 0.93
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FIG.9. Comparison between exact and numerical solutions of the impact problem. Computations were 1r
over 100 cells.

the right and propagating in the inert explosive, and another shock wave facing to the
and propagating in the copper. Since the solution consists of two shock waves, clas:
Rankine—Hugoniot relations can be combined to provide the exact solution of this proble
The numerical solution is obtained again with the seven-equation model and the assoc
numerical method. Each fluid is considered as a mixture of two fluids that contains a v
small percentage of one of the fluids, as for the water—air problem.

Comparison shown in Fig. 9 shows excellent agreement between the exact and nume
solutions. The results are shown at time&5 For these computations, we used a mesh wit
only 100 cells. It is easily noticed that the various waves propagate at the correct velo
and that the numerical solution matches the exact one. It is also important to note tha
temperature is correctly computed, also at the interface. This is a specificity of our metr
To our knowledge, most other interface methods (Lagrangian, Eulerian, or Front Tracki
do not provide such accuracy for the temperature computation, except for a recent me
proposed in Fedkivet al.[15]. We also notice that the accuracy of the solution is better i
this test case with only 100 cells than in the previous test case with the liquid—gas sh
tube. The reason is that the density ratio between the two materials is lower than that ir
previous case. More physically realistic applications of such impact problems are givel
Massoniet al.[28].

We now consider a more difficult test problem involving two materials governed by tv
differentequations of state, and again under drastic conditions as in detonation problems
consider the interaction of gaseous detonation products with a copper plate (Fig. 10). Co
is governed by the Cochran and Chan EOS described previously, while the detona
products are governed by the most popular EOS for this type of fluid: the JWL EOS (L
etal.[27]). It can again be written in the Mie—Gruneisen form (15), but the various functiol
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detonation

products copper

v

x = 0.5m

FIG. 10. A shock tube problem with explosive products and solid material.

are very different from those of the Cochran—Chan EOS. They are expressed as

exp(— Rz’;o) + Cek

Pc(p) = Aexp(— Rl%) + Bexp(—R2%>

A £0
&(p) = —ex <—R >+
P poRy P Yo PoRz

B Poy—
o — — exp(— R1&> B exp(— R2ﬂ> _ (Pea— Pig(pcd) tes (51)
poR1 ocy ooR2 ocy pcil’y
1 1
ecy= 0.5 PCJ(_ - —>
£0 PcI
pPcy = 7D%Jp§ .
D2;00 — Py

These functions require knowledge of the Chapman—Jouguet state (CJ). It can be
mined with a thermochemical code like CHEETAH (Fried [16]), QUARTET (Bauer ar
Heuz [6]), QUERCY (Baudin [5]), etc. The JWL parameters necessary for the presentc
putations are summarized here= 8.545 10! Pa,B =2.051G° Pa,R; = 4.6, R, = 1.35,

Cv=2815 J/(kg K), ' =0.25, Pc;=371CF Pa, Dc;=8800 m/s, Tc;=4040 K, po=

1840 kg/mi. Initially, the copper is under atmospheric conditions and the detonation pr
ucts are at the CJ state with regard to pressure, density, and internal energy and a
velocity. The solution of this test problem consists of an intense shock wave propage
in the copper and a rarefaction wave facing to the left propagating in the gases. Due t
complexity of the equations of state no exact solution is available for this test problem,
it is possible to compute an accurate numerical solution with a front tracking code. F
tracking methods solve the Euler equation in each of the two media with an approp
equation of state coupled with a specific scheme at the interface. The details of our
tracking scheme are given in Saurel and Massoni [41]. The corresponding code has
validated. So we can compare its prediction with the new method, in which we cons
each medium as a two-phase mixture with a negligible proportion of one of the fluids.
results are shown in Fig. 11 at time Z3. The front tracking results are shown by lines
while the results obtained with the multiphase model and method are shown by syml
Agreement is again excellent. The advantage of the new method with the multifluid me
compared to the front tracking method with the Euler equations is that extension tc
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FIG. 11. Comparison between the interface tracking solution and the new method used in the detona
shock tube problem. Computations were made over 100 cells.

arbitrary number of interfaces in 2D or 3D is not difficult, while extension to the fror
tracking method in more than 1D is delicate (Cocchi and Saurel [8]).

6.1. Multiphase Test Problems (Two Velocities)

For the following test problems, the pressure relaxation procedure is used, but not
velocity relaxation procedure, so each phase possesses its own velocity. The same sy
with seven equations is solved, with the same numerical method.

Water Faucet Problem

We now consider another test problem, in which the behavior of the two fluids is inco
pressible, and we try to model them as compressible with the previous model and met
Of course our model is rather complex for such a problem and itis possible to build a simj
model for such an application (Toumi and Kumbaro [49]), but our goal is to show that t
model is able to work also on incompressible flows. The water faucet problem consists
vertical tube 12 min length. The top has a fixed liquid velocity (10 m/s) and a liquid volun
fraction of 0.8. The bottom of the tube is open to atmospheric conditions. The problen
schematized in Fig. 12. Initially, the tube is filled with a uniform column of liquid water at
velocity of 10 m/s surrounded by a gas at a volume fraction of 0.2. The gas inlet velocity
zero, so it is necessary to consider two distinct velocities. Therefore, the multiphase m
with two velocities is used. From these initial conditions, gravity effects are solved a
provoke a lengthening of the liquid jet. The various events are represented in Fig. 12.
exact solution for this problem is available (Cogethl.[10]) and is represented by bold
lines in Fig. 13. The numerical solution is represented by thin lines. The gas and liquid
treated as compressible fluids with the same parameters and equations of state as tho
the liquid—gas shock tube test problem.
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constant velocity liquid inflow

atmospheric outflow
t=0 t final

FIG. 12. Schematic representation of the water faucet problem.

The numerical solution shows good agreement with the exact one, even thougt
conditions of this test problem are far from the range of application of our model. T
excessive numerical diffusion of the volume fraction wave is due to the poor accur
of our Riemann solver and to the low Mach number conditions of this test problem. -
HLL Riemann solver has been used here. It estimates a mean state between the ma>
speed right-facing wave and minimum speed left-facing wave. Here these waves are ac
waves, and their velocity is several orders of magnitude larger than that of the liquid velo
The gas volume fraction propagates at a velocity close to that of the liquid one. So
computation of the variables associated with low velocity cannot be very accurate with ¢
a solver. Also, the low Mach number conditions are restrictive for our method, restrictec
the CFL condition. An implicit scheme with appropriate preconditioners should be be
(see Guillard and Viozat [20]).

Rogue Test Problem

Consider a long vertical shock tube filled with air. In a given section of the driver cha
ber, a finite thickness dense bed of solid particles has been settled. When the shock

0.45
& 04}
g 035

0.3 |
:

2 025
o
" 02
<
O 015

0o 2 4 6 8 10 12
x (m)

FIG. 13. Gas volume fraction at time 0.4 s (exact solution, bold lines).
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FIG. 14. Schematic representation of the Rogue two-phase shock tube and corresponding wave patters

propagates through the bed, pressure and drag effects set the particles into motion. S
taneously, the incident shock wave diffracts in a transmitted shock wave propagating
the particle bed, and a reflected shock wave propagating backward. During the propag:
of the transmitted shock wave, drag effects and the effect due to the volume occupie
the particles weaken the shock wave. During the same time period, particles are set
motion and the bed starts from a dense configuration and tends progressively to a d
one. The various waves are represented in Fig. 14. Two pressure gauges are located
shock tube wall at 4.3 cm upper and 11 cm lower from the initial location of the partic
bed. They record the gas pressure evolution versus time.

This test problem is a rather complicated one for which no analytical solution is availak
But careful experimental results have been obtained for it and can serve as referenc
the computations. The main difficulty of the computations is that two interfaces betwe
a pure gas flow and a two-phase gas-particle flow are present. Previous simulations of
test problem (Rogue [32], Rogee¢al.[33]) have shown weak accuracy in the computatior
of the dilution effects in the particle cloud and pressure records. We now test our model
method on this problem.

Under the weak shock wave propagation, the behavior of the solid particles is incomp
sible. But we model them as weakly compressible particles, in order to have a well-po
mathematical model. Under these pressure conditions, we can assume that the solid pat
are governed by the Stiffened gas equation of state with the parameters of liquid w
(given above). To model the shock wave interaction with particles we need a drag for
This force was not considered in the previous test problem, but it now plays a major r
Heat exchanges and intergranular stress effects have been estimated previously: they
a negligible influence. The drag force is expressed as

Fg = ch%(l—ag)mg—up|(ug—up). (52)
P
The data necessary for the following simulation are summarized in Table II.
In Fig. 15 we have reported the experimental and numerical pressure signals recorde
the pressure gauges. The lower pressure gauge records the incident shock wave at a pr
of about 1.8 atm. About 0.7 ms later, it records the passage of the reflected shock wa
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TABLE Il
Parameters for the Rogue Test Problem

Air preshock density 1.2 kgfin
Incident shock Mach number 1.3

Particle density 1050 kg/f(nylon)
Particle diameter 2mm

Particle bed thickness 2cm

Initial gas volume fraction in the bed 0.35

Drag coefficientCy) 0.6

about 3 atm. At about the same time, the upper pressure gauge records the passage
transmitted shock wave at about 1.2 atm. This shock wave has been attenuated beca
variation of the cross section in the particle bed and momentum exchanges. From this
the gas continues its flow inside the particle bed and exchanges momentum with it.
particle bed separates a high pressure zone at about 3 atm from a low pressure zone a
1.2 atm. Motion of the particle bed and penetration of gases in it tend to equilibrate t
pressures. It is why the lower pressure gauge signal decreases and the upper one inc
Attime 2.2 ms, the cloud of solid particles reaches the upper pressure gauge. From he
about 3.5 ms, the gauge records the pressure inside the fluidized bed.

Numerical simulation produces reliable results of these phenomena. Some difference
visible between experiment and simulation, which are possibly due to boundary layer ef
and uncertainty in the drag coefficient. But improvement in accuracy is good compare
that attained in previous simulations: Eulerian and Lagrangian models. This gaininacct
is due to the mathematically well-posed model and to the treatment on the interfaces bet
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gauge

280000
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200000

Upper  pressure|
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FIG. 15. Comparison of the experimental pressure records and the numerical pressure signal in the F
test problem.
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Imposed
velocity

FIG. 16. Schematic representation of the two-phase shock wave problem.

pure gas and two-phase mixtures. Also, we can again see that modeling of solid parti
as compressible media is not a severe restriction.

Mixture Hugoniot Test Problem

We now evaluate the model and method capabilities for computation of shock wave:
two-phase mixtures with a test problem involving very strong shock waves. The two-ph
system does not admit classical Rankine—Hugoniot relations because non-conservativ
relaxation terms are present in the equations. But it is possible to solve these equatiol
an unsteady regime with the proposed numerical method, and to examine the two-pl
shock wave behavior. To do this, we simulate impact situations over two-phase mixture:
considering the impact as a boundary condition (Fig. 16).

In order to evaluate computed results, we need reference solutions. Since clas
Rankine—Hugoniot conditions do not exist for the two-phase system, it is not possi
to determine the exact solution. But it is possible to find specific situations where exp
mental results are available. Indeed, for many pure liquids and solids, the relation betw
shock velocity and material velocity is a linear relation, intrinsically characteristic of tt
material, and experimentally determined,

wherecy is the material sound speed under atmospheric conditibyitie shock velocity,
U, the material velocity, and a dimensionless constant. This relation is valid for a shoc
wave propagating in solid or liquid materials, under atmospheric conditions, and initia
at rest. A large database is given in Marsh [29]. When the experimental relation (53
known, it is possible to derive an equation of state for the material. Nearly all conden:
phase equations of state are based on this relation. The simplest EOS is the Stiffene
EOS, given by relation (48).

What is now particularly interesting is that relation (53) is also available for some me
alloys. Under strong shock waves, these alloys may be considered as two fluid mixtu
For example, brass under strong shock wave may be considered as a two-phase mi
composed of copper and zinc. Since relation (53) is known for both copper and zinc,
are able to determine the Stiffened gas EOS parameters for each material, and compu
associated two-phase flow with the seven-equation model. Simultaneously, relation (5
also known for brass and will be our reference solution.

For a metal alloy, the two-phase mixture is made of very fine particles perfectly mix
at the macroscopic scale. Due to the small particle size and large “viscosity” of the s
materials, the best estimates for the relaxation parameters (pressure and velocity)
consider them infinite. This corresponds to a situation where the two pressures and veloc
relax instantaneously after wave propagation toward common pressure and velocity.
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In this test problem, we compare two theoretical approaches. The first one is of co
based on the two-phase flow equations. It involves solution of the seven-equation sy
closed by the two EOS for each pure material. The second approach consists in the so
of the Euler equations with a mixture equation of state. Mixture equations of state are b
on several assumptions:

—The mixture is under pressure and velocity equilibrium;
—all components of the mixture possess the same density or the same temperat
any equilibrium assumption for one of the other thermodynamic functions.

The first assumption is reasonable and realistic for such flow conditions. The sec
assumption is arbitrary and is not supported by any experimental or theoretical evidenc
spite of this uncertainty, mixture EOS are coupled to the Euler equations for the computs
of detonation waves in solid energetic materials in nearly all CFD codes. An exampl
given in Saurel and Massoni [41].

The simplest way to build mixture EOS for solid mixtures is obtained on the basis of
mixture Stiffened gas EOS. If each pure fluid is governed by relation (48) and under
assumption that the mixture fulfills the same relation, the mixture EOS reads

P=( -1pe-TIl,

where

1 r-1
F = 1+ ﬁ and H = a]_ ylr[l +a2 yznz .
v r yi—1 v2—1

n-1 y2—1

This method for mixture EOS is detailed in Massenil. [28]. It has also been used by
Shyue [44] for the computation of interface variables in multifluid flows. We consider t
metallic alloys for which relation (53) is available in Marsh [29]. The data for pure com
nents are also available in the same reference. They are summarized in Tables Il an

With the two-phase code we compute several unsteady impact problems, by varyin
velocity boundary condition, and we note the ratio of the shock velocity and the img
(material) velocity. We obtain the results shown in Fig. 17. The first graphis related to b
(Cu/zn alloy), with an initial zinc volume fraction of 0.29. The second graph is related
the uranium/rhodium alloy with an initial rhodium volume fraction of 0.265. The last gra
corresponds to an epoxy/spinel mixture, with an initial epoxy volume fraction of 0.595

In Fig. 17, we have also represented the solution obtained with classical Rank
Hugoniot relations from the Euler system, coupled with the mixture EOS. We not

TABLE 1l
Stiffened Gas EOS Parameters for Pure Materials
Density Co b4
(kg/m?) (m/s) y (1¢° Pa)
Copper 8,924 3910 4.22 324
Epoxy 1,185 2823 2.94 3.2
Rhodium 12,429 4790 3.61 79.0
Spinel 3,622 7954 1.62 141.0
Uranium 18,930 2510 3.52 33.9

Zinc 7,139 3030 4.17 15.7
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TABLE IV
Stiffened Gas EOS Parameters for Selected Alloys

Density Co T

(kg/m®) (m/s) y (1¢° Pa)
Brass (Cu/Zn) 8,413 3520 4.32 24.1
Epoxy/Spinel 2,171 3090 3.47 5.98
Uranium/Rhodium 17,204 2740 3.53 36.6

excellent agreement for all test problems between the experimental data and two-p
results. The mixture EOS coupled with the Euler equations provides acceptable accu
for the second mixture, but catastrophic results regarding the last one. The poor agreel
between mixture EOS and experimental results is related to the assumption of density ¢
librium, used for building this EOS. Itis also important to note that, for the last test case,
Stiffened gas EOS parameters associated with the alloy obtained from the experimental
are not included in the range of the two other materials (epoxy and spinel). The spinel
epoxyy are respectively 1.62 and 2.94 while the mixtures 3.47. The mixturé™ detailed
previously cannot have such a behavior.

Some differences between the two-phase and experimental results are noticeable
course, these differences are minor compared to those associated with the mixture I
These differences between experimental results and the two-phase model may have se
sources:

Cu/Zn
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FIG. 17. Hugoniot curves of selected alloys. Comparison between experimental and theoretical cur
obtained with Euler equations and mixture EOS and two-phase flow model with pure material EOS.
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—These tests involve very high pressures (of the order of one million atmosphere

—The experimental uncertainty is not negligible at these pressures.

—The discretisation formulae for non-conservative terms have been developed
situation where pressure and velocity are uniform. A strong shock wave does not ft
these conditions at all, but we discuss this further below.

—The pressure relaxation process in a solid may not be hydrodynamic. At the
croscopic scale (grain scale), some plasticity or viscosity effects may intervene. In su
case, the pressure equilibrium is not obtained wRes P,, but with another relation like
P, = P> + Py, where the pressur, represents the effects related to plasticity.

In spite of these uncertainties, agreement is excellent, especially compared to predic
of the mixture EOS. It is also very interesting to explore the reasons for the discrepar
of the mixture EOS compared to those of the two-phase approach. An analysis of
two-phase flow variables will give us some indications (Fig. 18). We examine here the
alloy, composed of copper and zinc.

Pressure, volume fraction, and phase internal energies and densities are shown in F
at three successive instants in the two-phase column. The shock wave propagation is c
visible. This wave looks like a classical discontinuity. We can also notice that the t
pressures are perfectly equilibrated, because each curve is the exact superposition
zinc and copper pressures. On the curves related to the other flow variables, we can r
another wave or discontinuity propagating at a lower velocity. This wave propagates li
contact discontinuity, at the local flow velocity, and has no physical reality. Itis related to
numerical treatment of the piston boundary condition. This problem with the Euler equat
is well known. It is noticeable when a large piston velocity is used at the boundary. T
problem is related to temporal convergence inaccuracies during the shock wave buildi
the boundary. This problem is still unsolved, even for the Euler equations. Recently, Fe
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FIG. 18. Two-phase flow variables for the Cu/Zn alloy under shock impact at 1200 m/s.
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etal.[14] proposed a way to reduce or eliminate this problem on the basis of thermodyna
considerations, which we do not enter into here. This wave has no influence on the st
wave dynamics. The most interesting result for our problem is related to the volume fract
evolution. A strong variation of the volume fraction is clearly visible across the shock wa
This variation is due to the pressure relaxation process. After shock wave propagation, «
of the two materials has its own pressure. Then the volume fraction evolves progressi
inside the shock numerical diffusion zone, implying variations of the internal energies &
densities of the two materials so that the two pressures are equal. The two materials
different compressibilities, and the more compressible material will be compressed wi
the other will be expanded. So, the volume fraction evolves inside the numerical shock wi
This volume fraction variation is responsible for correct computation of pressure. When
mixture EOS is used, the volume fraction is constant and equal to the initial volume fract
of the components of the two-phase mixture. Indeed, no evolution equation is available
the volume fraction equation and no pressure differential can be computed. It is unreali
from a physical point of view for the volume fraction to be constant across a shock we
or any pressure wave. So, it is not surprising that inaccurate solutions are obtained w
mixture EOS is coupled to the Euler system for multiphase mixture. These errors are
really noticeable in the uranium/rhodium test problem because the EOS parameters
not appreciably different and also because the densities after shock wave propagatiol
relatively close. For the epoxy/spinel test problem, the densities are always very differ
and there are many more differences regarding the EOS parameters for this test pro
than for the previous test problems.

A last remark regarding numerical discretisation is necessary. The volume fraction ec
tion (non-conservative equation) implies that the volume fraction propagates at the m
interfacial velocity ¥/;), when the relaxation terms are omitted. The numerical scheme v
have proposed gives a numerical approximation of this equation that propagates the vol
fraction at the relaxed velocity, corrected by viscosity terms coming from the discretic
tion of the convective fluxes under the constraint “uniform pressure and velocity.” Wh
relaxation terms are omitted in this equation, this variable must have no variation act
the shock wave. The discretisation scheme propagates this variable without variation ac
the shock front, which propagates at a very different velocity. So, the relaxatiomt&mn
is responsible for the volume fraction variations across the shock front, as seems real
from a physical point of view.

Cavitation Test Problem

Consider a tube filled with water and imagine that the left part of this tube is set in moti
to the left, and the right part is set in motion in the opposite direction. The situation
represented in Fig. 19. In such a situation, pressure, density, and internal energy deci
across the rarefaction waves so that the velocity reaches zero at the center of the domair
pressure decreases until it reaches the saturation pressure at the local temperature.
the saturation pressure is reached, mass transfer appears and part of the liquid become
and the flow becomes a two-phase mixture.

When this type of problem is solved with Euler equations, with a single-fluid approa
and an appropriate equation of state for the liquid (the Stiffened gas EQOS, for exa
ple), the pressure becomes rapidly completely wrong (i.e., negative). The EOS is wri
P =(y — 1)pe— yx. Across the rarefaction waves, density and internal energy decres
while the corrective pressuger remains constant, and so the pressure becomes negati
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FIG. 19. Schematic representation of a cavitation tube and associated rarefaction waves.

This is of course unrealistic. The reason is that the Stiffened gas EOS is no longer
when the pressure becomes sub-atmospheric, because the liquid transforms into ga
the gas does not have the same EOS, nor the same behavior.

There are two ways to solve this problem. The first is to build an EOS that is valid
the liquid phase, the two-phase mixture, and the gas phase. Such an approach is giv
Saurelet al. [43]. But as usual in building mixture EOS, there are assumptions about
thermodynamics of the mixture—for instance, the assumption of temperature equilibr
or the assumption of thermochemical mixture equilibrium. For the present application,
assumption of temperature equilibrium between phases is not prejudicial, because th
phase appears as a result of mass transfer, and mass transfer occurs at constant temp
But, in the general case, there are situations for which this procedure can lead to unres
computations.

The second way to solve the problem is to use our non-equilibrium two-phase flow mc
With this model, each phase possesses its own EOS and proper behavior. We propt
solve the test problem represented in Fig. 19 by the seven-equation model. The liquid f
will be governed by the Stiffened gas EOS, and the gas phase by the ideal gas EOS.
mass transfer terms are not presentin these equations, and because itis difficult to dete
afinite rate model for mass transfer due to a pressure drop, we consider a simplified prol
in which initially the liquid column contains 1% gas by volume. From this initial situatio
with the gas and liquid at atmospheric pressure, we set into motion the right part of the
at 100 m/s, and the left part at100 m/s.

The seven-equation model is solved on a mesh with 100 cells, with instantaneous pre
and velocity relaxation. Here we use the “exact” pressure relaxation method define
EqQ. (45). The results are shown in Fig. 20 and the various curves are separated by ¢
interval of 0.5 ms. The density graph shows the liquid and gas evolutions. The lig
density decreases slightly but remains closed to the initial one. The liquid remains liqu
a positive pressure. The gas density decreases across the rarefaction waves and de
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FIG. 20. Profiles of two-phase variables at times 0.5, 1, 1.5, 2, and 2.5 ms for the cavitation test problen

again due to the pressure relaxation process. The gas density at the center of the tu
very low. The pressure relaxation process causes the gas volume fraction to increase
the mixture density decreases, as expected, and the velocity profile tends to the expe
solution. It can also be noticed that the increase in gas volume fraction tends to create
interfaces that propagate to the right and to the left. These interfaces are two-phase on
can be concluded that, even starting from a situation in which interfaces are not present
procedure is capable of dynamically creating interfaces. This feature can have impor
applications for specific problems and is a specific feature of this method.

7. CONCLUSIONS

An efficient model and a solution method have been proposed for the simulation
compressible multiphase and multifluid flows. The proposed model is hyperbolic, &
the solution method is able to solve non-conservative terms in the equations and a |
conservative volume fraction equation. The model applies to pure fluids and to mixtut
The same numerical algorithm applies at each mesh point. It is able to deal with str
shock waves and complex equations of state, and to work on flows where one of the ph
has an incompressible behavior. The success of this approach is due to three key poir

—building of hyperbolic models for compressible fluid mixtures,
—accurate solution of non-conservative terms and equations,
—relaxation procedure for pressures (and if necessary for velocities).

The model is hyperbolic because pressure equilibrium is not assumed in the formula
but is assumed only after the pressure relaxation step when necessary.

We plan to extend the method to chemically reacting flows, to flows with mass trans
and to multi-dimensions. A simple way to do the last extension is given in Saurel a
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Abgrall [40]. Extension of this method to unstructured meshes is under study. The me
can be improved by increasing the accuracy of the Riemann solver and also by develc
an implicit version for low Mach number flows.
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