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Abstract

The Residual Distribution (RD) schemes are an alternative to standard high order accurate finite volume schemes. They
have several advantages: a better accuracy, a much more compact stencil, easy parallelization. However, they face several
problems, at least for steady problems which are the only cases considered here. The solution is obtained via an iterative
method. The iterative convergence must be good in order to get spatially accurate solutions, as suggested by the few the-
oretical results available for the RD schemes. In many cases, especially for systems, the iterative convergence is not suf-
ficient to guaranty the theoretical accuracy. In fact, up to our knowledge, the iterative convergence is correct in only
two cases: for first order monotone schemes and the (scalar) Struij’s PSI scheme which is a multidimensional upwind
scheme. Up to our knowledge, the iterative convergence is poor for systems, except for the blended scheme of Deconinck
et al. [Á. Csı́k, M. Ricchiuto, H. Deconinck, A conservative formulation of the multidimensional upwind residual distri-
bution schemes for general nonlinear conservation laws, J. Comput. Phys. 179(2) (2002) 286–312] and Abgrall [R. Abgrall,
Toward the ultimate conservative scheme: following the quest, J. Comput. Phys. 167(2) (2001) 277–315] which are also a
genuinely multidimensional upwind scheme.

A second drawback is that their construction relies, up to now, on a single first order scheme: the N scheme. However, it
is known that standard first order finite volume schemes can be rephrased into a Residual Distribution framework. Unfor-
tunately, the standard way of upgrading the order of accuracy to second order leads to very unsatisfactory results but
clearly the construction of good schemes based on a wider class of first order schemes would be interesting.

In this paper, we analyze these two problems, and show they are linked. We propose a fix and demonstrate its efficiency
on several test cases that cover a wide range of applications. Our solution extends considerably the number of working RD
schemes.
� 2005 Elsevier Inc. All rights reserved.
1. Introduction

We are interested in the numerical solution of hyperbolic problems (scalar or system) on unstructured
meshes, with a particular emphasis on the Euler equations for fluid mechanics. Many type of methods are
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available in the literature, such as the high resolution finite volume schemes or the stabilized finite element
methods. Here, we are interested in a particular class of schemes that share similarities with the high resolution
finite volume schemes and the stabilized FEM: they possess a nonlinear and non-oscillatory mechanism that is
inspired in part by what is done for high resolution finite volume schemes. They can also be interpreted as
continuous finite element methods in which the test functions depend on the solution. Hence a variational for-
mulation exist, and thanks to this interpretation, they share the residual property: the exact solution, if smooth
enough, satisfies this variational formulation. Thanks to this, they are very accurate. Their implementation
can also be done in a very compact way, hence the parallelization is simple.

The non-oscillatory property of the RD schemes are obtained in two steps. First, a low order monotone
non-oscillatory scheme is written. Second, a high order scheme is constructed from it by enforcing the non-
oscillatory property by comparison with the low order scheme. This is done thanks to a trick that uses in deep
the structure of PDE. We review in some details the construction of RD schemes in Section 2. High order
extensions also exist, see [2] as well as extensions for unsteady problems [3,4].

However, these schemes suffer two major drawbacks. One of them is that, for steady problems, the numer-
ical solution is obtained via an iterative scheme that, in general, does not converge. More precisely, the iter-
ative procedure has a nice convergence behavior in only two cases: the case of dissipative first order schemes
such as the N scheme and a Lax–Friedrichs type scheme that we recall later in the text, and the case of mul-
tidimensional upwind schemes such as the N scheme. In the case of systems and up to our knowledge, the iter-
ative behavior is good in the case of blended schemes such as those described in [5,1]; but these schemes are not
robust enough to serve as all-purpose solvers. In the case of the second order schemes of [3], as mentioned in
this reference, the iterative convergence is bad. If one looks at the spatial structure of the local residuals, rel-
atively high values are obtained at apparently randomly distributed locations. In the unsteady case, the solu-
tion at each time step is also obtained by an iterative method that has no good converge properties. In these
two cases, the formal theoretical accuracy of the RD scheme becomes problematic, because the accuracy is
guaranteed at convergence only or if the spurious residual is small enough. However, the results are good
in practice.

Another drawback is the relative lack of flexibility of the technique. Up to now, the only first order scheme
that produces successful high order schemes is the so-called N scheme [6]. Since it is easy to see that any finite
volume scheme can be rephrased as a RD scheme, it is very tempting to consider any first order finite volume
scheme and apply the construction on it. This would provide an elegant way of ‘‘exporting’’ the properties of
the FV schemes to this setting such as the positivity preserving properties of some of these schemes. However,
the result is very disappointing, as we see in Section 3!

The purpose of this paper is to analyze these phenomena that seem to be linked, and to propose effective
solutions. This analysis is carried out in Section 4. In order to solve the two problems (iterative convergence
and flexibility of the method), it seems that we need to lose the rigorous non-oscillatory property of the RD
schemes. However, even if the schemes are not anymore strictly non-oscillatory, the schemes seem to work
extremely well in practice. We demonstrate this on several examples for scalar and system cases (Euler equa-
tions of fluid mechanics).

The paper is organized as follows. First, we introduce the Residual Distribution schemes, provide the
design principles and several examples. In the second section, we illustrate by several experiments the problems
of the second order schemes: lack of convergence, wiggly behavior. Part 3 is an attempt to analyze these dif-
ficulties, and provide a fix. The last section is devoted to the intensive evaluation of our solution. A conclusion
ends the text.

2. The Residual Distribution formalism

2.1. General considerations

We consider the following hyperbolic problem:
div fðuÞ ¼ 0; x 2 X;

u ¼ g weakly, x 2 oX;
ð1Þ
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where X � Rd , u : X! Rm and f is a regular function defined on an open subset of Rm. The function g is reg-
ular enough for the boundary condition to have a meaning. The set oX� is the inflow part of oX.

For the sake of simplicity, we assume that X is polygonal, and we consider Th a shape regular conformal
triangulation of X. For the sake of simplicity, we also assume d = 2, the discussion can easily be adapted to
d = 3.

We denote by V ¼ fMjgj¼1;...;ns
the vertices of Th, and fT jgj¼1;...;nt

the set of triangles of Th. The ver-
tices of T are Mj1

, Mj2
and Mj3

. Most of the time, we denote them by their index in the list V, and when
there is no ambiguity, they are simply denoted by 1, 2 and 3. Last, VðiÞ denotes the set of vertices that
are connected to Mi by one edge of Th. The parameter h denotes the supremum over the triangles of Th

of
ffiffiffiffiffiffi
jT j

p
.

In the RD schemes, the solution of (1) is approximated at the vertices: the numerical approximation is
represented by ðujÞj¼1;...;ns

. From this we construct a continuous interpolant uh: the function is linear on each
triangle T and uh(Mj) = uj.

In each triangle T, we assume to have in hand residuals ðUT
j ÞMj vertex of T , UT

j :¼ UT
j ðuhÞ, such that the fol-

lowing conservation relation holds:
X
j2T

UT
j ¼

Z
oT

fðuhðxÞÞdoT :¼ UT . ð2Þ
The quantity UT is called the total residual over T. We show latter several examples of such decompositions.
Once this is done, the RD scheme writes
for all Mj;
X

T such that Mj2T

UT
j ðuhÞ ¼ 0. ð3Þ
In order to simplify the text, we skip the general problem of setting up boundary condition. This point is ad-
dressed later in Section 2.4. Similarly, (3) is rewritten as

P
T3Mj

or
P
T3jThe relation (3) raises three questions:

1. How to define the residuals UT
j ?

2. Which design principles should be applied, in particular how to get accurate and non-oscillatory results?
3. How to solve (3)?

2.2. Design principles

Until the end of the paper, we drop the superscript T in the writing of residuals when there is no ambiguity,
and when it is unnecessary, thanks to the form (3) of the RD schemes.

2.2.1. Consistency with (1)

Consider a sequence of shape regular meshes fThg with h! 0. We assume that we can solve (3) exactly, the
solution is denoted by uh ¼ fuh

jgj¼1;...;ns
. In [7], we show that provided the solution satisfies

1. there exists a constant C such that for all h, maxjkuh
jk 6 C;

2. there exists a function u in L2
locðRmÞd and a subsequence of {uh} such that uh! u in L2

loc;
3. the conservation relation (2) holds true for any uh,

then u is a weak solution of (1).
This is the analog of the classical Lax–Wendroff theorem. A slightly more general result is shown in [8].

2.2.2. Solution scheme for (3)

Eq. (3) is generally solved by an iterative scheme. In most of the present paper (i.e. except for system cases),
we consider the simplest one, namely
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for all j;
unþ1

j ¼ un
j � xj

P
T such that Mj2T

UT
j ðunÞ

0
@

1
A

u0
j given.

8>><
>>: ð4Þ
The parameters xj are chosen so that the stability of the scheme is ensured. If (4) converges, this defines a solu-
tion of (3). The remaining question is its uniqueness. This is a very difficult problem that is at the core of the
present paper.

2.2.3. Monotonicity preserving schemes

The monotonicity preserving nature of a scheme can be formalized in the case of a scalar problem (1) and is
more intuition-based in the system case.

In the case of a scalar problem, if one assumes that the residuals have the form
UT
j ¼

X
j2T

cT
ijðui � ujÞ; ð5Þ
then the scheme (3) writes
aiiuj ¼
X

j2VðiÞ
aijuj ð6Þ
with
aii ¼
X

T ;T3Mj

X
j2T

cT
ij;

aij ¼
X

T ;Mi2T and Mj2T

cT
ij.

ð7Þ
All the known examples of RD scheme write in the form (5). In the case of a system problem (1), the cT
ij are

matrices and (6) and (7) still hold.
If the coefficients cT

ij are all positive, it is clear that (6) defines a scheme with a maximum principle provided

there exists a solution. Note that a necessary condition for the existence of a solution is aii > 0 for all
i = 1, . . . , ns. This condition is translated for (4) by
aiixi 6 1.
A local condition is
xi 6 max
T ;T3i

X
j2T

cT
ij

" #( )�1

.

This is the one that is used in practice.

2.2.4. Accuracy: the linearity preserving (LP) condition

Under which condition can the solution of (2) be a second order accurate solution of (1)? We briefly recall
the analysis of [5]. It is shown that a converged RD scheme (3) produces a formally second order accurate solu-
tion of the steady problem (1) under the following three requirements:

1. the mesh is regular;
2. the approximation uh is second order accurate on smooth solutions;
3. for any smooth solution of (1), UT

i ¼ Oðh3Þ for any vertex Mi and any triangle T such that Mi 2 T.

For this reason, it is essential that Eq. (3) is exact or approximately exact with an error at most Oðh3Þ otherwise
accuracy is lost.

In most cases, the third condition is met by imposing that there exists a family of uniformly bounded coef-
ficients (or matrices for system problems) bT

i such that
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UT
i ¼ bT

i UT . ð8Þ

Indeed, it is easy to show that
Z

oT
fðuhÞ �~ndoT ¼ Oðh3Þ
when f(uh) is a second order approximation corresponding to a smooth solution and~n is the outward unit vec-
tor of oT. The condition (8) is the Linearity Preservation (LP) condition introduced in [6].

It is known that it is not possible to have a linear scheme that is both monotonicity preserving and linearity
preserving: this is Godunov theorem [9]. The schemes that satisfy both requirements must be nonlinear. The
construction of such schemes is the topic of the next sub-section.

2.2.5. Systematic construction of second order LP schemes

The problem is the following. Considering a triangle T, assume we are given residuals that define a first
order1 monotone scheme, (U1, U2, U3). We want to construct a second order scheme defined by its residuals
ðUH

1 ;U
H

2 ;U
H

3 Þ such that the resulting scheme is

1. conservative
X3

i¼1

Ui ¼
X3

i¼1

UH

i ¼ U;
2. monotonicity preserving,
3. linearity preserving.

We first focus on scalar problems, then sketch a method for systems.
The first remark is that if one defines xi = Ui/U, we notice that
X3

i¼1

xi ¼ 1.
Then we define bi ¼ UH

i =U, the problem can be reformulated as finding a mapping (x1, x2, x3) ´ (b1, b2, b3)
such that the scheme is

1. conservative:
P3

i¼1bi ¼ 1.
2. monotonicity preserving: for all i = 1, 2, 3, xibi P 0. This condition comes from the fact that
UH

i ¼
UH

i

U
U
Ui

Ui ¼
bi

xi

X
j 6¼i

cijðui � ujÞ ¼
X
j6¼i

cH

ij ðui � ujÞ
with cH

ij ¼
bi
xi

cij. Since cij P 0, the positivity of cH

ij is equivalent to xibi P 0.
3. linearity preserving: we want bi bounded for any i.

In [2], we provide a geometrical interpretation of these conditions, and several solutions to this problem.
We repeat the argument. The key remark is that since

P
jxj ¼

P
jbj ¼ 1, we can interpret the coordinates

(x1, x2, x3) and (b1, b2, b3) as the barycentric coordinates of points L and H with respect to an abstract refer-
ence triangle (A1, A2, A3) that we choose to be equilateral for symmetry. The points L and H are defined by
L ¼ x1A1 þ x2A2 þ x3A3 or equivalently A1L
��! ¼ x2A1A2

��!þ x3A1A3
��!

H ¼ b1A1 þ b2A2 þ b3A3 or equivalently A1H
��! ¼ b2A1A2

��!þ b3A1A3
��!
at is, for which we only have Ui ¼ Oðh2Þ.



Fig. 1. Geometrical representation of the mapping (x1, x2, x3) ´ (b1, b2, b3).
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In Fig. 1(a), we have defined seven sub-domains: the triangle (A1, A2, A3) and the six domains Di. The problem
is to find a mapping that project the point L onto a bounded subdomain so that L and H belongs to the same
sub-domain. A geometrical representation of a possible projection is given in Fig. 1(b). Note that here, the
projection leaves invariant the triangle (A1, A2, A3): we project onto this triangle. What is important is that
the coefficients bj be bounded, so any bounded region can play the role of invariant region onto which the
projection is carried out, for example the disk D of Fig. 1(b). In the next examples, the invariant region is
the triangle (A1, A2, A3).

One of these possible projections is the PSI ‘‘limiter’’ first introduced by R. Struijs in his PhD thesis [10], in
a different form:
bi ¼
xþiP

jx
þ
j
; ð9Þ
so that
UH

i ¼ biU. ð10Þ

We note that there is no difficulty in the definition of bi (except the fact that U may vanish, in which case we set
UH

i ¼ 0) because
X
j

xþj ¼
X

j

xj �
X

j

x�j P
X

j

xj ¼ 1.
This construction can be applied to any monotone scheme. However, to be valid, one needs to be able to
solve the problem (3). A necessary condition is that the coefficient aii associated to the coefficients cH

ij by (7) be
>0. We come back later to this key point.

We can extend this construction in the system case. This has been done in [11]. We start from (1), and
assume to have in hand a first order non-oscillatory scheme. Examples are given in the next section. If
(rj)j=1,. . .,d is a basis of Rd , we can decompose the residuals Ui as
Ui ¼
Xd

j¼1

uj
i rj. ð11Þ
The total residual also admits such a decomposition,
U ¼
Xd

j¼1

ujrj. ð12Þ
From the conservation relation (2), we have, for any j = 1, . . . , d,
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Xm

i¼1

uj
i ¼ uj. ð13Þ
Thus we can apply the scalar construction to each set of scalar residuals fuj
igi¼1;m for j = 1, . . . , d. We denote

by ðuj
iÞ

H the result of the construction.
This enable to define uniformly bounded matrices Bi such that the LP residuals are
UH

i ¼
Xm

j¼1

ðuj
iÞ

H
rj :¼ BiU. ð14Þ
This scheme, with characteristic variables uj
i has been studied in [11] and shown non-oscillatory. The choice of

(rj)j=1,. . .,d is discussed in the next section.

2.3. Examples

Many schemes are in fact Residual Distribution schemes. Among the most known, we mention the stream-
line diffusion method of Johnson and coworkers [12,13], the streamline upwind Petrov–Galerkin (SUPG) and
Galerkin least-squares finite element methods of Hughes and coworkers [14,15] and the cell vertex finite vol-
ume methods of Ni [16] and Morton et al. [17,18]. Here, we are interested in the construction of oscillation free
schemes, we only describe in detail some first order RD schemes.

2.3.1. Some genuinely multidimensional schemes

2.3.1.1. A genuinely multidimensional upwind scheme. To begin with, we consider the scalar problem (1) with a
linear flux,
k � ru ¼ 0 ð15Þ

with inflow boundary conditions. For a piecewise linear interpolation of u, we get
U ¼
Z

T
k � rudx ¼

X3

j¼1

kjuj;
where, if ~nj represents the scaled inward normal to T opposite to the vertex Mj (see Fig. 2), kj ¼ 1
2
k �~nj.

Roe’s N scheme is then defined as
Ui ¼ kþi ðui � ~uÞ; ð16aÞ

where kþi ¼ maxðki; 0Þ and ~u is defined so that the conservation property holds. A simple algebra shows that
~u :¼ n U�
X

j

kþj uj

 !
¼ n

X
j

k�j uj ð16bÞ
with n ¼ ð
P

jk
�
j Þ
�1 and k�j ¼ minðkj; 0Þ. Since

P3
j¼1kj ¼ 0, there are two possible cases:
Fig. 2. Illustration of ~nj.
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� The one target case: only one kj is positive, say k1. We get
U1 ¼ U; U2 ¼ U3 ¼ 0.
� The two target case: only one kj is negative, say k3. In that case, we have ~u ¼ u3 and
U1 ¼ k1ðu1 � u3Þ; U2 ¼ k2ðu2 � u3Þ; U3 ¼ 0.
This scheme is upwind: if kj 6 0 then Uj = 0. It has an important property: for any interior vertex Mi, one
(and only one) of the triangles surrounding Mi is upwind. This is also true for any vertex of the outflow bound-
ary. Thanks to this, the coefficient aii of (7) is >0, and (3) leads to a linear system that always has a unique
solution. One way of seeing this is there exist a numbering of the nodes by level sets such that the linear system
is almost lower triangular. A more rigorous way of seeing that is that the N scheme satisfies an energy inequal-
ity, see [19].

In the case of the true nonlinear problem (1), the previous construction can be extended provided a suitable
averaged speed k can be defined. The N scheme writes as in (16) with k replaced by k. Thanks to the results
recalled in Section 2.2.1, we get easily one constraint on k, namely that
Z

oT
fðuhÞdoT ¼

X3

j¼1

Uj ¼
Z

oT
k �~nuh doT .
which is nothing more than the extension of Roe’s linearization to the problem (1). Since the interpolant uh is
linear, we have the equivalent characterization
k :¼
R

T rufðuhÞdx

jT j . ð17Þ
Note that the numbering of the level sets, as in the constant velocity case, can be done similarly as long as
kkk > 0. The second order extension of the N scheme is Struijs’ PSI scheme [10] that we denote by N-PSI
in this paper. It uses (9).

The N scheme has a system version, that was introduced by [20] and analyzed in [19]. In the case of an
hyperbolic linear problem
A
ou

ox
þ B

ou

oy
¼ 0; ð18Þ
given any direction ~n, we can define the positive and negative parts of the matrix K~n, defined by
K~n :¼ Anx þ Bny .
This matrix is also sometimes denoted as K~n ¼ ðA;BÞ �~n. Using the fact that the three scaled inward normals
to T, ~n1, ~n2, ~n3, sum up to 0, we can define the system N scheme as
Ui ¼ Kþi ðui � ~uÞ ð19aÞ
with
~u :¼ N U�
X3

j¼1

Kþj uj

 !
¼ N

X3

j¼1

K�j uj

 !
ð19bÞ
and
N :¼
X3

K�j

 !�1

. ð19cÞ

j¼1
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Here we have simplified the notation K~nj into Kj. In [19], we show that if (18) is symetrizable, the matrices NK�j
can be defined even if

P3
j¼1K�j is not invertible.

The scheme can be generalized to nonlinear problems by a simple extension of (17), see for example [21] in the
case of the Euler equation with the equation of state of a perfect gaz and c constant. The difficult question is to
know whether or not the linearized system is hyperbolic. In the case of the Euler equation and Roe–
Struijs–Deconinck linearization, this is true, but no answer can be given in the general case. See however [19]
for a different approach, and [1] for a very interesting approximate linearization leading to a conservative system.

The high order extension is carried out as in Section 2.2.5. The basis used in (11)–(14) are in practical appli-
cations of two types. Either we chose a direction~n, say the velocity direction, and define the basis as the eigen-
vectors of K~n. Or we simply choose the canonical basis of Rm, i.e. we proceed the high order construction
component by component. We refer to [3] for the discussion. Starting from the system N scheme, with the
characteristic decomposition based on the velocity and the PSI limiter (9), we get the so-called PSI system
N scheme, see [3], still denoted by N-PSI in this paper.

2.3.1.2. A Lax–Friedrich type scheme. The one dimensional version of the Lax–Friedrich scheme, for the one
dimensional version of (1) writes
f̂ iþ1=2 � f̂ i�1=2 ¼ 0;

u ¼ g on the inflow boundary
ð20Þ
with
f̂ iþ1=2 ¼
1

2
ðf ðuiþ1Þ þ f ðuiÞ � aiþ1=2ðuiþ1 � uiÞÞ
and ai + 1/2 P 0 suitably chosen.
The first relation of (20) can be rewritten as
1

2
ðf ðuiþ1Þ � f ðuiÞ � aiþ1=2ðuiþ1 � uiÞÞ þ

1

2
ðf ðuiÞ � f ðui�1Þ þ ai�1=2ðui � ui�1ÞÞ ¼ 0;
that is
/iþ1=2
i þ /i�1=2

i ¼ 0
with, for any j,
/jþ1=2
j ¼ 1

2
ðf ðujþ1Þ � f ðujÞ þ aiþ1=2ðuj � ujþ1ÞÞ;

/jþ1=2
jþ1 ¼ 1

2
ðf ðujþ1Þ � f ðujÞ þ ajþ1=2ðujþ1 � ujÞÞ.
The natural two dimensional generalization of this is
UT
j ¼

1

3
UT þ aT

X
k2T

ðuj � ukÞ
" # !

. ð21Þ
Clearly, the conservation property (2) holds. The scalar version is monotone provided
aT P max
j¼1;3
jkjj
for scalar problems and aT = maxj=1,3q(Kj) for systems. Here q(A) denotes the spectral radius of the matrix A,
the matrices Ki are evaluated from the Jacobian matrices of the Euler flux evaluated at the Roe average [21]. In
this case, c, the ratio of specific heats, is constant.

Last, when f(u) = ku, the scheme has the following local energy structure:
X
j2T

ujU
T
j ¼

1

2

Z
oT

k � nudoT þ aT

2

X
i;j2T

ðui � ujÞ2.
This can easily be extended to more general scalar fluxes as well to symetrizable hyperbolic systems.
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2.3.2. Some non-genuinely multidimensional schemes

In contrast to the previous examples where the directions needed to construct the residual could not be
associated to the geometry of some control volume, here, we consider examples where the construction is done
by considering a control volume and the associated directions. Two set of examples are described. In the first
one, that we denote by some abuse of language ‘‘finite volume schemes’’, the construction starts from a stan-
dard one dimensional flux. In the second example, a generalization of Roe’s one dimensional scheme is
considered.

2.3.2.1. Finite volume schemes. Any finite volume type scheme can be rephrased as a RD scheme. The interest
of this remark is to considerably extend, in theory, the number of RD schemes, and in particular new high
order schemes can be constructed using the technique of Section 2.2.5. For example, starting from a positivity
preserving scheme, and doing the high order extension component by component, it becomes possible to con-
struct, for the Euler equations in fluid mechanics, a LP density-positivity preserving scheme. This may be
interesting because it is not clear at all that the system N-PSI is density-positivity preserving, even though this
scheme has been shown very robust experimentally.

For any vertex Mi of Th, we consider the dual control volume Ci which is constructed by connecting, for
each triangle surrounding Mi, its centroid and the mid-points of the edges containing Mi, see Fig. 3.

Now, let us consider a consistent flux F. The finite volume approximation of (1) writes
X
j2VðiÞ

Fðui; uj;~n
T up

ij Þ þFðui; uj;~n
T down
ij Þ

� �
¼ 0; ð22Þ
where the triangles Tup and Tdown, for the edge [i, j], are defined in Fig. 3. Here we consider a first order scheme
for the sake of simplicity, but also because it is the only interesting case for our purpose in this paper.

Instead of summing up over the edges in (22), we can sum up over the triangles around Mi,
X
T ;Mi2T

Fðui; uj;~n
T
ijÞ þFðui; uk;~n

T
ikÞ

� �
¼ 0 ð23Þ
with the notations of Fig. 3. Since the boundary of Ci is closed,
X
T ;Mi2T

fðuiÞ �~nT
ij þ fðuiÞ �~nT

ik

� �
¼ 0;
we have
X
T ;Mi2T

Fðui; uj;~n
T
ijÞ þFðui; uk;~n

T
ikÞ � fðuiÞ �~nT

ij � fðuiÞ �~nT
ik

� �
¼ 0. ð24Þ
We set
Mi

G

Mj

M
k Tup

Tdown

M k

M j

M i

nij

n
→

→

ik

Fig. 3. Geometrical elements for the dual cell of Mi.
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UT
i :¼Fðui; uj;~n

T
ijÞ þFðui; uk;~n

T
ikÞ � fðuiÞ �~nij � fðuiÞ �~nik

¼Fðui; uj;~n
T
ijÞ þFðui; uk;~n

T
ikÞ þ fðuiÞ �

~ni

2
ð25Þ
and because of the construction of Ci, we see that
X
Mj2T

UT
j ¼

1

2

X
Mj2T

fðuiÞ �~ni. ð26Þ
Here, we slightly extend the definition (2) by
X
Mj2T

UT
j ¼

Z
oT
ðfðuÞÞh �~ni doT ¼ UT ; ð27Þ
i.e. make a piecewise linear interpolation of the flux f(u). The results of Section 2.2.1 can be extended to this
case, see [5].

In this paper, we use the finite volume scheme with Roe’s flux [22].

2.3.2.2. A multidimensional version of Roe’ scheme for the Euler equations. This version has been first presented
in [20]. Using once more the Roe average of [21], we do the same construction as in the finite volume case with
FðU 1;U 2;~nÞ ¼ ððA;BÞ �~nÞþU 1 þ ððA;BÞ �~nÞ�U 2. ð28Þ

The conservation property is not guarantied by edge but on the triangle since the sum of the residuals con-
structed from (28) is
Z

oT
fðuhÞ �~ndoT ;
where uh is obtained by interpolating the Roe parameter vector
Z ¼ ffiffiffi
q
p ð1;~u;HÞT
which is linearly interpolated in T. An exact linearization is obtained, as in the one dimensional case, because u

as well as f are quadratic in Z. Thus, in (28), ðA;BÞ are the Jacobian matrices evaluated at the average state
defined by Z ¼ ðZ1 þ Z2 þ Z3Þ=3. See [20] for more details.
2.4. Treatment of inflow boundary conditions

We consider the simplified problem
k � ru ¼ 0 in X;

u ¼ g on C�.
ð29Þ
Assuming that g is the restriction of a sufficiently regular function, still denoted by g, and defined on X, it is
known that (29) has a unique solution.

We consider the linear preserving scheme of Section 2.2.5: we have
UT
i ¼ bT

i

Z
T

k � rudx
with bT
i uniformly bounded. If ui is the piecewise linear hat function for which uiðMjÞ ¼ dj

i , we can write
UT
i ¼

Z
T

xik � rudx
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with xi defined on any triangle by ðxiÞjT ¼ ui þ ðbT
i � 1

3
Þ. We introduce the spaces
V h ¼ fv continuous, v linear on each triangle, vC� ¼ gg;
W h ¼ spanðx1; . . . ;xnsÞ.
The scheme (3) can be rewritten in an abstract form: find uh 2 Vh such that for any wh 2Wh,
Z
X

whk � ruh dx ¼ 0. ð30Þ
Using (30), the interpretation of the boundary conditions becomes clear: If M is any vertex that belongs to a
triangle which intersect C�, for example the points i or j in Fig. 4, we have
X

T3M

Z
T

xMk � ruh dx ¼ 0.
If T ’ M and T intersects C� (examples are the triangles T1 and T2 of Fig. 4), we have the three equivalent
formulations
Z

T
xMk � ruh dx ¼ bT

M

Z
T

k � ruh dx

¼ bT
M

X
M2T\C�

kþM gðMÞ þ
X

M2T ;M 62C�
kþM uM

 !

¼ cT
MUT

i . ð31Þ
The first line is the Linearity Preserving formulation. This is detailed in the second line so that we see how to
implement the boundary conditions. The last line is a rephrasing of the first one taking into account the fact
that the LP scheme is constructed from a monotone first order scheme.

Hence, the inflow boundary conditions are simply implemented by setting u = g at the vertices on C�. Even
though this is very simple, the scheme is still second order accurate. Note that (31) is generalized in a straight-
forward manner in the system case.
Fig. 4. Geometry near the inflow boundary C�.



R. Abgrall / Journal of Computational Physics 214 (2006) 773–808 785
Still in the system case, in the Euler case more precisely, we still have to define the no-slip boundary con-
ditions. This is done by imposing weakly the condition ~u �~n ¼ 0 on solid boundaries. As in [11] and several
other references, we simply set ~u �~n ¼ 0 in the continuous flux, then linearly interpolate the pressure: this
defines a numerical flux on the boundary. The residual interpretation of this flux is defined following the
method of Section 2.3.2.1.

3. Numerical experiments

In this section, we present some numerical results obtained with the scheme (4) for two sets of problems:
two scalar problems and two fluid mechanics ones. We particularly focus on the iterative convergence history.

3.1. Scalar problems

We first start with the two problems
F

� y
ou
ox
þ x

ou
oy
¼ 0; ðx; yÞ 2 ½0; 1�2;

uðx; 0Þ ¼ � sin p x�0:7
0:6

� �
if x 2 ½0:1; 0:7�;

0 else,

� ð32Þ
and
1

2

ou2

ox
þ ou

oy
¼ 0;

uðx; 0Þ ¼ 1:5� x;
uð0; yÞ ¼ 1:5;

uð1; yÞ ¼ �0:5

ð33Þ
with a CFL number of 0.5. Two schemes are evaluated: the scalar N-PSI scheme and the scheme constructed
on the Lax–Friedrich scheme referred as the LxF-PSI scheme.

The L2 convergence history is displayed in Fig. 5. Clearly, the convergence history of the LxF-PSI, after a
good startup, becomes erratic. This is not the case of the N-PSI scheme, which has a very good behavior.
These behaviors are characteristic of the schemes, whatever the CFL number.
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Iteration

1e-12

1e-06

1

L
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si
du
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Solid rotation Lxf-PSI
Solid rotation  N-PSI
Burger equation  N-PSI

ig. 5. Convergence history of the PSI and LxF-PSI schemes for (32) and (33) on the solid rotation and Burgers problems.
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Fig. 6. Solutions for the N-PSI scheme – column (a) – and the Lxf-PSI scheme – column (b). Top: problem (32), bottom: problem (33).
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If we look at the solution, see Fig. 6 we can observe wiggles in the solutions obtained by the Lax–Friedrich
PSI scheme. These wiggles are not the manifestation of an instability: the scheme is perfectly stable in L1. In
Fig. 7, we plot one cross-section for the rotation problem: there is no oscillation at all, but kinds of plateau
develop. If we increase the resolution, this phenomena is amplified.
3.2. System problems

Consider the example of the Euler equations. The schemes are the system N-PSI scheme of [11] and the
system LxF-PSI. These schemes are described in Section 2.3. We have done the same simulations for the
Roe schemes (the standard one of [22] and the multidimensional one of Section 2.3.2.2), and we observe
the same wiggly behavior and the same difficulties for the iterative convergence. Hence, all the results of this
section are given for the N-PSI and LxF-PSI schemes.

To illustrate the erratic behaviors of the schemes, three test cases are considered which illustrate three flow
regimes: subsonic, transonic and supersonic. The first example is a supersonic jet in a box [0, 1] · [0, 1]. The
inflow conditions are (c = 1.4)
ðq; u; v; pÞ ¼
ðc; 2:4; 0; 1Þ if x > 0:5;

ðc; 4:4; 0; 1Þ else.

�
ð34Þ
The solution is everywhere supersonic and consists, from top to bottom, in a shock, followed by a contact line
and then a fan. Since the flow is supersonic, there is no boundary condition problem: the iterative residuals (in
the max norm and the L2 norm) are not spoiled by any unclear effect of the boundary conditions implemen-
tation. They are displayed in Fig. 8.

These results show an erratic and very poor behavior of the residuals. If one looks at the Mach number
isolines, displayed in Fig. 9, one can see some ‘‘wiggles’’ in each of the waves. Since the problem is self-similar
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Fig. 7. Cross-section for the rotation problem (32). The PSI solution is plotted with plain lines, the LxF-PSI solution with circles.
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Fig. 8. Iterative residual (for density) in the max norm and the L2 norm on the initial conditions (34).
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with respect to (0, 0.5), the isolines should be straight lines focusing at (0, 0.5). The focusing is only approx-
imate, and the isolines are far from straight lines. This behavior is independent of the CFL number. We have
also noticed that the quality of results strongly depend on the variables that are in use for the second order
construction (see Section 2.2.5). Here, the variables are the characteristic variables. If the conservative vari-
ables where used, the results would be even more wiggly.

A second case is considered. It is a fully subsonic flow over a sphere. The Mach number at infinity is
M1 ¼ 0:35. This case is difficult and well documented, see for example [23]. The flow is steady and should
be symmetric with respect to the vertical axis. Using the LxF-PSI scheme, we get the results displayed in
Fig. 10.



Fig. 9. Isolines of the Mach number for the problem (34) with the LxF-PSI scheme.

Fig. 10. Isolines of the pressure coefficient with the LxF-PSI scheme.
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The flow is oscillatory. The convergence history is displayed in Fig. 11. As it can be seen, the convergence is
very erratic too.

The last example is the NACA0012 case where the Mach number at infinity is M = 0.85, with 1� of inci-
dence. The convergence history is similar to what happen in the previous case and is displayed in Fig. 12. Last,
we display the Mach number isolines in Fig. 13. As before, the solution is wiggly on the smooth parts of the
flow. However, the two shocks are very clean as it can be seen on the right of Fig. 13: there is no oscillation,
and the shocks are resolved in one cell only.

3.3. Comments

The examples of this section shows that

� In the scalar case, the N-PSI behaves very well. In the case of the first order schemes, it is possible to
exhibit analytically the dissipative mechanisms. In the case of the N-PSI scheme, this is much less clear.
The main property of this scheme is its upwind nature. We conjecture that it is because of this upwind
character that the N-PSI scheme has such a nice behavior. We provide argument in favor of this in the
next section. We have also run the same cases with the scheme constructed from the first order (finite
volume) Roe scheme where the PSI limiter of (9). The behavior of the scheme (quality of solutions,
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Fig. 12. Convergence history for the NACA0012 case, L2 and max norm.
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Fig. 11. Convergence history for the sphere problem, L2 and max norm.
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iterative convergence) is almost as good as for the N-PSI even though this scheme is not strictly speak-
ing multidimensional upwind, see [24] for a discussion. It seems that starting from an upwind (or quasi
upwind) scheme is a good point.
� However, in the system case, the PSI extension of the first order schemes, whatever they are, suffer from a

degradation of the iterative convergence. The solution may look good (as for the N-PSI), but not the iter-
ative convergence. Once more we observe that starting from an upwind scheme (the system N scheme here)
is a good point, but this is not enough. We recall that the blended scheme (constructed from upwind
schemes) presented in [5] or [1] have a very nice iterative convergence, but they are not robust enough.2
2 In particular, their extension to unsteady problems is not satisfactory, this has motivated in [3] the introduction of the PSI extension of
the system schemes.



Fig. 13. Isolines of the Mach number. On the right, we zoom the solution near the upper shock. The mesh is also represented.
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� All these example show that the problem is not a consequence of a wrong handling of discontinuities. In
fact, the wiggles always occur in the smooth part of the flow. The discontinuities are always well handled.

In the next section, we provide some explanations of these strange behaviors and propose some modifica-
tions that do not destroy the non-oscillatory behavior of the schemes as well as their compactness.

4. How to remedy to convergence problems?

4.1. Analysis

We start again from the scalar version of (1) with f(u) = ku,
k � ru ¼ 0 in X;

u ¼ g on C�.
ð35Þ
From (6) and using Section 2.4, the schemes we consider write
for any vertex not on C�; aiiui �
X

j2VðiÞ
aijuj ¼ fi ð36Þ
with, see Fig. 14,
fi ¼
0 if Mi is not connected to C�P

T3Mi
ðbT

i Þ
P

‘2C�\T
ðkT

‘ Þ
þgðM ‘Þ

	 

.

8<
: ð37Þ
The coefficients bT
i are defined as in Section 2.2.5. The coefficients aii and aij will depend on the solution, and

we have
aij P 0;

aii ¼
X

j2VðiÞ
aij;
where VðiÞ denotes the set of nodes that are connected to Mi by an edge. For the ease of notations, (36) is
written as
Auh ¼ f ; ð38Þ

note that A may depend on uh, and we denote by D the diagonal matrix D = diag(aii).



i
1

e2

f i = 0

T 1

T 2

T 3

f i = F

λ

Fig. 14. Illustration of the relations (37). We have set F ¼
P

T¼T 1 ;T 2
bT
‘1
ðkT

‘1
ÞþgðM ‘1

Þ þ
P

T¼T 2 ;T 3
bT
‘2
ðkT

‘2
ÞþgðM ‘2

Þ.
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The question is to see

1. whether the solution of (36) exists and is unique,
2. and whether there exists a norm and a constant independent of the mesh resolution such that iui 6 Ciu0i,

as in the continuous case.
The answer to these questions is a difficult problem for which we can only provide qualitative answers.

4.1.1. Existence of a solution

The matrix A(v) is homogeneous of degree 0 in v, as it can be seen from Section 2.2.5. Denoting by h the
function v ´ v � x(A(v) Æ v � f), the scheme (4) writes u = h(u). The sequence un+1 = h(un) converges if h

admits a Lipschitz constant <1. Here, we have
3 He
true.
h0ðvÞ ¼ Id� xðAðvÞ þ A0ðvÞ � vÞ.

Since v ´ A(v) is homogeneous of degree 0,3 we have A

0
(v) Æ v = 0. Hence a necessary and sufficient condition

for the convergence of the scheme is that x satisfies q(Id � xA(v)) < 1. This condition is equivalent to the
invertibility of A(v), whatever v.

Let w such that A(v)w ” Aw = 0. For any i, we have
aiiwi ¼
X
j 6¼i

aijwj.
If i0 is the index such that max jwij ¼ jwi0 j. We get
aiijwi0 j 6
X

j

aijjwjj 6 aii max
j 6¼i0
jwjj.
re we assume unduly that the mappings (x1, x2, x3) ´ (b1, b2, b3) introduced in Section 2.2.5 are smooth which is not completely
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If for any i, aii > 0, we get that jwjj ¼ jwi0 j for all j. This corresponds to a check-board like mode: we can as-
sume wi = ±1. Then, by the Cauchy–Schwartz inequality, we have (since aij P 0)
4 Th
a2
ii ¼ a2

iiw
2
i ¼

X
j 6¼i

aijwj

 !2

6

X
j 6¼i

aij

 ! X
j 6¼i

aijw2
j

 !
6 aii

X
j 6¼i

aij

 !
6 a2

ii.
In other words,
X
j 6¼i

aijwj

 !2

¼
X
j 6¼i

aij

 ! X
j6¼i

aijw2
j

 !
and then, by the Cauchy–Schwartz inequality again, there exists l such that
for any j 6¼ i;
ffiffiffiffiffi
aij

aij

r
¼ lwj > 0.
We can assume that wj > 0, so wj = 1 and then wi = 1: the only spurious mode is (1, 1, . . . , 1). This provides
information on the structure of the matrix when it is not invertible: A is not invertible if and only if one of the
two conditions hold:

1. there exists on index for which aii = 0 in which case aij = 0 whatever j,
2. whatever i, aii ¼

P
j 6¼iaij.

For any vertex i that has no common edge with the inflow boundary, we know that aii ¼
P

j 6¼iaij because
the stencil of the scheme at i is the set of its immediate neighbors. Hence the necessary and sufficient conditions
for the invertibility of A are

1. for any i, aii > 0,
2. whatever i that has a common edge with the inflow boundary, aii >

P
j 6¼iaij.

In the case of an upwind scheme, such as the N scheme and the N-PSI scheme, we can check that these
conditions are verified. The structure of the matrix A := (aij)i,j, after a suitable numbering of the vertices
(Fig. 15),4 is
A ¼

A11 0 0 � � � 0

A21 A22 � � � 0

0 A23 A33 � � � 0

..

. . .
. . .

. . .
. ..

.

0 0 0 An�1 n Ann

0
BBBBBBB@

1
CCCCCCCA

. ð39Þ
The matrices Alp are block matrices, and the indices n and m correspond to line indices. Greek indices are used
to denote line indices and Latin symbols for vertices: for A = (aij)i,j, the indices i and j correspond to vertex
indices.

For a regular mesh of ns vertices, there is Oð ffiffiffiffins
p Þ lines: the matrix A is ns · ns, while there is only Oð ffiffiffiffins

p Þ
non-zero blocks in (39). If D is the diagonal matrix where dii = aii, we notice that D(v) is invertible whatever v

and dii ¼ aii ¼ OðhÞ.
In fact, for any vertex Mi, there is one triangle for which the N scheme is one target: the case of internal

vertices is clear, the case of boundary vertices also hold true because of the very definition of the inflow bound-
ary condition. Denote by T i

up this triangle. From Sections 2.3.1.1 and 2.2.5, and relations (6) and (7), since
cT

ij P 0, we first have
e vertices are ordered by lines of increasing arrival times from the inflow boundary, see Fig. 15.



ii – 1 i + 1

Fig. 15. Example of numbering of the mesh by arrival time.
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aii P
X
j2T i

up

c
T i

up

ij . ð40Þ
This is independent of v (which plays a role in the evaluation of bi, but in the case of a one target triangle,
bi = 1.) Then:

� For the N scheme, since U
T i

up

i ¼ UT i
up (this is the one target property), we have c

T i
up

ij ¼ ki. Then ki > 0: this is
the one target property once more, and then, aii ¼ OðhÞ.
� For the N-PSI scheme, we have U

T i
up

i ¼ UT i
up thanks to the one target property, once more.

This proves that D is invertible.
Next, we consider D�1A. This matrix has negative off diagonal coefficients, and clearly we can write the

block diagonal matrix D�1Aii as D�1Aii = Id � Bii, where Bii is strictly diagonal dominant. Thus D�1Aii is
invertible. This shows that A(v) is invertible whatever v.

4.1.2. Continuous dependence with respect to the data

The sequence un+1 = h(un) writes for any mesh point Mi,
ðunþ1Þi ¼ ðunÞi � x
X

j2VðiÞ
aij ðunÞi � ðunÞj
� �

� fi

( )
;

where aij P 0. Thus, from the definition of fi in Section 2.2.3 (in particular the scheme is constructed from a
monotone first order scheme) and under the condition aiix < 1, we have
max
i
jðunþ1Þij 6 max

Mi2oC�
jgij.
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If the sequence converges, we have the stability inequality
max
i
juij 6 max

Mi2oC�
jgij.
This result is well known.
The second remark is that under the same assumptions, we can get an error estimate. If phu is an interpolant

of the true solution of (35) and if phg is a piecewise linear interpolant of g on C�, since the scheme is LP, we
have, setting eh = uh�phu,
aiiei �
X

j

aijej ¼ f 0i ;
where f 0 is defined as f in (37) with g replaced by g � phg. This result can be seen from (30). Since
maxMi2C� jf 0i j ¼ Oðh2Þ (this is an interpolant), we get
max
i62C�
jeij 6 Ch2 ð41Þ
with the constant C independent of g.

4.1.3. Comments

We consider a family of regular triangulations and the problem
k � ru ¼ f ; x 2 X;

u ¼ g; x 2 oC�.
Since k is non-zero, we can order the vertices as we have done for the N scheme. This defines, for any vertex,
the downwind nodes.

Our conjecture for the convergence of the iterative method is that this method converges if the following
two conditions are true:

1. there exists a > 0 independent of the considered triangulation in the family such that whatever i, aii P ah;
2. for any i, aii >

P
j2VðiÞ; non-downwind nodes aij

as in (40).

The second condition enables a coupling between the vertex Mi and its downwind nodes, so that information
can propagate.

4.1.4. Geometrical interpretation

It may be interesting to visualize the way the PSI versions of a first order scheme behaves. Consider Fig. 16.
The arrows represent the non-vanishing distribution coefficients, i.e. they indicate the vertices of T where
‘‘something’’ is sent: xi = Ui/U

T 6¼ 0. In the case of the N scheme, these vertices are always downwind, this
is no longer true in the case of the LxF scheme where a priori non-zero residual are sent at each vertex.
3

1

2

ΦT

λ

3

1

2

ΦT

λ

First order second order

Fig. 16. Geometrical illustration of the non-vanishing distribution coefficients.
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Then we apply the mapping (x1, x2, x3) ´ (b1, b2, b3) as in Section 2.2.3. In the case of the PSI limiter, if
one of the xi’s is outside of [0, 1], necessarily one of the bj is set to zero. This is done according the signs of the
distribution coefficients xi, and not using any consideration about the upwind or downwind nature of the tri-
angle vertices. In other word, as in Fig. 16, ‘‘something’’ can be sent to a downwind node. This has a desta-
bilizing effect which is corrected by the fact that the bi’s are defined in order to guaranty the local L1 bounds.
We have no control on the coefficient aii and it may be that all downwind coefficients are set to zero. This is
precisely this destabilizing character that has to be corrected.

4.2. Two solutions

From the previous analysis, we conjecture that the wiggles are consequence of a bad structure of the A

matrix. We conjecture that the diagonal coefficients must satisfy aii P dh for d > 0 uniform, and that the
matrix A must be uniformly invertible in some norm. In the previous section, we have stressed on the maxi-
mum norm. In this section, we propose two methods to enforce these two properties.

4.2.1. First solution

This solution has been imagined by M. Mezine in his thesis [25]. It works only for scalar problems. Once
more we consider the problem
k � ru ¼ f ; x 2 X;

u ¼ g; x 2 oC�.
He starts from a monotone scheme to which we apply the limitation technique of Section 2.2.5. Any any vertex
Mi (including the boundaries provided they are non-characteristic) has a single upwind triangle for which
ki > 0 and kj < 0 for the two other vertices. For this triangle Tup, we modify the limited residual by setting
UT up

i ¼ UT up

; UT up

j ¼ 0 for the other vertices.
Clearly, aii P ki P ah and the second condition of our conjecture also holds.
In the case of a nonlinear problem, the same properties about aii and the inequality (40) holds except maybe

when $uf . 0 around Mi.

4.2.2. Second solution

The main problem of the previous correction is that it can apply only to scalar problems because it deeply
relies on the study of the signs of the inflow parameters kj. Because of that, we present now a second solution
that applies to systems. The price to pay is to lose the maximum norm property. Here, we work with the
energy norm which is more tractable for systems.

We start again by a scheme of the type
unþ1 ¼ un � xðAun � f Þ.

The scheme satisfies r ¼ kId� xAkL2 < 1 with x > 0 if for any v 2 Rn, we have
kðId� xAÞvk2 ¼ kvk2 � 2xhAv; vi þ x2kAvk2
6 rkvk2.
Since x > 0, there must exist a positive root to
�2hAv; vi þ xkAvk2
6 0.
This is possible only if
hAv; vi > 0;
this is the well-known dissipation condition.
In the present case, the iterative scheme is
unþ1
i ¼ un

i �
Dt
jCij

X
T3i

UT
i

and we assume UT
i ¼ bT

i UT with bT
i bounded.



796 R. Abgrall / Journal of Computational Physics 214 (2006) 773–808
The natural scalar product is
hu; vi :¼
X

i

jCijuivi
and then
hunþ1; unþ1i ¼ hun; uni � Dt
X

i

un
i

X
T3i

UT
i

 !
þ Dt2

X
i

P
T3i

UT
i

� �2

jCij
.

The dissipation condition writes
X
i

un
i

X
T3i

UT
i

 !
> 0;
that is (forgetting the temporal superscript)
X
T

X
j2T

bT
j uj

 !Z
T

k � rudx > 0
or equivalently
Z
X
‘ðuÞk � ru dx P 0
with
‘ðuÞjT ¼
X
j2T

bT
j uj.
Assume now that the scheme writes as
UT
i ¼ bT

i UT þ a
Z

T
ðk � ruiÞðk � ruÞdx;
where a is a real parameter and ui is the linear basis function associated to the vertex Mi. The scheme is dis-
sipative if
Z

X
‘ðuÞk � ru dxþ a

Z
X
ðk � ruÞ2 dx P 0
and we look for a to have this property.
First, we rewrite the original scheme as
UT
i ¼

U
3
þ h

Z
T
ð~nT � ruiÞðk � ruÞdx
with
~nT ¼
X

j

bj �
1

3

� �
GMj
��!

;

where G is the centroid of T. Here, we look for a = hh such that
Z
X
ð~n � ruÞðk � ruÞdxþ h

Z
X
ðk � ruÞ2 dx P 0. ð42Þ
It is known that u 7!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

Xðk � ruÞ2 dx

q
defines a norm on the functions that vanish on the inflow boundary.

Since the space of linear functions that vanish on C� is finite dimensional, there exists h0
h such that (42) is true.

We take hh > h0
h.
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Thus we modify the original residual (8) into
Ui ¼ biUþ hhh

Z
T
ðk � ruiÞðk � ruÞdx ¼ biUþ

hh

h
kiU. ð43Þ
In that case, it is clear that the coefficients aii as in (6) and (7) satisfies
aii P dh
for d > 0 independent of h. The uniform invertibility comes from the fact that
Z
C�

u2

2
k �~n doXþ ðhh � h0

hÞh
Z

X
ðk � ruÞ2 dx
defines a norm, as for the standard streamline diffusion method.
Several choices of h will be considered in the next section. A priori, we let hh depends on the solution itself,

hh ” h(uh). Unfortunately, the monotonicity preserving property is formally lost. In the numerical applications,
we see that the convergence properties of the scheme are good. The monotonicity properties of the original
scheme are quasi preserved. This can be improved by better choices of h as we see later. In particular, we look
for h(uh) such that h(uh) ” 0 in discontinuities.

In the system case, the relation (14) is modified into
Ui ¼ BiUþHðuhÞh�1KiHðuhÞU. ð44Þ

to respect symmetry. Here H is chosen to be a diagonal matrix, several choices will be discussed in the next
section which are all proportional to the identity matrix. Better choices could certainly be investigated.

5. Numerical experiments revisited

We rerun the cases of Section 3 with the schemes (43) and (44). In addition and for scalar problems, we
display the results of the scheme constructed from the Lax–Friedrich-PSI scheme with the modification due
to M. Mezine.

5.1. Scalar case

Different choices of h are considered namely h = hj defined by

� h1 = 1.
� For the Burgers equation we let
h2 ¼
1 if the y-component of centroid of T is > 0:5;

0 else.

�
By doing so, we want to check whether the convergence problem is really located in the smooth part of the
flow, since we know that the discontinuity is located at y P 0.5.
� Here the idea is identify the discontinuities. We know that for a smooth function, k � ruh ¼ Oð1Þ and when

$u is not discontinuous, ru=u ¼ Oðh�1Þ, so we choose
h4 ¼ min 1;
1

jUT j
�uh2

0
BB@

1
CCA.

In that case we see that

if k � ruh=�uh ¼ Oð1Þ; h4 ¼ min 1;
h

OðhÞ þ h

� �
� 1;

if k � ruh=�u ¼ Oðh�1Þ; h4 ¼ min 1;
h

Oðh�2Þ þ h

� �
¼ OðhÞ.
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In practical implementations, we have chosen

h4 ¼ min 1;
1

jUT j
�uh2 þ e

 !

with e = 10�10.

In the following, we add the suffix -D to the name of the scheme to indicate that the term (43) with a choice of
h that is also indicated. For example, the N-PSI scheme extends to N-PSI-D scheme.

Comparing Figs. 6 and 17, we see that the wiggles problem is cured whatever the choice of h. We also see
that Mezine’s trick also permits to solve it: this is an indication of our conjecture about the origin of the prob-
lem (diagonal coefficients too small) has some content. We also see that there is no undershoot and overshoot
problem, and last that the choice h = h4 leads to slightly more dissipative results than h = h1: the isolines are
good approximations of circles and if one looks at the farthest from the origin, the approximation is better in
the case h = h1 (and in the case of Mezine’s trick) than for h = h4. The new schemes are not strictly positivity
preserving: the minimum should be 0, it is in fact 0 for the LxF-PSI, N-PSI and LxF-PSI with Mezine’s trick, it
is �0.001312 for the choice h = h1 and �0.00057 if h = h4. This also confirm the fact that h = h4 leads to a
more dissipative (or more ‘‘positive’’) scheme. Fig. 18 gives the convergence histories for the various schemes.
In each case, the convergence is smooth, this has to be compared with Fig. 5. In Fig. 19 we have displayed the
L2 error obtained by the LxF-PSI and LxF-PSI-D schemes for successive meshes and for the rotation prob-
lem. The meshes are obtained from an initial coarse one and successfully refined by adding the mid-edge
points. The LxF-PSI is only first order while the LxF-PSI-D is clearly second order accurate.

In the case of the Burgers problem, compare now Figs. 6 and 20. The same conclusions hold: no more
wiggle, a clean behavior in the discontinuity. The LxF-PSI with Mezine’s trick is monotone, the LxF-PSI with
LxF–PSI LxF–PSI + Mezine’s trick

LxF–PSI–D (choice    1) Lθ θxF–PSI–D (choice 4)

Fig. 17. Rotation problem. The baseline-first order scheme is the LxF scheme. The solution without dissipation, with Mezine’s trick and
the choices h1 and h4 are displayed. These results have to be compared to the N-PSI scheme displayed in Fig. 6.
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Fig. 18. Convergence history (L2 norm) for the LxF-PSI with dissipation in the solid rotation problem: choices h = h1, h = h4.
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Fig. 19. Error plot (exact solution vs computed solution) in the L2 norm. This is done for the LxF-PSI and LxF-PSI-D scheme. The slopes
�1 and �2 are also represented.
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h = h1 or h = h4 are not exactly monotone, since the solution belongs to [�0.5, 1.5] when h = h1 and
[�0.5052, 1.5] in the second case. The shock is slightly enlarged in the case h = h1 compared to the other cases.
In Fig. 21, we see that the choice h = h2, though non-smooth, does not prevent the iterative convergence to be
excellent. This fact might be surprising at first glance, but in a shock one can see from (9) that in fact
U�i =Ui ¼ Oð1Þ: the properties of the matrix A in (38) are not modified by the limiter.

The best compromise between accuracy and stability seems to be the choice h = h4. It is surprising to see
that there is no major difference between the N-PSI scheme (which provides the best results) and the LxF-
PSI-D schemes whatever the choice of h, and one has to remember that the LxF scheme is very dissipative!
In the rest of the text, we choose the parameter h = h4 and its generalization for the system cases.

5.2. System case

We test our technique on several test cases. We start from several first order schemes



LxF-PSI LxF–PSI + M ezine’s trick

LxF–PSI–D (choice    1) Lθ θxF–PSI–D (choice 4)

Fig. 20. Burgers problem. The baseline-first order scheme is the LxF scheme. The solution without dissipation, with Mezine’s trick and the
choices h1 and h4 are displayed. These results have to be compared to the N-PSI scheme displayed in Fig. 6.
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Fig. 21. Convergence history (L2 norm) for the LxF-PSI with dissipation for the Burgers equation: choices h = h1, h = h4, h = h2 and
Mezine’s trick.
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� A Lax–Friedrich type scheme,
UT
i ¼

1

3

Z
T

div fðuhÞdxþ aT

X
j 6¼i

ðui � ujÞ
 !

;
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where uh is evaluated via the Roe’Z–parameter vector

Z ¼ ffiffiffi
q
p ð1; u;HÞT

which is linearly interpolated in T and aT = max(q(K1), q(K2), q(K3)) where q(A) represents the spectral ra-
dius of the matrix A.
� The system N scheme of van der Weide and Deconinck [20],
Ui ¼ Kþi ðui � ~uÞ

and

~u ¼
X3

j¼1

Kþj

 !�1 X3

j¼1

Kþj uj �
Z

T
div fðuhÞdx

 !
.

In [26], we show that
P3

j¼1Kþj is invertible except at stagnation points. However, the matrices

X3

j¼1

Kþj

 !�1

K	l

always have a meaning, see this reference for more details.
� Roe’s finite volume scheme denoted by Roe.
� Roe’s multi D denoted by Roe2. It is defined in Section 2.3.2.2.

For each first order scheme, we construct the Linearity Preserving scheme as in [26]: we consider~n ¼~u=k~uk
and the average Jacobian matrices evaluated at the average state �u defined by the Roe average. This choice is
not essential since other average states can be used. Then, we introduce the right eigenvectors (rp)p=1,4 of
rufð�uÞ and the corresponding left eigenvectors (‘p)p=1,4. In this choice, the first eigenvector is associated to
the entropy field: if ð�u;�vÞ is the velocity field defined by �u, we set
r1 ¼

1

�u

�v
�u2þ�v2

2

0
BBB@

1
CCCA.
If �c is the average sound speed defined by �u, the corresponding left eigenvector is defined by its action on a
state (A, B, C, D) by
‘0½ðA;B;C;DÞ� ¼ A� c� 1

�c2
D� �uB� �vC þ �u2 þ �v2

2
A

� �
. ð45Þ
The first term of the right hand side of (45) corresponds to the density, the term D� �uB� �vC þ �u2þ�v2

2
A corre-

sponds to the pressure variation.
This leads to the LxF-PSI, N-PSI, Roe-PSI and Roe2-PSI schemes. Last, we add the additional dissipation
hh
Z

T
Ki A

ouh

ox
þ B

ouh

oy

� �
dx
where we chose
h ¼ min 1;
1

juT j
jT j þ e

 !
.

Here e = 10�10 and
uT ¼ ‘0ðUT Þ
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The idea is that uT is an approximation of S ¼ qð�u os
oxþ �v os

oyÞ: when the flow is smooth, S ’ 0 while when a
discontinuity exists, S=ðq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�u2 þ �v2
p

sÞ ’ 1. Thus, it the first case, h . 1 and in the second one, h . 0. We are
interested in steady problems in this paper. In order to improve the efficiency, the schemes are implicit. For-
mally, instead of solving
Fig. 22
additio
F iðuÞ ¼ 0; i ¼ 1; . . . ns;
we would solve
unþ1
i ¼ un

i � xiF iðunþ1Þ; i ¼ 1; . . . ns;
which is too complex. Instead, we adopt a standard linearized procedure
Idþ xF 0uðunÞ
� �

ðunþ1 � unÞ

 �

i
¼ un

i � xF iðunÞ.
The evaluation of the Jacobian F 0uðunÞ is too complex. Following a standard procedure, F
0
(un) is approximated

by the Jacobian of the first order scheme.
In each case, we present the solution of the original PSI schemes and the PSI-D ones. We also display the

convergence histories.

5.2.1. NACA012 airfoil

This problem is the same as in Section 3.2: the inflow Mach number is M1 ¼ 0:85 and the angle of inci-
dence is 1�. We compare the N-PSI, LxF-PSI, N-PSI-D and LxF-PSI-D schemes. We have tested the different
Roe schemes on this case, the results are similar and are not displayed here.

The Fig. 22 displays the density isolines. The shock waves are clearly non-oscillatory in all cases while, as
expected, the LxF-PSI schemes density isolines behave badly in the smooth part of the flow. With the new
N-PSI N-PSI–D

LxF-PSI LxF-PSI–D

. NACA012 problem. Isolines of the density for the second order versions of the N and LxF schemes, without (left) and with (right)
nal dissipation.
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correction, these problems are cured. This result is obtained without sacrificing the quality of the discontinu-
ities. This is also confirmed by the inspection of the other flow variables such as the pressure coefficient, the
Mach number and the entropy deviation (s � s1)/s1.
0 250 500 750 1000

1e-06

0.0001

0.01

1

N-PSI-D
LxF-PSI-D

Fig. 23. Convergence history, CFL = 100 for the N-PSI-D scheme, CFL = 10 for the LxF-PSI-D scheme.

LxF-PSI LxF-PSI–D

N-PSI N-PSI–D

Fig. 24. Cp isolines for the sphere problem.
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Last, the convergence history, to be compared with, is plotted in Fig. 23. The maximum CFL number for
the N-PSI-D is set to 100 and only 10 for the LxF-PSI-D scheme. We have experimented that the second
scheme is less robust in this case and the other we have run. However, we do not claim that our version of
an implicit scheme is the best suited for the LxF scheme.

5.2.2. Subsonic flow

The inflow Mach number is set to M1 ¼ 0:35. The flow is subsonic everywhere. The pressure coefficient
and the Mach number for the LxF-PSI and N-PSI schemes in Figs. 24 and 25 on the symmetric mesh plot-
ted in Fig. 26(c). The results looks quite similar, but a close inspection of the isolines reveals some wiggles
for the LxF-PSI scheme. The examination of the pressure coefficient contours for the LxF-PSI-D and N-
PSI-D schemes, see Fig. 24, also show that they are more symmetric with respect to the y-axis compared
to their non-dissipated counterparts. If we plot he pressure and Mach number on the sphere (not plotted),
we see that the results of the LxF-PSI and N-PSI are not symmetrical. This is due to the poor convergence
of the solution (the linear systems of the implicit phase are solved with a relative tolerance of 10�3), see
Fig. 27.

More interestingly, Fig. 26 show that the results of the LxF-PSI scheme is very dependent on the
mesh quality. The mesh (a) is not symmetrical, and the results are extremely wiggly. These wiggles
are completely cured for the LxF-PSI-D scheme (not shown). Note however that the mesh resolutions
are similar.

The convergence histories are provided in Fig. 27. The maximum CFL here is set to 10. We see that the N-
PSI-D has a better behavior than the LxF-PSI-D. The minimum residual is in between 10�5 and 10�6 and then
stagnates. An examination of the residual isolines (not provided here) shows that this is likely due to the
behavior of our implementation of the no-slip boundary conditions.
LxF-PSI LxF-PSI–D

N-PSI N-PSI–D

Fig. 25. Mach number isolines for the sphere problem.



Fig. 26. Pressure coefficients for the LxF-PSI scheme on different meshes.

0 500 1000 1500 2000
1e-06

1e-05

0.0001

0.001

0.01

0.1

1
LxF-PSI
LxF-PSI-D
N-PSI
N-PSI-D

Fig. 27. Convergence history for the sphere problem.
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5.2.3. Scramjet

Here, the inflow Mach number is M = 3.6. Because of the internal geometry, a very complex system of
shock waves and slip lines occur, see Fig. 28. This make this example interesting since it permits to show
the non-oscillatory behavior of the scheme in a rather complex configuration.



Fig. 28. Mach number isolines of the density for the N-PSI-D and the LxF-PSI-D schemes.
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A zoom of the density isolines for each scheme is displayed in Figs. 29 and 30. This illustrates the perfect
non-oscillatory behavior of the schemes even in rather complex configurations. In each case, the discontinu-
ities are resolved within 2 cells.

Last, the convergence history is shown in Fig. 31 for two of the schemes. In this case, we had first to run the
first order version of the schemes, and then the second order version with a maximum CFL of 10.

Other cases have been run, for example the flow over a sphere at Mach M1 ¼ 8 with good success. The
results are not displayed here.
Fig. 29. Scramjet problem, zoom. Isolines of the density for the second order versions of the N, LxF schemes, without (left) and with
(right) additional dissipation.

Fig. 30. Scramjet problem, zoom. Isolines of the density for the second order versions of the Roe and Roe2 schemes, without (left) and
with (right) additional dissipation.
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Fig. 31. Convergence history for the LxF and N-PSI type schemes for the scramjet problem.
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6. Conclusions

This paper deals with the iterative convergence problem that is common to most monotonicity preserving
Residual Distribution schemes for steady problems. This problem has been reported in several papers espe-
cially for systems, for example among others [5,4]. Since a good level of iterative convergence cannot be
reached in general, the formal second order accuracy cannot be guarantied, since second order accuracy
can only be obtained if and only if the residual Eq. (4) is solved exactly or with a tolerance of the order of
the truncation error, provided the residuals UT

i are defined by (8). A good convergence level is essential.
We first analyze the problem and connect it to the possible existence of spurious modes. Then we propose a

solution, the price to pay is that the formal monotonicity of the scheme is lost. The technique is tested for
several problems scalar and systems. Our results show that the fix we propose does not degrade the structure
of discontinuities, a good convergence level is reached, in most case it also improves the quality of the solution
in smooth parts (because of the better convergence of the iterative scheme).

This technique is extended with success to RD schemes for Cartesian meshes in [27]. Future work will con-
sider the case of the unsteady problems following [3,28] and high order schemes too where similar difficulties
are encountered.
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