LIE GROUPS AND THEIR LATTICES - GRADED HOMEWORK -

Due date: Friday, March 27

1. INVARIANT MEASURES, NILPOTENT LCSC GROUPS AND LATTICES

Exercise 1.1. Finite Haar measure.

Prove that an lcsc group G is compact if and only if any Haar measure on G is finite.

Exercise 1.2. Invariant measures on homogeneous spaces.

Let G be an lcsc group, and H < F < G two closed subgroups. We assume that there exist:

- G-invariant Radon measures μ_H and μ_F on G/H and G/F, respectively.
- an *F*-invariant Radon measure $\mu_{F/H}$ on F/H.

From the exercise sheet on homogeneous spaces, we know that μ_H , μ_F and $\mu_{F/H}$ are unique up to proportionality.

1. Given $f \in C_c(G/H)$, prove that

$$\theta(f): gF \in G/F \mapsto \int_{F/H} f(gx) \,\mathrm{d}\mu_{F/H}(x) \in \mathbb{R}$$

is a well defined function which belongs to $C_c(G/F)$. Observe that the map $\theta : C_c(G/H) \to C_c(G/F)$ defined this way is linear and positive (meaning that $\theta(f) \ge 0$ if $f \ge 0$).

2. Up to multiplying μ_F by a positive real number, prove that for all $f \in C_c(G/H)$,

(1.1)
$$\int_{G/H} f \,\mathrm{d}\mu_H = \int_{G/F} \left(\int_{F/H} f(gx) \,\mathrm{d}\mu_{F/H}(x) \right) \,\mathrm{d}\mu_F(g).$$

Observe that this equation is also non-trivial in the case where H < G is the trivial subgroup.

Let us still assume that G is an lcsc group with two closed subgroups H < F < G but we only assume that μ_H exists and is finite. In addition we assume that H is normal in F.

- 3. Check in this setting that μ_F and $\mu_{F/H}$ as above automatically exist and are finite.
- 4. Prove then that F/H is a compact group.

Exercise 1.3. Unimodularity.

- 1. Let G be an arbitrary less group. Prove that if $G/\mathcal{Z}(G)$ is unimodular, then so is G. *Hint.* Use (1.1).
- 2. Conclude that nilpotent lcsc groups are unimodular. Is it the case of solvable groups ?

Exercise 1.4. Lattices are co-compact.

1. Prove that $H_3(\mathbb{Z})$ is a co-compact lattice in $H_3(\mathbb{R})$, where for a ring R, $H_3(R)$ denotes the Heisenberg group over R:

$$H_3(\mathbb{R}) = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \mid a, b, c \in R \right\}.$$

We now aim to prove that lattices in nilpotent lcsc groups are always co-compact. More generally take a nilpotent lcsc group G and a closed subgroup H such that G/H carries a G-invariant Borel probability measure (we say that H is *co-finite* in G). We aim to prove that G/H is compact.

Denote by F < G the closure of HZ where $Z = \mathcal{Z}(G)$ is the center of G.

- (2) Prove that F is a subgroup of G containing H and such that F/H is compact.
- (3) Prove that F/Z is co-finite in G/Z.
- (4) Conclude.

2. Geometric growth rate of semi-simple lattices

In this second series of exercises we let G be our prototypical semi-simple Lie group: $G = SL_d(\mathbb{R}), d \geq 2$, and we take a lattice Γ in G.

As usual, we consider the subgroups A, P_{-} of diagonal matrices and lower triangular matrices in G, respectively, and K = SO(d). We denote by $A^{+} \subset A$ the subset of diagonal matrices $\operatorname{diag}(\lambda_{1}, \ldots, \lambda_{d})$ such that

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d > 0.$$

We set $X := G/\Gamma$, and denote by $x_0 \in X$ the base point $x_0 = \Gamma$. We then define $Y := Kx_0 \subset X$.

We denote by μ_X the *G*-invariant probability measure on $X = G/\Gamma$, and by $\lambda_Y \in \operatorname{Prob}(Y)$ the unique *K*-invariant probability measure on *Y* (so μ_Y is the image of the Haar measure of *K* under the orbit map $k \mapsto kx_0$).

We normalize the Haar measure λ_G of G so that for every $f \in C_c(G)$,

$$\int_{G} f \, \mathrm{d}\lambda_{G} = \int_{X} \left(\sum_{\gamma \in \Gamma} f(g\gamma) \right) \, \mathrm{d}\mu_{X}(g\Gamma).$$

This is possible thanks to equation (1.1).

Exercise 2.1. Classical decompositions.

- 1. Prove the refined version of the KAK-decomposition: $G = KA^+K$. This is called the *Cartan* decomposition.
- 2. The Iwasawa decomposition tells us that $G = P_-K$, i.e. the map $m : (w, k) \in P_- \times K \mapsto wk \in G$ is surjective. Prove that the Haar measure λ_G is the push-forward of the product of Haar measures on P_- and K under $\lambda_G = m_*(\lambda_{P_-} \otimes \lambda_K)$, where λ_K is normalized to be a probability measure and λ_{P_-} is normalized appropriately.

Hint. Consider the left-right action of $P_- \times K$ on G and view G as a homogeneous space for this action.

- 3. (a) Prove that the map $m: P_{-} \times K \to G$ defined above is a local diffeomorphism.
 - (b) Prove that there exists a small enough neighborhood W of e in P_{-} such that the map

$$(w, y) \in W \times Y \mapsto wy \in X$$

is injective. Deduce that this map is a diffeomorphism onto the open set WY.

Exercise 2.2. A mixing property.

We prove in this exercise that the action $G \curvearrowright (X, \mu_X)$ "mixes Y inside X".

1. Prove that there exists a basis of neighborhoods W_n , $n \ge 1$, of e in P_- such that

(2.1) $aW_n a^{-1} \subset W_n$, for all $n \ge 1, a \in A_+$.

2. Prove that for any relatively compact open subset $W \subset P_{-}$, and any bounded measurable function $f \in L^{\infty}(X)$, supported on WY, we have

$$\int_{W \times Y} f(wy) \, \mathrm{d}\lambda_{P_-}(w) \, \mathrm{d}\mu_Y(y) = \int_X f(gx_0) \operatorname{card}(WK \cap g\Gamma) \, \mathrm{d}\lambda_X(g\Gamma).$$

If W is as in question (3) of Exercise 2.1, prove that in fact

(2.2)
$$\int_{W \times Y} f(wy) \, \mathrm{d}\lambda_{P_{-}}(w) \, \mathrm{d}\mu_{Y}(y) = \operatorname{card}(K \cap \Gamma) \int_{X} f \, \mathrm{d}\lambda_{X}.$$

3. Take a function $\varphi \in C_c(X)$. For all $a \in A_+$, and $n \ge 1$, define $I_a := \int_Y \varphi(ay) \, \mathrm{d}\mu_Y(y)$ and

$$J_{n,a} := \frac{1}{\lambda_{P_-}(W_n)} \int_{W_n \times Y} \varphi(awy) \, \mathrm{d}\lambda_{P_-}(w) \, \mathrm{d}\mu_Y(y),$$

- (a) Prove that there exists n_0 such that $|I_a J_{n,a}| < \varepsilon$, for all $a \in A_+$, $n \ge n_0$.
- (b) Take $n \ge n_0$ large enough so that W_n is as in question (3) of Exercise 2.1. Prove that $J_{n,a}$ converges to $\int_X \varphi \, \mathrm{d}\mu_X$.
 - *Hint.* Use Howe-Moore theorem.
- (c) Conclude that I_a converges to $\int_X \varphi \, d\mu_X$ as $a \in A_+$ goes to infinity.
- 4. Prove that for every $\varphi \in C_c(X)$, the integral $\int_Y \varphi(gy) d\mu_Y(y)$ converges to $\int_X \varphi d\mu_X$ as $g \in G$ goes to infinity.

We thus have shown that the measures $g_*\lambda_Y \in \operatorname{Prob}(X)$ converge weakly to the unique *G*-invariant measure λ_X as *g* goes to infinity.

Exercise 2.3. Computation of the geometric growth.

The group $G = \operatorname{SL}_d(R)$ acts on \mathbb{R}^d . Endow \mathbb{R}^d with its euclidian norm and define the corresponding operator norm on G: $||g|| = \sup_{v \in \mathbb{R}^d \setminus \{0\}} ||gv|| / ||v||$. Note that this norm is left *K*-invariant.

For every real number r > 0, denote by B_r the ball of radius r in G, with respect to the norm defined above, and by v_r its volume with respect to the Haar measure λ_G on G (normalized as in Exercise 2.2).

We will prove that $\operatorname{card}(\Gamma \cap B_r) \sim v_r$ as r goes to $+\infty$, i.e.

$$\lim_{r \to +\infty} \frac{\operatorname{card}(\Gamma \cap B_r)}{v_r} = 1.$$

This tells us that the number of points of Γ in a large ball grows like the Haar measure of the ball. We admit that $v_r = cr^{d(d-1)}$, for some constant c > 0. This allows to specify the above result, but this will also be needed in Question 2.b. below.

1. Consider the function $F_r: X \to \mathbb{N}$ defined by

$$F_r(g\Gamma) = \operatorname{card}(B_r \cap g\Gamma) = \sum_{\gamma \in \Gamma} \mathbf{1}_{B_r}(g\gamma), \text{ for every } g\Gamma \in X.$$

(a) Prove that for all r > 0, and $f \in C_c(X)$, we have

$$\int_X F_r(x)f(x) \,\mathrm{d}\mu_X(x) = \int_{B_r} \left(\int_K f(gkx_0) \,\mathrm{d}\lambda_K(k) \right) \,\mathrm{d}\mu_X(g).$$

Hint. Use the fact that B_r is right-K-invariant.

(b) Deduce that

$$\lim_{T \to +\infty} \frac{1}{v_r} \int_X F_r(x) f(x) \, \mathrm{d}\mu_X(x) = \int_X f \, \mathrm{d}\mu_X.$$

2. For every $\varepsilon > 0$, define $G_{\varepsilon} := \{g \in G \mid \max(\|g\|, \|g^{-1}\|) \le e^{\varepsilon}\}.$

(a) Prove that for every $r,\varepsilon>0$ and every $g\in G_\varepsilon,$ we have

$$F_{re^{-\varepsilon}}(g\Gamma) \leq F_r(x_0) \leq F_{re^{\varepsilon}}(g\Gamma).$$

(b) Take a non-negative function $f \in C_c(X)$ supported on $G_{\varepsilon}x_0$ and with integral 1. Prove that for every r > 0, we have

$$\int_X f(x) F_{re^{-\varepsilon}}(x) \, \mathrm{d}\mu_X(x) \le \operatorname{card}(\Gamma \cap B_r) \le \int_X f(x) F_{re^{\varepsilon}}(x) \, \mathrm{d}\mu_X(x).$$

(c) Conclude that $\operatorname{card}(\Gamma \cap B_r) \sim v_r$ as $r \to +\infty$.