
LIE GROUPS AND THEIR LATTICES
- GRADED HOMEWORK -

Due date: Friday, March 27

1. Invariant measures, nilpotent lcsc groups and lattices

Exercise 1.1. Finite Haar measure.

Since a Haar measure is a Radon measure, so it is finite on compact subsets of G. So if G is
compact, its Haar measure is finite.

Assume now that G is not compact. Then for any compact set C ⊂ G, the set CC−1 is
still compact. So we may find g ∈ G, such that g /∈ CC−1. This implies that gC ∩ C is
empty (otherwise we would find an elements a, b ∈ C such that a = gb, which would imply
g = ab−1 ∈ CC−1). This implies that µG(G) ≥ µG(C ∪ gC) = 2µG(C), for any compact subset
C of G. Since µG is a regular measure, this further implies that µ(G) ≥ 2µ(A) for any subset A
of G. With A = G, this implies that µ(G) = +∞ (we recall that a Haar measure is non-zero).

Exercise 1.2. Invariant measures on homogeneous spaces.

1. Fix f ∈ Cc(G/H). The map θ̃(f) : g ∈ G 7→
∫
F/H

f(gx) dµF/H(x) is well defined, right-F -

invariant because the measure µF/H is left F -invariant. It is also continuous by a standard
argument of continuity of integrals with parameters (based on Lebesgue convergence theo-
rem). So it indeed factorizes to a continuous map on G/F , the map θ(f). Let us check that
θ(f) : G/F → R is compactly supported.

Denote by K ⊂ G/H the (compact) support of f . If g ∈ G is such that gx /∈ K for all
x ∈ F/H then θ(f)(gF ) = 0. So θ(f) vanishes on the set {gF ∈ G/F | gF∩K = ∅} = p(K)c,
where p : G/H → G/F is the projection map. So θ(f) is supported on p(K) and since p is
continuous, p(K) is compact, as desired.

2. We may define a positive linear functional Cc(G/H)→ R, by the formula

φ : f ∈ Cc(G/H) 7→
∫
G/F

θ(f) dµF .

By Riesz representation theorem, this linear functional defines a Radon measure ν on G/H.
One may observe that θ is G-equivariant with respect to the left action G y G/H and
Gy G/F , both denoted by σ. This means that θ(f ◦ σg) = θ(f) ◦ σg for all f ∈ Cc(G/H),
g ∈ G. Therefore, since µF is G-invariant, we find that for all f ∈ Cc(G/H) and all g ∈ G:

φ(f ◦ σg) =

∫
G/F

θ(f ◦ σg) dµF =

∫
G/F

θ(f) ◦ σg dµF =

∫
G/F

θ(f) d(g∗µF ) = φ(f).

Therefore ν is G-invariant and must be proportional to µH , by uniqueness.
3. The push forward of µH under the projection map G/H → G/F is a G-invariant finite Borel

measure on G/F . So µF exists and is finite.
Moreover since H is normal and closed in F , F/H is a locally compact group. Its Haar

measure is then an F -invariant Radon measure on F/H. So µF/H also exists. It only remains
to show that µF/H is finite. Note by Lebesgue monotone convergence theorem that formula
(1.1) applies to any positive measurable function f on G/H. In particular, with f = 1, the
constant function equal to 1, we find µH(G/H) = µF/H(F/H)µF (G/F ). Since µH is finite
and µF is non-zero, we conclude that µF/H is also finite.
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4. By the previous question, the Haar measure on F/H is finite. So F/H is compact by
Exercise 1.1.

Exercise 1.3. Unimodularity.

1. We apply (1.1) with H = {e}, the trivial group and F = Z(G). We may do so because
• G/H = G, which carries a G-invariant Radon measure (its Haar measure λG).
• G/F is a lcsc group (since F = Z(G) is normal in G) so µF is nothing but the Haar

measure on this group.
• F/H = F also carries an F -invariant measure, its Haar measure λZ(G).

We find, for all f ∈ Cc(G),∫
G

f dλG =

∫
G/Z(G)

(∫
Z(G)

f(ga) dλZ(G)(a)

)
dλG/Z(G)(gZ(G)).

Take now f ∈ Cc(G) and h ∈ G. Define the function fh : g 7→ f(gh). We want to show that∫
G
fh dµG =

∫
G
f dµG. Using the formula, we find∫
G

fh dµG =

∫
G/Z(G)

∫
Z(G)

f(gah) dλZ(G)(a) dλG/Z(G)(gZ(G))

=

∫
G/Z(G)

∫
Z(G)

f(gha) dλZ(G)(a) dλG/Z(G)(gZ(G))

=

∫
G/Z(G)

θ(f)(ghZ(G)) dλG/Z(G)(gZ(G))

where we used the fact that a belongs to the center of G to get to the second line. By
unimodularity of G/Z(G), we now conclude that this last expression is equal to the same
one with h = e, and so

∫
G
fh dλG =

∫
G
f dλG, as desired.

2. Take an lcsc nilpotent group G, and denote by n its degree. This means that the central
series Ck(G), k ≥ 0, defined inductively by C0(G) = G and Ck+1(G) := [G,Ck(G)] satisfies
Cn(G) 6= {e} and Ck(G) = {e}, for all k > n. Recall two classical facts about this central
series.
• Observe that Since [G,Cn(G)] = Cn+1(G) = {e}, Cn(G) is contained in Z(G).
• By induction on k, one can check that Ck(G/Z(G)) = Ck(G)/Ck(G) ∩ Z(G).

Combining these two facts shows that G/Z(G) is nilpotent of degree n− 1.
We can now easily conclude by induction on the degree. If n = 0, G is abelian, hence it

is unimodular. If n > 1, then G/Z(G) is of degree n− 1, so it is unimodular thanks to the
induction hypothesis. Now the previous question immediately gives that G is unimodular.

Of course, as we saw in class, the conclusion does not hold for solvable groups, since the
group of all upper triangular matrices in SL2(R) is solvable, but not unimodular.

Exercise 1.4. Lattices are co-compact.

1. It is clear that Γ := H3(Z) is discrete in G := H3(R). We claim that the set

Ω :=

M(a, b, c) =

1 a c
0 1 b
0 0 1

 | 0 ≤ a, b, c ≤ 1


is such that ΓΩ = G. Since Ω is compact, this implies that Γ is co-compact in G.
Let us take arbitrary x, y, z ∈ R and check that M(x, y, z) is in ΓΩ. Take integers nx and
ny such that nx ≤ x < nx + 1 and ny ≤ y < ny + 1. Then we have the computation

M(−nx,−ny, 0)M(x, y, z) = M(x− nx, y − ny, z − nxy).

Now take m such that m ≤ z − nxy < m+ 1. We find that the matrix

M := M(0, 0,−m)M(−nx,−ny, 0)M(x, y, z) = M(x− nx, y − ny, z − nxy −m)
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belongs to Ω. Since M(0, 0,−m)M(−nx,−ny, 0) ∈ Γ, we are done.
2. Since Z is the center of G, it is clear that HZ is a group. So its closure F is a closed

subgroup of G, which obviously contains H. Since the normalizer of H in G is closed and
contains HZ, it contains F . So H is normal in F , and we are in the setting of Exercise 1.2.,
questions 3 and 4. So we immediately deduce that F/H is a compact group.

3. Since G/H carries a finite G-invariant measure, so does G/F , as we have seen in Exercise 1.2,
question 3. Now observe that the action of G/Z on the homogeneous space (G/Z)/(F/Z)
is transitive, and can be viewed as a transitive G-action. The stabilizer of the trivial coset
F/Z by this action is the subgroup F . By the homework on homogeneous spaces, we have a
G-equivariant homeomorphism between (G/Z)/(F/Z) and G/F . Since G/F carries a finite
G-invariant Borel measure ν, so does (G/Z)/(F/Z). Now the G action on this space factors
to the action of G/Z, so ν is invariant under this action of G/Z. Thus F/Z is co-finite in
G/Z.

4. Let us now assume that G is nilpotent of degree n. and let us proceed by induction on n.
• If n = 0, G is abelian. Then for any cofinite closed subgroup H of G, we know that
G/H is a lcsc group with finite Haar measure. So G/H must be compact by Exercise
1.1.
• Assume now that n > 0 and that it is true for n − 1. We use the notation from the

previous questions. As we observed in the previous exercise, G/Z is nilpotent of degree
n−1. By question 3, we know that F/Z is co-finite in G/Z. So by induction we deduce
that F/Z is co-compact in G/Z. By the homeomorphism between (G/Z)/(F/Z) and
G/F found in the previous question, we deduce that G/F is compact. Moreover, we
found in question 2 that F/H is compact as well. By the claim below applied to L = F ,
we find that there exists a compact set C1 ⊂ G such that G = C1F . Applying now the
claim to G = F and L = H we find that there exists a compact set C2 ⊂ F such that
F = C2H. Thus G = C1C2H, and since C1C2 is compact in G, we conclude that G/H
is compact.

We used the following claim mentioned in class.
Claim. A closed subgroup L < G is co-compact if and only if there exists a compact subset
C ⊂ G such that CL = G.

Indeed, if such a C exists then the projection map G→ G/L is surjective on the compact
set C. So G/L must be compact (as the continuous image of a compact set). Conversely,
if G/L is compact, take a non-empty relatively compact open set U ⊂ G. Of course we
have G =

⋃
g∈G gU and hence G/L =

⋃
g∈G p(gU). Since the map p is open, p(gU) is an

open subset of G/L for every g. By compactness of G/L, we can extract a finite sub-cover
G/L =

⋃
g∈S p(gU) for some finite set S ⊂ G. Then the closure C of

⋃
g∈S gU is a compact

set such that p(C) = G/L. this last condition is equivalent to CL = G.

2. Geometric growth rate of semi-simple lattices

Exercise 2.1. Classical decompositions.

1. As we saw in class, the KAK-decomposition follows from the polar decomposition, and the
fact that a positive matrix can be conjugated to a diagonal matrix by an orthogonal matrix.
Take an element g ∈ G. Then we may write g = kak′, with k, k′ ∈ K, a ∈ A. So it suffices
to check that a belongs to KA+K. We may find a diagonal matrix b ∈ A ∩K, with values
±1, such that ba is still diagonal but has only positive entries. Now we may conjugate ba
by a suitable permutation matrix ε to ensure that εbaε−1 ∈ A+. Since b and ε belong to K,
this proves the result.

2. We follow the hint. The action of P−×K on G given by (w, k)·g := wgk−1 is transitive : any
element is of the form wk−1 for some (w, k) ∈ P−×K. So we may view G as a homogeneous
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space (P− ×K)/ Stab({e}). By the exercise sheet on homogeneous spaces there is at most
one (P− ×K)-invariant Radon measure on this homogeneous space G.

So we only need to check that the Haar measure λG on G is indeed P−×K-invariant. By
definition it is of course left P− invariant. Moreover since K-is compact, it has no character,
so the modular function of G vanishes on K, which means that λG is right K-invariant, as
desired. Of course we could have directly used the fact that G is unimodular.

3. (a) By homogeneity, the map m has constant rank. Indeed m satisfies m(w0w, kk0) =
w0m(w, k)k0, for all w0, w ∈ P−, k0, k ∈ K. This rewrites m◦(Lw0×Rk0) = Lw0◦Rk0◦m,
where Lw0 denotes the left translation on P− and on G, while Rk0 denotes the right
translation on K and G. Since these translations are diffeomorphisms, derivating this
relation at (w, k) = (e, e) and using the chain rule gives that the derivative of m at
(e, e) has the same rank as the derivative at any other point (w0, k0). So m indeed has
constant rank.
Since it is surjective, it is a submersion. Now we compare the dimensions of P−, K and
G:
• dim(G) = d2 − 1.
• dim(P−) = d(d+ 1)/2− 1.
• dim(K) = d(d− 1)/2.

The first two computations are trivial. The third one can be seen in many ways. For
instance, it can be observed that the tangent space of K at e is the set of antisymmetric
matrices, which clearly has the required dimension. So dim(P− × K) = dim(P−) +
dim(K) = dim(G). Since m is a submersion it must be an immersion, and therefore a
local diffeomorphism at any point.

(b) If the result does not hold then for any neighborhood W of e in P−, we may find distinct
(w, y) and (w′, y′) in W ×Y such that wy = w′y′. Then taking a countable basis Wn of
neighborhoods of e in P−, we find two sequences of pairwise distinct elements (wn, yn)
and (w′n, y

′
n) such that wn, w

′
n converge to e and wnyn = w′ny

′
n for every n. For every n,

write yn = knx0 and y′n = k′nx0 for some kn, k
′
n ∈ K.

This means that for every n, there exists γn ∈ Γ such that wnkn = w′nk
′
nγn, as an

equality inside G. By compactness of K we may assume (up to taking a subsequence)
that kn and k′n converge to elements k and k′ respectively, which forces γn to converge
to some γ ∈ Γ. Since Γ is discrete in G, we find that γn = γ for n large enough.
Note now that taking the limit in the equality wnkn = w′nk

′
nγn gives k = k′γ, which

shows that γ ∈ K. Then for n large enough γn = γ, and thus w′n
−1wn = k′nγk

−1
n ∈

P−∩K. Thus for every n, w′n
−1wn is a diagonal matrix with entries ±1. So if n is large

enough it must be the identity, and thus wn = w′n for all n large enough. This then
implies that yn = y′n, which is a contradiction.

Exercise 2.2. A mixing property.

1. For every integer n ≥ 1, we define the subset

Wn = {M ∈ P− | |Mi,j| <
1

n
for every i > j, and |Mk,k − 1| < 1

n
for every k}.

We note that if a = diag(λ1, . . . , λd) ∈ A+ and M ∈ Wn, then for every i < j, we have

|(aMa−1)i,j| = |
λi
λj
Mi,j| ≤ |Mi,j| <

1

n
,

while (aMa−1)k,k = Mk,k for every k. So aMa−1 ∈ Wn. Moreover, it is clear that Wn forms
a basis of neighborhoods of e in P−.

2. There was an issue in this question, all along, instead of P−, we should have considered the
open subgroup P 0

− of elements in P− with only positive diagonal entries. The advantage
is that P 0

− also satisfies all the above properties, but in addition, the Iwasawa map m :
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P 0
− × K → G is bijective. Take W ⊂ P− and f ∈ L∞(X) as in the question. Since P 0

− is
open in P−, we may as well assume that W ⊂ P 0

−, by shrinking W if necessary. In this case
we have 1WK(wk) = 1W×K(w, k), for every w ∈ P 0

−, k ∈ K. We have

∫
W×Y

f(wy) dλP−(w) dµY (y) =

∫
W×K

f(wkx0) dλP−(w) dλK(k)

=

∫
P 0
−×K

1WK(wk)f(wkx0) dλP 0
−

(w) dλK(k)

=

∫
G

1WK(g)f(gx0) dλG(g)

=

∫
X

∑
γ∈Γ

f(gx0)1WK(gγ) dµX(gΓ)

=

∫
X

f(gx0) card(WK ∩ gΓ) dµX(gΓ).

Note that we used equation (1.1) to get the fourth line.
Assume now moreover that W is as in question (3) of Exercise 2.1. Since f is supported on

WY , we find that for every g such that gx0 is in the support of f , there always is at least one
element gγ0 in WK. The following claim then ensures that card(gΓ∩WK) = card(K ∩Γ).
Claim. For every γ ∈ Γ, we have that gγ ∈ WK if and only if γ−1

0 γ ∈ K ∩ Γ.
If γ−1

0 γ ∈ K∩Γ then gγ = gγ0h, for somme h ∈ K∩Γ. So gγ ∈ WK. Conversely, assume
that gγ = wk for some w ∈ W , k ∈ K. Write also gγ0 = w0k0. Then wkγ−1 = w0k0γ

−1
0 and

thus wkx0 = w0k0x0. Since W × Y → WY is a diffeomorphism, we find that w = w0 and
therefore kγ−1 = k0γ

−1
0 which leads to γ−1

0 γ = k−1
0 k ∈ K ∩ Γ, as wanted. Equation (2.1)

follows.
3. (a) We first prove a version of Heine Thoerem in the setting of homogeneous spaces:

Since ϕ is continuous with compact support on X, it is uniformly continuous: for every
ε > 0, we may find a neighborhood U of the identity in G such that for every x ∈ X
and every g ∈ U , |ϕ(gx)− ϕ(x)| ≤ ε.
This can be checked as follows: for every x ∈ supp(ϕ), we may find an open neigh-
borhood Vx of e in G such that |ϕ(gx) − ϕ(x)| ≤ ε/2, for every g ∈ Vx. Take an
open subset Ux ⊂ Vx such that e ∈ Ux and U2

x ⊂ Vx. Now the family {Uxx}x∈supp(ϕ)

forms an open cover of the compact set supp(ϕ). We may thus take a finite sub-cover
indexed by a finite set S. Define U :=

⋂
y∈S Uy. Take x ∈ supp(f), g ∈ U . There

exists y ∈ S and h ∈ Ux such that x = hy. Since gh ∈ U2
x ⊂ Vx, we find that

|f(gx)− f(x)| = |f(ghy)− f(hy)| ≤ |f(ghy)− f(y)|+ |f(hy)− f(y)| ≤ ε. This proves
this Heine theorem.
Keep this notation U . Take n large enough so that Wn ⊂ U . So we have for every
a ∈ A+,

|Ia − Jn,a| ≤
1

λP−(Wn)

∫
Wn×Y

|ϕ(ay)− ϕ(awy)| dλP−(w) dµY (y).

But observe that for every w ∈ Wn, we have awy = awa−1ay ∈ Wnay ⊂ Uay. Thus
|ϕ(ay)− ϕ(awy)| ≤ ε, and the result follows.

(b) We fix n large as in the statement of the question. Then we want to apply equation (2.2),
but we cannot do it directly because the map (w, y) 7→ ϕ(way) needs not supported on
Wn × Y . So we arrange this by multiplying by 1WnY (wy) (which is equal to 1 on the
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domain of integration we consider. We get

Jn,a =
1

λP−(Wn)

∫
Wn×Y

ϕ(awy)1WnY (wy) dλP−(w) dµY (y)

=
card(K ∩ Γ)

λP−(Wn)

∫
X

ϕ(ax)1WnY (x) dµX(x)

=
card(K ∩ Γ)

λP−(Wn)
〈ϕ(a · ),1WnY 〉.

where the above scalar product is taken inside L2(X,µX). By Howe-moore theorem,
we know that the action of G on X is mixing, and hence so is the action of its closed
subgroup A+. Thus, as a goes to infinity, with n fixed, we find that Jn,a converges to
the product

card(K ∩ Γ)

λP−(Wn)

∫
X

ϕ dµX(x)

∫
X

1WnY dµX .

On the other hand, applying (2.2) to the function f = 1WnY gives

card(K ∩ Γ)

λP−(Wn)

∫
X

1WnY dµX =
1

λP−(Wn)

∫
Wn×Y

1WnY (wy) dλP−(w) dµY (y) = 1.

So indeed Jn,a converges to
∫
X
ϕ dµX as a goes to infinity inside A+.

(c) Fix ε > 0. Take n0 as in question (a) and choose n ≥ n0 large enough so that Wn

satisfies the conclusion of Question 3 of Exercise 2.1. By the previous question, we may
then find a compact C ⊂ A+ such that |Jn,a −

∫
X
ϕ dµX | < ε for all a /∈ C. Then for

such an a, we get that |Ia −
∫
X
ϕ dµX | < 2ε. This proves the desired convergence.

4. We will use the KA+K-decomposition. We may write G =
⋃
nCn as the increasing union

of countably many compact sets Cn. Fix f ∈ Cc(X). If the integral
∫
Y
f(gy) dµY (y) does

not converges to
∫
X
ϕ dµX as g ∈ G goes to infinity, then we may find ε > 0 such that for

every n, there exists gn /∈ Cn such that

|
∫
Y

ϕ(gny) dµY (y)−
∫
X

ϕ dµX | > ε.

For every n, write gn = knank
′
n, with kn, k

′
n ∈ K, an ∈ A+. Then since K is compact,

we find that an goes to infinity inside A+. Taking a subsequence if necessary we may also
assume that kn converges to some k ∈ K. Applying the version of Heine theorem described
above and denoting by U the set given in question 3.(a), we have, for all n large enough,

|ϕ(knank
′
ny)− ϕ(kank

′
ny))| < ε.

So for n large enough we have

|
∫
Y

ϕ(gny) dµY (y)−
∫
X

ϕ dµX | < ε+ |
∫
Y

ϕ(kank
′
ny) dµY (y)−

∫
X

ϕ dµX |

= ε+ |
∫
Y

ϕ(kany) dµY (y)−
∫
X

ϕ dµX |,

where the second line follows from the K-invariance of the measure µY . Now we may apply
question 3 to the function ϕ′ : x ∈ X 7→ ϕ(kx) and thus get that

lim
n
|
∫
Y

ϕ(kany) dµY (y)−
∫
X

ϕ dµX | = 0.

Combining this with the previous computation contradicts the definition of gn.
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Exercise 2.3. Computation of the geometric growth.

1. (a) By equation (1.1), we have∫
X

Fr(x)f(x) dµX(x) =

∫
X

(
∑
γ∈Γ

1Br(gγ))f(gγx0) dµX(gΓ)

=

∫
G

1Br(g)f(gx0) dλG(g)

=

∫
Br

f(gx0) dλG(g).

Since Br = Brk for every k ∈ K, we also find that∫
Br

f(gx0) dλG(g) =

∫
K

∫
Br

f(gkx0) dλG(g) dµK(k).

So the result follows by combining the two computations.
(b) Take ε > 0. By Exercise (2.2), we may find a compact subset C ⊂ G such that

Ig := |
∫
K

f(gkx0) dµK(k)−
∫
X

f dµX | < ε/2, for all g ∈ G \ C.

Take now r large enough so that µ(C ∩Br) <
εvr

4‖f‖∞ . Then we find

| 1
vr

∫
Br

∫
K

f(gkx0) dµK(k) dλG(g)−
∫
X

f dµX | =

= | 1
vr

∫
Br

(∫
K

f(gkx0) dµK(k)−
∫
X

f dµX

)
dλG(g)|

≤ 1

vr

∫
Br

Ig dλG(g)

=
1

vr

∫
C∩Br

Ig dλG(g) +
1

vr

∫
Br\C

Ig dλG(g)

< sup
g
Ig

εvr
4vr‖f‖∞

+
ε

2
.

Since for all g, we have Ig ≤ 2‖f‖∞, we find that the above quantity is majorized by
ε/2 + ε/2 = ε. So the conclusion follows from question (a).

2. (a) Take r, ε > 0, g ∈ Gε and γ ∈ Γ.
If γ ∈ Br, then ‖gγ‖ ≤ ‖g‖‖γ‖ < eεr. So gγ ∈ Breε .
If now gγ ∈ Be−εr, then ‖γ‖ ≤ ‖g−1‖‖gγ‖ < eεe−εr = r so γ ∈ Br. We thus find

1Bre−ε (gγ) ≤ 1Br(γ) ≤ 1Breε
(gγ).

Summing up over γ ∈ Γ gives the desired inequality.
(b) Since f is supported on Gεx0, the previous question gives, for all x ∈ X,

f(x)Fre−ε(x) ≤ f(x)Fr(x0) ≤ f(x)Freε(x).

Integrating over x ∈ X gives the result.
(c) Dividing by vr the inequality from the previous question, and letting r go to infinity

gives

lim inf
r

1

vr

∫
X

f(x)Fre−ε(x) dµX(x) ≤ lim inf
r

1

vr
card(Γ ∩Br)

≤ lim sup
r

1

vr
card(Γ ∩Br)

≤ lim sup
r

1

vr

∫
X

f(x)Freε(x) dµX(x).
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As said in the instructions, we know that vr is of the form crd(d−1 for some absolute
constant d. So vr = vre−εeεd(d−1), and thus

lim inf
r

1

vr

∫
X

f(x)Fre−ε(x) dµX(x) = e−εd(d−1) lim
r

1

vre−ε

∫
X

f(x)Fre−ε(x) dµX(x)

= e−εd(d−1).

Likewise, lim supr
1
vr

∫
X
f(x)Freε(x) dµX(x) = eεd(d−1). So we conclude

e−εd(d−1) ≤ lim inf
r

1

vr
card(Γ ∩Br) ≤ lim sup

r

1

vr
card(Γ ∩Br) ≤ eεd(d−1).

As ε can be chosen arbitrarily small we get the conclusion.


